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Abstract

Long-term storage will play a crucial role in future local multi-energy systems (MES) with
high penetration renewable energy integration for demand balancing. Local MES planning
with long-term energy storage is essentially a very large-scale program because numerous
decision variables, including binary variables, should be used to model long-term energy
dependencies for accurate operational cost estimation. How to largely reduce decision
variables as well as guarantee the planning model accuracy becomes one main concern.
To this end, this paper proposes a novel efficient aggregation and modeling method
for local MES planning. The aggregation method first decomposes input time series
data (renewable energy output and energy demand) into hourly and daily components,
based on which more accurate aggregation results with a few typical scenarios can be
derived. By incorporating similar decomposition into the operation model of energy
devices, the planning model can describe the long-term energy cycle and the hourly
operation characteristic at the same time and yield accurate optimization results with
limited complexity. Experimental results show that the proposed method can considerably
decrease the complexity of the problem while maintaining agreement with the results
based on the optimization of the full-time series.

1 INTRODUCTION

Accommodating high penetration of renewable energy is very
important for operational cost and carbon emission reduction
[1]. The integration of multi-energy systems (MES) has been
found to utilize the complementary characteristic of differ-
ent energy carriers (i.e. electricity and heating) to provide a
large amount of flexibility to accommodate renewable energy
and thus guarantee a reliable, low-carbon, and economical
energy supply [2]. In the complex MES, both the multi-energy
demands and renewable energy outputs show significant varia-
tions, including daily and seasonal variations. [3] In this context,
the collaborative planning of short-term and long-term storage
has attracted more attention for compensating for these two
variations respectively [4–6]. However, the optimal planning
of MES with these two kinds of storage is a large-scale pro-
gram problem because a massive number of decision variables
should be introduced to model the operation of short-term and
long-term storage for accurate operational cost estimation [7].
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A popular method to simplify the problem is time series
aggregation, which clusters full-time series into typical sce-
narios based on daily or weekly patterns of input profiles [8].
Then input time series and decision variables are reused in
the same typical scenarios to decrease the redundancy of the
planning problem.

Different aggregation methods for various planning
problems have been proposed. Kotzur et al. compared the
performance of different clustering methods (i.e. averaging,
k-means, k-medoids, hierarchical aggregation etc.) in planning
MES [9]. As for the length of the typical scenarios, typical
days were chosen for the planning of the device capacities
[10], risk-considered daily profit [11], device placement and
investment year [12], and also connections [13] in MES. Besides
daily patterns, works also chose typical weeks. The longer
typical scenarios are suitable for the planning of systems
with long-term storage devices that exchange state-of-charges
(SoC) between days [14]. Based on various clustering methods,
MES planning models are proposed for multi-year long-term
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planning horizons[15]. Nevertheless, time series aggregation
based on clustering methods smooths the original profiles,
resulting in an underestimate of the total cost and a weak
designed system. To tackle the problem, the error of the objec-
tive function was explicitly bounded in the framework [16].
Besides, extreme periods were added to the aggregated time
series to guarantee the robustness of designed systems [17].

However, there is a drawback of MES planning with long-
term storage via time series aggregation: long-term storage
devices are not allowed to exchange stored energy between
typical scenarios. To ensure the consistency of the SoC between
typical scenarios, SoC at the beginning and the end of typical
scenarios must be equal [18]. However, the true energy cycles
of long-term storage devices range from days to weeks [19],
so cyclic constraints result in significant errors in the designed
capacity of long-term storage devices.

To overcome the drawback, several new time series aggrega-
tion methods for MES planning with long-term storage have
been proposed to describe the energy exchange across typical
scenarios. Kotzur et al. [19] described the SoC of long-term
storage based on the superposition of inter-period and intra-
period states. Inter-period states with lower time resolution
describe the SoC exchanged between typical scenarios, while
intra-period states with higher time resolution depict the SoC
change within typical scenarios. Baumgärtner et al. [20] decom-
posed the optimization problem into several subproblems and
recombined the solution of subproblems to generate an opera-
tion solution for long-term storage devices. Gabrielli et al. [21]
reused all decision variables except SoC variables in the same
typical scenarios, which was called the M1 method. Besides
the M1 method, a model with higher complexity is that only
integer variables are reused in the same typical scenarios, which
was named after the M2 method. In both methods, the SoC of
storage devices was described hour by hour for the whole year,
resulting in free energy exchanges across typical scenarios. Tan
et al. [22] decomposed the aggregated heating load profiles into
daily average components and hourly fluctuation components,
and planned the long-term and short-term storage devices to
respond to daily and hourly components, respectively. Novo
et al. [23] observed the SoC variation of long-term storage was
unique for each typical period throughout the year. Therefore,
the deviation of SoC between the start and the end of one
typical period was the same, and it’s feasible to model the initial
SoC between two typical periods via the deviation. Tejada-
Arango et al. [24] proposed two novel models to improve the
planning of short-term and long-term storage, respectively.
Transition matrixes were introduced to guarantee the continuity
and energy exchanged between typical periods.

Despite the effectiveness of the aforementioned works, the
time-series aggregation method can be investigated to further
improve the performance of the optimization model. Inspired
by the decomposition techniques used in these works, we try
to integrate decomposition and aggregation to fill the research
gap of how to improve the accuracy of the aggregated time
series without importing more typical scenarios. Furthermore,
to fully utilize the aggregated time series after decomposition,
another research gap is how to model as many devices as
possible to respond to time series with multiple components

of different time resolutions. To address the aforementioned
research gaps, this paper employs the decomposition to both
time series aggregation and operation of devices and proposes a
novel framework for the planning of local MES with long-term
storage.

This paper makes the following two main contributions:

1. Propose a novel framework for optimal configuration plan-
ning of a multi-energy system with long-term storage that
incorporates time series seasonal-trend decomposition into
time series aggregation, and provides two major benefits: (1)
the complexity of the problem is reduced significantly while
the accuracy is maintained; (2) the operation of energy con-
verters and long-term storage devices can vary throughout
the year, generating a highly expressive model.

2. Develop a novel method of time series aggregation based
on Multiple Seasonal-Trend decomposition using Loess
(MSTL), which decouples the hourly fluctuation and the
trend of the original time series, and yields hourly and daily
components at once. With the help of the method, the aggre-
gated series can depict the original time series accurately even
with a low number of typical scenarios.

The rest of this paper is structured as follows. Section 2 defines
the problem to be solved and introduces the proposed frame-
work. Section 3 elaborates on the proposed novel time-series
aggregation method, including the principles and procedures.
Section 4 details the proposed planning model. Section 5 pro-
vides experimental results and comparative analysis. Section 6
draws conclusions.

2 PROBLEM STATEMENT AND
FRAMEWORK

2.1 Problem statement

Local MES planning aims to determine which energy devices
(including energy converters and storage) should be installed
so that the overall cost, including investment and operational
costs, is minimized. It is important to accurately estimate the
operational cost during the planning period.

The operation of local MES should consider the constraints
of energy converters and storage. For storage devices, the state-
of-charges (SoC) SOCg,t between every two adjacent periods are
coupled and can usually be formulated as follows:

SOCg,t = (1 − 𝛾g )SOCg,t−1 + P+
g, j ,t 𝜂

+
g − P−

g, j ,t∕𝜂
−
g ,

∀t , g ∈ Ωs , (1)

where 𝛾g is the hourly self-discharge rate of the g-th storage
device; P+

g, j ,t and P−
g, j ,t denote the charge and discharge power

during the t -th hour, respectively, the kind of which is the j -
th kind of energy carrier; 𝜂+g and 𝜂−g are the input and output
efficiency, respectively; Ωs is the set of all storage devices.

For short-term storage with a larger value of 𝛾g but a larger
value of 𝜂+g and 𝜂−g , such as batteries, we assume the consistency
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of the SoC at the beginning and the end of a day so that the
operation of local MES can be decoupled on a daily basis:

SOCg,t=0,s = SOCg,t=24,s , ∀g ∈ Ωsts , s, (2)

where s denotes the index of the typical scenario; Ωsts is the set
of all short-term storage devices.

Since short-term storage cannot charge and discharge simul-
taneously, binary variables are needed to represent the charging
or discharging state in each hour throughout the whole year,
which is formulated by:

x+g,t P+
g,max ≥ P+

g, j ,t ≥ 0, ∀g ∈ Ωsts , t , (3a)

x−g,t P−
g,max ≥ P−

g, j ,t ≥ 0, ∀g ∈ Ωsts , t , (3b)

x+g,t + x−g,t ≤ 1, ∀g ∈ Ωsts , t , (3c)

x+g,t , x
−
g,t ∈ {0, 1}, ∀g ∈ Ωsts , t , (3d)

where x+g,t and x−g,t are binary variables representing whether
the g-th storage device is charging or discharging in the t -th
hour throughout the year, respectively. These binary variables
will bring a large amount of computational complexity to the
problem, turning the problem into an intractable one. A solu-
tion to the high complexity introduced by the binary variables is
to implement time-series aggregation, for example, daily load
profile or renewable energy output clustering. It selects typi-
cal scenarios and reuses decision variables, including the binary
variables in the same scenario.

When it comes to long-term storage with a smaller value of
𝛾g but a smaller value of 𝜂+g and 𝜂−g , such as a hydrogen storage
system, the actual energy cycles of long-term storage devices
usually range from several days to several weeks. Therefore, we
need to assume the consistency of the SoC at the beginning and
the end of a year instead of one day in our optimal planning
problem:

SOCg,t=0 = SOCg,t=8760, ∀g ∈ Ωlts , (4)

where Ωlts is the set of all long-term storage devices.
It is unreasonable to reduce decision variables based on sim-

ple daily load profiles or renewable energy output clustering
for long-term storage devices because they have larger energy
charging and discharging cycles. Thus, the local MES planning
model with constraints (1)-(4) is still a very large-scale mixed-
integer program. How to develop new time-series aggregation
and modeling methods to largely reduce decision variables as
well as guarantee the accuracy of the local MES planning model
is the main problem to be solved in this paper.

2.2 Proposed framework

in contrast to the SoC constraint of short-term energy storage
in (2), the SoC of long-term energy storage SOCg,t changes by
the end of a day. Thus, an intuitive idea is that: can we introduce

an additional variable SOC d
g,td

to represent the SoC change in

the d -th day, so that the “rest” SoC (i.e. SOCg,t − SOC d
g,td

) can
be decoupled?

Based on this idea, we decompose SOCg,t of long-term
storage devices into two components:

SOCg,t = SOC h
g,th,s

+ SOC d
g,td
, ∀g ∈ Ωlts , t , (5)

where SOCg,t is the actual SoC at the t -th hour in the whole
year; SOC d

g,td
denotes the daily resolution component at the

td -th day, which reflects the change of the SoC on a daily
basis and has an annual cycle; SOC h

g,th,s
denotes the correspond-

ing hourly resolution component, which reflects the hourly
fluctuation of the full-time series and has a daily cycle and
satisfies:

SOC h
g,th=0,s = SOC h

g,th=24,s , ∀g ∈ Ωlts , s, (6)

which is similar to (2). In this way, we can reuse SOC h
g,th,s

in the
same typical scenarios.

Take one-year hourly resolution data as an example, we have
to introduce 8760 variables (SOCg,t ) to accurately represent the
SoC of the g-th storage. However, using (5) and (6), we only
need to introduce 24 × s + 365 variables (24 × s for SOC h

g,th,s

and 365 for SOC d
g,td

) to approximate the original constraint in
(4). Then, the next problem is how to implement the decompo-
sition in (5) and (6) to reduce the approximate error as much as
possible.

Inspired by the decomposition of SOCg,t in (5), we
propose a novel framework for local MES planning as
shown in Figure 1. It contains three major blocks: (1)
time series decomposition-aggregation, (2) superposed
operation modeling, and (3) optimization based on all
components.

The operation of local MES is mainly driven by uncon-
trollable components such as energy demand and renewable
energy output. Having a deep investigation of the behav-
ior of these uncontrollable components helps to reduce the
approximation error. Thus, we first decompose the energy
demand and renewable energy output time series data into the
hourly fluctuation and the daily change components before
aggregation:

Xt = X d
td
+ X h

th,s
, ∀t , (7)

where Xt is the actual value at the t -th hour of the aggregated
time series; X d

td
represents the corresponding daily resolution

component at the td -th day; X h
th,s

denotes the hourly resolution
component at the th-th hour in the s-th typical scenario, respec-
tively. The time series decomposition-aggregation method is
applied to all input time series, including all kinds of renewable
generation power and energy demands.

On this basis, we implement superposed operation modeling,
where the operational status of all devices except short-term
storage devices can be viewed as a superposition of both X d

td
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FIGURE 1 Illustration of the proposed framework for planning the local MES. Three major blocks include the time-series decomposition-aggregation
method, superposed operation modeling, and optimization based on all components.

and X h
th,s

, which is formulated as:

Pg,t = Pd
g,td

+ Ph
g,th,s

, ∀g ∈ Ωc , Ωlts , Ωreg, t , (8)

where Pg,t is the actual power of the g-th device at the t -th hour;
Pd

td
represents the corresponding daily resolution component at

the td -th day; Ph
th,s

denotes the hourly resolution component at
the th-th hour in the s-th typical scenario, respectively;Ωreg is the
set of all renewable energy generation devices.

Finally, we establish the new optimization model, where the
total cost consisting of investment and operational costs is min-
imized considering both Pd

g,td
and Ph

g,th,s
, and then the optimal

investment and operation strategy of each device throughout
the year is derived.

The accuracy and efficiency of the proposed framework lie in
the decomposition within the time series aggregation method
and the superposed operation modeling. In terms of time series
aggregation, the combination of different X d

td
and X h

th,s
can

result in different Xt . Because of the multiplication principle, the
aggregated time series is accurate even with a few typical scenar-
ios. Similarly, the superposition of Pd

g,td
and Ph

g,th,s
also guarantees

a highly expressive operational model throughout the year.

3 TIME SERIES
DECOMPOSITION-AGGREGATION

In this section, a novel time series aggregation method is pro-
posed to extract the hourly and daily variations of the full-time
series. We first introduce the principle of Multiple Seasonal-
Trend decomposition using Loess (MSTL) algorithm [25],
which is applied in our method first and decomposes the full-
time series into multiple seasonal components. On this basis,
the proposed Time series Decomposition-Aggregation Method
is detailed.

3.1 Introduction to MSTL

For a full-time series Xt , such as a one-year hourly load profile,
the decomposition of Xt via the MSTL algorithm is formulated
as:

Xt = S 1
t + S 2

t +⋯+ S n
t + Tt + Rt , (9)

where S i
t denotes the i-th seasonal component of Xt ; Tt

and Rt represent the trend and remainder components of
Xt , respectively.

Since MSTL is essentially an extension of the Seasonal-Trend
decomposition using Loess (STL) algorithm [26], we introduce
the STL procedure first.

The additive decomposition of Xt via the STL algorithm is
formulated as:

Xt = St + Tt + Rt . (10)

Generally, the principle of STL is a series of low-pass fil-
ters, through which the slowly-changed trend component is
extracted from the full-time series. As for the seasonal compo-
nent, low-pass filters are applied to the cycle-subseries of the
full-time series to generate seasonal filters. Noting the cycle of
the seasonal component as np, all cycle-subseries of a series {Xt }

are defined as:

{{Xi ,Xi+np
,Xi+2np

, …}|i = 1, 2, … , np}. (11)

Therefore, the low-pass filters applied to the cycle-subseries
guarantee the similarity between two nearby cycles, namely the
seasonality of the output seasonal component.

In terms of the low-pass filters chosen in STL, locally-
weighted regression (loess) is employed repeatedly. The prin-
ciple of loess is that when calculating regressed value g(x ) at
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x ∈ R, we only consider observed tuples (xi , yi ) whose xi are
nearby x.

The procedure of loess is detailed as follows. Note (xi , yi ), i =
1, … , n as input tuples to be regressed. To take the elec-
tricity load profile decomposition as an example, the tuples
are (t ,Lt , j=E ), t = 1, … , 8760. The loess regression curve,
g(x ), x ∈ R, is computed based on neighborhood weights. Let q

be a positive integer parameter and 𝜆q (x ) be the distance of the
q-th farthest xi from x, and then the neighborhood weight vi (x )
for each xi is:

vi (x ) = W

(|xi − x|
𝜆q (x )

)
, (12a)

W (u) =

{
(1 − u3)3, 0 ≤ u < 1

0, u ≥ 1
, (12b)

which means only tuples (xi , yi ) whose xi ∈ [x − 𝜆q (x ), x +
𝜆q (x )] have non-zero weights when evaluating g(x ), and the
closer xi is to x, the bigger the neighborhood weight vi (x ) is.

Next, the loess regression curve g(x ) at x is derived by fitting
a polynomial of degree d with neighborhood weight vi (x ) for
each (xi , yi ). To take d = 2 as an example, the loess regression
curve g(x ) equals:

g(x ) = a(x )x2 + b(x )x + c (x ), (13)

where a(x ), b(x ), c (x ) are coefficients at x derived from the
weighted least square method whose loss function J (a, b, c ) is:

J (a, b, c ) =
1
n

n∑
i=1

vi (ax2 + bx + c − yi )
2. (14)

To evaluate g(x ) for each x ∈ R, first, the coefficients of g(x )
at x (i.e. a(x ), b(x ), c (x ) when d = 2) are given by the weighted
least square method based on (14). Next, g(x ) is calculated
with given a(x ), b(x ), c (x ), and x according to the expression
of g(x ) based on (13). If a large q is selected, the considered
scope [x − 𝜆q (x ), x + 𝜆q (x )] becomes large when evaluating
g(x ), which plays an effect of low-filter.

Based on loess, the procedure of the STL algorithm is intro-
duced in Algorithm 1. Generally, the procedure is divided into
the inner loop, which updates both the trend component and
seasonal components, and the outer loop, which guarantees the
robustness of the algorithm. no and ni are the outer loop and
inner loop times, respectively.

As for the k-th inner loop, first, the latest trend compo-
nent T k

t is subtracted from the full-time series Xt , yielding the
detrended component C k+1

t . Next, loess is used to smooth
all cycle-subseries of the detrended series, which strengthens
the seasonality of C k+1

t . Then a low-pass filter consisting of
two moving averaging procedures with a length of np extracts
more trend components from the C k+1

t and yields Lk+1
t which

changes slowly. Finally, the latest seasonal component S k+1
t is

defined as C k+1
t − Lk+1

t , and the the latest trend component
T k+1

t is derived after doing loess to Xt − S k+1
t .

ALGORITHM 1 STL Algorithm

In the outer loop, the remainder Rt is calculated based on
the latest seasonal component S

ni
t and the trend component

T
ni

t . On this basis, STL defines robustness weights 𝜌t for each
observed tuples (t ,Xt ) to reflect how extreme Rt is, where 𝜌t

and B(u) are defined as:

𝜌t = B(|Rt |∕(6 × median(|Rt |))), (15a)

B(u) =

{
(1 − u2)2, 0 ≤ u < 1

0, u ≥ 1
, (15b)

which means the bigger |Rt | is, the smaller the robustness
weight 𝜌t is.

In the next inner loop, the neighborhood weights vt are multi-
plied by the robustness weights 𝜌t in each loess procedure. The
larger |Rt | is, the smaller weight the value at t -th period has in
the inner loop afterward, which weakens the effect of outliers
and strengthens the robustness of the algorithm.

Besides tackling outliers, the robustness of the STL algo-
rithm is also reflected in the tolerance of the missing values,
which owes to the utilization of loess. During the procedure of
loess, observed tuples (xi , yi ) are not required to have evenly dis-
tributed xi . If some data is lost in the full-time series Xt , in the
following procedures the missing value will be replaced with the
latest loess regressed value g(x ), which is calculated based on the
observations close to the missing time.

For more details of parameters in the STL algorithm and their
suggested values, please refer to [26].

The MSTL algorithm uses STL iteratively to estimate each
seasonal component in the full-time series. Because the seasonal
components with lower seasonal cycles might be absorbed by
the ones with higher cycles, the MSTL algorithm extracts multi-
ple seasonal components in ascending order of seasonal cycles.
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ALGORITHM 2 MSTL algorithm

As shown in Algorithm 2, at the very beginning the input list
of cycles Np = [np1

, … , npn
] is sorted in ascending order. After

initializing the seasonal components, in each iteration loop, the
MSTL algorithm first adds the latest seasonal component S

j
t

to the full-time series Xt to strengthen the seasonality of the
cycle np j

. Next, the STL algorithm is implemented to extract
the latest seasonal component with seasonal cycle np j

. Then

S
j

t is subtracted from Xt to avoid being absorbed by seasonal
components with the higher seasonal cycle. Finally, the trend
component Tt is updated using the results from the last imple-
mentation of STL, and the remainder component Rt is derived
after subtracting Tt from Xt .

Figure 2 shows the decomposition results of the full-time
series of electricity load Lt , j=E in one year via the MSTL algo-
rithm. Since the length of all time series considered in this
paper is one year, the yearly component of the full-time series is
reflected in the trend component.

3.2 Framework of time series
decomposition-aggregation

The novel Time Series Decomposition-Aggregation method
incorporates the MSTL algorithm and time series aggregation.
As shown in Figure 3, the aggregation strategy contains three
major blocks: (1) decomposition of the full-time series Xt via
the MSTL algorithm, (2) the selection of typical scenarios, and
(3) upsample of the remaining components.

First, the full-time series Xt of hourly resolution is decom-
posed into the trend Tt , daily component S d

t , weekly component
S w

t , and the remainder Rt via the MSTL algorithm [25].
Note that our framework is general and other advanced
seasonal-trend decomposition algorithms [27–29] can also be
adopted here.

Second, the typical scenarios are selected from the sum of all
components reflecting hourly fluctuation, including S d

t , S w
t , and

Rt , via clustering methods such as k-means. The output is the
hourly resolution component X h

th,s
.

Finally, the trend component Tt and the remainder of the
clustering procedure R′

t are added for upsampling. Because X h
th,s

has extracted hourly fluctuation of the full-time series, the com-
ponents left mainly reflect the slow change of the full-time
series. Therefore, the sum of Tt and R′

t are upsampled to daily
resolution, yielding the daily resolution component X d

td
.

4 PROPOSED PLANNING MODEL

In this paper, the aim of local MES planning is to optimally
invest in energy converters and storage to satisfy the electric-
ity, heating, and cooling demand with a given penetration rate
of renewable energy generation. In this section, the detail of the
superposed optimization is described.

4.1 Objective function

The objective is to minimize the total cost, including the
investment cost CI and the operation cost CO :

TC = CI +CO. (16)

4.1.1 Investment Cost

The investment cost is converted to the annual cost con-
sidering the payback period of each device and the interest
rate:

CI =
∑

g∈Ωc ,Ωs

i

1 − (1 + i )−Yg
Cg, (17)

where i is the interest rate; Yg denotes the payback period
of the g-th device; Cg is the investment cost of the g-th
energy converter device or storage device, which is detailed
separately below.

For each energy converter device, the investment cost is
mainly determined by its power capacity:

Cg = Cg,unitP
in

g,max, ∀g ∈ Ωc , (18)

where Cg,unit and P in
g,max denote the unit input power capacity

cost and capacity of the g-th energy converter device, respec-
tively.

For a short-term storage device, the investment cost is mainly
determined by its storage capacity:

Cg = C E
g,unitEg,max, ∀g ∈ Ωsts , (19)

where C E
g,unit and Eg,max denote the unit SoC capacity

cost and the maximum SoC of the g-th storage device,
respectively.

 17521424, 2024, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12726, W

iley O
nline L

ibrary on [26/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



432 MA ET AL.

FIGURE 2 The results of the decomposition of electricity load via MSTL algorithm [25] in a year. Parts of the daily and the weekly components are zoomed in
to represent the seasonality.

FIGURE 3 Framework of time series decomposition-aggregation.

For a long-term storage device such as a hydrogen storage
system, the devices of the charging, storage, and discharging
procedure are PEMEC, gas tanks, and PEMFC, respectively.
Therefore, the investment cost is determined by these three
aspects:

Cg = C+
g,unitP

+
g,max +C−

g,unitP
−

g,max

+C SOC
g,unitSOCg,max, ∀g ∈ Ωlts , (20)

where C+
g,unit and C−

g,unit are the unit charging power
capacity cost and unit electric discharging power capac-
ity cost of the g-th storage device; P+

g,max and P−
g,max

are the maximum charging power and electric discharging
power.

4.1.2 Operation cost

The operation cost includes the cost of imported electricity and
gas and the penalty of the curtailed renewable energy generation
power, containing both the daily resolution component and the
hourly resolution component:

CO =

Td∑
td=1

⎛⎜⎜⎝
∑
j∈Jin

pd
j ,td

I d
j ,td

+
∑

g∈Ωreg

pd
j=E ,td

P
c,d

g, j=E ,td

⎞⎟⎟⎠
+

S∑
s=1

Th∑
th=1

⎛⎜⎜⎝
∑
j∈Jin

ns ph
j ,th,s

I h
j ,th,s

+
∑

g∈Ωreg

ph
j=E ,th,s

P
c,h

g, j=E ,th,s

⎞⎟⎟⎠ ,
(21)
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MA ET AL. 433

where Jin is the set of all kinds of imported energy carriers,
which is {E ,G } in this framework, where E ,G represent elec-
tricity and gas, respectively. pd

j ,td
and I d

j ,td
are the price and the

imported power of the j -th kind of energy on the td -th day.
Because the imported power remains the same during the td -th
day, the daily resolution price is the sum of all hourly resolu-
tion prices on the td -th day. ph

j ,th,s
and I h

j ,th,s
are the price and

the imported power of the j -th kind of energy of the s-th sce-
nario at the t -th hour. P

c,d
g, j=E ,td

and P
c,h

g, j=E ,th,s
are the daily and

hourly resolution curtailed power of the g-th renewable energy
generation devices, which is punished at the cost of the real-
time electricity price. ns denotes the number of the s-th scenario
in the entire year.

4.2 Constraints of devices

The constraints of each device are decomposed into the
daily resolution operation constraints, the hourly resolution
operation constraints.

4.2.1 Energy converter devices

For each energy converter device, we assume the relationship
between its input and output power can be described by linear
constraints:

F
(
P in

g, jin,t
, Pout

g, j ,t

)
= 0, ∀g ∈ Ωc , j , t , (22a)

G
(
P in

g, jin,t
, Pout

g, j ,t

)
≥ 0, ∀g ∈ Ωc , j , t , (22b)

where F (⋅),G(⋅) represent linear equations and inequalities,
respectively; P in

g, jin,t
denotes the input power of the g-th energy

converter at the t -th hour; jin denotes the index of the kind of
input energy; Pout

g, j ,t represents the j -th kind of output power at
the t -th hour.

Take an energy converter device whose output power is pro-
portional to input power as an example, we have the following
constraint:

𝜂g, j P
in

g, jin,t
= Pout

g, j ,t , ∀t , (23)

where 𝜂g, j represents the conversion efficiency.
After decomposition, the daily and hourly resolution compo-

nents of the operation are formulated as:

𝜂g, j P
in,d

g, jin,td
= P

out,d
g, j ,td

, ∀g ∈ Ωc , j , td , (24a)

𝜂g, j P
in,h

g, jin,th,s
= P

out,h
g, j ,th,s

, ∀g ∈ Ωc , j , th, s, (24b)

where P
in,d

g, jin,td
and P

out,d
g, j ,td

denote the daily resolution input power
and j -th kind of output power of the g-th energy converter on
the td -th day; P

in,h
g, jin,th,s

and P
out,h

g, j ,th,s
denote the hourly resolution

input and j -th kind of output power of the g-th energy converter
at the th-th hour in the s-th scenario.

The upper bound of the input power is derived from the
sum of the maximum of the hourly and daily resolution input
power components. Similarly, the lower bound is given by the
sum of the minimum of the two components to ensure its
non-negativity:

P
in,d

g,min,s ≤ P
in,d

g, jin,td
≤ P

in,d
g,max,s , ∀g ∈ Ωc , 𝜎(td ) = s, td , (25a)

P
in,h

g,min,s ≤ P
in,h

g, jin,th,s
≤ P

in,h
g,max,s , ∀g ∈ Ωc , s, th, (25b)

P
in,d

g,max,s + P
in,h

g,max,s = P in
g,max ≥ 0, ∀g ∈ Ωc , s, (25c)

P
in,d

g,min,s + P
in,h

g,min,s = 0, ∀g ∈ Ωc , s, (25d)

where P
in,d

g,max,s and P
in,d

g,min,s denote the maximum and minimum
of the daily resolution input power during the s-th scenario in
the whole year, respectively; P

in,h
g,max,s and P

in,h
g,min,s denote the max-

imum and minimum of the hourly resolution input power in the
s-th scenario, respectively; 𝜎(⋅) denotes the mapping function
between the td -th day and its corresponding typical scenario.

4.2.2 Short-term storage devices

The hourly resolution power and SoC variables of short-term
storage devices are formulated as:

SOC h
g,th+1,s = (1 − 𝛾g )SOC h

g,th,s
+ P

+,h
g, j ,th,s

𝜂+g

− P
−,h

g, j ,th,s
∕𝜂−g , ∀g ∈ Ωsts , th, s,

(26)

0 ≤ SOC h
g,th,s

≤ SOCg,max, ∀g ∈ Ωsts , th, s. (27)

The daily energy cycle is formulated as:

SOC h
g,th=0,s = SOC h

g,th=24,s , ∀g ∈ Ωsts , th, s. (28)

The constraints that restrict short-term storage devices from
simultaneous charging and discharging are formulated as:

0 ≤ P
+,h

g, j ,th,s
≤ x

+,h
g,th,s

P+
g,max, ∀g ∈ Ωsts , th, s, (29a)

0 ≤ P
−,h

g, j ,th,s
≤ x

−,h
g,th,s

P−
g,max, ∀g ∈ Ωsts , th, s, (29b)

x
+,h
g,th,s

+ x
−,h
g,th,s

≤ 1, ∀g ∈ Ωsts , th, s, (29c)

x
+,h
g,th,s

, x
−,h
g,th,s

∈ {0, 1}, ∀g ∈ Ωsts , th, s. (29d)

The relationship between the power and energy capacity is:

P+
g,max = P−

g,max = SOCg,max∕𝜏g, ∀g ∈ Ωsts , (30)
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434 MA ET AL.

where 𝜏g denotes the time to fully charge or discharge the g-th
short-term storage device.

4.2.3 Long-term hydrogen storage system

the hydrogen storage system is allowed to participate in both
daily and hourly resolution responses, so the SoC transitions are
formulated as:

SOC h
g,th+1,s = SOC h

g,th,s
+ P

+,h
g, j=E ,th,s

𝜂+g

− P
−,h

g, j=E ,th,s,
∕𝜂−

g, j=E
, ∀g ∈ Ωlts , th, s, (31a)

SOC d
g,td+1 = SOC d

g,td
+ P

+,d
g, j=E ,td

𝜂+g

− P
−,d

g, j=E ,td
∕𝜂−

g, j=E
, ∀g ∈ Ωlts , td , s, (31b)

where P
+,d

g, j ,td
and P

−,d
g, j=E ,td

denote the daily resolution charge and
discharge electric power of the g-th storage device during the td
period, respectively.

The energy cycles of SOC d
g,td

and SOC h
g,th,s

are set to be annual
and daily:

SOC h
g,th=0,s = SOC h

g,th=24,s , ∀g ∈ Ωlts , th, s, (32a)

SOC d
g,td=0 = SOC d

g,td=365, ∀g ∈ Ωlts , td . (32b)

The relationship between electricity and heating output of the
PEMFC is:

P
out,h

g,th,s, j=E
∕𝜂g, j=E = P

in,h
g,th,s, j=H

∕𝜂g, j=H , ∀g ∈ Ωc , th, s, (33a)

P
out,d

g,td , j=E
∕𝜂g, j=E = P

in,d
g,td , j=H

∕𝜂g, j=H , ∀g ∈ Ωc , th, s. (33b)

Similar to (25), the charging constraints are:

P
+,h

g,min,s ≤ P
+,h

g, j ,th,s
≤ P

+,h
g,max,s , ∀g ∈ Ωlts , s, th, (34a)

P
+,d

g,min,s ≤ P
+,d

g, j ,td
≤ P

+,d
g,max,s , ∀g ∈ Ωlts , 𝜎(td ) = s, td , (34b)

P
+,d

g,max,s + P
+,h

g,max,s = P+
g,max ≥ 0, ∀g ∈ Ωlts , s, (34c)

P
+,d

g,min,s + P
+,h

g,min,s = 0, ∀g ∈ Ωlts , s. (34d)

The discharging constraints are:

P
−,h

g,min,s ≤ P
−,h

g, j=E ,th,s
≤ P

−,h
g,max,s , ∀g ∈ Ωlts , s, th, (35a)

P
−,d

g,min,s ≤ P
−,d

g, j=E ,td
≤ P

−,d
g,max,s , ∀g ∈ Ωlts , 𝜎(td ) = s, td , (35b)

P
−,d

g,max,s + P
−,h

g,max,s = P−
g,max ≥ 0, ∀g ∈ Ωlts , s, (35c)

P
−,d

g,min,s + P
−,h

g,min,s = 0, ∀g ∈ Ωlts , s. (35d)

As for the capacity of the SoC, note that the daily resolu-
tion charge power P

+,d
g, jin,td

and discharge power P
−,d

g, jin,td
remain

unchanged during each scenario. Therefore, the actual daily res-
olution SoC component SOC d

g,td
changes linearly to SOC d

g,td+1
on an hourly basis in the corresponding typical scenario. There-
fore, the estimation of the upper bound and lower bound is
formulated as:

((24 − th )SOC d
g,td

+ thSOC d
g,td+1)∕24

+ SOC h
g,th,s

≤ SOCg,max, ∀g ∈ Ωlts , th, 𝜎(td ) = s, (36a)

((24 − th )SOC d
g,td

+ thSOC d
g,td+1)∕24

+ SOC h
g,th,s

≥ 0, ∀g ∈ Ωlts , th, 𝜎(td ) = s. (36b)

4.2.4 Renewable energy generation

Considering the curtailed power, the output of renewable
energy generation satisfies:

P
out,h

g, j=E ,th,s
+ P

c,h
g, j=E ,th,s

= P
max,h

g,th,s
, ∀g ∈ Ωreg, th, s, (37a)

P
out,d

g, j=E ,td
+ P

c,d
g, j=E ,td

= P
max,d

g,td
, ∀g ∈ Ωreg, td , (37b)

where P
out,h

g, j=E ,th,s
and P

out,d
g, j=E ,td

are the hourly and daily resolution

output power of the g-th renewable generation. P
c,h

g, j=E ,th,s
and

P
c,d

g, j=E ,td
are the curtailed hourly and daily resolution power.

Because the actual output and curtailed power are non-
negative, we have:

P
out,d

g, j=E ,td
≥ P

out,d
g,min,s , ∀g ∈ Ωreg, 𝜎(td ) = s, td , (38a)

P
out,h

g, j=E ,th,s
≥ P

out,h
g,min,s , ∀g ∈ Ωreg, s, th, (38b)

P
out,d

g,min,s + P
out,h

g,min,s = 0, ∀g ∈ Ωreg, s, (38c)

P
c,d

g, j=E ,td
≥ P

c,d
g,min,s , ∀g ∈ Ωreg, 𝜎(td ) = s, td , (38d)

P
c,h

g, j=E ,th,s
≥ P

c,h
g,min,s , ∀g ∈ Ωreg, s, th, (38e)

P
c,d

g,min,s + P
c,h

g,min,s = 0, ∀g ∈ Ωreg, s. (38f)

4.2.5 Energy balance

For all kinds of considered energy carriers, namely electricity
(E), heating (H), cooling (C), and natural gas (G), the hourly
resolution power balance is formulated as:

I h
j ,th,s

+ ΔL j ,s +
∑

g∈Ωc ,Ωreg

P
out,h

g, j ,th,s
−

∑
g∈Ωc

P
in,h

g, j ,th,s
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MA ET AL. 435

+
∑
g∈Ωs

(
P
−,h

g, j ,th,s
− P

+,h
g, j ,th,s

)
= Lh

j ,th,s
, ∀ j ∈ J , th, s, (39)

where Lh
j ,th,s

denotes the j -th kind of energy demand in the th-th
hour of the s-th scenario; ΔL j ,s represents the daily resolution
load transferred to the daily resolution balance in the s-th sce-
nario; J = {E ,G ,H ,C } denotes the set of all energy carriers
including electricity, gas, heating, and cooling.

The daily resolution power balance is formulated as:

I d
j ,td

− ΔL j ,s +
∑

g∈Ωc ,Ωreg

P
out,d

g, j ,td
−

∑
g∈Ωc

P
in,d

g, j ,td

+
∑
g∈Ωs

(
P
−,d

g, j ,td
− P

+,d
g, j ,td

)
= Ld

j ,td
, ∀ j ∈ J , td , 𝜎(td ) = s,

(40)

where Ld
j ,td

denotes the j -th kind of energy demand on the td -
th day.

4.3 Model linearization

Because there exist products of binary variable and continu-
ous variable in (29), this model leads to a mixed-integer linear
program (MILP). In this section, the big M method is used to
linearize the model.

For each period th, big M is introduced to indicate whether
the short-term storage is charging or discharging:

0 ≤ P
+,h

g, j ,th,s
≤ x

+,h
g,th,s

M , ∀g ∈ Ωsts , th, s, (41a)

0 ≤ P
−,h

g, j ,th,s
≤ x

−,h
g,th,s

M , ∀g ∈ Ωsts , th, s, (41b)

x
+,h
g,th,s

+ x
−,h
g,th,s

≤ 1, ∀g ∈ Ωsts , th, s, (41c)

x
+,h
g,th,s

, x
−,h
g,th,s

∈ {0, 1}, ∀g ∈ Ωsts , th, s. (41d)

Besides, the power capacity of short-term storage devices is
estimated without importing binary variables:

0 ≤ P
+,h

g, j ,th,s
≤ P+

g,max, ∀g ∈ Ωsts , th, s, (42a)

0 ≤ P
−,h

g, j ,th,s
≤ P−

g,max, ∀g ∈ Ωsts , th, s. (42b)

Finally, the proposed MILP model is derived:

Obj: Eq. (16)

s.t. Eqs. (17) − (28), (31) − (42).
(43)

5 CASE STUDIES

In this section, the experimental setup is first introduced.
Next, the basic results derived from the proposed frame-
work are discussed and compared with the ones given by

full-time series optimization (FSO). Finally, two comparative
analyses verify the effectiveness of the proposed time-series
decomposition-aggregation method and decomposition-based
planning method.

5.1 Experimental setup

We are planning a local MES, whose input energy sources
include imported electricity and gas and renewable energy con-
sisting of solar and wind generation. The normalized output of
solar and wind generation is derived from [31]. The installed
power capacity is determined by the renewable energy gener-
ation r , which is defined as the ratio of all annual renewable
energy generation to annual electricity demand.

To embody the utility of collaboration between short-term
and long-term storage in consuming renewable generation, we
investigate the performance of the multi-energy system with a
very high penetration of renewable energy generation, that is,
r = 2.

The multi-energy demand consists of electricity, heating,
and cooling. The tested full-time series of these loads is from
The Austin station in Building Data Genome Project 2 [30].
Figure 4 illustrates the demands for electricity, heating, and
cooling throughout the year.

5.2 Basic results

Figure 5 illustrates the results of the aggregated cooling
load profiles via the proposed Time Series Decomposition-
Aggregation method. To verify its accuracy, Figure 6 compares
the RMS error of aggregated time series via the k-means
method without decomposition and the proposed Time Series
Decomposition-Aggregation method. The aggregated time
series include electricity load, heating load, cooling load, solar
power, and wind power profiles, and the number of typical
scenarios ranges from 1 to 30 days. It can be shown that
with the help of decomposition, the aggregated time series
describes the original one more accurately compared with direct
k-means clustering.

Table 1 compares the total cost and its composition, and
the number of variables and constraints of FSO and the
proposed model. It can be noted that the variables and con-
straints decrease by nearly two orders of magnitude in the
proposed model while maintaining a fine agreement in total
cost (+6.78%), investment cost (+10.84%), and operation cost
(−4.55%) with the results given by FSO.

The comparison of the operation of the hot water sensible
thermal storage (HWTS) and the hydrogen storage is illustrated
in Figure 7. The pixel in the i-th row of the j -th column rep-
resents the SoC at the i-th hour of the j -th day. The yellower
the pixel is, the higher the state of charge (SOC) is at this
time.

Generally, the main operation characteristic of these two
storage systems differs from each other in both models. As a
short-term storage device, HWTS focuses on the daily energy

 17521424, 2024, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12726, W

iley O
nline L

ibrary on [26/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



436 MA ET AL.

FIGURE 4 Electricity, heating, and cooling demands [30].

FIGURE 5 The original full-time cooling load and aggregation result using the proposed time series aggregation method. The sum of the hourly resolution
component and the daily resolution component yields the aggregated time series.

TABLE 1 Costs and complexity of the proposed model with 10 typical
scenarios and the full-time series optimization (FSO).

FSO

Proposed

model

Relative

difference

(%)

Total cost 68.866 73.536 +6.78

(million RMB)

Investment cost 50.721 56.217 +10.84

(million RMB)

Operation cost 18.145 17.319 −4.55

(million RMB)

Binary variables 35040 960 −97.26

Continuous variables 236540 15843 −93.30

Constraints 332893 44118 −86.74

imbalance, getting charged from 10:00 to 16:00 and discharged
during the rest of the time. The daily energy cycle given by FSO
supports (28) in our model. Because the aggregation reduces
the variation of the load profiles, the fluctuation of the SoC is
reduced in the proposed model. However, within limited com-
plexity, the proposed model describes a highly similar operation
pattern to the SoC of HWTS.

On the other hand, the operation pattern of the long-term
storage device is more complicated. It can be shown that
the energy cycle of hydrogen storage ranges from days to
weeks both in FSO and the proposed framework. However,
the proposed model can follow a complicated pattern and gen-
erate a similar SoC series, guaranteeing the accuracy of the
proposed model.

Besides, it can be noted from Figure 7 that the seasonal-
ity of the operation pattern of the long-term storage device
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MA ET AL. 437

FIGURE 6 The comparison of the RMS error of all aggregated time
series via the k-means method without decomposition and the proposed Time
Series Decomposition-Aggregation method. The aggregated time series
include electricity load, heating load, cooling load, solar power, and wind power
profiles, and the number of typical scenarios ranges from 1 to 30 days.

is not obvious. Instead, it exchanges energy across weeks.
There are two reasons for this phenomenon. First, cooling and
heating load profiles have obvious but contemporary seasonal-
ity. Because different energy carriers are coupled through energy
converters, the cooling and heating loads can be transformed
into equivalent electricity loads. Therefore, the total equivalent
electricity loads are high in winter because of heating loads, and
high in summer because of cooling loads, weakening the season-
ality of the total equivalent electricity loads. Second, renewable
energy generation, especially wind power, usually has an imbal-
ance across weeks. In this case, long-term storage also acts as a
more economical solution for tackling the imbalance than short-
term storage because of its low self-discharge rate and low unit
SoC capacity cost.

5.3 Comparative analyses

5.3.1 Benchmarks

To further verify the accuracy and efficiency of the proposed
framework, we compare our proposed method with two bench-
marks to show the benefits of the decomposition of time series
and the operation of devices.

Benchmark 1 is inspired by the M1 method in [21]. The
full-time series are aggregated in the benchmark via clustering
methods such as k-means without decomposition. All power
decision variables Pg,th,s

are reused in the same typical scenarios,
while all SoC variables SOCg,td ,th

describe the SoC on an hourly

TABLE 2 Total cost and its composition, and the complexity of the
proposed model and Benchmark 1 with 10 typical scenarios. Benchmark 1 is
inspired by the M1 method in [21].

Proposed Model Benchmark 1 Improvement

Total cost 73.536(+6.78%) 61.810(−10.25%) 3.47%

(million RMB)

Investment cost 56.217(+10.84%) 41.779(−17.63%) 6.79%

(million RMB)

Operation cost 17.319(−4.55%) 20.031(+10.4%) 5.85%

(million RMB)

Binary variables 960(−97.26%) 960(−97.26%) 0%

Continuous variables 15843(−93.30%) 32540(−86.24%) 7.06%

Constraints 44118(−86.74%) 60733(−81.76) 4.98%

basis throughout the year to embody energy cycles higher than
one day. The transition constraints of SoC are formulated as:

SOCg,td ,th+1 = SOCg,td ,th
+ P+

g,th,s
𝜂+g

− P−
g,th,s

∕𝜂−g , ∀g ∈ Ωs , th, 𝜎(td ) = s, s, (44a)

SOCg,td ,th=0 = SOCg,td−1,th=23 + P+
g,th=1,s𝜂

+
g

− P−
g,th=1,s∕𝜂

−
g , ∀g ∈ Ωs , 𝜎(td ) = s, s, (44b)

SOCg,td=0,th=0 = SOCg,td=364,th=23, ∀g ∈ Ωs . (44c)

Benchmark 2 is based on our proposed framework, but the
hydrogen storage system has no hourly response, namely:

SOC h
g,th,s

= 0, P+,h
g, j ,th,s

= P
−,h

g, j=E ,th,s
= 0,

∀g ∈ Ωlts , j , th, s. (45)

To verify the importance of the hourly response in long-
term storage devices and the decomposition of the operation,
the results of the proposed framework whose hydrogen storage
system is with and without hourly response are compared.

5.3.2 Comparative results

For the comparison with Benchmark 1, Table 2 gives the total
cost and its composition, and the number of variables and con-
straints of the proposed model and Benchmark 1 with the same
number of typical scenarios, namely 10 typical scenarios.

It can be noted that both the proposed model and Bench-
mark 1 decrease the complexity of FSO by nearly two orders of
magnitude. However, the proposed model achieves higher accu-
racy both in the total cost and its composition, namely 3.47%,
6.79%, and 5.85% improvement in total cost, investment cost,
and operation cost, respectively. Furthermore, the complexity
of the proposed model is lower than Benchmark 1, with 7.06%
and 4.98% improvement in the number of continuous variables
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FIGURE 7 Comparison of the SoC of the hot water sensible thermal storage (HWTS) and the hydrogen storage throughout the year using full-time series
optimization and the proposed framework with 10 typical scenarios.

FIGURE 8 Comparison of the investment cost composition derived from the full-time series optimization, the proposed framework, and Benchmark 1.

and constraints. The improvement in all these aspects verifies
the accuracy and efficiency of the proposed framework.

To further verify the accuracy of the proposed framework,
Figure 8 compares the composition of the investment cost
derived from FSO, the proposed framework, and Benchmark

1. It can be observed that with a very high penetration rate
of renewable energy and punishment of shedding renewable
energy, the cost of the hydrogen storage system accounts for
the main part of the investment cost. While both the proposed
model and Benchmark 1 yield similar investment cost structures
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TABLE 3 Total cost and its composition of the proposed model and
Benchmark 2 with 10 typical scenarios. Benchmark 2 is still the proposed
framework, but the hydrogen storage system has no hourly response.

Cost(million

RMB) Proposed model Benchmark 2 Improvement

Total cost 73.536(+6.78%) 117.024(+69.93%) +63.15%

Investment cost 56.217(+10.84%) 36.177(−28.67%) +17.83%

Operation cost 17.319(−4.55%) 80.847(+345.56%) +341.01%

Operation cost 5.244(−29.46%) 15.296(+105.76%) +76.30%

in importing

Operation cost 12.075(+12.73%) 65.550(+511.99%) +499.26%

in curtailng

with the one given by FSO, the proposed model results in a
more accurate investment suggestion, especially in PEMEC
and PEMFC.

The improvement is mainly credited to the decomposition of
the time series. The decomposition of the time series guarantees
a higher accuracy of the aggregated time series, enhancing the
efficiency and accuracy of the proposed model.

For the comparison with Benchmark 2, Table 3 gives the total
cost and its composition of the proposed model and Bench-
mark 2 with the same number of typical scenarios, namely 10
typical scenarios.

It can be noted that the results of Benchmark 2 do not agree
with the ones given by FSO, especially in the operation cost of
curtailing renewable energy (+511.99% relative difference). In
comparison, the relative difference is much smaller in the pro-
posed model (+12.73%), which means higher consumption of
renewable energy generation.

The improvement is mainly credited to the decomposition
of the operation of long-term storage devices, which greatly
strengthens the ability of long-term storage devices to consume
the highly-fluctuated renewable energy generation.

6 CONCLUSIONS

This paper proposes a novel framework for the efficient
planning of MES with long-term storage. By incorporating
decomposition into time series aggregation methods and the
operation of energy devices, the planning model is able to
describe the energy exchange of long-term storage devices
throughout the year and also the hourly operation characteristic
at the same time. Experiments show a considerable decrease in
the complexity of the problem while guaranteeing the accuracy
of the results. The variables and constraints decrease by nearly
two orders of magnitude in the proposed model while a fine
agreement is maintained with the results given by full-time
series optimization in total cost (+6.78%), investment cost
(+10.84%), and operation cost (−4.55%). In addition, we find
that short-term responses of long-term storage devices are
crucial for the MES to accommodate a high penetration of
renewable energy. Comparison between the results of the

proposed framework and Benchmark 2 shows a significantly
higher operation cost of curtailing renewable energy (+511.99%
in relative difference) when long-term storage devices have no
short-term responses, while the relative difference is much
smaller in the proposed model (+12.73%) where long-term
storage devices have short-term responses.

The main limitation of the proposed framework is that the
network of each energy carrier is not considered. The large
number of nodes in the network can bring a curse of dimen-
sionality when selecting typical scenarios, which becomes one
of the obstacles when promoting the proposed framework to
the cases with networks. In this case, more characteristics of
full-time series such as the correlation between each two series
should be mined and utilized.

Future works on the planning of MES with long-term storage
should include two aspects. First, the networks of each energy
carrier should be considered. More characteristics should be
exploited to overcome the curse of dimensionality. Second,
the robustness of the designed system against climate risk and
uncertainty should be considered. Because the penetration rate
of renewable generation is high in the test case, it’s necessary to
consider the extreme weather and the uncertainty of renewable
generation power.

NOMENCLATURE

Indexes and Sets

Ωc set of energy converter devices
Ωs set of storage devices
Ωsts set of short-term storage devices
Ωlts set of long-term storage devices
Ωreg set of renewable energy generation devices

g index of devices
J set of all kinds of energy carriers ({E ,H ,C ,G })

J in set of all kinds of imported energy ({E ,G })
j index of energy carriers

S number of typical scenarios (day)
s index of typical scenarios (day)

Td number of days of a year
td time index (day of the year)

Th number of hours in a scenario(day)
th time index (hour of the day)

Decision Variables

I imported power
x binary variables of charging or discharging state
P input or output power

SOC state of charge
L energy load

Parameters and Constants

p the price of the imported power of the j-th energy
𝜂 conversion or storage efficiency
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𝛾 self-discharge rate
𝜏 the time to fully charge or discharge a storage device

Supercripts

h hourly resolution component
d daily resolution component

in input
out output
+ charge
− discharge
c curtailed power

initial the initial time
final the final time

Acronym

max maximum
min minimum

PEMEC proton exchange membrane electrolyzer
PEMFC proton exchange membrane fuel cell

CHP combined heat and power
AB auxiliary boiler

CERG compression electric refrigerator group
WARG water absorption refrigerator group

HP heat pump
HWTS hot water sensible thermal storage

LiB lithium battery
HS hydrogen storage
ES electrical storage

Input EC input electricity capacity
Input GC input gas capacity
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