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Abstract

Background: Nasopharyngeal carcinoma (NPC) is closely associated with genetic factors and Epstein-Barr virus infection,
showing strong familial aggregation. Individuals with a family history suffer elevated NPC risk, requiring effective genetic
counseling for risk stratification and individualized prevention. Methods: We performed whole-exome sequencing on 502
familial NPC patients and 404 unaffected relatives and controls. We systematically evaluated the established cancer predis-
position genes and investigated novel NPC susceptibility genes, making comparisons with 21 other familial cancers in the UK
biobank (N¼5218). Results: Rare pathogenic mutations in the established cancer predisposition genes were observed in
familial NPC patients, including ERCC2 (1.39%), TP63 (1.00%), MUTYH (0.80%), and BRCA1 (0.80%). Additionally, 6 novel
susceptibility genes were identified. RAD54L, involved in the DNA repair pathway together with ERCC2, MUTYH, and BRCA1,
showed the highest frequency (4.18%) in familial NPC. Enrichment analysis found mutations in TP63 were enriched in
familial NPC, and RAD54L and EML2 were enriched in both NPC and other Epstein-Barr virus–associated cancers. Besides rare
variants, common variants reported in the studies of sporadic NPC were also associated with familial NPC risk. Individuals in
the top quantile of common variant-derived genetic risk score while carrying rare variants exhibited increased NPC risk (odds
ratio¼13.47, 95% confidence interval ¼ 6.33 to 28.68, P¼1.48�10–11); men in this risk group showed a cumulative lifetime risk
of 24.19%, much higher than those in the bottom common variant-derived genetic risk score quantile and without rare var-
iants (2.04%). Conclusions: This study expands the catalog of NPC susceptibility genes and provides the potential for risk
stratification of individuals with an NPC family history.

Nasopharyngeal carcinoma (NPC), a malignancy that originates
from the mucosal epithelium of the nasopharynx and is closely
associated with Epstein-Barr virus (EBV) infection, shows

distinctive geographic distribution around the world, with high
incidence rates in Southern China, Southeast Asia, North Africa,
and the Arctic (1-7). Approximately 10% of patients have an NPC
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family history, and first-degree relatives of NPC patients
showed more than fourfold elevated NPC risk compared with
those without such a history (8,9). Extensive epidemiological
observations of the unbalanced geographical distribution of dis-
ease incidence, familial clustering, and the estimated high her-
itability (61.3%) (10) suggested the importance of genetic factors
on NPC development. Developing an efficient genetic screening
tool to identify high-risk individuals with an NPC family history
could provide the potential for individualized cancer screening
and surveillance. However, no genetic testing panel is currently
available for genetic consultation for individuals with an NPC
family history.

Many cancer predisposition genes, such as BRCA1, BRCA2,
and TP53, were identified and recommended to be tested by the
National Comprehensive Cancer Network (NCCN) Clinical
Practice Guidelines in Oncology for cancer risk assessment for
individuals with a cancer family history (11,12). However,
whether and how the established cancer predisposition genes
could be applied in NPC screening for individuals with an NPC
family history remain to be investigated. Recently, sequencing
studies of familial NPC patients have identified rare variants
with potentially deleterious effects in 14 susceptibility genes
(13-15). In addition to the rare variants identified in familial
NPC, genome-wide association studies (GWASs) conducted
mostly in sporadic NPC cases and controls have identified asso-
ciations in the human leukocyte antigen (HLA) region as well as
other common variants in CDKN2B-AS1, CLPTM1L/TERT, etc (16-
21). These findings indicate the complex nature of the NPC
genetic etiology and raise questions of whether there are addi-
tional genes involved in NPC susceptibility.

To expand the catalog of NPC susceptibility genes and con-
struct an efficient genetic risk prediction model, we performed
whole-exome sequencing (WES) on individuals from high-risk
NPC families recruited from the High-risk Nasopharyngeal
Carcinoma Family Screening Program (22) as well as from the
Sun Yat-sen University Cancer Center biobank. We evaluated
rare pathogenic or likely pathogenic variants of the established
cancer predisposition genes and searched for novel NPC sus-
ceptibility genes. We established a genetic risk score (GRS) using
common and rare variants to assess the risk stratification of the
individuals with an NPC family history.

Methods

Study Samples

A total of 502 familial NPC cases, 76 unaffected relatives, and
328 healthy controls recruited from the High-risk
Nasopharyngeal Carcinoma Family Screening Program (22) or
the Sun Yat-sen University Cancer Center biobank were used to
perform WES (Supplementary Methods; Supplementary Figure
1, available online). All the familial NPC patients have 2 or more
NPC cases among the first- (89.04%), second-, or third-degree
relatives in their family. The Institutional Review Board of Sun
Yat-Sen University Cancer Center approved this study.
Informed consent was obtained from all study participants.

Five publicly available NPC WES datasets were downloaded
for estimating the prevalence of mutations in the cancer predis-
position gene and the novel NPC susceptibility genes (13,23-26)
(SRA291701, SRP035573, SRA288429, PRJEB12830, HRA000052,
and HRA000053). After quality control, a total of 269 samples
remained in the analysis.

To compare the mutation frequencies between familial NPC
and other familial cancers, WES data of 200 619 samples (27)
from the UK biobank were obtained. A total of 21 types of fami-
lial cancers with a sample size of more than 50 were investi-
gated in this study (Supplementary Methods; Supplementary
Table 1, available online), adding up to 5218 patients.

Germline Variant Calling and Annotation

We followed the recommendations of Genome Analysis Toolkit
(GATK) Best Practices (28,29) to analyze the WES data.
ANNOtate VARiation (ANNOVAR) (30) and Ensembl Variant
Effect Predictor (VEP) (31) were used to annotate the qualified
variants. Variants with a minor allele frequency less than 0.5%
in the East Asian population were defined as rare variants and
were further filtered as pathogenic or likely pathogenic variants
according to the guidelines recommended by the American
College of Medical Genetics and Genomics and the Association
for Molecular Pathology (32). We curated a total of 162 autosome
cancer predisposition genes from literatures review and the
COSMIC database (release v92) (11,33-60) (Supplementary
Methods; Supplementary Table 2, available online). In addition,
rare variants in the 14 reported NPC susceptibility genes (13-15)
were reviewed in our study samples.

Reported common single nucleotide polymorphisms (SNPs)
associated with NPC risk were obtained from the GWAS catalog,
and the proxy SNPs (r2 > 0.8) available in our WES data were
used for downstream analysis. HLA typing of 4-digit classical
class-I alleles was performed by using Optitype (version 1.3.3)
(61). Detailed information is shown in Supplementary Methods
(available online).

Construction of GRSs and Cumulative Risk Projection

Among the total 906 samples, 787 were unrelated and randomly
split into training (228 cases, 166 controls) and testing samples
(227 cases, 166 controls). We generated 4 GRSs using common
variants with P less than .05 in the training samples, which were
pruned with different r2 thresholds (0.01, 0.1, 0.5, and 0.7). The
best variables for the construction of common variant-derived
GRS (GRSC) were selected by the highest area under the curve
(AUC) and the strongest association with familial NPC risk in
the fivefold cross-validation of the training samples. The GRSC

was constructed in the training samples with randomization
and then validated in the testing samples. A GRS integrating
common and rare variants (GRSCR) was also constructed by mul-
tiple regression in the training samples and validated in the
testing samples. We classified all the samples into 4 groups
based on the GRSC or GRSCR quantiles of the healthy controls.
The Individualized Coherent Absolute Risk Estimator tool
(62,63) was used to estimate the individual cumulative NPC
risks in future 10-year and cumulative lifetime for individuals at
different quantiles of GRSC and rare variant–carrying status
(Supplementary Methods, available online).

Statistical Analysis

Gene-based association analysis was performed using the
STAAR (64) method and including the genetic correlation matrix
in the model for the control of sample relatedness. Sex, age, and
the first 3 principal components were adjusted in the model.
Genes with P less than .05 in the omnibus test in the STAAR
framework (STAAR-O) and with the rare variants enriched in
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familial NPC patients were identified as potential novel NPC
susceptibility genes (Supplementary Methods, available online).
A permutation test was performed by random selection (for
10 000 times) of the rare variants in the flanking regions of the
potential susceptibility genes. A generalized linear mixed model
association test was used to evaluate the rare variant–collaps-
ing effects, the common variants effects, and the genetic risk
quantiles effects on familial NPC risk, controlling sample relat-
edness by using genetic correlation matrix in the analysis (65).
Enrichment analysis was performed to identify genes with
enriched prevalence at each specific cancer type, and genes
with Fisher exact test P less than .05 were identified as sugges-
tive statistically significant enrichment in a specific familial
cancer. The Benjamini-Hochberg method was used for multiple
test corrections (66). All statistical analysis was conducted using
R software (version 3.5.0).

Results

Association of Rare Pathogenic Variants in Established
Cancer Predisposition Genes With Familial NPC Risk

We performed WES on 502 familial NPC patients and 404 unaf-
fected relatives and controls from NPC endemic areas, with an
average depth of 93.53� on target (Supplementary Table 3, avail-
able online). Among the 502 familial NPC patients, the mean (SD)
age at diagnosis was 47.56 (10.63) years, and 361 patients (71.91%)
were male (Supplementary Table 4, available online).

We assessed the rare pathogenic or likely pathogenic var-
iants in 162 established cancer predisposition genes in the fami-
lial NPC patients, patients from publicly available NPC WES
datasets, as well as other familial cancers in the UK biobank (21
cancer types, N¼ 5218). Overall, 15 of the 162 cancer predisposi-
tion genes were identified in familial NPC, and the rare patho-
genic or likely pathogenic variants were carried by 36 (7.17%)
familial NPC patients, showing a higher frequency compared
with the controls (3.47%; Figure 1, A). Recurrent pathogenic or
likely pathogenic variants were observed in 4 genes with fre-
quencies of 0.80%-1.39% in familial NPC. ERCC2 showed the
highest mutation frequency. Seven familial NPC patients
(1.39%) and 1 publicly available NPC case (0.37%) carried ERCC2

mutations, all of which are in the DNA-binding helicase
domains (Figure 1, B). TP63 is the second-ranking gene. Five
familial NPC patients (1.00%) and 3 publicly available NPC cases
(1.12%) carried TP63 mutations, and TP63:NM_003722:

c.1807G>C: p.D603H is the mutation hotspot, classified as “likely
pathogenic” in InterVar (Figure 1, C). Enrichment analysis incor-
porating WES data of 21 other familial cancers in the UK bio-
bank found that the mutations in TP63 showed suggestive
enrichment in familial NPC, whereas other familial cancers did
not show statistically significant enrichment for this gene
(P¼ 7.29� 10–3, Padj ¼ .14) (Supplementary Tables 5 and 6, avail-
able online). In addition, 4 familial NPC patients carried BRCA1

mutations and 4 familial NPC patients carried MUTYH muta-
tions (Figure 1, A, D-E). Overall, increased familial NPC risk was
observed for the carriers of any identified rare pathogenic or
likely pathogenic variants in the established cancer predisposi-
tion genes (odds ratio [OR]¼ 2.18, 95% confidence interval [CI] ¼
1.11 to 4.25, P¼ .02). Detailed information on the mutations is
shown in Supplementary Table 7 (available online).

Identification of Rare Variants on the Six Novel NPC
Susceptibility Genes

To identify additional NPC susceptibility genes, high-impact
rare variants consisting of pathogenic or likely pathogenic var-
iants and truncation variants were included for gene-based
association analysis. Six potential novel NPC susceptibility
genes were identified with PSTAAR-O less than .05 (Figure 2, A;
Supplementary Table 8, available online), among which RAD54L
showed the highest mutation frequency in familial NPC. A total
of 21 familial NPC patients (4.18%) and 1 publicly available NPC
sample (0.37%) carried RAD54L high-impact variants (Figure 2,
B). By incorporating WES data of another 21 familial cancers in
the UK biobank, we found that RAD54L was statistically signifi-
cantly enriched not only in familial NPC (4.18% in familial NPC
vs 1.67% in other familial cancers, Pfisher¼ 4.13� 10–4, Padj¼ .01)
but also in non-Hodgkin lymphoma, a cancer with some sub-
types associated with EBV infection (4.98% in non-Hodgkin lym-
phoma vs 1.72% in other familial cancers, Pfisher¼ 4.74� 10–4,
Padj¼ .01; Figure 2, H; Supplementary Table 9, available online).
Additionally, recurrent high-impact variants were observed in
CAPN3 (1.59%), CEP152 (1.39%), EML2 (1.39%), LRRC19 (1.20%), and
ZNF135 (1.20%) in familial NPC (Figure 2, C-G). Notably, EML2
was enriched in both familial NPC (Pfisher¼ 2.06� 10–5,
Padj¼ 1.0� 10–3) and Hodgkin lymphoma, which is also an EBV-
associated malignancy (Pfisher¼ 6.04� 10–3, Padj¼ .12), and the
mutations in LRRC19 (Pfisher ¼ 4.45� 10–7, Padj¼ 1.0� 10–3) and
CEP152 (Pfisher¼ 1.33� 10–4, Padj¼ .01) were specifically enriched
in familial NPC (Figure 2, H; Supplementary Table 9, available
online). Overall, increased familial NPC risk was observed for
the carriers of any rare high-impact variants in the 6 genes
(OR¼ 4.56, 95% CI ¼ 2.23 to 9.34, P¼ 3.28� 10–5). Detailed infor-
mation on the mutations is shown in Supplementary Table 10
(available online).

We also evaluated the rare variants in 14 reported NPC sus-
ceptibility genes in our samples (13-15). Focusing on the rare
high-impact variants on these genes as well as considering the
reported variants in the original studies, we found that 2.59% of
familial NPC patients carried MST1R mutations, 1.39% carried
BCL2L12 mutations, and 1.20% carried MLH1 mutations
(Supplementary Table 11, available online). Collapsing all the
identified variants in the 14 genes, increased familial NPC risk
for the variant carriers was observed (OR¼ 1.76, 95% CI ¼ 0.94 to
3.29, P¼ .079).

Association of Common Variants Identified in NPC
GWASs With Familial NPC Risk

Common SNPs with P less than 5� 10–8 in the NPC GWASs (16-
21) were evaluated in familial NPC. We found 4 of 6 proxy SNPs
available in our WES data were replicated with P less than .05
(Figure 3; Supplementary Table 12, available online). The top
signal was rs1136695 (OR¼ 0.46, 95% CI ¼ 0.36 to 0.60,
P¼ 3.21� 10–9), a proxy in HLA-A locus, showing an elevated
effect size on familial NPC risk compared with that observed in
sporadic NPC studies (16,18). Given the top signal hits the HLA
class I region, we performed HLA typing for 4-digit class-I
alleles. Ten classical HLA class-I alleles were statistically signifi-
cantly associated with familial NPC risk, including the reported
protective alleles HLA-A*11:01 and HLA-C*12:02, and the
reported risk alleles HLA-A*02:07, HLA-A*33:03, HLA-B*46:01,
HLA-B*58:01, HLA-C*01:02, and HLA-C*03:02[20,67,68]. In addi-
tion, 2 alleles, HLA-B*15:02 and HLA-C*06:02, which have not

A
R

T
IC

LE

T.-M. Wang et al. | 1691

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/114/12/1689/6692718 by guest on 14 August 2024

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data


been reported in NPC genetic studies, were associated with fam-
ilial NPC risk (OR¼ 0.63, 95% CI ¼ 0.42 to 0.94, P¼ .03 and
OR¼ 0.39, 95% CI ¼ 0.18 to 0.83, P¼ .01, respectively; Figure 3).

NPC Risk Stratification Using GRSs Derived by Identified
Common and Rare Variants

We developed a GRSC in the training samples (Supplementary
Tables 13 and 14, available online) and then validated the GRSC

in the test samples (AUC¼ 0.71; Supplementary Table 15, avail-
able online). We found individuals in the top quantile of GRSC

had 6.72 times the NPC risk compared with those in the bottom
quantile (95% CI ¼ 4.19 to 10.76, P¼ 2.29� 10–15; Figure 4, A).
Given that common and rare variants are 2 important genetic
components for NPC risks, we then performed stratification
analysis by rare variant carrying status and found the NPC risk
for individuals in different GRSC quantiles could be stratified by
rare variants. Carriers of any identified rare variants in the top
quantile of GRSC exhibited dramatically increased risk, with an
OR of 13.47 (95% CI ¼ 6.33 to 28.68, P¼ 1.48� 10–11; Table 1) com-
pared with the noncarriers of rare variants in the bottom quan-
tile of GRSC. Subsequently, we developed a GRSCR in the training
samples and validated the risk stratification ability in the test

samples (AUC¼ 0.737; Supplementary Table 16, available
online). We observed individuals in the top quantile of GRSCR

showed 9.21 times the risk compared with those in the bottom
quantile (95% CI ¼ 5.57 to 15.25, P¼ 5.99� 10–18; Figure 4, A),
implicating that inclusion of rare variants could improve the
risk stratification performance of the model using common var-
iants alone.

The cumulative lifetime and the future 10-year NPC risks for

individuals with an NPC family history were calculated. The
average lifetime NPC risks were 24.19% for men and 8.06% for
women, who were in the top GRSC quantile and in the mean-
time carried any identified rare variants, whereas the risks were
2.04% for men and 0.62% for women in the bottom GRSC quan-
tile and not carrying rare variants. Similar trends were observed
for the future 10-year NPC risks (Figure 4, B and C;
Supplementary Figure 2, available online).

Discussion

In this study, we for the first time—to our knowledge—evaluated
the rare pathogenic or likely pathogenic variants in the estab-
lished cancer predisposition genes for familial NPC and expanded
the current genetic architecture of NPC by identifying 6 novel NPC
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Figure 1. The rare pathogenic or likely pathogenic variants of the established cancer predisposition genes. A) The frequencies of rare pathogenic or likely pathogenic

variants in 19 established cancer predisposition genes in the familial nasopharyngeal carcinoma (NPC) cases, the published NPC samples and the relatives or healthy

controls (Ctrls) (left), and the mutations of 15 genes were identified in familial NPC cases. The overall frequencies of the cancer predisposition genes in the familial NPC

cases, the published NPC samples, and the relatives/healthy controls are shown (right). B-E) The lollipop plots illustrate all the rare pathogenic or likely pathogenic var-

iants in the 4 most frequently mutated genes (ERCC2, TP63, MUTYH, and BRCA1). The y-axis indicates the number of carriers for each mutation. The box colors indicate

domains of each gene. The colors of the points indicate the individuals from the familial NPC cases (red), the published NPC samples (yellow), unaffected relatives (pur-

ple), and healthy controls (green); the shapes indicate the mutation types: circle for missense mutation, square for frameshift indel, rectangle for nonsense mutation,

and diamond for splice site. FNPC ¼ familial nasopharyngeal carcinoma.

A
R

T
IC

LE

1692 | JNCI J Natl Cancer Inst, 2022, Vol. 114, No. 12

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/114/12/1689/6692718 by guest on 14 August 2024

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac177#supplementary-data


susceptibility genes. By comparing the mutation spectrum of fam-
ilial NPC with other family cancers, we identified genes enriched
in familial NPC as well as genes enriched in both familial NPC and
other EBV-associated cancers. Besides rare variants, common var-
iants reported in the NPC GWASs, which were conducted mostly
in sporadic cases and controls, were also associated with familial
NPC risk. We developed a GRS integrating all the identified com-
mon and rare variants, which showed good performance in NPC
risk stratification. This study improves the understanding of NPC
genetic etiology and provides important evidence for NPC risk
stratification and personalized prevention for the population with
an NPC family history.

Family history is a well-established risk factor for many can-
cers (69-71), and individuals with a positive cancer family his-
tory need effective genetic consultation and risk assessment.
Common and rare variants are 2 critical genetic components for
cancer susceptibility (72) and could collectively contribute to a
more precise risk prediction of cancers (73) than using family
history alone (74-76). Moreover, using GRS could further stratify
high-risk individuals with a positive family history and provide
a stable and feasible supplement to cancer family history (77).
In this study, we used the common and rare variants to con-
struct the GRS for NPC risk prediction. We showed that individ-
uals with an NPC family history could be stratified into different
genetic risk groups by common and rare variants. The GRS
derived by common variants alone showed 6.72 times the risk
for the top quantile compared with the bottom; a largely
improved risk stratification performance was achieved by add-
ing rare variants, showing 13.47 times risk for the individuals in
the top GRSC quantile and meanwhile carrying rare variants.
These findings suggest diverse risk management and health
surveillance strategies may be applied for the populations with
an NPC family history. More aggressive NPC screening may be
suggested for risk reduction and early diagnosis for the high–

genetic risk subgroup. Particularly, individuals carrying rare var-
iants with a large effect size and more important clinical impact
may be referred to clinical intervention for risk reduction and
early detection.

The pathogenesis role of EBV infection on NPC develop-
ment has long been suggested. Evidence showed that EBV
infection and reactivation could promote host genomic insta-
bility by inducing DNA damage and inhibiting DNA repair,
which potentially result in tumorigenesis (78-81). In this study,
we identified several potential susceptibility genes related to
DNA damage repair or/and EBV infection. For example, the
identified gene RAD54L is involved in the homologous recom-
bination and repair of DNA (82-84) and was proposed as a
potential candidate gene for cancer susceptibility (85,86). The
polymorphisms in RAD54L were associated with EBV seroposi-
tive status of IgA antibody against viral capsid antigen (VCA-
IgA) (87), an important biomarker for NPC screening and early
diagnosis. Rare RAD54L variants were enriched in both familial
NPC and non-Hodgkin lymphoma, implicating the shared
mechanism of RAD54L on NPC and other EBV-associated can-
cers (88,89). ERCC2 is important in DNA excision repair, acting
as an essential subunit of the general transcription factor IIH
(TFIIH) complex (90). The polymorphisms of ERCC2 were asso-
ciated with NPC risk (13,91,92). In this study, 1.39% of familial
NPC carried ERCC2 rare pathogenic mutations in DNA-binding
helicase domains, suggesting the inherited pathogenic muta-
tions may affect the normal DNA-binding function. Moreover,
ERCC2 and the TFIIH complex could be targeted by EBNA2, an
EBV-encoded transactivator, and this interaction may impair
the DNA repair functions of TFIIH (93). TP63, a transcription
factor of the p53 family and a key regulator of epithelial-cell
differentiation (94), was an established cancer predisposition
gene enriched in familial NPC. TP63 may be involved in the
development of NPC and many other cancers (95-98). Notably,
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TP63 could transactivate many DNA damage repair genes
(99,100). Additionally, TP63 could interact with EBV-encoded
oncoprotein LMP2A and affect the regulation of epithelial

differentiation (101). Taken together, these findings suggest
that abnormal host genetics related to DNA repair pathways
or/and EBV infection may collaboratively contribute to NPC
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carcinogenesis (80), and further studies are warranted to inves-
tigate whether the NPC susceptibility genes contribute to the
disease risk by influencing EBV infections or whether there is
an interplay between host genetics and EBV infection on NPC
development.

Family-based studies have the advantage to obviate the
problem of population stratification introduced in unrelated
case-control studies. However, there are many difficulties in the
recruitment of high-risk NPC families and in the accumulation
of enough numbers of well-characterized families with both
cases and first-degree relatives in successive generations.
Therefore, we used a hybrid design by including samples from
both NPC families with familial cases and unaffected relatives
as well as familial case-unrelated control. Although we identi-
fied 6 potential susceptibility genes with PSTAAR-O less than .05
and permutation P less than .05, they did not surpass multiple
test correction. The power of this study remains to be improved
by additional recruitment of NPC families with a more complete
structure and inclusion of a larger number of familial cases and
independent controls. In addition, this study only consists of
individuals from the NPC endemic area, and additional valida-
tion of the identified NPC susceptibility genes and the con-
structed GRS in external study cohorts is warranted. Moreover,
there is some progress on the identification of cancer predispo-
sition genes and NPC-associated SNPs, and additional compre-
hensive study including novel cancer predisposition genes and
NPC-associated SNPs could be performed to improve the per-
formance of the model (63,102-104). Lastly, our current predic-
tion model includes only the genetic factors. A more
comprehensive model should be developed by combining
genetic factors with environmental risk factors (105,106).

In summary, we systematically evaluated the established
cancer predisposition genes in familial NPC samples and identi-
fied 6 novel NPC susceptibility genes. The rare variants confer
statistically significantly increased risk of NPC and provide
added value for risk stratification. This study expands the
understanding of NPC genetic etiology and provides a potential
tool for the management of the population with an NPC family
history, which could benefit the precision risk prediction, pre-
vention, and early diagnosis of the disease.
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Table 1. The effects of GRSC quantiles and rare variant carrying status on familial NPC risk

GRSC

Noncarrier of rare varianta Carrier of rare variantb

FNPC, No. (%)

Relatives/
controls, No.

(%) OR (95% CI)c Pc FNPC, No. (%)

Relatives/
controls, No.

(%) OR (95% CI)c Pc

P0-P25 24 (6.14) 87 (23.84) 1.0 (Referent) — 8 (7.21) 5 (12.82) 5.80 (1.72 to 19.52) 4.53� 10–3

P25-P50 54 (13.81) 87 (23.84) 2.25 (1.28 to 3.96) 4.96� 10–3 23 (20.72) 10 (25.64) 8.34 (3.50 to 19.88) 1.73� 10–6

P50-P75 94 (24.04) 90 (24.66) 3.78 (2.19 to 6.54) 1.97� 10–6 28 (25.23) 10 (25.64) 10.15 (4.33 to 23.79) 9.69� 10–8

P75-P100 219 (56.01) 101 (27.67) 7.84 (4.67 to 13.16) 6.65� 10–15 52 (46.85) 14 (35.9) 13.47 (6.33 to 28.68) 1.48� 10–11

a

Individuals not carrying any identified rare variants. CI ¼ confidence interval; FNPC ¼ familial nasopharyngeal carcinoma; GRSC ¼ common variant-derived genetic

risk score; NPC ¼ nasopharyngeal carcinoma; OR ¼ odds ratio.
bIndividuals carrying any identified rare variants.
cOdds ratios, 95% confidence intervals, and P values were calculated by using generalized linear mixed model.
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The baseline sample information and genetic information data
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(NGDC, Nucleic Acids Res 2021), Beijing Institute of Genomics,
Chinese Academy of Sciences, under accession number
PRJCA010171 (https://ngdc.cncb.ac.cn/gvm/). Other data under-
lying this article will be shared on reasonable request to the cor-
responding author.
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