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[bookmark: OLE_LINK140][bookmark: OLE_LINK141][bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK128][bookmark: OLE_LINK129][bookmark: OLE_LINK17][bookmark: OLE_LINK136][bookmark: OLE_LINK137][bookmark: OLE_LINK125][bookmark: OLE_LINK126][bookmark: OLE_LINK127][bookmark: OLE_LINK3][bookmark: OLE_LINK5][bookmark: OLE_LINK299][bookmark: OLE_LINK300][bookmark: OLE_LINK325][bookmark: OLE_LINK326][bookmark: OLE_LINK230][bookmark: OLE_LINK330][bookmark: OLE_LINK331][bookmark: OLE_LINK332][bookmark: OLE_LINK297][bookmark: OLE_LINK298][bookmark: OLE_LINK333][bookmark: OLE_LINK334][bookmark: OLE_LINK301][bookmark: OLE_LINK302][bookmark: OLE_LINK13][bookmark: OLE_LINK168][bookmark: OLE_LINK169][bookmark: OLE_LINK180][bookmark: OLE_LINK181][bookmark: OLE_LINK313][bookmark: OLE_LINK314][bookmark: OLE_LINK315][bookmark: OLE_LINK316][bookmark: OLE_LINK14][bookmark: OLE_LINK16][bookmark: OLE_LINK45][bookmark: OLE_LINK85]Wastewater-based epidemiology (WBE) has been widely used as a complementary approach to SARS-CoV-2 clinical surveillance. Wastewater genomic sequencing could provide valuable information on the genomic diversity of SARS-CoV-2 in the surveyed population. However, reliable detection and quantification of variants or mutations remain challenging. In this study, we used mock wastewater samples created by spiking SARS-CoV-2 variant standard RNA into wastewater RNA to evaluate the impacts of sequencing throughput on various aspects such as genome coverage, mutation detection, and SARS-CoV-2 variant deconvolution. We found that wastewater datasets with sequencing throughput greater than 0.5 Gb yielded reliable results in genomic analysis. In addition, using in silico mock datasets, we evaluated the performance of the adopted pipeline for variant deconvolution. By sequencing 86 wastewater samples covering more than 6 million people over a period of 7 months, we presented two use cases of wastewater genomic sequencing for surveying COVID-19 in Hong Kong in WBE applications, including the replacement of Delta variants by Omicron variants, and the prevalence and development trends of three Omicron sublineages. Importantly, the wastewater genomic sequencing data were able to reveal the variant trends 16 days before the clinical data did. By investigating mutations of the spike (S) gene of the SARS-CoV-2 virus, we also showed the potential of wastewater genomic sequencing in identifying novel mutations and unique alleles. Overall, our study demonstrated the crucial role of wastewater genomic surveillance in providing valuable insights into the emergence and monitoring of new SARS-CoV-2 variants and laid a solid foundation for the development of genomic analysis methodologies for WBE of other novel emerging viruses in the future.
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1. Introduction
[bookmark: OLE_LINK225][bookmark: OLE_LINK234][bookmark: OLE_LINK224][bookmark: OLE_LINK228][bookmark: OLE_LINK420][bookmark: OLE_LINK421][bookmark: OLE_LINK23][bookmark: OLE_LINK31][bookmark: OLE_LINK226][bookmark: OLE_LINK44][bookmark: OLE_LINK412][bookmark: OLE_LINK223][bookmark: OLE_LINK210][bookmark: OLE_LINK511][bookmark: OLE_LINK227][bookmark: OLE_LINK235][bookmark: OLE_LINK236]The advancement of sequencing technologies has facilitated high-resolution genomic surveillance of SARS-CoV-2 amid the COVID-19 pandemic. As SARS-CoV-2 progresses towards endemicity, its continuous evolution generates a multitude of novel lineages (Gangavarapu et al., 2023), with variants of concern (VOCs) and variants of interest (VOIs) exhibiting heightened transmissibility and immune evasion capability (Amman et al., 2022; Harvey et al., 2021). Therefore, prompt and precise determination of the local prevalence of SARS-CoV-2 variants is crucial for implementing effective public health interventions. However, clinical genome sequencing is usually costly, inefficient, and prone to sampling biases resulting from systemic healthcare disparities (Brito et al., 2022; Majid et al., 2020). In contrast, wastewater-based epidemiology (WBE) can overcome sampling bias and economic constraints in the epidemiological surveillance (Larsen et al., 2021), and it has proven its effectiveness in providing public health information at distinct phases of the COVID-19 pandemic, including the early, mid, and late phases. At the early or late stage, WBE can provide alert information for virus introduction or reintroduction in populations (Shah et al., 2022; Xu et al., 2021), identifying hidden cases to interrupt viral transmission in communities (Deng et al., 2022b; Xu et al., 2022b). In the mid-phase of the pandemic, wastewater data could be employed to predict the pandemic development trends (Hillary et al., 2021; Jeng et al., 2023).

[bookmark: OLE_LINK219][bookmark: OLE_LINK220][bookmark: OLE_LINK229][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK26][bookmark: OLE_LINK327][bookmark: OLE_LINK328][bookmark: OLE_LINK329]Additionally, as the world transitions into a post-pandemic era, and clinical data become scarce due to diminishing individual testing, wastewater genomic surveillance could provide key surveillance for the emergence and circulation of variants over time (Singer et al., 2023). Recent studies have highlighted the feasibility of using wastewater genomic sequencing to track the circulation patterns of different SARS-CoV-2 variants (Agrawal et al., 2022; Fontenele et al., 2021; Perez-Cataluna et al., 2022), identify new local SARS-CoV-2 VOCs earlier than clinical detection (Ahmed et al., 2022; Deng et al., 2022a; Jahn et al., 2022; Xu et al., 2022a), and deduc the abundance of variants from wastewater samples (Amman et al., 2022; Cheng et al., 2021). Nevertheless, the effective detection and quantification of SARS-CoV-2 by wastewater genomic sequencing still face technical challenges that need to be addressed (Mercer and Salit, 2021). In particular, the concentration of the virus in wastewater is relatively low (Zhang, 2022), and the complex matrix present in wastewater samples can potentially cause PCR inhibition or interference (Mauger et al., 2015). In addition, the viral genomes in wastewater are typically fragmented (Ahmed et al., 2022). Moreover, the data quality derived from sequencing viral mixtures is compromised by amplification biases and sequencing errors, making the detection of viral lineages in wastewater more complicated (Jahn et al., 2022). Uncertainties also exist within the analytical approaches, including the impact of sequencing throughput and different analytical parameters and techniques on the interpretation of viral genome coverage, mutation profiles, and variant deconvolution in wastewater samples.

Therefore, in this study, we aimed to enhance wastewater sequencing surveillance by evaluating the impact of sequencing throughput on viral genomic analysis using mock wastewater samples created by spiking SARS-CoV-2 variant standard RNA into wastewater RNA. We also examined three key parameters for the reliability and accuracy of mutation identification. Employing in silico mock datasets derived from Illumina data and mock wastewater samples, we validated the variant deconvolution performance of the adopted Freyja tool for recovering relative abundances of SARS-CoV-2 lineages from a mixture in a sequencing dataset developed by Karthikeyan et al. (Karthikeyan et al., 2022). Furthermore, we investigated the dynamics of variants in two epidemiological scenarios and the mutation profiles in the spike (S) gene by analyzing 86 wastewater samples collected from late January to mid-August 2022 in Hong Kong.
[bookmark: OLE_LINK217][bookmark: OLE_LINK218]
2. Methods and Materials
[bookmark: OLE_LINK166][bookmark: OLE_LINK167][bookmark: OLE_LINK32][bookmark: OLE_LINK35]2.1 Preparation of mock wastewater samples by spiking variant standard RNAs into wastewater RNA for method evaluation
[bookmark: OLE_LINK30]In this study, we employed four types of standard variant RNA, including three Twist Synthetic RNA controls, specifically Delta RNA (control 23), Omicron BA.2 RNA (control 51), and Omicron BA.2.12.1 RNA (control 62), as well as Omicron BA.5 RNA (EPI_ISL_13512579) extracted from the virus isolated from a patient respiratory tract sample. The precise quantification of these RNA controls after being diluted 1000-fold was executed by droplet digital PCR (ddPCR, Bio-Rad), resulting in concentrations of 4920, 1960, 3420, and 1720 copies/µL for Delta, Omicron BA.2, Omicron BA.2.12.1, and Omicron BA.5 RNA, respectively. Additionally, we constructed two mixtures using the above RNA controls according to the following strategies: (1) a Delta/Omicron mixture, comprised of an equal volume ratio of Delta and Omicron BA.2 RNA, and (2) a mixture of different Omicron lineages, formulated by combining equal volume ratios of the three Omicron RNA controls. Consequently, the concentration ratios of the two mixtures were established as 2.5:1 (Delta: Omicron BA.2) for the Delta/Omicron mixture and 1.14:1:2 (Omicron BA.2: Omicron BA.2.12.1: Omicron BA.5) for the mixture of different Omicron lineages.

[bookmark: OLE_LINK59]To evaluate the performance of the sequencing analysis method, we created mock wastewater samples by individually spiking the four RNA controls and the two mixtures into RNA extracted from wastewater samples that were collected during a period of zero local cases before the 5th wave outbreak in Hong Kong, and tested negative by RT-qPCR using the UCDC-N1 assay developed by the United States Centers for Disease Control (US CDC) (CDC, June 6, 2020) and the Charité-E assay developed by Corman et al. (Corman et al., 2020). Specifically, for the individual standard RNA of variants, 10 µL of 100-fold diluted RNA was spiked into 90 µL of the above wastewater RNA. For the mixtures, 10 µL of each standard RNA was amalgamated with the above wastewater RNA in a total volume of 100 µL.

2.2 Wastewater sample collection, pretreatment, and RNA extraction
[bookmark: OLE_LINK57][bookmark: OLE_LINK68][bookmark: OLE_LINK73][bookmark: OLE_LINK400][bookmark: OLE_LINK401][bookmark: OLE_LINK74]To monitor the dynamics of the circulating variants during the COVID-19 outbreak in Hong Kong, a total of 86 wastewater samples were gathered under two distinct contexts. Of these samples, 53 manhole samples were taken from 23 different catchment areas during the early stage of the 5th wave outbreak (from late January to mid-March 2022) in Hong Kong. For providing timely information for public health authorities, the strategy of 3-hour composite sampling at the morning peak (8-10 am) was adopted for these samples. The remaining 33 samples were obtained from 11 wastewater treatment plants (WWTPs) in June, July, and mid-August 2022 for monitoring the pandemic trends, therefore a more representative 24-hour composite sampling method was employed. The collected wastewater samples were preserved on ice within a secondary container and were immediately transported to the laboratory. 

[bookmark: OLE_LINK402][bookmark: OLE_LINK403][bookmark: OLE_LINK58]All samples were maintained at 4°C before being preconcentrated within 1-3 days. For safety reasons, samples were incubated at 60°C for 30 minutes to inactivate the viruses (Zheng et al., 2022). Manhole samples (30 mL) were preconcentrated by initial centrifugation at 4,750 g for 30 minutes, followed by the collection of the supernatant for subsequent ultracentrifugation at 150,000 g for 1 hour (Allegra X-15R, Beckman Coulter, Indianapolis, IN). The concentrated pellet was then resuspended in approximately 200 µL of PBS for RNA extraction. The WWTPs samples were preconcentrated as previously described (Zheng et al., 2023), specifically, 40 mL of wastewater was initially centrifuged at 2,000 g for 2 minutes to remove coarse particles. Subsequently, the supernatant was concentrated through flocculation by employing 4 g PEG 8000 (10%, w/v) and 0.8 g NaCl (2%, w/v). The resulting solution was incubated on a shaker at 180 rpm and 25°C for 2 hours. A second centrifugation step was performed at 4,750 g for 30 minutes to precipitate the mixture into a reduced volume of 1-2 mL. Finally, the pellet was obtained after a third centrifugation at 20,000 g for 2 minutes. RNA was extracted from all concentrated samples using QIAamp Viral RNA Kits (Qiagen) for downstream analysis.

2.3 Quantification of the SARS-CoV-2 virus in wastewater samples
[bookmark: OLE_LINK404][bookmark: OLE_LINK405][bookmark: OLE_LINK413]SARS-CoV-2 concentrations in wastewater samples were determined using RT-qPCR with the UCDC-N1 assay. The RT-qPCR reaction mixture comprised 4 μL template RNA, 5 μL 4× TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher), 500 nM forward primer, 500 nM reverse primer, and 250 nM probe. DEPC-treated water was then added to achieve a total volume of 20 μL. Thermal cycling conditions consisted of an initial step at 50°C for 5 minutes, followed by 95°C for 20 seconds, and 45 subsequent cycles of 95°C for 5 seconds and 55°C for 30 seconds using the QuantStudio 7 Real-time PCR machine (Thermo Fisher). The details of the standard curves derived from synthetic DNA fragments containing the N1 target for quantification of the SARS-CoV-2 virus were provided in Table S1. Each sample was analyzed in duplicate, with ddH2O serving as the negative control in every detection batch.

[bookmark: OLE_LINK410][bookmark: OLE_LINK411][bookmark: OLE_LINK418][bookmark: OLE_LINK419]2.4 Amplification of the viral genome and sequencing
[bookmark: OLE_LINK408][bookmark: OLE_LINK409][bookmark: OLE_LINK65][bookmark: OLE_LINK51][bookmark: OLE_LINK52][bookmark: OLE_LINK66][bookmark: OLE_LINK75][bookmark: OLE_LINK76][bookmark: OLE_LINK93][bookmark: OLE_LINK99][bookmark: OLE_LINK414][bookmark: OLE_LINK415][bookmark: OLE_LINK94]In this study, amplicon-based genome sequencing for the viruses in both mock wastewater samples and wastewater samples was performed using Illumina at the Centre for PanorOmic Sciences (CPOS, Hong Kong). The 400 bp amplicons were produced using an updated primer panel version 4, which comprised 98 primer pairs in two primer pools and tackled the mutations in the primer binding sites, thus substantially reducing the occurrence of drop-off issues. The process was performed following the ARTIC protocol (https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bp2l6n26rgqe/v3) with some modifications. In detail, cDNA was synthesized using a reaction consisting of 2 μL 5× LunaScript RT SuperMix (NEB, England) and 8 μL template RNA following the incubation process of 2 minutes at 25°C, 10 minutes at 55°C, and 1 minute at 95°C. To improve the yields of cDNA and to reduce potential variability, each sample underwent three individual reverse transcription reactions. These reactions were subsequently pooled together, thus minimizing any randomness that could potentially arise from relying solely on a single reaction. Furthermore, to increase the amplification efficiency, a large amount of template, 5 μL of cDNA, instead of 2.5 μL recommended by the ARTIC protocol, was used in the 25 μL PCR reaction. For each sample, the PCR products from pools 1 and 2 were combined and then purified using AMPure XP Beads (Beckman Coulter) at a 1:1 volume ratio. Finally, the purified PCR products were sent to the CPOS for Illumina PE250 sequencing. The raw reads obtained were first processed using fastp software (v0.23.2) to remove sequencing adapters and merge the paired-end reads, and the merged reads were utilized for subsequent analyses.

[bookmark: OLE_LINK422][bookmark: OLE_LINK423]2.5 Analysis of the impacts of sequencing throughput
[bookmark: OLE_LINK335][bookmark: OLE_LINK336]To evaluate the impacts of the sequencing throughput on the genome analysis, subdatasets were generated 21-26 times in triplicate from the merged reads of six mock wastewater samples to simulate different sequencing throughputs by seqkit software (v2.3.0). The frequency of subsampling was specifically determined based on the individual sequencing throughputs of these samples. Detailed information regarding the sequencing datasets of the mock wastewater samples was summarized in Table S2 and the amount of the subdatasets was shown in Table S3.

[bookmark: OLE_LINK77][bookmark: OLE_LINK78][bookmark: OLE_LINK424][bookmark: OLE_LINK425]2.6 In silico mock datasets for variant deconvolution analysis
[bookmark: OLE_LINK430][bookmark: OLE_LINK431][bookmark: OLE_LINK79][bookmark: OLE_LINK80][bookmark: OLE_LINK81][bookmark: OLE_LINK82]For variant deconvolution analysis, we generated five in silico mock datasets using the above merged reads as follows: 1). 4-Mix-Eq: a mixture of sequencing reads from the four standard RNAs in equal ratio (1 Gb data for each); 2). OOO-Mix-Eq: a mixture of sequencing reads from three Omicron standard RNAs in equal ratio (1 Gb data for each); 3). DO-Mixture-Eq: a mixture of reads from Delta standard RNA and Omicron BA.2 standard RNA in equal ratio (1 Gb data for each); 4). OOO-Mix-Diff: a mixture of reads from three Omicron standard RNAs with sequencing throughputs of 1, 0.1, and 0.01 Gb for Omicron BA.2, Omicron BA.5, and Omicron BA.2.12.1, respectively; and 5). DO-Mix-Diff: a mixture of reads from Delta standard RNA (1 Gb) and Omicron BA.2 RNA (0.1 Gb).

2.7 Genomic analysis
[bookmark: OLE_LINK138][bookmark: OLE_LINK139][bookmark: OLE_LINK144][bookmark: OLE_LINK145][bookmark: OLE_LINK146][bookmark: OLE_LINK147][bookmark: OLE_LINK149][bookmark: OLE_LINK156][bookmark: OLE_LINK157]For genomic analysis, merged reads were first aligned with the SARS-CoV-2 reference genome (MN908947.3), using bwa-mem2 (v2.2.1) and indexed with samtools (v1.15). The SARS-CoV-2 mapping ratio for each sample represented the proportions of merged reads that successfully aligned to the reference genome (MN908947.3) calculated by coverm software (v0.6.1). Post-alignment, primer trimming was performed following the iVar pipeline (Grubaugh et al., 2019). The depth of each genomic site was determined using the command variants of Freyja (v1.3.8). The genomic coverage of each sample, representing the percentage of the whole genome that was covered, was calculated by considering only nucleotides with a minimum depth of 20×.

[bookmark: OLE_LINK158][bookmark: OLE_LINK159][bookmark: OLE_LINK186][bookmark: OLE_LINK187][bookmark: OLE_LINK153][bookmark: OLE_LINK154][bookmark: OLE_LINK155]Nucleotide substitutions relative to the SARS-CoV-2 reference genome (MN908947.3) were detected using aligned reads with mpileup from samtools and the command variants of iVar software. For the cutoff evaluation in subsamples, three parameters were assessed when considering a nucleotide polymorphism: mutation site depth (the number of reads carrying a specific mutation), alteration frequency, and quality score. Reference mutation information for standard RNA was obtained from GISAID (https://gisaid.org/). The sensitivity and precision for mutation detection were calculated according to the number of true positive (TP), false negative (FN), and false positive (FP) results using the below formulas:



[bookmark: OLE_LINK148][bookmark: OLE_LINK150][bookmark: OLE_LINK151][bookmark: OLE_LINK152][bookmark: OLE_LINK184][bookmark: OLE_LINK185][bookmark: OLE_LINK164][bookmark: OLE_LINK165][bookmark: OLE_LINK434][bookmark: OLE_LINK435]For mutation identification in wastewater samples, a minimum cutoff of 20× (sequencing throughput < 0.2 Gb), 50× (sequencing throughput of 0.2-1 Gb), and 100× (sequencing throughput >1 Gb) of the mutation site depth, alteration frequency greater than 10%, and a quality score higher than 30 were used. The signature mutations for variants obtained from COVID CG (https://covidcg.org/) were shown in Table S4. Lineages and variant abundance were determined and quantified using Freyja software (v1.3.8), excluding variants with less than 1% abundance. The relative abundance was determined by calculating the ratio of the mutation read count to the total read count for each sample. The results for standard subdatasets were determined as the average of three subsampling replicates. The wastewater variant prevalence in Hong Kong was estimated using variant abundances and the flowrates (Table S5) of different WWTPs. Clinical variant data was obtained from reports by the Center for Health Protection of Hong Kong. 

[bookmark: OLE_LINK40][bookmark: OLE_LINK43][bookmark: OLE_LINK41][bookmark: OLE_LINK42][bookmark: OLE_LINK33][bookmark: OLE_LINK34]3. Results 
3.1 Impacts of sequencing throughput on genomic analysis
[bookmark: OLE_LINK103][bookmark: OLE_LINK100][bookmark: OLE_LINK211][bookmark: OLE_LINK104]To ascertain the impacts of sequencing throughput on genomic analysis, we subsampled the sequencing data from the mock wastewater samples and identified a critical point of 0.1 Gb to get acceptable genome completeness. Beyond 0.5 Gb, additional sequencing throughput did not significantly increase the genome coverage (Figure S1a). In addition, the rarefaction curve demonstrated that the mutation count and profiles increase parallel to the growth of the sequencing throughput (Figure S1b). Nevertheless, there were discrepancies in the mutation profiles across six standard samples when aligned with the reference genomes (Figure 1). Upon evaluating the predictive value, the sensitivity ranged between 74% and 90%, indicating that the sequencing data might not capture all mutations present in the reference genome. Additionally, the precision, ranging from 35% to 88%, suggested the potential occurrence of false positives. (Table S6). 

[bookmark: OLE_LINK216]To achieve more reliable mutation identification results, we evaluated various cutoff thresholds using subdatasets from six standards, considering different mutation site depth (20, 50, and 100), alteration frequencies (1%, 10%, 20%, and 50%), and mutation quality scores (20 and 30) by comparing the prediction values which encompass sensitivity and precision, across 24 different cutoff scenarios. The results showed that sequencing throughput played a more substantial role in getting higher prediction values and different cutoffs should be applied to samples at different sequencing throughputs. As shown in Table S7, we recommend a mutation site depth threshold of 20 for sequencing throughput below 0.2 Gb, 50 for the range of 0.2~1 Gb, and 100 for > 1 Gb. In all cases, alteration frequency and quality score thresholds should remain constant at 10% and 30, respectively, to maintain accurate mutation calling with higher prediction values. 

[bookmark: OLE_LINK105][bookmark: OLE_LINK49][bookmark: OLE_LINK50]The accurate identification and quantification of variant compositions in wastewater samples are crucial for undertaking effective public health measures. In this study, we further investigated the impacts of sequencing throughput on the determination of variant compositions and their abundances. We found that consistent variant detection results could be obtained with a rather small sequencing throughput as shown in the rarefaction curve which reached a plateau at 2 Mb (Figure S2).

3.2 Assessing the accuracy of variant deconvolution
[bookmark: OLE_LINK106][bookmark: OLE_LINK55][bookmark: OLE_LINK56][bookmark: OLE_LINK221][bookmark: OLE_LINK89][bookmark: OLE_LINK90][bookmark: OLE_LINK87][bookmark: OLE_LINK88][bookmark: OLE_LINK119][bookmark: OLE_LINK199][bookmark: OLE_LINK200][bookmark: OLE_LINK61][bookmark: OLE_LINK62]To further assess the accuracy and reliability of the current method for variant deconvolution, we generated eleven in silico mock datasets using merged reads from Illumina sequencing data based on different strategies. (Figure 2a). First, to recognize the potential co-existence of multiple variants, we constructed three mixtures with equally distributed sequencing throughput components from four variants, namely Delta, Omicron BA.2, Omicron BA.2.12.1, and Omicron BA.5. Next, to simulate an early warning scenario for the emergence of BA.2 following Delta variants, we created the DO-Mix-Diff dataset using Delta and Omicron BA.2 variants at a 10:1 ratio. Furthermore, considering the circulation of multiple Omicron sublineages, including BA.2, BA.2.12, and BA.5 with varying abundance during the same period, we constructed the OOO-Mix-Diff dataset using these three sublineages at a ratio of 100:10:1. Finally, we simultaneously extracted the individual components with the same sequencing throughput as those in the mixture samples, utilizing the results of individual variants as a basis for comparison with the results obtained from the mixture samples. 

[bookmark: OLE_LINK111][bookmark: OLE_LINK109][bookmark: OLE_LINK122][bookmark: OLE_LINK222]The Freyja and iVar pipelines were employed to identify and deconvolute variant compositions for the eleven mock datasets. As illustrated in Figure 2b, we found that datasets containing individual variants could be accurately analyzed for variant composition and abundance determination, regardless of data amount variations from 0.01 Gb to 1 Gb. In the mixtures of multiple variants at equal ratios, the anticipated compositions were discernible with an approximate relative abundance ratio of 1 across different variants in all three mixtures. Furthermore, the Delta and Omicron BA.2 variants were detected at a ratio of around 10:1 in the DO-Mix-Diff dataset. These detected results aligned well with the expected results. However, in the OOO-Mix-Diff dataset, while the Omicron BA.2 and Omicron BA.5 variants were identified at a 9:1 ratio, the Omicron BA.2.12.1 variant, expected to have a prevalence of 1%, remained undetected.

[bookmark: OLE_LINK83][bookmark: OLE_LINK84][bookmark: OLE_LINK116]In addition, we compared the expected and detected variant compositions in the mock wastewater samples at the maximum sequencing throughput. The results indicated that variant compositions could be distinguished in all samples, regardless of whether they comprised single or mixed variants. However, discrepancies were observed when quantifying the proportions of distinct components in the mixture samples. In detail, the sequencing results displayed ratios of 88:10 (Delta: Omicron BA.2) and 4:8:88 (Omicron BA.2: Omicron BA.2.12.1: Omicron BA.5), respectively (Figure 2c), while the expected ratios, calculated based on the compositions in the mock wastewater samples, were 71:29 and 28:48:24.

[bookmark: OLE_LINK47][bookmark: OLE_LINK48]3.3 Quantifying and examining genome coverage of SARS-CoV-2 variants detected in 86 wastewater samples
[bookmark: OLE_LINK124][bookmark: OLE_LINK189][bookmark: OLE_LINK202][bookmark: OLE_LINK201]Following the optimization and validation of the analysis pipeline, we sequenced a total of 86 SARS-CoV-2 virus positive (Ct < 40) wastewater samples collected during two distinct epidemiological phases of the COVID-19 pandemic in Hong Kong. In each phase, samples were respectively collected from manholes (n=53) and WWTPs (n=33). The SARS-CoV-2 viral concentrations, determined by the UCDC-N1 assay in RT-qPCR, exhibited a Ct range of 20.8-35.6 and varied between 2,765 to 69,433,000 copies/L across the 86 samples. The sequencing throughput for these samples ranged from 0.12 Gb to 2.69 Gb, and the percentage of SARS-CoV-2 mapped reads in the obtained data oscillated between 14.4% to 97.5%, with a mean value of 83% (Table S7).

Across the 86 sequenced samples, 56 samples (65%) exhibited over 90% SARS-CoV-2 genome coverage, while 19 samples (22%) showed genome coverage below 80%, with an average genome coverage of 85% (Table S1). A similar distribution pattern of average depth in different regions of the SARS-CoV-2 genome was observed for both manhole samples and WWTP samples (Figure S3). The depth in the N gene region was significantly higher compared to other regions and more fragmentation was clearly observed in the S gene and ORF1ab gene, indicating discrepancies across different regions.

[bookmark: OLE_LINK8][bookmark: OLE_LINK110][bookmark: OLE_LINK67][bookmark: OLE_LINK4][bookmark: OLE_LINK95][bookmark: OLE_LINK96]To investigate the potential correlations between viral concentrations and genome coverage or SARS-CoV-2 mapping ratio, and between sequencing throughput and genome coverage or SARS-CoV-2 mapping ratio, we conducted Spearman correlation analyses across all wastewater samples (Figure S4). The analysis revealed no significant correlation (coefficient r < 0.6) between viral concentration and either genome coverage or the SARS-CoV-2 mapping ratio. In contrast, a strong correlation (coefficient r > 0.6) was found between sequencing throughput and either genome coverage or the SARS-CoV-2 mapping ratio. Furthermore, a more complete genome (>90%) and an increased quantity of mapped sequences could be achieved when sequencing throughput was greater than 0.5 Gb, consistent with the observations in standard RNA samples.

3.4 Tracking the prevalence of the variants via wastewater genomic sequencing 
[bookmark: OLE_LINK303][bookmark: OLE_LINK304]3.4.1 The dynamics of co-existing Delta and Omicron variants
[bookmark: OLE_LINK12][bookmark: OLE_LINK18][bookmark: OLE_LINK305][bookmark: OLE_LINK306][bookmark: OLE_LINK307][bookmark: OLE_LINK308][bookmark: OLE_LINK309][bookmark: OLE_LINK310]The Delta variant was initially detected in Hong Kong in January 2022, purportedly introduced via infected pet hamsters (Yen et al., 2022). Concurrently, the emergence of the Omicron BA.2 variant led to a surge in Hong Kong (Xie et al., 2023). To analyze the dynamic interplay between these two variants in Hong Kong, we examined 53 wastewater samples, collected from various sampling sites in Hong Kong from late January to the middle of March 2022 (Figure 3a). As shown in Figure 3b, the Delta variant was identified in seven samples collected between late January and early February 2022. Notably, samples from two sampling sites (E site 1 and KT site 1) collected in early February, exhibited a mixed variant composition of Delta and Omicron BA.2.X, with an estimated relative abundance ratio of 1:9 (Delta: Omicron BA.2.X). During that period, the variant identified in other sampling sites was predominantly Omicron BA.2.X. By the middle of February 2022, Omicron BA.2.X was the dominant variant across all sampling sites, implying a rapid takeover and replacement of the Delta variant. This pattern is congruous with the change in clinical epidemiology witnessed during this period.

[bookmark: OLE_LINK69][bookmark: OLE_LINK70][bookmark: OLE_LINK53][bookmark: OLE_LINK54][bookmark: OLE_LINK311][bookmark: OLE_LINK312][bookmark: OLE_LINK232]3.4.2 Tracking the prevalence of Omicron sublineages in Hong Kong
[bookmark: OLE_LINK20][bookmark: OLE_LINK231][bookmark: OLE_LINK15][bookmark: OLE_LINK21][bookmark: OLE_LINK28][bookmark: OLE_LINK27][bookmark: OLE_LINK22]The resurgence of the pandemic in Hong Kong was sparked in June 2022 by the co-transmission of the newly emerged BA.2.12.1 and BA.4/BA.5 variants infecting a small number of patients, in conjunction with the locally dominant BA.2.X sublineages (hereafter referred to as local BA.2.X). To track the circulation of these variants in Hong Kong, we conducted genomic analysis of 33 wastewater samples collected from 11 WWTPs at three distinct time periods, including the end of June, the end of July, and mid-August in 2022. The results revealed (Figure 4a) that, by the end of June 2022, the local BA.2.X variant was prevalent across multiple WWTPs. However, a modest presence of Omicron BA.4/5 was observed, accounting for 3% in Sham Tseng STW and 24% in Siu Ho Wan STW. Additionally, BA.2.12.1 was detected in minor proportions, constituting 10% of the viral composition in the Sai Kung STW. In July 2022, only two samples collected from the San Wai STW and Sha Tin STW consisted exclusively of the local BA.2.X variants. In contrast, six samples exhibited the concurrent presence of local BA.2.X and BA.4/5, where the proportion of BA.4/5 ranged between 3% and 39%. A single sample revealed simultaneous detection of local BA.2.X and BA.2.12.1, with a 33% proportion attributed to BA.2.12.1. Additionally, two samples collected from Sham Tseng STW and Stanley STW demonstrated co-circulation of all three variants, with abundance percentages of 83:15:2 and 90:2:8 for local BA.2.X, BA.2.12.1, and BA.4/5, respectively. By mid-August 2022, all samples displayed the presence of multiple variants. Six samples demonstrated the co-existence of BA.4/5 and local BA.2.X, with the proportion of BA.4/5 escalating between 6% and 70%. Additionally, the other five samples showed the simultaneous circulation of all three variant types, with the prevalence of BA.2.12.1 and BA.4/5 ranging from 2% to 16% and 1% to 34%, respectively. Notably, the transmission of BA.4/5 was predominantly driven by BA.5 variants (Table S8).

[bookmark: OLE_LINK233]To further assess the prevalence of these variants across Hong Kong during that period, we calculated the variant prevalence using the flowrate data and variant relative abundance estimated from wastewater genomic sequencing datasets. The results revealed a clear transition in variant prevalence over the three-month span: In late June, local BA.2.X was the dominant strain, accounting for 99% of the total, while the presence of BA.2.12.1 and BA.4/5 was minimal, at 0.002% and 0.006%, respectively. By July, the prevalence of local BA.2.X had decreased to 81%. Meanwhile, the prevalence of BA.2.12.1 surged to 16%, and BA.4/5 rose to 3%. Moreover, by mid-August, the prevalence of local BA.2.X dropped further to 50%. The prevalence of BA.2.12.1 also decreased, falling back to 1%. However, the prevalence of the BA.4/5 variant continued to escalate, eventually reaching a level nearly equivalent to that of local BA.2.X, at a prevalence rate of 49% (Figure 4b). Furthermore, we compared these trends with clinical variant data from the same period, June to August 2022. We found that the trends discerned from the wastewater sequencing mirrored those in the clinical data, with the added benefit that wastewater data captured the shifting variant trends 16 days in advance (Figure 4c).

[bookmark: OLE_LINK317][bookmark: OLE_LINK318]3.5 Examining the substitutions in the S gene in wastewater samples
[bookmark: OLE_LINK319][bookmark: OLE_LINK320]Amino acid (AA) mutations in the S gene of the SARS-CoV-2 virus are known to impact its characteristics, contributing to increased transmissibility and a potential decrease in treatment efficacy. Thus, we applied the refined thresholds for mutation identification, derived from our evaluation of mock wastewater samples, to investigate the AA mutations in the S gene in wastewater samples. We also examined the associations between the detected mutations and the regions in the S gene, as well as their associations with Omicron and Delta variant types, as per the signature mutations of specific variants documented in the database.

In 53 samples collected from the period of co-existence of Delta and Omicron (January to March 2022), we identified a total of 66 AA mutations (Figure 5). The number of mutations detected per sample varied, ranging from 0 to 29. Among these mutations, five were signatures of the Delta variants and 25 were characteristic of the Omicron variants. Additionally, three mutations were shared between the Delta and Omicron variants. The remaining mutations were not considered to be characteristic of any specific variant, as these mutations were less prevalent in databases and were mainly found in local sequences from Hong Kong. Notably, 11 of the 66 mutations were located within the receptor-binding domain (RBD) of the S gene. The D614G mutation was the most frequent, appearing in 49 out of the 53 samples, with the relative abundance of the reads carrying the mutation ranging from 0.03% to 21%. The next most frequent mutations were T478K (found in 47 out of 53 samples), V213G (46 out of 53 samples), G142D (46 out of 53 samples), and H655Y (45 out of 53 samples). Interestingly, the five signature mutations of the Delta variant were present in six samples that contained the Delta variants. However, no mutations were detected in the TST1A_20220125 sample, which contained the Delta variants, possibly due to its lower sequencing throughput. Among these six samples, ST2A_20220124 and WTS040_20220125 samples contained four and eleven mutations, respectively, all of which were Delta-related. The KLC4_20220202 sample exhibited 12 mutations, including the Omicron-related Q954H. In two samples (KT1_20220206 and E1A_20220208) with mixed variants, we detected 24 and 21 mutations, respectively, with 58% and 67% of these being Omicron-related. In addition, we identified 18 mutations that were exclusive to individual samples and had not been previously found in sequences uploaded from Hong Kong. Notably, six of these mutations were not found in any sequences in the publicly available database for SARS-CoV-2 genomes (Figure 5).

[bookmark: OLE_LINK170][bookmark: OLE_LINK171]In the 33 samples collected from the period of co-existence of different Omicron lineages (June to August 2022), we identified a total of 62 AA mutations in the S gene, of which eight were in the RBD region (Figure 6). The number of mutations detected in each sample ranged from 11 to 25. Two mutations, T9I and N969K, were found in 32 samples, with abundances ranging from 1% to 20% and from 5% to 30%, respectively. Ten other mutations, namely N501Y, Q498R, S477N, E484A, T478K, Y505H, P681H, N679K, D614G, and H655Y, were detected in 31 samples. The majority of the identified mutations were associated with Omicron variants. However, the P681R mutation, commonly linked to the Delta variant, was identified in two of the samples. Intriguingly, one of these samples, SHW-0628, displayed both the Delta-associated P681R and the Omicron-associated P681H mutations at the same site, with a ratio of 1:4 for P681R to P681H. Furthermore, the I1221T mutation, which is specific to BA.2.2, was detected in 29 samples. Interestingly, the F486R mutation, which is exclusive to the BA.4/5 subvariants, was detected in nine samples, even though only one of these samples (NWK-0626) contained BA.2.X subvariants. Notably, 26 mutations had not been reported in the Hong Kong database, and six of these were not found in any globally uploaded sequences. Among these six mutations, D994E was found in three samples (Figure 6).

4. Discussion
[bookmark: OLE_LINK63][bookmark: OLE_LINK64][bookmark: OLE_LINK97][bookmark: OLE_LINK98][bookmark: OLE_LINK71][bookmark: OLE_LINK72][bookmark: OLE_LINK120][bookmark: OLE_LINK101][bookmark: OLE_LINK102]In this study, we aimed to standardize the sequencing analysis pipeline for wastewater variant surveillance by addressing key elements in wastewater genomic sequencing. First, a minimum sequencing throughput of 0.1 Gb was recommended to ensure reliable wastewater variant surveillance results. Additionally, we also underscored a substantial discrepancy between the mutation profiles derived from the sequencing data and the reference genomes when default parameters were used, which was particularly apparent in the low precision with a high prevalence of false-positive results. Notably, we found that mutations in the ORF7 and N genes, which exhibited higher coverage than other regions in the genome (Figure S5), were more accurately retrieved (Table S6). The cutoffs assessment for three pivotal mutation identification parameters (i.e., mutation site depth, alteration frequency, and quality score) showed that an increase in alteration frequency improved precision but simultaneously reduced sensitivity, emphasizing the need for balance between these two essential parameters. To enhance the accuracy of mutation identification, especially in identifying novel mutations, the cutoffs for mutation site depth should be dynamically increased and balanced according to sequencing throughput.

[bookmark: OLE_LINK172][bookmark: OLE_LINK173][bookmark: OLE_LINK176][bookmark: OLE_LINK177][bookmark: OLE_LINK174][bookmark: OLE_LINK175][bookmark: OLE_LINK190][bookmark: OLE_LINK191][bookmark: OLE_LINK113][bookmark: OLE_LINK114][bookmark: OLE_LINK192][bookmark: OLE_LINK193][bookmark: OLE_LINK194][bookmark: OLE_LINK195][bookmark: OLE_LINK123][bookmark: OLE_LINK121][bookmark: OLE_LINK117][bookmark: OLE_LINK118]As the emergence and co-existence of multiple variants within a population become increasingly common (Martin et al., 2021), the application of deconvolution methods will be invaluable for deciphering the aggregated signals of co-occurring variants present in wastewater (Schumann et al., 2022). Currently, several tools have emerged to address the need, notably including SAM Refiner (Gregory et al., 2021; Smyth et al., 2022), COJAC (Jahn et al., 2022), and Freyja (Karthikeyan et al., 2022). SAM Refiner and COJAC were specifically developed to identify variants based on the occurrence of mutations. However, SAM Refiner requires a large computation time and memory for data analysis. The utilization of COJAC for VOCs detection has shown some false-positive signals in our mock wastewater samples (Table S9), which could be attributed to the limited database contents. In this study, we employed a state-of-art Freyja pipeline, which takes into account both sequencing throughput and alteration frequency for variant deconvolution. We first evaluated the performance using in silico mock datasets and found that the results were highly consistent with the expected proportions. However, we did observe discrepancies in variant proportions in mock wastewater samples, especially for the mixture of Omicron sublineages, with the detected ratios quite diverging from the expected values. Therefore, it is crucial to remain vigilant and mindful of the potential implications arising from differing amplification efficiencies for various variants during the PCR-based sequencing library preparation process. Prior research has demonstrated that when identifying SARS-CoV-2 genomic sequences in mixtures, there is a preferential amplification of distinct variants (Bal et al., 2022). Furthermore, the formation of secondary structures in elongated viral RNA may lead to variations in the amplification efficiency (Zhang et al., 2022). It is also essential to consider variants with relatively low abundance when using the pipeline. For example, the BA.2.12.1 variant which was expected to have an abundance of ~1% in the OOO-Mix-Diff dataset, was not detected, probably due to the randomness in sampling and identifying variants with lower abundance (Ahmed et al., 2022). 

[bookmark: OLE_LINK203]In 86 actual wastewater samples, we observed that the viral load and genome completeness exhibited minimal correlation, aligning with previous studies (Izquierdo-Lara et al., 2021; Perez-Cataluna et al., 2022). Compared to the sequencing results of the mock wastewater samples, we found that genome fragmentation of SARS-CoV-2 RNA was more pronounced in wastewater samples, as evidenced by the varying coverage across different genomic regions and the significantly higher coverage of the N gene (Figure S3). The ARTIC v4 primer scheme employed in this study, which targets 400 bp regions of the genome, may be inadequate for amplifying shorter, degraded RNA fragments present in wastewater samples, thus contributing to the observed uneven coverage (Lou et al., 2022). This finding has important implications for the selection of stable segments for SARS-CoV-2 PCR detection and the determination of appropriate amplification lengths. However, it is also worth noting that the uneven coverage across various regions of the SARS-CoV-2 genome could also potentially be attributed to amplification bias resulting from dimer formation and low annealing temperature drop-out events in multiplex PCR (Coil et al., 2021; Itokawa et al., 2020). Furthermore, unlike the standard RNA samples, wastewater samples displayed considerable fluctuations in the SARS-CoV-2 mapping ratio, underlining the need to consider both sequencing throughput and mapped reads.

[bookmark: OLE_LINK204][bookmark: OLE_LINK107][bookmark: OLE_LINK108]Our study demonstrated that sequencing of mixed variants of SARS-CoV-2 in wastewater could effectively reflect shifts of different variants in communities as revealed by clinical epidemiology. This was evidenced by the rapid displacement of Delta variants by the more proliferative Omicron variants (Amman et al., 2022), as well as the delineation of the transmission patterns of three distinct Omicron subvariants. Moreover, while previous studies have emphasized the potential of wastewater surveillance for the early detection of new variants (Jahn et al., 2022; Smyth et al., 2022), our investigation of transmission dynamics highlighted that wastewater genomic sequencing could predict the trend of variants 16 days prior to the clinical data.

[bookmark: OLE_LINK9][bookmark: OLE_LINK321][bookmark: OLE_LINK322][bookmark: OLE_LINK10][bookmark: OLE_LINK209][bookmark: OLE_LINK19][bookmark: OLE_LINK196][bookmark: OLE_LINK197][bookmark: OLE_LINK198][bookmark: OLE_LINK11][bookmark: OLE_LINK208][bookmark: OLE_LINK426][bookmark: OLE_LINK205][bookmark: OLE_LINK213][bookmark: OLE_LINK207][bookmark: OLE_LINK214][bookmark: OLE_LINK212]A significant number of mutations in the viral genome have been found in wastewater samples (Figure S6), and the mutations located within the S protein, which possess crucial properties necessary for effective human-to-human transmission, have attracted significant attention (Carabelli et al., 2023; Harvey et al., 2021). Our analysis revealed a clear correlation between mutations and variant types. Remarkably, in two samples containing only Omicron variants, we unexpectedly detected the P681R mutation, which is a signature of Delta variants. This could be due to low-frequency allele mutations (such as P681R mutations identified in ~0.3% of Delta variants within the GISAID database) not typically recognized as characteristic mutations. Notably, we identified 44 mutations absent in the local Hong Kong database, of which 12 were not present in global databases either. This finding underscores the potential of wastewater genomic surveillance as a tool for uncovering novel mutations. The absence of these cryptic mutations in clinical surveillance could be attributed to their lower prevalence in the community (Gregory et al., 2022; Karthikeyan et al., 2022), resulting in the omission of the sequences during clinical diagnosis. Sampling bias in clinical data may also be contributed to asymptomatic infections who do not seek medical attention. Moreover, researchers have hypothesized that cryptic lineages carrying novel mutations may source from non-human hosts (Smyth et al., 2022). Additionally, mutations were sample-specific and of low frequency, posing challenges in discerning true signals amidst sequencing noise. Increasing sampling density and performing replicate sequencing to avoid randomness have been identified as critical factors in improving the signal-to-noise ratio and mitigating the effects of random variations (Jahn et al., 2022). Furthermore, we proposed cutoffs aimed at striking a balance between sensitivity and precision, although the sequencing itself cannot assure the absolute accuracy of detection, particularly for low-frequency mutations.

5. Conclusion
[bookmark: OLE_LINK206][bookmark: OLE_LINK215][bookmark: OLE_LINK60][bookmark: OLE_LINK46][bookmark: OLE_LINK417][bookmark: OLE_LINK188][bookmark: OLE_LINK86]A reliable wastewater genomic analysis method is crucial for variant data interpretation. In this study, to develop the wastewater genomic analysis pipeline for WBE of SARS-CoV-2 variants, we first rigorously evaluated the impacts of sequencing throughput on wastewater genomic analysis and determined the optimum cutoffs for mutation detection. Additionally, we validated the performance of the Freyja tool for variant deconvolution in wastewater using in silico mock datasets. Finally, we demonstrated the applications of wastewater genomic sequencing in deciphering the dynamics and prevalence of circulating variants during two distinct epidemiological phases in Hong Kong, and the utility of wastewater genomic sequencing in uncovering novel mutations and offering early detection of variant spread trends prior to clinical surveillance. In conclusion, our research not only provides valuable insights into the optimization of the wastewater sequencing surveillance pipeline for tracking SARS-CoV-2 variants and its successful applications in WBE but also lays a solid foundation for the development of genomic analysis methodologies for WBE of novel emerging viruses in the future. 
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[bookmark: OLE_LINK182][bookmark: OLE_LINK183]Figure 1. Comparison of mutation profiles between mock wastewater samples and their corresponding reference. The mock wastewater samples were created by spiking the variant standard RNAs into wastewater RNA. Reference mutation information for standard RNA was obtained from GISAID (https://gisaid.org/).

[bookmark: OLE_LINK178][bookmark: OLE_LINK179]Figure 2. Validation for variant deconvolution. a. Strategy for preparation of the in silico mock datasets. b. Detected results for variant compositions and abundances in eleven in silico mock datasets. c. Detected and expected values for variant compositions and proportions in mock wastewater samples.

[bookmark: OLE_LINK160][bookmark: OLE_LINK161]Figure 3. Surveillance of the dynamics between Delta and Omicron variants across various districts in Hong Kong. a. Geographical map illustrating the sampling sites and associated variant compositions. b. Prevalence (the relative abundance) of variants in manhole samples collected from late January to mid-March 2022.

Figure 4. Monitoring the prevalence of Omicron sublineages in Hong Kong. a. Prevalence of variants in 33 samples obtained from 11 WWTPs from late June to mid-August 2022. b. Estimated trends of variant prevalence in Hong Kong, as extrapolated from wastewater data. c. Clinical variant prevalence in Hong Kong from the end of June to late August 2022, sourced from the Centre for Health Protection of Hong Kong. The Omicron BA.2.X refers to local BA.2.X variants, excluding the BA.2.12.1 subvariant.

[bookmark: OLE_LINK162][bookmark: OLE_LINK163][bookmark: OLE_LINK130][bookmark: OLE_LINK131]Figure 5. Heatmap representing the relative abundance of AA mutations in the S gene across all manhole samples. The histogram illustrates the number of mutations discovered in the S gene for each sample. The color intensity represents the relative read abundance of a mutation within the sample. The relative abundance of a mutation in a sample was calculated by dividing the abundance of the reads carrying the mutation by the total read abundance of the given sample. The legend includes information on the designated district for collected samples, the types of mutation, and whether the mutation is located RBD region. Mutations highlighted within red boxes denote those that have not been identified in the global public databases.

Figure 6. Heatmap displaying the relative abundance of AA mutations in the S gene across all WWTP samples. The histogram denotes the count of mutations identified in the S gene per each sample. The color intensity represents the relative read abundance of a mutation within the sample. The relative abundance of a mutation in a sample was calculated by dividing the abundance of the reads carrying the mutation by the total read abundance of the given sample. The legend characterizes the full name of each WWTP, the mutation types, and the location of the mutation within the RBD region. Mutations highlighted within red boxes denote those that have not been identified in the global public databases.
