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Abstract

Quantum speed limit (QSL) is the study of fundamental limits on the evol-
ution time of quantum systems. For instance, under the action of a time-
independent Hamiltonian, the evolution time between an initial and a final
quantum state obeys various mutually complementary lower bounds. They
include the Mandelstam—Tamm (MT) bound, the Margolus—Levitin (ML)
bound, the Luo—Zhang bound, the Lee—Chau (LC) bound together with the
dual ML bound introduced by Ness and coworkers. Here we show that the MT
bound can be obtained by optimizing the LC bound over a certain parameter.
More importantly, we report a QSL that includes all the above bounds as spe-
cial cases before optimizing over the physically meaningless reference energy
level of a quantum system. This unifying bound depends on a certain parameter
p. For any fixed p, we find all pairs of time-independent Hamiltonian and initial
pure quantum state that saturate this unifying bound. More importantly, these
pairs allow us to compute this bound accurately and efficiently using an oracle
that returns certain pth moments related to the absolute value of energy of the
quantum state. Moreover, this oracle can be simulated by a computationally
efficient and accurate algorithm for finite-dimensional quantum systems as
well as for certain infinite-dimensional quantum states with bounded and con-
tinuous energy spectra. This makes our computational method feasible in a lot
of practical situations. We further compare the performance of this bound for
the case of a fixed p as well as the case of optimizing over p with existing QSLs.
We find that if the dimension of the underlying Hilbert space is <2000, our
unifying bound optimized over p can be computed accurately in a few minutes
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using Mathematica code with just-in-time compilation in a typical desktop.
Besides, this optimized unifying QSL is at least as good as all the existing ones
combined and can occasionally be a few percent to a few times better.

Keywords: quantum speed limit, numerical stability,
time-independent Hamiltonian evolution, efficient algorithm

1. Introduction

Quantum speed limit (QSL) is the study of fundamental limits in quantum information pro-
cessing speed [1]. The first and probably the most well-known QSL is the Mandelstam—
Tamm (MT) bound. It says that the evolution time 7 under the action of a time-independent
Hamiltonian obeys the inequality

-1
Ty e (VO (1
h AE
where e is the fidelity between the initial and final quantum state and AF is the energy standard
deviation of the quantum state [2]. Actually, the MT bound was discovered well before the
quantum information era and the coinage of the term QSL. Moreover, it can be extended to
cover the cases of evolution under a time-dependent Hamiltonian or open system dynamics [3].

A lot of QSL bounds have been discovered. A few are applicable to time-dependent
Hamiltonians as well as open systems. Relations with quantum control, entanglement,
resource theory as well as the so-called time-fractional Schrodinger equation have also been
explored [4—12]. Recently, a collection of articles on QSL and its applications was published in
a special section of a journal [13]. In there, Takahashi considered not just lower bound but also
upper bound on evolution time of quantum system [14]; also Aifer and Deffner relates QSL
to energy efficient implementation of quantum gates [15]. Along a different line, Shanahan
et al [16] as well as Okuyama and Ohzeki [17] found that there is a classical correspondence
to certain QSL and concluded that QSL is a universal dynamical property of Hilbert space
rather than a pure quantum phenomenon. In this paper, we go back to the basics by study-
ing QSLs of time-independent Hamiltonians for closed systems. We make the following four
major contributions in this study.

First, we report a QSL that we called the CZ bound for easy reference. This bound general-
izes a number of existing QSLs for time-independent Hamiltonian evolution. They include the
MT bound [2], the Margolus—Levitin (ML) bound [18-20], the Luo—Zhang (LZ) bound [21],
the Lee—Chau (LC) bound [22] as well as the dual ML bound introduced by Ness et al [23].
Actually, the LZ, LC and CZ bounds are families of bounds each depending on a parameter
p [21, 22]. In addition, for a given p, the LC bound is optimized over the physically meaning-
less reference energy level E, of the quantum state [22]. And for the CZ bound, we will see
that it is optimized over both E, and another variable named 6. In this Paper, we prove that
the CZ bound generalizes the MT, ML, dual ML, LZ and LC bounds in two steps. Because
all but the MT bound have similar forms, our first step is to show that the CZ bound can be
reduced to all but the MT bound above by fixing one or more of these three parameters to
certain specific values instead of optimizing over them. Surprisingly, even though the forms
of the ML, dual ML, LZ, LC and CZ bounds are very different from that of the MT bound, in
our second step, we prove that the MT bound is in fact a result of the LC bound by optimizing
over the parameter p.

Our second major contribution is to study the necessary and sufficient conditions for a pair
of time-independent Hamiltonian and initial pure quantum state to saturate the CZ bound, and

2



J. Phys. A: Math. Theor. 57 (2024) 235304 H F Chau and W Zeng

as a result explicitly write them down in a computationally usable form. This analysis can be
extended to give the set of all time-independent Hamiltonian and initial pure state pairs that
saturate the LC bound as well.

Our third contribution is a numerically efficient (that is, polynomial-time computable) and
accurate (that is, numerically stable and rounding error is not serious) method to compute the
CZ bound (and hence also the LC bound) under the assumption that there is an efficient and
accurate method to evaluate the minimum pth moment of the absolute value of energy of the
quantum state and the corresponding pth signed moment of the absolute value of energy of the
state. This assumption is true for finite-dimensional quantum systems as well as certain infinite-
dimensional systems with bounded and continuous energy spectra. Hence, the CZ bound is
computationally feasible in almost all realistic situations. Interestingly, this method is closely
related to the Hamiltonian and quantum state pairs that saturate the CZ bound.

Our last contribution is an extensive comparison of the evolution time lower bound and
actual runtime between the CZ bound that is further optimized over the parameter p and
other existing bounds. We discover that even when the dimension of the underlying Hilbert
space is as large as 2048, this optimized CZ bound can be computed in a few minutes
using Mathematica with just-in-time compilation installed in a typical desktop computer.
Furthermore, the bound obtained can be a few percent to a few times better than the best
existing one. In this regard, the CZ bound is the best choice in practice.

In what follows, we first state various QSLs that we are going to extend in section 2. We then
report several auxiliary results in section 3. These results allow us to prove the CZ bound and to
study the necessary and sufficient conditions for its saturation in section 4. In doing so, we find
the set of all time-independent Hamiltonian and initial pure state pairs that saturate the CZ and
the LC bounds, respectively. Also in section 4, we show that by optimizing over the parameter
p, the LC bound is reduced to the MT bound. Besides, the CZ bound extends the ML, dual ML,
LZ and LC bounds. Hence, the CZ bound unifies the MT, ML, dual ML, LC and LC bounds.
Next, we report an accurate and efficient method to numerically compute the CZ as well as
the LC bounds given an oracle returning the minimum pth moment of the absolute value of
energy of the quantum state and the corresponding pth signed moment of the absolute value
of energy of the state in section 5. We also show that this efficient oracle exists in the sense
that it can be replaced by an efficient and accurate algorithm for finite-dimensional as well as
certain infinite-dimensional systems. As a byproduct, we report there a simple expression for
the CZ bound for two-dimensional quantum systems. Using the numerical method developed
in section 5, we compare the performance of the CZ bound optimized over the parameter p
with existing ones in practice in section 6. Finally, we summarize our findings in section 7.

2. Prior art

Here we list some of the most important QSL bounds for quantum state evolution under time-
independent Hamiltonian discovered so far. Collectively, they are the most powerful QSLs for
time-independent Hamiltonian evolution among those based on a single parameter describing
the energy of the initial quantum state.

e The MT bound [2] is given by Inequality (1).
e Several equivalent forms of the ML bound have been reported [18-20, 24, 25]. The one we
use here is [25]

cosf — /e

T > max — (2)
R pe[-cos—1(ve) 0] (E— Eo) sing (0)
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where (E — Ey) is the expected energy of the state relative to the ground state energy of the
Hamiltonian, and ¢(#) is the unique root of the equation

cosp (6) —cosh+ [ (0) —f]sinp () =0 3)

in the interval [max(7/2,|6]),7].
e The dual ML bound is the ML-like bound reported by Ness et al [23]. Using the notation in
equation (2), it says that for states with bounded energy spectrum,

max cosf — e “)

-
h 96[— cos—! (\/E),O} <Emax - E> sme (9)

where (E — Enax) = —(Emax — E) is the expectation energy of the state relative to the max-
imum eigenenergy of the system. Actually, the dual ML bound can be derived from the ML
bound through the following duality. Any initial state |T(0)) can be written in the form
>_;l|E;) with |E;) being an energy eigenstate with energy E;. Denote its ‘energy-reversed’

state ), a;| — E;) by |T(0)). Clearly, the time-evolved state |¥()) equals the reversed-time

evolved state |¥(—¢)). More importantly, the fidelity between |¥(0)) and |¥(r)) equals the
fidelity between |¥(0)) and |¥(—r)), which in turn equals the fidelity between |¥(0)) and
|¥(1)). Consequently, the ML bound for | ¥(0)) induces a bound for |¥(0)). And this induced
bound is the dual ML bound. Thus, the dual ML bound holds for a slightly more general case
when the energy spectrum is bounded from above. Surely, the arguments reported here is
general and can be used to obtain the corresponding dual QSL from any given QSL involving
fidelity between the initial and final states.
e The LZ bound [21] refers to the family of QSLs in the form

>W[1\k(1+@ﬂﬁﬂﬂé )

St

2((E—Eo)’)

for 0 < p <2and 0<e<7?/(n? +4p?). Surely, one may consider optimizing LZ bound
by taking supremum of the RHS of Inequality (5) over p. We call this the optimized LZ
bound.

e The LC bound [22] is the family of inequalities

T 1—+/€ ’
h>max<A,,<> ) (6)

5 |E—E, )

for 0 < p < 2, where A, = sup{(1 —cosx)/x”: x > 0}. Just like the optimized LZ bound,
we refer to the LC bound optimized over all possible p as the optimized LC bound. Note
that the special case of p =1 is also known as the Chau bound [26]. Moreover, by adapting
from [25], we know that

A =sinp(0). 7

Actually, all but the LC bound above can be saturated in the sense that for each p € (0,2] and
for any € € [0, 1], there exists a pair of time-independent Hamiltonian and initial pure quantum
state that attains the bound. Whereas for the LC bound, it can be saturated for all € € [0, 1]
when p < 7/2. However, it is not clear if it can be saturated for p € (7/2,7] [22]. We give a
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negative answer to this question in section 4 by showing that the LC bound may not be tight
when p € (7/2, ] for a general e. Lastly, we remark that all these bounds are complementary
in the sense that each of the bounds cannot be reduced to another if we are not allowed to
optimize the LZ and LC bounds over the parameter p.

Observe that all the above QSLs are in the form of a product of two terms. One is a function
of a certain energy moment of the quantum state only. The other one is a function of the
fidelity and perhaps also the parameter p only. We will contrast this feature when we discuss
an efficient algorithm in computing the CZ bound in section 5 below.

Last but not least, there is a different type of QSL reported in the literature known as the
exact QSLs. In particular, Pati ef al proved an exact evolution time expression for finite-
dimensional quantum systems as well as systems evolving under an Hamiltonian H with
H?> =1 These expressions are valid for time-dependent as well as time-independent
Hamiltonians under a technical condition to be discussed below. Moreover, such an exact
relation becomes an inequality for infinite-dimensional systems [10]. So why extending and
strengthening other more ‘conventional’ QSLs if the actual evolution time is know? Here we
answer this question by discussing the case of a two-dimensional quantum state as the starting
point.

For a two-dimensional initial state |¥(0)) evolving under a time-independent Hamiltonian,
Pati et al proved that evolution time 7 satisfies [10]

T cos~ ! (y/e€)
RN ®

where
(T dp/dt

AH™)), = —
! Y p(1—py)

dt ©))

provided that p, = |(¥(0)|®(z))|* is monotonic decreasing for 7 € [0,7]. Note that even though
the Hamiltonian is time-independent, computing (( AH")) requires integration over time. More
importantly, since p; is the fidelity square between |¥(0)) and | ¥ (¢)), knowing p; at all times
is equivalent to knowing |¥(0)) and the Hamiltonian. That is to say, the information needed
to determine the evolution time is encoded in p,. Therefore, the 7 in equation (8) is an equality
because it comes from tracing the time evolution of | ¥ (0)). Actually, explicitly integrating the
RHS of equation (9), Pati et al obtains [10]

(ary, = 1o V), (10

Thus, 2({(AH")), /h is the Bures angle between |¥(0)) and |¥ (7)) in disguise. This explains
why a monotonically decreasing p, is needed to arrive at equation (8). In this regard, it is
more efficient and accurate as well as conceptually simpler to compute the evolution time
7 by finding the smallest non-negative root of the equation p, = €2. By the same token, an
exact QSL is simply an alternative, possibly mathematically pleasing and inspiring, form of
expressing the evolution time given a complete description of the initial state and evolution
Hamiltonian. This argument holds for all exact QSLs.

To conclude, the exact QSL is equivalent to computing the actual evolution time given com-
plete information on the Hamiltonian and the initial state. Obviously, its calculation is difficult
in general. In contrast, this type of bounds are markedly different from the conventional QSLs
that give lower time bounds that are relatively easy to calculate based on partial information on
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the system (such as (E — Ey) or AE). Since the study of exact QSL is conceptually different
from those of conventional QSLs, we do not consider this type of exact QSLs in this paper.

3. Auxiliary results

We need the following auxiliary results whose proofs can be found in the Appendix. Lemma 1
below generalizes lemma 1 in [26] as well as lemma 1 and corollary 1 in [25]. Its proof is
based partly on those of lemma 1 and corollary 1 in [25]. Lemma 3 was first reported in one of
the authors’ capstone project report [27]. In addition, corollary 2 extends corollary 1 in [25].

Lemma 1. Suppose (p,0) € R =(0,1] x (—m,7/2] U (1,2] x (—m,0], then
cosx > cos —A, g (x—0)" (11)
for all x > 0, where

cosf) —cosx
A,p= max ————— >0. (12)
P selloim (x—0)P
(Note that for the case of x = 0, the RHS of equation (12) is regarded as the limit x — 0. It
exists for (p,0) € R). Moreover, the x that maximizes the RHS of equation (12) is unique. By
writing this unique x as @, = ,(0), then A, ¢ can be expressed as
sin, (0
)= @—P()pil. (13)
plep (6) — 0]

In fact, @, is also the unique solution of the equation

P,

Jp.0 (0p) =p(cosp, —cosb) + (p, — 0)sing, =0 (14)

in the interval (|0],7) if (p,0) # (2,0). Whereas if (p,0) = (2,0), then ©2(0) =0, which is
the unique solution of equation (14) in the interval [|0|, 7). Furthermore, for p € (0,1], the
maximum in the RHS of equation (12) can be taken over x € [max(|0|,7/2),m). Moreover, in
the domain x € [0,400), Inequality (11) becomes an equality if and only if x =6 or ¢,(6).
Lastly, ©,(0) is a simple root of equation (14) if (p,0) # (2,0); and it is a root of order 4
otherwise.

The following corollary follows directly from applying lemma 1 tox > f andtoy = —x > 0
separately.

Corollary 1. Forp € (0,1] and 6 € [—7/2,7 /2], we have
cosx > cosf — 1x>9Ap+,9|x — 01" — LicoA, 5|0 — x|
=cosf — 1,>9A, glx — 0 — 1cpA, _9|0 —x]P
Lisolx — 0P singf (0)  1,<0l0 — x|Psing, (6)
plor @) =0"""  plo—o )]

for all x € R, with equality holds if and only if x=0, x= ¢} (0) = ©,(0) or x=, (0) =
—p(—0). Here ,(+0) are (unique) solutions of equation (14) in the interval (|0|,),

1 ifx>0,
1x>e={ gx (16)

0 otherwise.

=cosf —

s)
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:
1.0 -1-

Figure 1. The dashed curve is y = cosx. The solid curve corresponds to the RHS of
Inequality (15) for @ = —0.75 and p = 0.5. Clearly, the two curves meets at three distinct
points with two of them being points of tangency.

and 1.y is similarly defined. Moreover, for the special case of 8 =0, Inequality (15) holds
also for p € (1,2]. That is to say, for p € (0,2],

B |x|P sin go,j“ (0)

cosx > 1
= .y
peys (0)

A7)

with equality holds if and only if x = 0, <ppi (0).

Remark 1. Figure 1 plots the LHS and RHS of Inequality (15) and highlights its geometric
meaning. Clearly, x = @;f () = ,(0) is the (unique) point in [|f],7) where the curves cosx
and cosf — A, g(x — 0)P meet tangentially. Similarly, we may also interpret x = —¢,(—0) as
the (unique) point in (—m,—|6|] where the curves cosx and cosf — A, _g(# —x)” meets tan-
gentially. Consequently, ¢, (6) = —,(—0) must be the unique solution of equation (14) in
the interval (—m, —|0]] if (p,0) # (2,0).

Since Inequality (15) plays a key role in this study, we use the notations <p;,t (0)
and A;fe instead of, ¢,(#), A,9 and A, _» from now on except possibly for the

case when 6 =0.

Corollary 2. Suppose 0 <p <1 and 0 € [~7/2,7/2]. Then, ¢, (0)+6 < [0,37/2) and
¢, (0) =0 € (=37/2,0]. Besides, <p1§t(9) — 0 are strictly decreasing functions of 0 and
gpf (0) + 0 are strictly increasing functions of 0.

Remark 2. Chau [25] further showed that for p = 1, ¢, (0) is an increasing function of ¢ in
the domain [—7/2,7/2]. Nevertheless, this is not true for 0 < p < 1.

Lemma 2. Let

xcot(x/2) forx e (0,m),

h(x) = (18)
lim h(x)=2 forx=0.

x—0t

Then, h is a strictly decreasing function in [0,7|. Moreover, h: [0,7]+— [0,2] is a
homeomorphism.
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Lemma3. Lete € [0,1]. Then

1 T
sup x( \/g> =cos™" (Ve). (19)

s 2
xe(0,7) 2sin” 5

In fact, this supremum is attained at x = cos~'(y/€). In other words, this is actually a
maximum.

Lemmad4. Letw: [a,b] — R be a doubly differentiable function, w is continuous on [a,b], w'’
is continuous on (a, b). Suppose further that w(a) >0, w(b) <0, w'(b) <0 and w''(x) <0
for all x € |a,b]. Then by choosing b as the initial guess, Newton’s method of finding a root of
w(x) = 0 in [a,b] always converges. Surely, the convergence is quadratic if this root is simple.

4. The CZ bound

In what follows, we adopt the following notations. We write a time-independent Hamiltonian
as a formal sum of its energy eigenvectors, namely, > _, Ej| E;) (E;| with |E;)’s being the energy
eigenstate of the Hamiltonian. In addition, we write a normalized initial pure state |¥(0))
as ). qj|E;) with 7, |a;|* = 1. From now on, unless otherwise stated, a Hamiltonian and a
quantum state in this paper are time-independent and pure, respectively.

Theorem 1 (CZ bound). The evolution time T needed for any quantum state to evolve to
another state whose fidelity between them is € under a (time-independent) Hamiltonian satisfies
the inequality

T Tple) _ cosf — /e
h > ph N 9|<c§:]1:(\/g), A;9<{(E—Er)+r> +A];9<[(Er—E)+r> (20a)

forp e (0,1] and

1

T 1—+/e g
T S A 2
h” T h bek {AP,0<|E —E) ] (206)

for p € (1,2] provided that

([E-E ") = 3 laPlE - P @1

Jj: E>E,

and the similarly defined ([(E, — E)*]P) exist. (Note that ([(E—E,)" ") and ([(E,— E)"]?)
are the expected measurement results of valid observables. Physically, they relate to the pth
moment of the absolute value of energy and the pth signed moment of the absolute value of
energy of the initial state |¥(0)) via the relations

(E—E) = < [(E_ E,.)+}P> + < [(E,. - E)*D (224)

and

tsen(E-E)E-EP) = ([E-£)*]) = ([E-B)]"). (22b)
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Note further that the denominator of the RHS of Inequality (20) vanishes if the initial state is
an energy eigenstate of the Hamiltonian. In this case, Inequality (20) still holds if one interprets
its RHS as 0 if e=1 and +oo otherwise.) The necessary and sufficient conditions for the
Inequality (20) to be saturated by a pair of Hamiltonian and initial quantum state are as
follows. Let (Qopi, Er.opt) be one of the possible pairs of values of (0,E,) that maximize the
RHS of Inequality (20). (We shall show in section 5.1 that E, oy is unique if 1 < p < 2. For the
other cases, E, o may not be unique. Also, we shall show in theorem 4 of section 5.2 that 0,
is unique for any given E, oy.) Let us denote npgt (Oopt) by goi,t)opt. Then, we have the followings.

e For p € (0,2] and e=1 (and hence Oy =0), Inequality (20) can be saturated by any
Hamiltonian and initial quantum state pair.

e For p=2and e < 1, Inequality (20) cannot be saturated.

e Forp € (0,1] and Oy € [—cos™ (\/€),cos ™! (\/€)], Inequality (20) is saturated if and only if
the (normalized) initial pure quantum state, when expressed in terms of energy eigenvectors
of the corresponding Hamiltonian, equals

0 (0)) = ay|Ex) + ar Erpe) + a_|E-). 23)

Here E_ < El‘,OPt < E+, (E+ - E’%Opl) : (E* - EV’OPI) = ((pj,opt - 9013[) : (Spgj,opt - 90131) and

|a+ |2 1
la,]> | = T - T g 0 — o
la_|? 2sin Lz 5 Pron gin Lo 25— sin = 2“0” 2op!
n ermt*zﬁﬁ,:nm ( cos 00I”72AP]:(W1 _ ﬁ cos eothFzLP,,_,n,n)
X | —sin So;r’""’;w‘:"”‘ cos Sa’jt""’;@':”p‘ — /e cos 7¢X"”‘;¢;""’ i (24)

+ + +
. LPpT/)pz*wat 90,;,0,1!700W _ LPp,oszrevpf
sin 225 Ccos 25 V€ cos T

(To be more explicit, the corresponding optimizing Hamiltonian is in the form
H=E |E)E,|+E/|E)(E,| +E_|E_)(E_|+H* where H" is a Hamiltonian whose
support is orthogonal to |E ), |E,) and |[E_).)

e Forp € (1,2) (and hence 6o = 0), Inequality (20) is saturated if and only if Equations (23)
and (24) hold. Furthermore,

Vezcospl, .. (25)

Proof. This proof follows the basic ideas used in [26] as well as the proof of theorem 1 in
[25]. The part on the saturation of Inequality (20) extends the proof of theorem 2 in [25].

Since the fidelity between two pure states does not decrease under partial trace and the
RHS of Inequality (20) is a decreasing function of fidelity, we only need to consider pure state
evolution in the extended Hilbert space in our proof [20].

To save space, we only prove the case of p € (0, 1] here. The case of p € (1,2] can be proven
in the same way. Details are left to interested readers. Using the notations stated at the begin-
ning of this section and by corollary 1, we get
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(Ej—E)T

(Ej—E.)T

Ve=[(T(0)[¥ (1) >R ((‘1’ (0)[w (T))eiE’T/hefw) = Z [ cos [ + 9}
> §:|@F’}059(1@>EA;941@<5A;9)‘ -

h
= cosfh — {A;:e < [(E—Er)+}p> +A1’_19 < [(Er—E)+}P>} (%)P (26)

for any |6| < 7/2 and for any reference energy level E,. Here () denotes the real part of its
argument.

We assume that the coefficient of the (7/k)P term is positive. (If not, [¥(0)) = |E,) up to
an irrelevant phase and hence equation (20) is trivially true according to the convention stated
in this theorem.) Then, Inequality (26) can be rewritten as

27)

() ARV
e e ) e o)

Clearly, Inequality (27) gives meaningful constraint on the evolution time 7 if cosf > +/e.
Furthermore, the denominator of the RHS of Inequality (27) is a continuous non-negative
function of 6. Besides, itis unbounded if E, — £o0c. So, for fixed values of p, € and 0, there is an
E, that minimizes the denominator of the RHS of Inequality (27) even though such an E, need
not be unique in general. Hence, we can maximize the RHS of Inequality (27) by minimizing its
denominator over E, as well as maximizing over 6 € [—cos~!(1/€),cos ™! (1/€)]. (Obviously,
the order of minimization and maximization does not affect the final outcome.) This gives
Inequality (20a).

We now find the set of all (time-independent) Hamiltonian and initial (pure) quantum
state pairs that saturate Inequality (20). The necessary and sufficient conditions for the
case of e=1 are obvious as T7=0. So, we assume that € € [0,1) from now on. The neces-
sary and sufficient conditions for the first line of Inequality (26) to be an equality are
that R((T(0)|T(7))er/"e™1?) = /e > 0 and F((¥(0)|¥(7))e'"7/Pe~1?) =0, where J(-)
denotes the imaginary part of the argument. In addition, from corollary 1, the second line of
Inequality (26) is an equality if and only if (E;|¥(0)) = 0 for all (E; — E,)7/h ¢ {0, <ppi —6}.
As a result, the normalized initial state |¥(0)) must be in the form of equation (23) (with all
the ‘opt’ subscripts removed).

Now we have enough information to discuss the necessary and sufficient conditions for
saturation of Inequality (20) for the case of p =2 and € < 1. According to lemma 1, gozi (0) =0.
Thus, the saturating state | (0)) in equation (23) is simply |E,) up to a global phase. Being
an energy eigenstate, | ¥ (0)) does not evolve with time. That is why Inequality (20) cannot be
saturated in this situation.

Let us continue our saturation condition analysis for the remaining cases. From our dis-
cussions so far, the normalization of |¥(0)) together with the requirements on the real and

imaginary parts of (¥(0)|¥(7))e!?7/"e~1% we have
1 1 1 lay|? 1
cospt cosf cosp, | | a? | = | Vel . (28)
sing sind  sing, | ||a_|? 0

Recall from lemma 1 that —m <, <0<y <m for (p,0) € R\(2,0). Hence,
equation (28) has a unique solution. By solving equation (28) and then substituting

10
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6 € [—cos™!(\/€),cos ™! (1/€)] by its optimal value 6 obtained in the RHS of Inequality (20),
we conclude that a; ,a, and a_ must obey equation (24).

Finally, a valid |¥(0)) requires |ai|* |a,|> and |a_|* to be non-negative. In the
case of p € (0,1] and fop >0, lemma 1 and corollary 2 imply that ‘pziom — Pp.opt €
[m,2m), ‘PIopt + Ppopt € (—7/2,m/2), ‘PIopt — bope € [0,7), ‘P/—zi:opt + Oopt € [m/2,37/2), Oope —
Cpopt € [1/2,37/2) and Oop, + ©,, o € (—7,0]. So, from equation (24), |a,|* > 0. As (¢, o +
Oopt) /2 = (np;opt — Oopt) /24 Oopt, We conclude from the ranges of the arguments of the
cosine function that cos[(cp;,fopl —bopt) /2] = cos[(go;fopt + 6opt) /2]. Hence, from equation (24),
|a_|* > 0. Recall from corollary 2, Lp;'fop[ — Bopt are strictly decreasing functions of 0oy €

(—cos™![\/e],cosT[\/e]) C (—m/2,7/2). Thus,

d 00 - _0 00 _U
a6, (cos Pl 2901,) P \/ecos W) <0. (29)

By writing O = cos ™! (y/€) € [0,7/2] and P erit = ¥p (Oerit), we know that

cos Oopt — Pp.opt _ \Jecos Oopt + Pp.opt > cos Ocrit = Pp eri — 086, COS Ocrit + p cri
2 2 2 2
ecril - <P_ i
p,crit
= Cos
2
1 366‘7’il + <Pp_cm ecrit - @;Cm
— | cos — 4 cos :
2 ( 2 2
Ocrit + Oy cri
— §in 0, sin % > 0. (30)

From equation (24), we find that |a, |> > 0. Thus, |¥(0)) is a valid quantum state because
lax? |a|* > 0.
The case of (p,0) € (0,1] x [0,7/2] can be proven in a similar way. Actually, showing
las|?,|as|* = 0 is straightforward. Proving |a_|* > 0 is more involved. Its validity is due to
+ +
@;Opt - 00}" . \ECOS ‘P;_,opt + eopl > cos Pp,crit + Ocris Pp,crit — Ocrir

cos > 7 >

+ cos b, cos

+ +
3 s Sop,cril + gcrit + 1 S Sop,cril - 396”'[ >0

2 2 2° 2 Z 5
(€20

where (p;r’ ait = 5 (Ocrit). Here we have used @f —30qi € [—m,7) to arrive at the last
inequality.

The proof for the case of p € (1,2) follows similar logic though it is simpler as Oy, = 0. In
fact, |ax|? > 0 is trivially true in this case. And the condition in Inequality (25) is due to the
requirement that |a,|* > 0. Details are left to interested readers. O

Remark 3. From the above proof, it is clear that by replacing 6., with any 6 €
[—cos™!(/€),cos ™! (1/€)] as well as by replacing E; o With any E,, we obtain all Hamiltonian
and initial quantum state pairs that saturate Inequality (20) with the optimization over # and
E, removed.

1
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CZ bound
MT ML dual ML optimized LZ optimized LC
I
LZ LC
|
Chau

Figure 2. Relations between various QSLs. Here A — B means that A is a special case
of B.

Remark 4. By comparing lemma 1, theorem 1 and their proofs with the prior works summar-
ized in section 2, we observe that

e By putting p =1 together with E, = E, and optimizing Inequality (27) over 6 alone, we
obtain the ML bound.

e By putting p =1, E, = E,5x and optimizing Inequality (27) over 6 alone, we arrive at the
dual ML bound.

e When 6 =tan~!(2p/m), Inequality (15) becomes the key lemma in [21]. Hence,
Inequality (27) reduces to the LZ bound for this § when E, = Ej.

e By setting (p,0) = (1,0) and by optimizing Inequality (27) over E, only, we get back the
Chau bound.

e By putting § =0 and by optimizing over E, alone, the CZ bound reduces to the LC bound.
In this regard, theorem 1 gives the necessary and sufficient conditions for saturating the LC
bound. This fills the gap in [22]. Specifically, by going through the proof of theorem 1, we
find that the LC bound can be saturated if and only if Inequality (25) holds with cp;fopt =
@1 (0). In particular, the LC bound can be saturated for all ¢ € [0, 1] if and only if ¢, (0) >
7/2. According to equation (14), p = ¢;F (0)cot[;f (0)/2]. As p =m/2 if ¢} (0) =7/2,
lemma 2 implies that the LC bound can be saturated for all ¢ if and only if p < /2. More
importantly, if p > 7 /2, the LC bound can be saturated if and only if € > ¢, = cos*[h ! (p)].
Clearly, ¢, is a strictly increasing function of p in [r/2,2].

e For p =2, Inequality (20b) agrees with the MT bound up to O([1 — €]?) in the limite — 1.
Moreover, for € < 1, Inequality (20b) alone is not as powerful as the MT bound. Nevertheless,
theorem 2 below means that by optimizing over p with 8 =0, we recover the MT bound.

These relations can be schematically represented in figure 2.
A closely related result is the following theorem. Its special case for p =2 was originally
proven in the capstone project report of one of the authors [27].

Theorem 2. The MT bound can be deduced by optimizing the LC bound over p € (0,2). In
fact,

B

—1
cos™ (Ve) 32)

— > max ——
hT U (E-E )

for any p € (0,2] provided that ,(0) < cos™!(y/€).

12
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Proof. Note that x is a concave function for 0 < A < 1 in the domain x > 0. So, Jensen’s
inequality implies that (|E — E,|9*) > (|E — E,|9)* for any reference energy level E, provided
that A € (0, 1]. Applying this inequality to Inequality (26) with § = 0 (which is nothing but the
LC bound) and using equation (22a), we get

1
T><l\/€>q S (33)
h Apo (|E—E/|7*)ax

for all g € (0,2).
From equation (14),
0
g = @gcot % = ¢, (0)cot %T(). (34)
(Note that for this range of g, coty, # 0. So equation (34) is well-defined.) By lemma 2,
equation (34) is a homeomorphism from ¢, € (0,7) to g € (0,2).
By fixing g\ to a certain p € (0,2] as well as by using equations (13) and (34), we obtain

(33)

St

N eyt ] Fee

> sup <1A \/E>q ! - = sup l(l .\fi(pq] - T
9€(0.p) 4.0 (|E—E/r)r  qe(p) | 2sin” 3 (|E—E,Jr)»
From the discussion in the last paragraph, we can replace ¢ € (0,p) in the supremum in the
last line of Inequality (35) by ¢, € (¢, ™) = (¢,(0),7). And from lemma 3, we conclude
that the supremum of the RHS of Inequality (35) is attained at ¢, = cos~!(1/€) provided that
¢p < cos™!(y/€). In this case, the first factor in the RHS of Inequality (35) equals cos~! (1/€).
By maximizing the resultant inequality over E,, we prove Inequality (32). We also mention
on passing that in case ¢, > cos~!(y/€), then from the proof of lemma 3, the supremum of
Inequality (35) is attained at ¢, = ,. In other words, we simply get back the LC bound. [

Remark 5. Recall from lemma 3 that the optimized evolution time 7 in theorem 2 is attained
when ¢, = cos~!(1/€). By compound angle formula, the corresponding p equals

1+ _
Popi =\ [ 77 ﬁcos '(Ve). (36)

An important consequence of remark 4 is that we can further strengthen the QSL reported
in theorem 1 as

T> pren(%é} Ty(e). (37)
By theorem 2, this is stronger than the combined MT, ML and dual ML bounds studied in [23,
28]. From remark 4, the optimized CZ bound generalizes the MT, ML, dual ML, LZ and LC
bounds. Nevertheless, the comparison between the combined MT, ML and dual ML bounds in
[23, 28] with the optimized CZ bound is not entirely fair. This is because the combined bound
in [23, 28] makes use of three numbers describing the initial quantum state, namely, (E — Ey),
(Emax — E) and AE. In contrast, Inequality (37) uses an infinite number of descriptions of the
quantum state, each in the form ([(E — E,)"|P) or ([(E, — E)"]?).
Along another line, one can generalize corollary 1 by using two different values of p — one
for E > E, and the other for £ < E,. By the same argument as in the proof of theorem 1, we
have the following QSL.
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Theorem 3. Let (p,q,0) € (0,1] x (0,1] x [—7/2,7/2] U (0,1] x (1,2] x [0,7/2] U (1,2]x
(0,1] x [-7/2,0] U (1,2] x (1,2] x {0}, we have

T

14 p _ q T\4
Ve cos — {A;0< [(E—E,)Jr} ) (ﬁ) +A; [(E, —E)+] ) (ﬁ) } (38)
for all reference energy level E,. In particular, by putting p = 2q, we arrive at

{20 T o= va+ (1) (e =071} - aguifie -]

2} o([E-E)H])

(39a)

for (¢,0) e R=(0,1/2] x [-m/2,7/2]U(1/2,1] x [0,7/2]. Similarly, the QSL correspond-
ing to the case of ¢ = 2p is

_ + 2p + 2 + P 5 1/2
T {4A21)79<[(E,.—E) ] ) (cos0 — v/€) + (AP’G) ([(E—E,) ] ) }
— > max

h =~ E€R 94— 2

ol [E=E]T)

—atoE-E)t]"

(39b)

Remark 6. In the proof of the saturation conditions for the CZ bound in theorem 1, we do not
use the property that the same p is used for ppfopt and ¢, . Therefore, simply by changing
©p.opt 10 Pg ope 1N the saturation description part of theorem 1, we obtain the necessary and
sufficient conditions for the QSL expressed in Inequality (38).

Although the QSL reported in Inequality (38) of theorem 3 is stronger than the QSL in
theorem 1, it has a few drawbacks. First, an additional optimization over g together with a
numerical solution of the least positive root of Inequality (38) with the inequality replaced
by equality is required. Second, the absence of a closed form for 7 makes finding 7 more
troublesome and the QSL conceptually less appealing. These two facts make the evaluation of
the optimized version of this QSL very time consuming. One may consider the special cases
such as Inequalities (39a) and (39b) in which the p and g are constrained. Even though they are
better than Inequality (38) both in terms of the simplicity of the expression and computational
tractability, they still lack the appeal of simplicity compared to the CZ bound. Moreover, as
compared to the computational methods for the CZ bound to be reported in section 5, it is not
likely to obtain a similarly efficient method for the QSLs stated in theorem 3. This is because
these methods all start from an explicit expression of 7. Last but not least, we know from
remark 6 that Inequalities (39a) and (39b) are complementary to the CZ bound. This is because
by writing in energy eigenbasis, those initial states saturating, say, Inequality (39a) must be in
the form a|Ey) + a,|E; op) +a—|E_) with (Ey — Eyopt) : (Eropt — E—) = (955 opr — Oopt) :
(¢4,0pt — Bopt)- They are clearly different from those in equation (23).

5. Accurate and efficient computation of the CZ bound

Although the optimized CZ bound in the form of Inequality (20) in theorem 1 is conceptually
appealing, using it to calculate the optimized CZ bound, namely, the CZ bound optimized

14
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over p, § and E,, seems to be inefficient for the case of p € (0, 1]. This is because one has to
optimize over both 6 and E, for any given e (together with ([(E — E,)"]?) and ([(E, — E)*]P)).
Furthermore, we have to further optimize over p to obtain Inequality (37).

Here we report an accurate and efficient way to compute Inequalities (20) given an oracle
that accurately computes the minimized pth moment of the absolute value of energy of a
quantum state and its corresponding pth signed moment of the absolute value of energy,
or more precisely, (|E— E,ox|") =minger(|E—E;|") and (sgn(E— E; op)|E — Eropi”)-
And from equation (22), this is equivalent to having an oracle that accurately computes
([(E = Ey.op) T17) and ([(E;.opt — E) T]P). The key observation is that E, o, the optimized value
of E,, is # independent. So, we may first compute E, . Then, we evaluate ([(E — E,.7opt)+]p )
and ([(E;opt — E+]1’ ) together with the optimized values of 6 given E, . More explicitly,
Inequality (20a) can be rewritten as

TN cosf — /e
(> s .
|01<cos~! (Ve) {M"_ (Er,opt)Al-:e +up (E"70Pt)Ap_,0] EHEI%QE —E[")
— cosb — Ve e

01905 (V) | [ (Brn) A7 + 1= (Brop) Ay ] (1E = Eroib)

where

([(E=Ea)* ") ([ =BV =7 Brop) 7 (o) 41

with gt (Eopt) + 17 (Eropt) = 1.

Here we remark that Inequality (40) is in almost the same form as all the QSLs mentioned
in section 2. More precisely, it is a product of a term depending only on the pth moment of the
absolute value of energy of the quantum state optimized over the reference energy level with
a term depending on € and p* (Eropt)- In other words, the second term can be pre-computed
and reused if ;i (E;opt) are known in advance.

5.1 On the computation of {|E — E;|P) and E; oy

Here we justify our assumption on the existence of an oracle to evaluate ([(E — E, o) J?) and
([(Er.op — E) ) by showing that it can be replaced by computationally efficient and accurate
algorithms in a number of useful situations. In all cases, the idea s to first find E,. o and use it to
obtain ([(E — Ey.op) 7 17) and ([(E;.op — E)T]7) (or equivalently (|E — E, o |P) and 11 (. op0)).
The first case is when the normalized initial quantum state can be expressed in the form

(@ (0)) = ZaﬂE;’) (42)

where {E;} is a strictly increasing sequence of real numbers and |a;| # 0 for all j. We assume
that all g;’s and E;’s are known. (Note that this assumption is not as restrictive as it appears.
For Hamiltonian H and initial quantum state |¥(0)) express in another basis, E;’s can be
found, say, by Householder transformation and QR algorithm—both are fast and numerically
stable [29]. As for g;’s, they are the projection of |¥(0)) on invariant subspaces of H. Since

15
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Figure 3. The LHS of equation (43) as a function of E, for p=1.2 and |¥(0)) =

v0.4|0) ++/0.45|1) + +/0.15|27), namely, one of the initial states used in section 6
to study the performance of various QSLs. The shape of this curve is typical among
finite-dimensional | ¥ (0))’s. Notice that the curve makes sharp turns with infinite slope
at each E;.

finding invariant subspaces of a Hermitian matrix is efficient and numerically stable [30, 31],
so is computing a;’s.)

Note that x” is a strictly convex (concave) functionof x > 0if l <p <2 (0 <p < 1). And
when p =1, this function is both convex and concave. Since the sum of convex (concave)
functions is convex (concave), (|E — E,|P) is a piecewise convex (concave) function of E, for
1 <p<2(0<p<1). Consequently, for p > 1, (|E— E,|P) attains its minimum at a certain
E:opt € (Ej,Ejt1) forsomej =1,2,...,n— 1 where E, oy is the solution of the equation

<[(E—Er)+]p_l> - < [(Er—E>+}p_l> =0 43)

for p > 1. It is easy to see that the LHS of equation (43) is strictly decreasing and continuous
for p > 1. Besides, ([(E; —E)TP~"Y =0 = ([((E—E,) "]~ 1. So, E, op exists and is unique.
Furthermore, it can be evaluated accurately and efficiently via bisection method. Nevertheless,
as depicted in figure 3, the LHS of equation (43) makes sharp turns around and has infinite
slopes at E;’s. (The latter can be proven by differentiating the LHS of equation (43) with respect
to E,.) This greatly lowers the efficiency of bisection method if E, . is near one of the E;’s.
Here we recommend first using binary search to efficiently limit £, . to one of the intervals
(Ej,Ej+1). Then, since the second derivative of the LHS of equation (43) with respect to E
changes sign exactly once in this interval, lemma 4 implies that using either E; + d or Ej;.; — ¢
for a sufficiently small § > 0 as initial guess, Newton’s method is guaranteed to converge to
E, opt. Indeed, this is what we have observed in our numerical experiments.

As for the case of p =1, the LHS and RHS of equation (43) are only piecewise continuous
in general. Thus, standard calculus technique does not work. Fortunately, equation (43) means
that E, . can be chosen to be the median energy of the state [26]. That is to say, E, o, obeys
2 E>Eron la;|* >1/2 and 2 E<Epop ;> > 1/2. Note that in this case, the values of y*
are unique even though E,  need not be unique.

The case of 0 < p < 1 is computationally more involved. Since (|E — E,|) is a piecewise
concave function, its minimum is attained at E, = E; for some j = 1,2,...,n. That is,

E.op €{Ej: ([E-Ej|P) <(|[E—E,’) V{=1,2,...,n}. (44)

16
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Finding E, o is accurate whose time complexity scales as O(n?). Unfortunately, there is no
way to further reduce the computing time using a deterministic algorithm for (|E — E;|”) shows
no trend in general.

Another case of importance is when H has a bounded and continuous energy spectrum,
([(E—E,) ") and ([(E, — E)"]?) are differentiable functions of E, with p € (0,2]. Moreover,
((E—E)*P~") and ([(E, — E)T]?~") are continuous functions of E,. So the above four func-
tions can be accurately and efficiently computed via any standard numerical integrator of
choice. Using the same argument in this Subsection plus differentiation under the integral
sign, equation (43) holds for any p € (0,2]. The only difference is that the LHS and RHS of
equation (43) are strictly decreasing (increasing) and strictly increasing (decreasing) functions
of E, for p <1 (p > 1), respectively. In both cases, Newton’s method must converge to unique
E, opt according to lemma 4.

5.2. Computation of pp and Oy

We now study how to efficiently compute 6, for fixed pt=pt (Er.opt)- To do so, we need a
way to calculate the optimal 6 that maximizes the RHS of Inequality (40).

Theorem 4. Let 0<p<1. Suppose (|E—E[’)#0, and denote ([(E—E,)"]):
((E,—E)T)) = pt : = with p* + = = 1. Then

max _cosb=ve Ve (45)

16]<cos ! (v/e) /ﬁAI‘;(, +uTAL,

attains its maximum when 0 is the unique solution of

+_0 +_0 +4o
+oin P p _ $Pp
pt sin “25 (cos 5 Vecos “5

se(0)=pTst(O)+ s (0)=

(o —0)"
psin 50;2_9 (cos 50;2_9 — y/ecos @)
+ — =0
(0 —¥p )
(46)
in the interval [—0cit, Ocrit)- Here, Ocyiq is the unique solution of
— S +0
re(ﬁ):cos(%2 )—\ﬁcos<(pp2 ):0 47)
in the interval [0,cos ™! (\/€)).
Proof. From equations (13)—(14) and (A.5), we have
dof )
+ — P _
d4, At doy cotet — % 1)( a !
do 70| dg P on —0
AT ind singl —sind
_ P+1>,0 (1 _ _sin +) _ 505: " 48)
op — 0 SINwp (‘Pp - 0)
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Hence,
o +_ +
L dA;e 2sin “D”z ¢ (cos “0”2 o Vecos %’Tw)
ATysing + (cos — \/e) d0’ = EE . (49a)
P
Similarly, we have
o dA, 2sin “0”7276 (cos “0”7276 — \/ecos %Jre)
A, ysind + (cosf — \/e) 6 = (0_(707),, (49b)
P

Since the argument in expression (45) is a differentiable function of 6 €
(—cos~![y/€],cos~![\/€]), by differentiating this expression with respect to & with the help of
equations (13) and (49), after some algebraic manipulation, we conclude that the extremum
in expression (45) occurs when 6 obeys equation (46).

Recall from corollary 1 that ¢, (6) = —¢, (—6). So from the proof of theorem I,
we know that r_ (6) is a strictly decreasing function of 6 € [—cos™!(y/€),cos™!(y/€)].
Applying compound angle formula twice and from corollary 2, we obtain r; (6)|g_cos-1(,/e) =
cos[(¢, —0)/2] —cosOcos[(p, +0)/2] =sin[(p, +6)/2]sind <O and r; (0)]y_y= (1 -
Ve)cos(p, /2) = 0. Therefore, Oci is the unique solution of equation (47) in the interval
[0,cos ™" (y/€)]. From corollary 2, sin[(¢, —0)/2] > 0 for |f] < 7/2. In other words, s_ (6) >
0 for 6 € [~7/2,0ci] and 5. (6) <O for 6 € (Oerir, 7/2]. As @, (0) = —p, (—0), we know
that s7(0) = —s_ (—0). So s (8) > 0 for € [—7/2,—0cit) and 57 (0) < O for 6 € [Orir, 7/2].
Hence, solutions of equation (46), if any, must lie in [—6cit, Oerit]-

Let us rewrite s (6) in equation (46) as s, (0) — v/es.,(0). Note that s, (0) = —s} (—0).
Moreover, from the proof of theorem 4, s is differentiable for § € [—cos ™! (1/€),cos ™! (1/€)].
Furthermore, s} (—0ci) <0 and s} (6eic) = 0. So equation (46) has a unique solution in
the domain [0, Ocrie] C [—cos ™1 (1/€),cos ™! (1/€)] if we could show that ds. ;/df > 0 and
dse2/df < 0 for any |0] < Oy

Clearly, 6 = 0, is the unique solution of equation (46) in [— 6, Ocrit| in the case of O = 0.
So, we only need to consider the case of O > 0. Since ds. 2/df < 0 if

dley =0) (0N T+ AN
7 cos( 3 )[(cpp—H)cos( 3 >—ps1n(2)]

d(o* 40 +_ g + 49
—(%H(@;—e)sin(%z )m(gp”+ )<o. (50)

dé 2

From corollary 2, we know that the second term in the LHS of Inequality (50) is negative and
cos[(w,; +0)/2]d(e,f —6)/df < 0. Therefore, it remains to show that

+_9 +_9
r cot(% >>

\SRlas}

2 2 D

forall [f] < 6crit. Note that from corollary 2, (¢, — ) /2 € [0,37/4) is a decreasing function of
0. Therefore, according to lemma 2, Inequality (51) holds if this inequality is true for 6 = ;.
From equation (47), corollary 2 and the fact that ot () = —¢, (—0), we see that ¢ — Oy is

maximized when e = 1. This happens when 6., = 0. From equation (14), p(1 — cos go;fcm) =
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@;cm sin ‘P;,cm' In other words, [@;cm — Ocrit] cot[(go; erit — Oerit) /2] = p. Hence, Inequality (51)
holds for all |0] < it

Surely, ds.1/df >0 provided that (o, —6)cot(p,” — ) <p for all |§] < Oeit. By the
similar argument in the previous paragraph, we know that gp;“ —6 is minimized if
6 = —0it. This happens when e=1 and hence 6. = 0. Therefore, p(1 — cos @;%m) =
_eit s the shorthand notation for gpl,*(fﬂcm). Hence, p =
[w;—crit + feri] COt[(‘P;—crit +0crit) /2] > (@; ~erit T Oerit] COt(sO;_Cm + Ocrit). This completes
our proof. 0

+ ot +
Py —erit SINP, i where ©,

Remark 7. From equations (24) and (46), the § maximizing expression (45), which we denote
by &opt, Obeys

ptla|? (901” - Sop_)p =p lay (90; - 90pt)p- (52)

In particular, for the initial quantum state in equation (23) and (52) becomes ([(E — E,)"]?) :
([(E,—E)")P) = uT : . In other words, from theorem 1, for any p € (0,1], € € [0,1] and
for any ratio 41 : ™, the CZ bound can be saturated. As expected, 0oy is also equal to the
optimized value of 8 in Inequality (20a) of the CZ bound.

Remark 8. Note that expression (45) attains its maximum when 6 =0y if u= =1 or 0 =
—0ci¢ if p+ = 1. In this regard, theorem 4 tells us that for a general p ™, Oopt lies between these
two limiting cases.

To use theorem 4 to compute the CZ bound efficiently, we first need to calculate ap;,'[. Recall
that for (p,0) € R\ (2,0), ¢, and ¢, are the unique roots of equation (14) in the intervals
[10],7) and (—7,—|0)|], respectively. In the former case, we use Newton’s method with 7 as the
initial guess; and in the latter case, we use — as the initial guess instead. This method is quad-
ratically convergent. Here we prove this claim for 90;“. The case of ¢, can be similarly proven.
Note that from equations (A.3f) and (A.3g) in the proof of lemma 1 in the appendix, f;/, (x) <0
for (p,x) € (0,2] x [r/2,7] and f) 5(7) < 0. As ¢, € [|0],7) for p € (0,1], lemma 4 implies
that the root ¢, of equation (14) in the interval [|f],7) can always be found by Newton’s
method using the initial guess 7 for the case of p € (0, 1].

For the case when the root ¢, € [0,7/2), we know from the proof of lemma 1 that this can
only happen when p € (1,2] and 6 € (—/2,0]. In this case, equations (A.3f) and (A.3g) tell
us that £/, (7/2) = 0 — ¢, (0) <0 and f; 4(7/2) = 1 — p < 0. From the proof of lemma 1 in
the appendix, we know that f; ,(x) = 0 has exactly one root, say, x; in (0,7/2). In addition,

fy/g(x) =0 implies (x — ) tanx =2 — p. Obviously, the LHS of this equation is a bijection
from [0,7/2) to [0, +00). Together with the fact that p < 2, we conclude that f;/,(x) = 0 has
exactly one root in (0,7/2). Thus, f;’y(x) < 0 for all x € [x1,7/2]. Recall that f,/s(x) < 0 for
x € [r/2,m] and f; 4(m) < 0. Applying lemma 4 to f;, ¢(x) in the interval [x;, 7], we know that
Newton’s method converges using the initial guess 7.

Since 0 and ga,',* are simple roots of equation (14), combined with equation (A.5), Newton’s
method is stable. Moreover, the necessary conditions for the loss of significance, in this case
due to ill-conditioning, are that ¢, ~ 6 ~ 7/2 and p ~ 1. To play safe, we may switch to bisec-
tion method in this situation. Nonetheless, our numerical experiment shows that Newton’s
method is highly accurate in this case as well. The same findings apply to the numerical com-
putation of ¢,". Nevertheless, this ill-conditioning issue does affect the computation of expres-
sion (45). We shall discuss it in section 5.3 below.

With go,f now accurately and efficiently evaluated, we can find 0, by solving equation (46).
From the proof of theorem 4, this can be done by bisection method using [—0ci¢, Ocrit] as the
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Figure 4. A typical s(6) curve is very close to a straight line for all parameters used
when |0] < Ocii. We set p=0.7, e=0.2 and " = 0.8 in this plot.

initial interval. We can do much better than this in practice. As depicted in figure 4, s, (6) looks
like a straight line for |6] < 6. Thus, Newton’s method with an initial guess of, say, § =0,
will converge to 0, quadratically. Another advantage of this method is that we do not need to
numerically compute .. In addition, for our parameter ranges, numerical stability is never an
issue. As for round-off error, the only situation that requires attention is when |<p’ﬂf| ~ 6. Here
we may have to use the first few terms of the Taylor’s series expansion of sin[(gpliIE —0)/2] to
accurately compute sin[(gpliIE —-0)/2]/ |<,0,ﬂ,E —0P.

5.3. Computation of expression (45)

Recall that the * corresponding to the optimized (|E — E,|P) may not be unique if 0 < p < 1.
In this case, we need to maximize expression (45) over all these ;*’s and hence the cor-
responding 6, ’s. Furthermore, irrespective of the uniqueness of p*, from equation (12), in
order to evaluate expression (45) accurately, highly accurate 6, and cp;[(ﬂop[) are required
if gpj(@opt) ~ T or Oqy to compensate for the loss of significance in evaluating A;GOW due to
ill-conditioning and error propagation. Similarly for ¢, (fop). To compute expression (45) to
a certain accuracy in these situations, we may have to evaluate 0. and cppi(Gopt) to higher
precision. This can be done by changing the stopping criterion and perhaps also by increasing
the working precision. From equation (14), if ¢ ~ 7, then p = O(7 — ¢,"), which is small.
Conversely, if p is small, then ¢, =7 — O(p). That is to say, we need to evaluate ¢, to a
higher working precision to avoid round-off error if p ~ 0. In fact, our numerical experiments
suggest that using double precision arithmetic, rounding error is an issue, sometimes a seri-
ous one that gives totally wrong results, when p < 107>, So we switch to quadruple precision
arithmetic for p < 10> in our Mathematica code.

In summary, given p, € and ™, the method outlined in the previous paragraph can compute
expression (45) by numerically solving up to three equations, one for 0, and another two
for gof(@opt). (In case fop = 0, one only needs to solve ¢, as it is equal to —,".) And to
evaluate the CZ bound in Inequality (20), one has to further numerically find E, op and hence
p by solving one more equation. (In case p* is not unique, one has to solve 6, and gopi for
each *.) Finally, one obtains the RHS of Inequality (20) by substitution. In contrast, the most
efficient way to obtain the ML bound numerically is by solving just one single equation given
€ [25]. Can we adapt that method here?

The reason why the ML bound can be obtained by solving just one equation is that we
can recast the problem as finding a normalized initial state that saturates the ML bound. Since
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any such state must belong to the Hilbert space spanned by two energy eigenstates of the
Hamiltonian, only one degree of freedom remains, namely, the amplitude square of the ground
state energy component of the normalized initial state. More importantly, the exact evolution
time can be written as an explicit function of this amplitude square as well as €. Hence, com-
puting the ML bound is reduced to the problem of maximizing certain evolution time, which
can further be reduced to the problem of solving a non-linear equation of one variable [25].

Following the same logic, evaluating the CZ bound in this way has to optimize over a
normalized initial state in the form of equation (23), which has two degrees of freedom, namely,
las|? and |a_ |*. Unfortunately, the evolution time given e is an implicit function of |a|*’s that
we do not know how to write in an explicit form. Thus, we can only proceed by solving a system
of three Equations, namely, the one relating the evolution time with |a|*’s and two equations
determined by maximizing the evolution time through varying |a-.|>’s. Consequently, there is
no computational advantage over the method we have just presented.

5.4. Computation of the CZ bound for fixed p

With the above discussion, it is clear that for a fixed p, the CZ bound can be computed as
follows.

1. Find (|E — E, 0|’} and p either using the method in section 5.1 through determining
E, opi Or by an oracle that returns (|E — E, o |7) and ([(E — E,,opt)+]P).

2. If p € (0, 1], compute Oopt using the method in section 5.2. Otherwise, set fyp = 0.

3. Finally, compute expression (45) and hence the CZ bound using method in section 5.3.

Evaluating the LC bound can be done in almost the same way. The only exception is that
Oopt is always set to 0. For finite-dimensional quantum systems, this method is computationally
accurate and efficient.

Last but not least, we remark that our analysis here focuses on a fixed p. In spite of the
fact that both lim, o+ ([(E — E,)"]?) and lim, o+ ([(E, — E)"]?) exist for any given E,, the
existence of finite LC or CZ bounds as p — 0™ is not guaranteed. We shall report an interesting
consequence of this observation in section 6.

5.5. Computation of the optimized CZ bound

Calculating the optimized CZ bound is straightforward to implement but difficult to analyze.
Without additional information on |¥(0)), the powerful convex optimization method does not
apply. All we can do is to use a modern general optimization algorithm, such as differential
evolution and Nelder—-Mead method, over the parameter p using the CZ bound for fixed p
as the target function. Note that <pljf vary smoothly with 6. If we further assume that (|E —
EP), ([(E—E)TP), ((E—E)"]P~") and ([(E, — E)"]P~") are continuous and monotonic
functions of p, then we expect that any modern general optimization algorithm should work
reasonably well both in speed and in accuracy. One of us has posted the Mathematica code to
compute the optimized CZ bound [32]. Based on this code, our numerical experiments to be
reported in section 6 show that this is indeed the case although vigorous mathematical analysis
is beyond reach for a general |¥(0)). The same analysis applies also to the calculation of the
optimized LC and LZ bounds. Once again, our numerical experiments find that modern general
optimization algorithms work very well for these two optimized bounds.
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5.6. Simple expression for the optimized CZ bound on two-dimensional quantum systems

Interestingly, numerical analysis in this section gives us a simplified expression for the optim-
ized CZ bound on two-dimensional quantum systems. By shifting the reference level, we write
the normalized initial state of such system as a;|E;) + ao|Eo) with E; > Ej.

For the case of p < 1, analysis in section 5.1 tells us that E, o is either Eq or E;. For the
first subcase, ;1 defined in theorem 4 has to be 1; whereas for the second subcase, ™ = 0.
So from theorem 4 and remark 8,

T\P 1 co8O.is — /€
-\ >
(3) = 2 (53)

h - EO)p min (A;_e('l‘/.l al |2’AI)_79L‘VH a0|2) |
with 6.4 given by the unique solution of equation (47).
If 1 < p <2, then E, o obeys equation (43) so that the CZ bound becomes

(3> g (7wl 1) o

Thus, the optimized CZ bound for two-dimensional quantum systems can be expressed as

1
(1 =) (Jaol 7+ fan| 77) |7

.
- > max ¢ max
h” E —Ey 1<p<2 Apo ’
1
0 Ve !
€088, — /€
max o (55)

0<p<l i + 2 A 2
min Apy_ecril al‘ ,Apaerr[1|a0|

A notable feature of this expression is that its RHS is proportional to a factor that depends only
on € and |ag|.

6. Performance analysis

Table 1 compares the minimum evolution times for various initial pure quantum states in
energy representation using different QSLs. (Recall from section 2 that the dual ML bound
is basically the ML bound of a time- and energy-reversed system. Thus, we omit the dual ML
bound in our table because such comparison is already reflected in the relative performance
between ML and CZ bounds over various initial states.) These initial states are specifically
chosen to illustrate our points. From table 1, it is clear that the optimized CZ bound is the best
for all cases which is closely followed by the optimized LC bound. This result is consistent
with our conclusion in section 4 that the optimized CZ bound unifies all other bounds in the
table. It also demonstrates that the MT, ML and optimized LZ bounds are mutually comple-
mentary, and so are the optimized LZ and optimized LC bounds.

Let us study table 1 in detail. The initial state of case number (a) is | ¥ (0)) = (|0) + [1))/V/2.
It saturates the MT bound for any given of € € [0, 1]. Table 1 shows that all the bounds we have
covered give the saturation value of ™ when e =0. This is consistent with our conclusion in
theorem 2 that the optimized LC and hence the optimized CZ bounds are at least as good as
the MT bound.
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The initial state considered in case (b) of table 1 is 251407 j) /21172, The time for it to its

orthogonal complement equals 7 = 7//1024 =~ 0.0030680/. In this case, both the optimized
LC and CZ bounds are the best. They give about 92.5% of the actual evolution time whereas
the MT bound is just about 86.6%. Here, both the optimized LC and CZ bounds give the same
Popt = 1.36 > 1.

Likewise, the (un-normalized) quantum state 21.22418 7 'j) used in case (c) is also 2048-
dimensional. (Here the dimension refers to the minimum Hilbert space dimension of the
Hamiltonian needed to support such an initial quantum state. We simply call this the Hilbert
space dimension of the system and denote it by n.) Its values of pg; for both the optimized
LC and CZ bounds are ~ 0.89 < 1. We pick cases (a)—(c) to test how the computational times
vary as the Hilbert space dimension of the system » increases for various QSLs in practice.
Moreover, we compare the practical efficiency of our methods for both poy < 1 and pope > 1
in case n is large since the algorithms of finding E, ¢ introduced in section 5.1 and their cor-
responding complexities are vastly different in these two cases. We use Mathematica code
with just-in-time compilation installed in a typical desktop to compare their performance. For
the MT and ML bounds, increasing n from 2 to 2048 has relatively little effect on the com-
putational times. The runtimes for the ML bound are at most several ms in all three cases.
In contrast, the runtimes for the MT bounds are about 20 ps, 0.9 ms and 40 ms for cases (a)
to (c), respectively. For the unoptimized LZ bound, the runtimes are similar to those of the
MT bound. Whereas for the optimized LZ bound, it increases from about 50 ms to about 0.3 s
when n increases from 2 to 2048. As expected, longer times are needed to compute the bound
for fixed p and much longer to optimize p as n increases. For example, for the unoptimized LC
bound, the runtimes are less than 1 ms for case (a), about 70 ms for case (b) and about 0.1 s
for case (c). And for the optimized LC bound, the runtimes are about 0.5 s, 150 s and 300 s for
cases (a) to (c), respectively. Last but not least, for the unoptimized CZ bound, the increase
is from about 3 ms for case (a) to about 70 ms for case (b) to about 0.1 s for case (c); while
for the optimized CZ bound, the increase is from about 5 s for case (a) to 150 s for case (b)
to about 300 s for case (c). To conclude, our experiment shows that the unoptimized LZ, LC
and CZ bounds are all extremely efficient to evaluate. And up to our expectation, longer time
is required to compute both the optimized and unoptimized versions of the LC and CZ bounds
when pope < 1 because of the higher computational complexity cost partly due to the existence
of n local minima in (|E — E,|P). But in all cases, their optimized versions are fast enough to
be used in the field even when the Hilbert space dimension of the system » is of order of 1000.
Here we also mention on passing that simply using generic optimization method to obtain the
optimized LC and CZ bounds is in general not practical when n is large. This is particularly
true when pop < 1. For example, computing the optimized CZ bound in case (c) using gen-
eric optimization takes about 1.3 hr even for probabilistic methods. This is roughly 15 times
longer than our algorithm. Sometimes, generic optimization fails to produce an answer due to
insufficient computer memory. To be fair, using differential evolution, a generic probabilistic
optimization technique, the runtime of the optimized LC bound for case (c) can sometimes be
shortened to about 13 s. We do not have a good explanation though.

We now investigate how these QSLs perform when it is not possible to evolve the given
initial state to another state with fidelity € in finite time. Consider case (d) with /e = 0.1
and case (e) with \/e = 0.2. It is easy to show that the required evolution is not possible. We
pick these two cases to illustrate two points. First, the optimized LC and CZ bounds can all
diverge as p — 0™. (We also see in some other cases not listed in table 1 that the optimized
LZ bound diverges as well.) Second, even for the case that these bounds cannot detect this
impossible evolution, they generally give much higher QSLs. Next, we use case (f) to test how
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various QSLs handle another type of impossible evolution. Specifically, we choose |¥(0)) =
v/0.3|0) +1/0.6]1) + /0.1|x) so that it could reach 1/0.3|0) —+/0.6|1) ++/0.1|r), namely,
the only state whose fidelity € is 0.2% from it only in infinite time. Table 1 shows that none
of the bounds correctly give a divergent result even though the optimized LC and CZ bounds
give identical QSL that is significantly higher than the rest. This is not surprising for given
only information on the pth moments of the absolute value of energy of this type of systems,
one may not have enough information to conclude that the evolution cannot be completed in
finite time. Note that the same conclusion can be drawn for case (g) with ¢ =0 that we will
cover in detail later in this section.

As a variation of the theme, we consider case (e) with /€ around 0.2. The evolution time
7 needed is 7. (In fact, the evolution time is finite whenever /€ > 0.2.) Interestingly, Table 1
tells us that both the optimized LC and CZ bounds give this exact result. More importantly,
first order phase transition in the values of the optimized LC and CZ bounds are observed at
\/€ = 0.2. This demonstrates the power of these two optimized bounds.

The last case we consider is case (g). Here we fix |¥(0)) = 1/0.4|0) ++/0.45|1) +
v/0.15|27) and vary e. Surely, table 1 shows that all bounds decrease as € increases. In addition,
we find that the optimized LC and CZ bounds are the best. They are generally better than the
other QSLs by about 10%. (And in some other cases listed in table 1, they can be about 30%
to 60% better, sometimes even a few times better.) Besides, when po, < 1, the optimized CZ
bound is better than the optimized LC bound by about 1% because the optimized CZ bound
has the freedom to pick a non-zero 6. In addition, we see that p,, increases as € increases
for the optimized LC and CZ bounds. Table 1 also demonstrates that p, can take on any value
in (0,2], including the special case of Popt = 1. These two trends are consistent with the fact
that the evolution time 7 decreases with increasing € so that the optimized py is likely to be
the one with ‘Ppi,om both getting closer and closer to 8.

7. Conclusions and outlook

To summarize, we have proven the optimized CZ bound that includes all existing QSLs for
time-independent Hamiltonian evolution as special cases. We also developed a precise and
accurate numerical algorithm to compute this bound for quantum systems with underlying
Hilbert space dimension <2000 and illustrated the usage of this bound through example initial
states in table 1. This optimized CZ bound is at least as well as the existing ones and sometimes
can be a few percent to a few times better.

It is instructive to see how this bound can be used as a performance metric in realistic
situation. One possibility we have identified is in quantum control using piecewise constant
pulse such as the one used in [33]. This would be our follow up project.
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Appendix

Proof of lemma 1. To show the validity of Inequality (11) for x > 6, it suffices to prove that
Ap ¢ exists and equals

cosf — cosx

Ap o =supm, g (x) = sup (A.D)

x>0 x>0 (x - 9)17
Since my, g(m) > 0 for all 6 € (—m,7m/2], Ay 9 > 0 if it exists. As my, g(x) <0 for <0 and
0 < x < —0, we only need to consider those x > —@ for the supremum in equation (A.1) if
6 <0. By fixing b € [—1,cos0) for 6 € (—m,7/2], the set Sp 9 = {x > 0: cosx = b} is non-
empty and minS; ¢ € [|0|,7]. Observe that mj, (x) > m, ¢(y) for all x,y € Sj 9 with x <y and
p>0. So, lim,_, 5+ mj, ¢(x) exists if (p,0) € R. Consequently, by extending the definition of
mp,9(x) to x = 6 by continuity in the case of ¢ > 0, the supremum in equation (A.1) is in fact a
maximum attained at a certain o, (6) € [|0|,7]. Since dmy, ¢(7) /dx < 0,A, 6 > m, ¢(), we can
safely omit x = 7 in this maximization. In this way, we obtain Inequality (11) for (p,0) € R.

We rewrite Inequality (11) as

gpo(x) =cosx—cosf+A,(x—0) >0 (A.2)

for all x > 6. (Surely, Inequality (A.2) is trivially true for x = 6.) Suppose the maximum of
the RHS of equation (12) is reached when x = ¢, (#). For the time being, we do not assume
that ¢, (6) is unique. We simply set ¢, () to be any one of those x’s that maximizes the RHS
of equation (12). And we are going to prove its uniqueness in the next paragraph. Clearly,
x =06 and ¢,(0) are zeros of the equation g, ¢(x) = 0 with the latter being a multiple root.
Hence, g, 0(10p) = g‘,ﬁyg(gap) = 0. This gives the expressions for A, ¢ and f, ¢ in equations (13)
and (14), respectively.

We now prove the properties of the solutions of equation (14) in lemma 1. Obviously, there
is exactly one x maximizing equation (A.1) if these properties are correct. This is because more
than one maximizing x € (|0|,7) means that there are at least two distinct ¢, (#)’s both in the
same relevant domain satisfying equation (14). This contradicts with the property that ¢, (6)
is unique. We divide the remaining proof into the following five cases. And we make use of
the following equations, which are derived from equation (14).

fr,0(0)=p(1—cosh), (A.3a)
Tpo(0) =0, (A.3b)
fo.0 (—6) = 265sin#, (A.3¢)
foo (g) = g — 0 peosd, (A3d)
Jpo(m) = —p (1 +cosb), (A3e)
Jr6(¢p) = (1 =p)sing, + (v, — 0)cosp, (A.3f)
and
frlo (¢p) = (2—p)cosp, — (g, — 0)sing,. (A.3g)

Case (a): (p,0) € (0,1] x (—,0). Itis clear from equation (A.3g) that f, s (i) is a smooth
function of ¢, and f;/,(/2) # 0. Hence, f,’ () = 0 implies that

(pp—0)tanp, =2—p (A4)
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for ¢, € [0,7). Obviously, the LHS of equation (A.4) is a strictly increasing non-negative
function in [0,7/2) and a strictly increasing non-positive function in (7/2, ], respectively.
As aresult, equation (A.4) has a unique simple root x, in the interval (0, 7/2). Combined with
79(0) >0 and f’y () < 0, we conclude that £/, (x) > 0 for all x € [0,x.) and f)y(x) < 0 for
all x € (x., 7).

As £p,0(0).f, 4(0) > 0, we deduce from the sign of f,’(x) for x € [0,x.) that f, o(x) >0
for all x in this interval and f) ,(x.) > 0. According to equation (A.3d), f,,¢(7/2) decreases
as 9 1ncreases from —7 to 0. Therefore fo0(m/2) = fr0(m/2) =7/2 —p > 0. From the sign
of f,'s(x) for x € (xc,7), we know that f, o(x) > 0 for all x € (x.,7/2]. Besides, f, 4(x) is
strictly decreasing in (7/2,7) according to the analysis in the last paragraph. Together with
fp0(m) <0, we conclude that equation (14) has a unique simple root in (7/2,7). This is
because mean value theorem implies that equation (14) has a root in (7/2,7). As the roots
of equation (14) in this interval forms a closed set, the smallest root exists which we denote by
x,. Since f, 9 (m/2) > 0and f; 4(x) is strictly decreasing in (7/2,), we know that f) ,(x,) < 0.
Consequently, x, is the unique root of equation (14) in (7/2,7) because f, ¢(x) > 0 for all
x € (m/2,x,) and f, (x) < O for all x € (x,, ).

Lastly, as f,, o(—6) > 0, this unique solution of equation (14) must lie in [|#|,7) and hence
in [max(|0|,7/2),). This completes the proof of the properties of roots of equation (14) in
this case.

Case (b): (p,0) € (0,1] x (0,7/2]. Note thatf, ¢() = 0 and f, ,(6) > 0 with equality holds
if and only if p = 1. Moreover, using the same argument to analyze f,ﬁ fg through equation (A.4)
in the proof of case (a), there is a X, € (0,7/2) such that £}’ ()‘cc) 0,/,/5(x) > 0forx € (0,x)
and f)'y(x) < 0 for x € (X, ). Therefore, for f, o(6 + 5), o(0 4 &) > 0 provided that p # 1
and 0 > 0 is sufficiently small. By Taylor’s series expansion w1th remainder, the same is true for
the case of p = 1. Using similar argument in the proof of case (a), we deduce that f, g(7/2) >
fo,x/2(m/2) = 0 with equality holds if and only if 6 = 7/2.

From the same argument using the sign of /;, in case (a) and by using the fact that f, () <
0, we conclude that f,, ¢(x) > 0 for all x € (¢,7/2). Besides, equation (14) has a unique simple
rootin [7/2,7).

Case (c): (p,0) € (1,2] x (=m,0). Using the same argument on ;' in the proof of case (a),
we know that there is a X € (0,7/2) such that £/, (x.) =0, f)y(x ( ) >0 for x € [0,X.) and
o (x) <0 for x € (X, 7/2). Note that f, ¢(0).fp, 9( 0) and f, 4(0) > 0. So using the same
argument as in the proof of case (a), we know that f;, 9 (x) > 0 for all x € [0, |6|]. Together with
the fact that f, 4(7) < 0, we conclude that equation (14) has a unique simple root in [|0|, 7).

Case (d): (p,0) € (0,2) x {0}. In this case, f,0(0) =1, ,(0) =0 and £)/,(0) > 0. Hence,
Jp,0(8):1,,0(6) > 0 for a sufficiently small § > 0. Together with f;, o(7) <0, we can use the
same argument as in the proof of case (a) to deduce the existence of a unique simple root for
equation (14) in (0, 7). Furthermore, if p € (0, 1], using the argument in the proof of case (a),
we know that f, o(7/2) > 0. Hence, the solution of equation (14) can be further restricted to
[/2,7).

Case (e): (p,0) = (2,0). The argument is similar to that in the proof of case (d). Here, it is
straightforward to check that ff,’())(O) =0 forj =0,1,2,3. Besides, f< ) ) < 0. Therefore, 0 is
a root of equation (14) of order 4. From equation (A 38), flo(x) < 0 for x € (0, 7). Therefore,
.0(x) <0andf,o(x) <0 forx € (0,7). In other words, 0'is the only root of equation (14) in
[0, 7). This completes the proof of case (e). O

Proof of corollary 2. Here we only prove properties of those functions involving ¢;i (0). As
@, (0) = —p, (—0), properties of those functions involving ¢, (¢) follows from the properties
of the corresponding functions of cp[‘,* (0). Recall from lemma 1 that equation (14) has a unique
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solution ¢, () € [~m/2,7) whenever p € (0,1] and 6 € [—7/2,7/2]. Therefore, o, +6 €
[0,37/2). Moreover, the solution of equation (14), namely, ¢, (6), is the one that maximizes
the RHS of equation (12). Thus, applying the implicit function theorem to equation (14), we
know that goj is differentiable and equals

df sing, —psinf
do  (of —0)cosgy + (1 —p)sing,

(A.5)

provided that the denominator of this equation is non-zero.

We claim that this denominator is non-positive for all |§] < /2 and p € (0, 1] with equal-
ity holds if and only if p=1 and 6 = 7/2. In these parameter ranges, lemma 1 implies that
@if € [1/2,7) and @i > |6] with equality holds if § = 7 /2. By multiplying the denominator
of equation (A.5) by sin gp,‘f and by using equation (14), it suffices to prove that

K (p,6) = sin® gaj —p+pcosbcos (p;r <0. (A.6)

(Note that through equation (14), we may regard x as a function of p and 6.) From
equation (14), we know that

20 cos<p;r —cosf

- SR AT
op (1 —p)sind (A7)
Hence,
d cos Tl (cospt —cosd
—K:cosecosgfr—l—p r ( r ) <0 (A.8)
dp P 1-p
whenever |0 < /2. Therefore,
#(p,0) < lim (q,0) = lim sin*g, (0) =0 (A.9)
q—0t q—0t

forall § € [—7/2,7/2). Here we obtain the last equality by solving equation (14) in the limit
of ¢ =0". From equation (14), [¢;f (7/2) —m/2]|tanif (/2) = —p. Using the analysis on
the property of equation (A.4) in the proof of lemma 1, we conclude that ¢f (7/2) > 7/2 with
equality holds if and only if p = 1. So, k(p,7/2) < lim, o+ (g, 7/2) = sin® o (7/2) —p =
0 with equality holds if and only if p = 1. In summary, «(p,8) < 0forp € (0,1] and |6| < 7/2.
This proves our claim that the denominator of equation (A.5) is non-positive and equality holds
if and only if (p,0) = (1,7/2).

As o, is differentiable for |§] < /2, so to prove that ¢;f —6 is a strictly decreasing
function of 6 is equivalent to show that sin@, — psing > (o7 — ) cosp, — (1 —p)sing;f.
Multiplying this inequality by sin Lp;," and using equation (14), this is equivalent to proving
that

2sin® of +p [cos2¢) — cos (o, — )] > 0. (A.10)

Clearly, this inequality holds if cos2¢} > cos(i;,” — ). And for the case of cos2¢,; <
cos(w, —6), it suffices to show that

0 < 2sin* ¢ + cos2¢, —cos (¢ —0) =1 —cos (¢, —0). (A.11)

28



J. Phys. A: Math. Theor. 57 (2024) 235304 H F Chau and W Zeng

Since <p1‘," > 6 unless § = /2, Inequality (A.11) is satisfied except possibly when o, =0=
7 /2. And in this case, equation (A.5) becomes dgo;’ /df = 1. Therefore, <p;r — 6 is a strictly
decreasing function of 6.

By the same token, we prove that np;r + 6 is an increasing function of 6 by showing that

singo;r —psinf + ((p;r —9) cosc,o;r —(1=p) singo;f <0
= cos (¢, +0) —cos2p, <0

3pF+0 +_9
> sin <¢"2) sin (Lp”z) <0. (A12)

So, it suffices to prove that 3¢, + 6 € (2, 4). Letus write 3y, + 60 = 3(p, — 0) +40. Since
@i — 0 is a strictly decreasing function of § whose range is in [0,37/2), we conclude that
3 +6 € (2m,5m/2] C (27, 4m).

O

Proof of lemma 2. Let x € (0, 7). Since x > sinx, we have 2cot(x/2) < xcsc?(x/2). This
means di/dx <0 and hence 4 is strictly decreasing in [0,7]. Thus, 4: [0,7] — [0,2] is a
homeomorphism. O

Proof of lemma 3. For the case of € = 1, the argument in the LHS of equation (19) equals 0
for all x € (0, 7). Thus, equation (19) holds in this case.
For the case of € € [0, 1), we consider the function

ln(l_z‘/g> — 21nsin§

X
xcot 5

u(x) =Inx+ , (A.13)
which is smooth for x € (0, 7). Clearly, u(x) is the logarithm of the argument in the LHS of
equation (19). In addition,

du 1 (lnl—\ﬁ x) {xseczg

o :; > 721nsin§

X
—tan—|. A.l4
> an 2} ( )
Note that the first factor in the RHS of equation (A.14) is non-zero in (0, 7). For the third factor
to vanish, x = sinx. So, the third factor is non-zero in (0,7), too. As for the second factor in
the RHS of equation (A.14), it has a unique zero in (0,7), namely, at x = cos~!(y/€). Since

@ _ 1 _ cos™! (\ﬁ)
L5 x=cos~! (V&) ; [cos™! (\ﬁ)f {1 Vi—e } <0, (A.15)

u(x) and hence exp|u(x)] attain their global maxima in the interval (0,7) at x = cos~!(,/€). As
exp{u(cos~![/€])} = cos~!(y/€), we conclude that equation (19) is valid for e € [0,1). O

Proof of lemma 4. Denote the root by x,. Since this Lemma is trivially true when x, = b,
we may assume that x, <b and w(b) < 0. By Taylor’s series expansion with remainder,
0=w(x,) <w(d)+w'(b)(x,—D) or x, <x; =b—w(b)/w’'(b). We claim that w(x;) <0.
Suppose the contrary, w(x) = 0 has another root X, > x;. Nonetheless, the above Taylor’s series
argument implies that X, < x;, which is absurd. Note that w’(x;) < 0. If not, w’(x) > 0 for all
X € [a,x1) because w'’ (x) < 0. Then, by mean value theorem, w(x) < w(x;) < 0 contradicting
the condition that w(a) > 0. Replacing b by x; and repeating the above argument, this Lemma
can be proven by recursion. O
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