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A B S T R A C T

This paper studies the optimal insurance problem within the risk minimization framework and from a
policyholder’s perspective. We assume that the decision maker (DM) is uncertain about the underlying
distribution of her loss and considers all the distributions that are close to a given (benchmark) distribution,
where the ‘‘closeness" is measured by the 𝐿2 or 𝐿1 distance. Under the expected-value premium principle,
the DM picks the indemnity function that minimizes her risk exposure under the worst-case loss distribution.
By assuming that the DM’s preferences are given by a convex distortion risk measure, we disentangle the
structures of the optimal indemnity function and worst-case loss distribution in an analytical way, and provide
the explicit forms for both of them under specific distortion risk measures. We also compare the results under
the 𝐿2 distance and the first-order Wasserstein (𝐿1) distance. Some numerical examples are presented at the
end to illustrate the implications of our main results.
1. Introduction

Insurance can help individuals to be resilient to adverse events in
their life. The study of optimal insurance contracting has a long history.
The contract is characterized by an indemnity function, which maps
the decision maker’s (DM, also called policyholder) loss to indemnity,
and a premium, which is paid upfront to the insurer. The premium is
commonly modeled via a premium principle: a functional applied to
the indemnity function. Then, the study of optimal insurance contract-
ing leads to the problem of deriving the optimal indemnity function.
Classical examples of the indemnity function include the quota-share
and stop-loss functions, both of which are commonly used in practice.
The popularity of these two functions is attributed not only to their
simple forms but also to the theoretical foundations provided by Borch
(1960) and Arrow (1974). We refer the interested readers to Albrecher
et al. (2017) for a comprehensive review of some recent advances in
insurance contracting.

Among the myriad literature, one main theme in optimal insur-
ance contracting is the minimization of the DM’s end-of-period risk
exposure, which is measured by a risk measure. Risk measures such
as Value-at-Risk (VaR), Tail Value-at-Risk (TVaR), or more general
distortion risk measures possess a variety of mathematical properties
and economic interpretations. The study of insurance contracting via
risk minimization was conducted by Cai and Tan (2007), who derived
the optimal retention point for a stop-loss function under the VaR

∗ Corresponding author.
E-mail addresses: tjboonen@hku.hk (T.J. Boonen), wenjun.jiang@ucalgary.ca (W. Jiang).

1 Moreover, Balbás et al. (2011) study robust optimal insurance contracts in a setting where robustness is understood as stability of a solution with respect to
several risk measures.

and TVaR risk measures. Chi and Tan (2011) study the optimal insur-
ance contracting under VaR and TVaR when restricting the indemnity
function to different classes and show that the stop-loss function is
always optimal if TVaR is used as the risk measure. By introducing
the marginal indemnity function (MIF), Assa (2015) studies the optimal
insurance contracting under the distortion risk measure and show that
the optimal indemnity function is of the layered form. Cheung et al.
(2019) extend the result of Assa (2015) to the case where the DM aims
to minimize a generic law-invariant coherent risk measure of her net
risk exposure and characterize the solution again by using the MIF. We
refer interested readers to Cai and Chi (2020) for a review of some
recent developments in optimal insurance contracting based on risk
measures in static models.

An important assumption underlying many classical insurance mod-
els is that the DM has perfect knowledge of the underlying distribution
of her losses. A relaxation of this assumption is usually obtained by
seeking a robust solution to the classical insurance models by incor-
porating distributional uncertainty. For example, Balbás et al. (2015)
and Asimit et al. (2017) are among the first ones to derive optimal in-
surance contracts under distributional uncertainty, and their focus is on
robust notions of expectations, VaR and TVaR risk measures.1 The lit-
erature on this topic can be categorized into several streams depending
on the way of modeling the distributional uncertainty and uncertainty
aversion. For instance, to model the distributional uncertainty, one
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can either consider finitely many given candidate distributions (Asimit
et al., 2017; Asimit & Boonen, 2018; Asimit et al., 2019) or infinitely
many candidate distributions which are in the same parametric family
or with the common statistical characteristics (Liu & Mao, 2022) or
close enough to a given benchmark distribution under some distance
metrics (Balbás et al., 2015; Birghila & Pflug, 2019; Pflug et al.,
2017). To model the uncertainty aversion, a very popular model is the
maxmin model (Birghila et al., 2023; Gilboa & Schmeidler, 1989) in
which decisions are based on the worst-case distribution, while some
alternative preferences such as the 𝛼-maxmin model (Ghirardato et al.,
2004) and the smooth-ambiguity model (Jiang et al., 2020; Klibanoff
et al., 2005) are also gaining popularity.

We assume that the DM considers loss distributions closely around
a given benchmark distribution, where the ‘‘closeness’’ is measured by
the 𝐿2 or 𝐿1 distance metric. The use of the 𝐿𝑝 norm in modeling
distributional uncertainty in finance and insurance can be found in,
for example, Rachev et al. (2008), López-Díaz et al. (2012), Yang
et al. (2014), and Bernard, De Vecchi, and Vanduffel (2022). It is well-
known that the 𝐿1 distance is equivalent to the first-order Wasserstein
distance, which also has been gaining increasing popularity in finance
and insurance. Interested readers are also referred to Pesenti and
Jaimungal (2023) and Bernard, Pesenti, and Vanduffel (2023) for the
further motivations of using such metrics in insurance. In this paper,
we study the optimal insurance contract with a distortion risk measure
subject to distributional uncertainty. The papers most closely related to
our work are Birghila and Pflug (2019) and Liu and Mao (2022). Under
the first-order Wasserstein distance, Birghila and Pflug (2019) study
the optimal insurance contracting under Wang’s premium principle and
TVaR, and propose a numerical algorithm to approximate the worst-
case distribution. Liu and Mao (2022) focus on the feasible set of
indemnities that includes only the stop-loss functions. The question
of identifying analytical forms of the optimal indemnity function and
the worst-case distribution is still quite open. This paper fills this gap
by identifying the analytical form of the optimal indemnity function
without assuming its functional form under the maxmin model where
the DM’s preferences are modeled by some convex distortion risk
measure. This is different from Liu and Mao (2022), in which the
authors restrict the insurance indemnity functions to stop-loss functions
only. In contrast to Birghila and Pflug (2019), we identify the worst-
case distribution in an analytical way (see Section 5). Another related
study is Bernard, Pesenti, and Vanduffel (2023), in which the authors
only focus on the distribution that leads to the worst-case distortion
risk measure. In contrast, our focus is on an optimal insurance problem
in which the objective is to find both the optimal indemnity function
and the worst-case loss distribution.

The remainder of this paper is structured as follows. Section 2 gives
some preliminaries about the distortion risk measure and sets up the
main problem. Section 3 solves the main problem by showing the struc-
tures of the optimal indemnity function and worst-case distribution.
Section 4 presents some concrete examples illustrating the application
and implication of our main results. Section 5 solves the main problem
by changing the 𝐿2 distance to 𝐿1 distance. Section 6 presents some
numerical examples. Section 7 concludes the paper, and all the proofs
are delegated to the appendix.

2. Preliminaries and problem formulation

2.1. Distortion risk measure

Let there be a one-period economy. A DM is facing an insurable,
non-negative loss represented by a random variable 𝑋. We fix the
corresponding probability space (𝛺,,P), where 𝛺 is assumed to be
atom-less and  is the 𝜎-algebra generated by 𝑋. Let ([0,𝑀]) be the
ollection of probability measures on the measurable space (𝛺,) with
695

support being a subset of [0,𝑀], where we assume 𝑀 <∞ is fixed. v
The distortion risk measure stems from the dual utility theory
of Yaari (1987), and is popular in decision theory and risk management.
As an alternative to the expected utility theory in behavioral economics,
dual utility theory describes people’s behavior through a modification
of the independence axiom. Distortion risk measures can also be inter-
preted as a risk-neutral evaluation under distorted beliefs, and in those
distorted beliefs the more extreme events get a larger weight.

The distortion risk measure of random variable 𝑍 on the measurable
space (𝛺,) is allowed to depend on a probability measure 𝑃 , and is
given by:

𝜌𝑃𝑔 (𝑍) = ∫

∞

0
𝑔(𝑃 (𝑍 > 𝑧))𝑑𝑧 + ∫

0

−∞
[𝑔(𝑃 (𝑍 > 𝑧)) − 1]𝑑𝑧, (2.1)

here 𝑔 is called the distortion function that is increasing2 and concave
ver its domain [0, 1] and satisfies 𝑔(0) = 0 and 𝑔(1) = 1. Eq. (2.1) shows
hat the distortion risk measure can be understood as the expectation
f 𝑍 under a distorted probability measure (Balbás et al., 2009). For
ixed probability measure 𝑃 , the distortion risk measure 𝜌𝑃𝑔 satisfies the
ollowing properties (Denuit et al., 2006; Wang et al., 1997):

• Comonotonic additivity: 𝜌𝑃𝑔 (𝑍 + 𝑌 ) = 𝜌𝑃𝑔 (𝑍) + 𝜌𝑃𝑔 (𝑌 ) for comono-
tonic random variables 𝑍 and 𝑌 .3

• Sub-additivity: 𝜌𝑃𝑔 (𝑍 + 𝑌 ) ≤ 𝜌𝑃𝑔 (𝑍) + 𝜌𝑃𝑔 (𝑌 ) for any two random
variables 𝑍 and 𝑌 .

ote that Comonotonic additivity and the fact that 𝜌𝑃𝑔 (1) = 1 imply
ranslation invariance: 𝜌𝑃𝑔 (𝑍 + 𝑐) = 𝜌𝑃𝑔 (𝑍) + 𝑐 for all 𝑐 ∈ R. Moreover,
istortion risk measures are coherent in the sense of Artzner et al.
1999), which can be written as spectral risk measures (Balbás et al.,
009), and are averse to mean-preserving spreads (Yaari, 1987).

The class of distortion risk measures is quite large and includes
VaR, which will be discussed further in Section 4.2.

.2. Problem formulation

Throughout the paper, we use the notation 𝑥∧𝑦 = min{𝑥, 𝑦}, 𝑥∨𝑦 =
ax{𝑥, 𝑦}, and (𝑥)+ = max{𝑥, 0}.

Suppose that the DM is interested in purchasing an insurance con-
ract (𝐼, 𝜋(𝐼)) where 𝐼 is the indemnity function and 𝜋(𝐼) is the cor-
esponding premium. After buying the insurance contract, the DM’s
nd-of-period loss becomes 𝑋 − 𝐼(𝑋) + 𝜋(𝐼).

Let 𝐹 𝑃 (𝑥) be the Cumulative Distribution Function (CDF) of 𝑋 under
robability measure 𝑃 ∈ ([0,𝑀]). The survival function is defined as
𝑃 (𝑥) ∶= 1 − 𝐹 𝑃 (𝑥) = 𝑃 (𝑋 > 𝑥). The DM is assumed to be uncertain
bout the underlying distribution 𝑃 of 𝑋 due to its limited access to
he market information and historical data. Moreover, the insurer uses
benchmark distribution 𝐹Q, where Q ∈ ([0,𝑀]), to price insurance,

nd we assume that the premium 𝜋(𝐼) is given by the expected value
rinciple:

(𝐼) = (1 + 𝜃)EQ[𝐼(𝑋)] = (1 + 𝜃)∫

∞

0
𝐼(𝑥)𝑑𝐹Q(𝑥), (2.2)

here 𝜃 ≥ 0 is called the safety loading factor.
For the indemnity function, we impose exogenously the so-called

ncentive compatibility condition on it. This condition is first proposed
y Huberman et al. (1983) and requires that the losses borne by
he DM and insurer are both increasing. This would reduce the DM’s
otivation of manipulating the losses and thus alleviate the ex post
oral hazard issues. Under the incentive compatibility condition, the

ndemnity function must be in the following class:

=
{

𝐼 ∶ R+ ↦ R+ |

|

|

𝐼(0) = 0, 0 ≤ 𝐼(𝑥2) − 𝐼(𝑥1) ≤ 𝑥2 − 𝑥1 for any 0 ≤ 𝑥1 ≤ 𝑥2
}

.

2 We do not distinguish between ‘‘increasing’’ and ‘‘non-decreasing’’ in the
aper.

3 The random variables 𝑍 and 𝑌 are called comonotonic if 𝑍 = 𝐾1(𝑇 ) and
= 𝐾2(𝑇 ) for some increasing functions 𝐾1 and 𝐾2, where 𝑇 is a random

ariable.
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Notably, if 𝐼 ∈ , then 𝑋 − 𝐼(𝑋) and 𝐼(𝑋) are comonotonic. The class
 is quite large and includes many well known indemnity functions,
such as the stop-loss, quota-share and truncated stop-loss functions.4
Additionally, if 𝐼 ∈ , then 𝐼 is 1-Lipschitz continuous and admits the
following integral representation

𝐼(𝑥) = ∫

𝑥

0
𝜂(𝑡)𝑑𝑡, 𝑥 ∈ [0,∞), (2.3)

where 𝜂 is called the MIF (Assa, 2015; Zhuang et al., 2016).
Throughout the paper, we assume that the DM aims to choose the

nsurance contract that can minimize its risk exposure, measured by a
istortion risk measure. When distributional uncertainty is absent and
he probability measure 𝑃 is known, the following problem is faced by
he DM, which has been extensively studied in the literature5:

min
𝐼∈

𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)). (2.4)

Now given that the DM is uncertain about the distribution of 𝑋,
t aims to minimize the worst-case risk measure, i.e. the largest one
mong the risks resulting from all the possible distributions. The DM
ill consider a set of distributions around the benchmark distribution
Q with Q ∈ ([0,𝑀]). In this paper, we use the 𝐿𝑝 norm to measure

he distance between the candidate distribution and the benchmark
istribution. It has also been found that the 𝐿1 distance is equivalent
o the first-order Wasserstein distance (Panaretos & Zemel, 2019), and
s explained in Pesenti and Jaimungal (2023), an important reason for
sing such metric in uncertainty modeling is that it allows comparison
etween distributions with differing supports. We will only apply the
2 and 𝐿1 distances in this paper, while mainly focusing on the 𝐿2-
istance-based problem as the 𝐿1-distance-based problem can be solved
n a similar way. The following definition is for a general 𝐿𝑝 distance

between two cumulative distribution functions.

Definition 2.1. The 𝐿𝑝 distance between 𝐹 𝑃 , 𝐹Q with {𝑃 ,Q} ⊂
([0,𝑀]) is given by

𝐷𝑝(𝐹 𝑃 , 𝐹Q) =
(

∫

∞

−∞
(𝐹 𝑃 (𝑥) − 𝐹Q(𝑥))𝑝𝑑𝑥

)
1
𝑝
.

With the above definition, the first uncertainty set of the loss dis-
ribution is described as a ball centered on the benchmark distribution
Q under the 𝐿2 distance:

𝜖 ∶= {𝑃 ∈ ([0,𝑀]) ||
|

𝐷2(𝐹 𝑃 , 𝐹Q) ≤
√

𝜖},

where 𝜖 ≥ 0. If 𝜖 = 0, then the set 0 is a singleton, and given by
0 = {Q}; this yields the case without distributional uncertainty. This
case is addressed by Cui et al. (2013) and Assa (2015). Hence, we focus
on the case where 𝜖 > 0 in the rest of this paper. Since 𝑀 <∞, it holds
that EQ[𝑋] < ∞ and sup𝑃∈1

𝜌𝑃𝑔 (𝑋) < ∞.
We next present the main problem that we study in this paper.

Problem 1. For a given 𝜖 > 0, solve

inf
𝐼∈

sup
𝑃∈𝜖

𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)).

It is worth pointing out that our Problem 1 is different from Prob-
lem (P4) of Birghila and Pflug (2019), where their uncertainty set is
structured under the Wasserstein distance. Nevertheless, the existence
of the solution to our Problem 1 can be proved analogously as their
Proposition 4.2. In the next section, we provide the analytical solution
to Problem 1.

4 The stop-loss function is given by 𝐼(𝑥) = (𝑥 − 𝑑)+ for some 𝑑 ≥ 0. The
quota-share function is given by 𝐼(𝑥) = 𝑐𝑥 for some fraction 𝑐 ∈ [0, 1]. The
truncated stop-loss function is given by 𝐼(𝑥) = (𝑥−𝑑1)+∧𝑑2 for some 𝑑1, 𝑑2 ≥ 0.

5 If 𝑃 = Q, we here refer to Assa (2015), Zhuang et al. (2016) and Lo
(2017), and for generic 𝑃 ∈ ([0,𝑀]) we refer to Boonen (2016).
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Remark 2.1. Generally, the selection of 𝜖 is subjective and depends
on the DM’s information set or ambiguity-aversion level. Intuitively, a
more ambiguity-averse DM will apply a smaller 𝜖 in her model. As will
be shown in Section 3.2, 𝜖 is negatively related with the Lagrangian
parameter 𝛽 in (3.5), where 𝛽 can be understood as a penalty parameter
as in Uppal and Wang (2003). This penalty parameter penalizes distri-
bution functions that are further away from the benchmark distribution
𝐹Q, and this penalty is high for a more ambiguity-averse DM.

Statistically, the selection of 𝜖 can depend on the collected data.
Note that the 𝐿2 distance between an empirical CDF 𝐹𝑛 and a hy-
pothesized CDF 𝐹 bears much similarity with the quadratic empirical
distribution function test statistic (Stephens, 2017):

𝑄 = 𝑛∫

∞

−∞
(𝐹𝑛(𝑥) − 𝐹 (𝑥))2𝜓(𝑥)𝑑𝐹 (𝑥),

here 𝑛 is the size of dataset, and 𝜓(𝑥) is a function that assigns weights
to the squared difference (𝐹𝑛(𝑥) −𝐹 (𝑥))2. If 𝐹 is smooth enough, which
s indeed the case for many parametric loss distributions introduced
n Klugman et al. (2012), then taking 𝜓(𝑥) = 1

𝑓 (𝑥) , where 𝑓 (𝑥) = 𝐹 ′(𝑥),
ields
∞

−∞
(𝐹𝑛(𝑥) − 𝐹 (𝑥))2𝑑𝑥 = 𝑄

𝑛
.

While generally the explicit distribution for 𝑄 is not available in
the literature, one can still apply bootstrapping to get the confidence
interval for 𝑄, for which the bounds can be used to determine the value
of 𝜖. This is not further pursued in this paper.

3. The optimal indemnity function and the worst-case distribution

3.1. The structure of indemnity function

In this section, we derive the structure of the optimal indemnity
function. We start by stating the well-known minimax theorem (Fan,
1953).

Theorem 3.1 (Minimax Theorem). Let 𝛯1 be a non-empty compact convex
Hausdorff topological vector space6 and let 𝛯2 be a convex set. If  is a
real-valued function defined on 𝛯1 × 𝛯2 such that

• 𝜉1 ↦ (𝜉1, 𝜉2) is convex and lower semi-continuous on 𝛯1 for each
𝜉2 ∈ 𝛯2;

• 𝜉2 ↦ (𝜉1, 𝜉2) is concave on 𝛯2 for each 𝜉1 ∈ 𝛯1,

then

inf
𝜉1∈𝛯1

sup
𝜉2∈𝛯2

(𝜉1, 𝜉2) = sup
𝜉2∈𝛯2

inf
𝜉1∈𝛯1

(𝜉1, 𝜉2).

The Minimax theorem states that under certain conditions, the
infimum of the supremum of a real-valued function defined on a
product of two sets is equal to the supremum of the infimum of the
function. The class  is convex. Since 𝑀 < ∞, applying Arzelà–
Ascoli Theorem leads to the compactness of . As the distortion risk
measure is translation invariant and comonotonic additive, it holds that
𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)) is linear in 𝐼 . Moreover, it is easy to verify that
𝜖 is also convex, and 𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)) is concave in 𝐹 𝑃 due to
the concavity of the distortion function 𝑔. Hence, the conditions for
applying Theorem 3.1 are all met in our setting. By exchanging the
‘‘inf ’’ and ‘‘sup’’ in Problem 1, we obtain the following problem:

sup
𝑃∈𝜖

inf
𝐼∈

𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)). (3.1)

The inner problem of (3.1) coincides with Problem (2.4), for which
the solution is well-known in the literature (see, e.g., Boonen, 2016;

6 A Hausdorff topological vector space is a topological vector space with the
eparation property, i.e. any two distinct points in the space can be separated
y disjoint open sets.
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Cheung & Lo, 2017; Lo, 2017). We present its solution below. Here,
1𝐴(𝑥) is the indicator function, that is equal to 1 if 𝑥 ∈ 𝐴 and

otherwise. Moreover, we recall that 𝑆𝑃 and 𝑆Q are the survival
functions under the probability measures 𝑃 and Q, respectively.

Lemma 3.1. For a fixed 𝑃 ∈ ([0,𝑀]), optimal indemnity functions to
the inner problem of (3.1) are given by 𝐼∗(𝑥;𝑃 ) = ∫ 𝑥0 𝜂∗(𝑡;𝑃 )𝑑𝑡 with

𝜂∗(𝑡;𝑃 ) = 1{𝑡∶(1+𝜃)𝑆Q(𝑡)<𝑔(𝑆𝑃 (𝑡))}(𝑡) + 𝛾(𝑡) ⋅ 1{𝑡∶(1+𝜃)𝑆Q(𝑡)=𝑔(𝑆𝑃 (𝑡))}(𝑡),

where 𝛾 is a Lebesgue measurable and [0, 1]-valued function.

As shown in Lemma 3.1, the optimal indemnity function that solves the
inner problem of (3.1) is not unique due to the non-uniqueness of 𝛾(𝑡)
for 𝑡 such that (1+𝜃)𝑆Q(𝑡) = 𝑔

(

𝑆𝑃 (𝑡)
)

. In this lemma, we can interpret
the term (1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥)) as the net price for purchasing the
marginal coverage 𝐼 ′(𝑥) when the realized loss is 𝑥, as it represents the
difference between the cost of coverage under the insurer’s probability
measure and the DM’s valuation of the coverage. Lemma 3.1 indicates
that the DM will purchase the largest marginal coverage (i.e., 𝐼 ′(𝑥) = 1)
when this net price is negative and purchase zero marginal coverage
(i.e., 𝐼 ′(𝑥) = 0) when this net price is positive.

Lemma 3.1 implies that if the worst-case survival function 𝑆𝑃 ∗

(written as 𝑆∗ in the sequel) is known, then 𝐼∗(𝑥;𝑃 ∗) is the solution
to Problem 1. In the next section, we derive the worst-case survival
function 𝑆∗ analytically.

3.2. The worst-case distribution

Note that

𝐷2(𝐹 𝑃 , 𝐹Q) =
(

∫

𝑀

0
(𝐹 𝑃 (𝑥) − 𝐹Q(𝑥))2𝑑𝑥

)

1
2

=
(

∫

𝑀

0
(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2𝑑𝑥

)

1
2

.

With the indemnity function 𝐼∗(𝑥;𝑃 ) given in Lemma 3.1, we can write
Problem 1 as

⎧

⎪

⎨

⎪

⎩

sup
𝑃∈([0,𝑀])

𝜌𝑃𝑔 (𝑋 − 𝐼∗(𝑋;𝑃 ) + 𝜋(𝐼∗)),

s.t. ∫

𝑀

0
(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

(3.2)

The objective function of (3.2) could be further written as

𝜌𝑃𝑔 (𝑋 − 𝐼∗(𝑋;𝑃 ) + 𝜋(𝐼))

= 𝜌𝑃𝑔 (𝑋) + ∫

𝑀

0

(

(1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥))
)

1{𝑥∶(1+𝜃)𝑆Q(𝑥)<𝑔(𝑆𝑃 (𝑥))}(𝑥)𝑑𝑥

= 𝜌𝑃𝑔 (𝑋) − ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥) − (1 + 𝜃)𝑆Q(𝑥))
)

+ 𝑑𝑥

= ∫

𝑀

0

{

𝑔(𝑆𝑃 (𝑥)) − (𝑔(𝑆𝑃 (𝑥)) − (1 + 𝜃)𝑆Q(𝑥))+
}

𝑑𝑥

= ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥.

Problem (3.2) can thus be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup
𝑃∈([0,𝑀]) ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀

0
(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

(3.3)

Since 𝛺 is atom-less and the  is generated by 𝑋, we can transform
the objective to find the worst-case survival distribution 𝑆𝑃 of 𝑋 that
solves (3.3). That is, for the class of survival functions of 𝑋 given by
𝑋 ∶= {𝑆𝑃 ∶ 𝑃 ∈ ([0,𝑀])}, we write

⎧

⎪

⎪

⎨

⎪

⎪

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀
(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

(3.4)
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⎩
0

We next provide some observations for the worst-case survival function
𝑆∗(𝑥), where

𝑆∗ = 𝑎𝑟𝑔 𝑠𝑢𝑝𝑆𝑃 ∈𝑋 ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀

0
(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

• Note that 𝑆𝑃 (𝑥) = 𝑆Q(𝑥) is always feasible in Problem (3.4) and
that 𝑆∗(𝑥) should be as large as possible in order to maximize
the objective function. The constraint provides a bound on the
𝐿2 distance between 𝑃 and Q, and it is straightforward to see
that the worst-case survival function should satisfy 𝑆∗(𝑥) ≥ 𝑆Q(𝑥)
for all 𝑥 ≥ 0. In other words, the worst-case risk faced by the
DM is larger than the risk faced by the insurer in the sense of the
first-order stochastic dominance.

• For fixed 𝑥, the objective function 𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) is
concave in 𝑆𝑃 (𝑥). Furthermore, the left-side of constraint in (3.4)
is a convex function of 𝑆𝑃 , and for 𝜖 > 0 there exists at least one
𝑆𝑃 ∈ 𝑋 that is strictly feasible to the problem (3.4): for instance,
𝑆𝑃 (𝑥) = 𝑆Q(𝑥) for 𝑥 ∈ [0,∞). This is Slater’s condition, and
thus solving Problem (3.4) is equivalent to solving the following
problem:

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2
)

𝑑𝑥,

(3.5)

for some 𝛽 ≥ 0 (i.e., strong duality holds).
• It is sufficient to solve Problem (3.5) for generic 𝑆𝑃 (𝑥) such

that 𝑆𝑃 (𝑥) ∈ [𝑆Q(𝑥), 1] for any fixed value of 𝑥 ≥ 0, and then
check thereafter that 𝑆𝑃 is indeed a survival function; that is,
it is decreasing, right-continuous, and such that 𝑆𝑃 (0) = 1 and
lim𝑥→∞ 𝑆𝑃 (𝑥) = 0. This is the technique that we will use to solve
Problem (3.5).

We treat the cases when the 𝐿2 constraint is slack and when the
constraint is binding separately. For the case when the Lagrangian
parameter 𝛽 = 0 in Problem (3.5), we only need to consider the problem

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥. (3.6)

For some distortion functions, the above problem might not give a
unique solution. In that case, we need to find the solution that yields
the threshold of 𝜖 such that 𝛽 = 0 if 𝜖 is greater than that threshold.
In the next theorem, we derive a worst-case survival function and this
threshold for the case when 𝛽 = 0.

Theorem 3.2. Let

𝑥0 ∶= sup{𝑥 ∈ [0,𝑀) ∶ (1 + 𝜃)𝑆Q(𝑥) ≥ 1},

𝑥1 ∶= sup{𝑥 ∈ [𝑥0,𝑀) ∶ (1 + 𝜃)𝑆Q(𝑥) ≥ 𝑔(𝑆Q(𝑥))},

and 𝑡0 ∶= 𝑔−1(1), where 𝑔−1(𝑡) = inf {𝑥 ∈ [0, 1] ∶ 𝑔(𝑥) ≥ 𝑡}. If 𝜖 ≥
∫ 𝑀0 (𝑆̃∗(𝑥) − 𝑆Q(𝑥))2𝑑𝑥 with

𝑆̃∗(𝑥) =
(

𝑡0 ∨ 𝑆Q(𝑥)
)

1[0,𝑥0)(𝑥) + 𝑔
−1((1 + 𝜃)𝑆Q(𝑥))1[𝑥0 ,𝑥1)(𝑥) + 𝑆

Q(𝑥)1[𝑥1 ,𝑀](𝑥)

(3.7)

for all 𝑥 ≥ 0, then a worst-case survival function of 𝑋 that solves (3.6) is
given by 𝑆∗ = 𝑆̃∗.

If 𝛽 = 0, the worst-case survival function may not be unique. As
shown in the proof of Theorem 3.2, the survival function in (3.7) is the
one that, among the solutions to Problem (3.6), minimizes ∫ 𝑀0 (𝑆𝑃 (𝑥)−
𝑆Q(𝑥))2𝑑𝑥.

Next, we derive the worst-case survival function of 𝑋 when the
2
Lagrangian parameter 𝛽 > 0 in Problem (3.5) (and thus the 𝐿 distance
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constraint becomes binding). For the following theorem, we remark
that 𝑔 is not assumed to be differentiable. Here, since 𝑔 is monotone,
and it is therefore differentiable almost everywhere by the Lebesgue
Theorem for the differentiability of monotone functions.

Theorem 3.3. Let 𝑥0 and 𝑥1 be as defined in Theorem 3.2. If 𝛽 > 0 in
Problem (3.5), the worst-case survival function of 𝑋 is uniquely given by

𝑆∗(𝑥; 𝛽) = 𝑆̂(𝑥; 𝛽)1[0,𝑥0)(𝑥) +
(

𝑆̃(𝑥; 𝛽) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥))
)

1[𝑥0 ,𝑥1)(𝑥)

+ 𝑆Q(𝑥)1[𝑥1 ,𝑀](𝑥),

(3.8)

where

𝑆̂(𝑥; 𝛽) =

{

1, if 𝑔′(1−) − 2𝛽𝐹Q(𝑥) ≥ 0,

𝑆̃(𝑥; 𝛽), if 𝑔′(1−) − 2𝛽𝐹Q(𝑥) < 0,
(3.9)

and where 𝑆̃(𝑥; 𝛽) satisfies

𝑔′(𝑆̃(𝑥; 𝛽)−) − 2𝛽(𝑆̃(𝑥; 𝛽) −𝑆Q(𝑥)) ≥ 0, 𝑔′(𝑆̃(𝑥; 𝛽)+) − 2𝛽(𝑆̃(𝑥; 𝛽) −𝑆Q(𝑥)) ≤ 0.

(3.10)

Now, 𝑆∗(𝑥; 𝛽) solves Problem (3.4) where 𝛽 is such that

∫

𝑀

0
(𝑆∗(𝑥; 𝛽) − 𝑆Q(𝑥))2𝑑𝑥 = 𝜖. (3.11)

Furthermore, 𝛽 is decreasing with respect to 𝜖.

The result in Theorem 3.3 can be interpreted as follows. If the
function 𝑡 ↦ 𝑔(𝑡) − (1 + 𝜃)𝑡 has a positive root 𝑡, then 𝑔(𝑡) ≥ (1 + 𝜃)𝑡
for 𝑡 ∈ [0, 𝑡]. As per the discussions at the beginning of this section,
only the survival function 𝑆𝑃 (𝑥) ≥ 𝑆Q(𝑥) for all 𝑥 ≥ 0 is of interest.
Thus, for large 𝑥 such that 𝑆Q(𝑥) ≤ 𝑡, we have

𝑔(𝑆𝑃 (𝑥)) ≥ 𝑔(𝑆Q(𝑥)) ≥ (1 + 𝜃)𝑆Q(𝑥).

Lemma 3.1 tells that the DM will purchase full coverage for that part
of loss. Hence, the DM does not consider any worse distribution for the
tail part. For 𝑥 such that

(1 + 𝜃)𝑆Q(𝑥) > 𝑔(𝑆𝑃 (𝑥)) ≥ 𝑔(𝑆Q(𝑥)),

the DM will retain these marginal losses. Thus, the DM would give more
weight to the probabilities for the small- or medium-sized losses.

Appendix B studies the more general case where the DM has a
benchmark distribution different from that under Q. This can be inter-
preted as there being belief heterogeneity between the DM and insurer
regarding the benchmark distribution (i.e., their respective baseline
probability distributions for estimating risk). Belief heterogeneity in
insurance without distributionally robust objectives has been studied
in Boonen (2016), Chi (2019), Ghossoub (2017), Jiang et al. (2019),
and we differ from these papers by considering a robust insurance prob-
lem formulation. By introducing belief heterogeneity, the worst-case
survival functions are less straightforward to interpret than those in
Theorems 3.2 and 3.3, and the resultant optimal insurance indemnities
can have complex shapes. We provide Appendix B for completeness.

If we change the expectation premium principle in this paper to the
distortion premium principle, i.e. 𝜋(𝐼) = (1 + 𝜃)𝜌Q𝑔̃ (𝐼(𝑋)), then

𝜌Q𝑔̃ (𝐼(𝑋)) = ∫

𝑀

0
𝑔̃(𝑆Q

𝐼(𝑋)(𝑥))𝑑𝑥

= ∫

𝑀

0
𝐼(𝑥)𝑑[1 − 𝑔̃(𝑆Q

𝑋 (𝑥))]

= EQ̃[𝐼(𝑋)],

where 𝐹 Q̃(𝑥) ∶= 1−𝑔̃(𝑆Q
𝑋 (𝑥)) does not depend on the function 𝐼 (Boonen

et al., 2021). Hence, adopting the distortion premium principle is
equivalent to adopting another probability measure in the expectation
premium principle, and this is a special case of our general setting in
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Appendix B. T
Some specific examples illustrating the main results in this section
will be presented in the next section.

4. Some concrete examples

4.1. A twice differentiable distortion function

To further compare the worst-case distribution with the benchmark
distribution, we adopt the following additional assumption.

Assumption 1. The following two conditions are satisfied simultane-
ously:

• The distortion function 𝑔 is twice differentiable, and
• there exist probability density functions for both the worst-case

distribution and benchmark distribution.

We define the following two points:

𝑥′0 ∶= inf{𝑥 ∈ [0, 𝑥0) ∶ 2𝛽𝐹Q(𝑥) > 𝑔′(1−)}, (4.1)
𝑥′1 ∶= inf{𝑥 ∈ [𝑥0, 𝑥1) ∶ 𝑔′(𝑔−1((1 + 𝜃)𝑆Q(𝑥))) ≥ 2𝛽(𝑔−1((1 + 𝜃)𝑆Q(𝑥)) − 𝑆Q(𝑥))},

(4.2)

with inf ∅ being the left endpoint of the interval. The following propo-
sition provides a description of the worst-case distribution under the
above assumption.

Proposition 4.1. Let Assumption 1 hold. For the worst-case survival
function 𝑆∗(⋅; 𝛽), with 𝛽 as in Theorem 3.3, it holds that

(i). 𝑆∗(𝑥′0; 𝛽) = 1, and
(ii). 𝑓Q(𝑥) ≥ 𝑓 ∗(𝑥; 𝛽) if 𝑥 ∈ [0, 𝑥′1), and 𝑓

Q(𝑥) ≤ 𝑓 ∗(𝑥; 𝛽) if 𝑥 ∈ [𝑥′1, 𝑥1),
where 𝑓 ∗(𝑥; 𝛽) ∶= − 𝜕𝑆∗(𝑥;𝛽)

𝜕𝑥 .

Proposition 4.1 shows that there may exist singularities between the
worst-case distribution and the benchmark distribution, and that the
DM would assign less weight to the probabilities for small-sized losses
while assigning more weight to the probabilities for medium-sized
losses, compared with the benchmark distribution.

Under Assumption 1, we can revisit and determine the optimal
indemnity function for Problem 1. The following results are from
Section 3.2 and Lemma 3.1.

• From Proposition 4.1, we get that the DM assigns zero probability
to the event {𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∈ [0, 𝑥′0)}. Hence the DM demands no
insurance for the losses in [0, 𝑥′0).

• When 𝑥 ∈ [𝑥′0, 𝑥
′
1), by the proof of Proposition 4.1, we get that (1+

𝜃)𝑆Q(𝑥) > 𝑔(𝑆∗(𝑥; 𝛽)). Therefore the DM demands no insurance
for the losses in [𝑥′0, 𝑥

′
1).

• When 𝑥 ∈ [𝑥′1, 𝑥1), as per Theorem 3.3 and Proposition 4.1,
𝑆∗(𝑥; 𝛽) = 𝑔−1((1 + 𝜃)𝑆Q(𝑥)), or equivalently, (1 + 𝜃)𝑆Q(𝑥) =
𝑔(𝑆∗(𝑥; 𝛽)). Hence, the DM is indifferent between purchasing
insurance or no insurance for the losses in [𝑥′1, 𝑥1).

• When 𝑥 ∈ [𝑥1,𝑀), we know from Theorem 3.3 that 𝑆∗(𝑥; 𝛽) =
𝑆Q(𝑥) and (1 + 𝜃)𝑆Q(𝑥) < 𝑔(𝑆Q(𝑥)). Hence, the DM demands full
insurance for the losses in [𝑥1,𝑀).

he above findings lead to the following theorem, that provides the
xplicit indemnity function that solves Problem 1.

heorem 4.1. Under Assumption 1, the optimal indemnity function that
olves Problem 1 is given by

∗(𝑥) = ∫

𝑥

0

{

𝛾(𝑡)1[𝑥′1 ,𝑥1)
(𝑡) + 1[𝑥1 ,∞)(𝑡)

}

𝑑𝑡, (4.3)

here 𝛾(𝑡) ∈ [0, 1], 𝑥′1 is defined in Eq. (4.2) and 𝑥1 is defined in
heorem 3.3.
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Theorem 4.1 shows that under Assumption 1, the stop-loss function
𝐼𝑑 (𝑥) = (𝑥 − 𝑑)+ for some 𝑑 ∈ [𝑥′1, 𝑥1) is a solution to Problem 1.

In the classical setting where 𝜖 = 0 (and thus 𝐹 𝑃 = 𝐹Q for all
∈ 0), as per Lemma 3.1, we have 𝐼∗𝑐 (𝑥) = ∫ 𝑥0 𝜂∗(𝑡;𝑃 )𝑑𝑡 where

𝜂∗(𝑡;𝑃 ) = 1{𝑡∶(1+𝜃)𝑆Q(𝑡)<𝑔(𝑆Q(𝑡))} + 𝛾(𝑡) ⋅ 1{𝑡∶(1+𝜃)𝑆Q(𝑡)=𝑔(𝑆Q(𝑡))}.

Based on the definition of 𝑥1 in Theorem 3.2, it holds that if (1 +
𝜃)𝑆Q(𝑥) > 𝑔(𝑆Q(𝑥)) on [0, 𝑥1), then 𝐼∗𝑐 (𝑥) = (𝑥 − 𝑥1)+. Note that when
𝛽 → ∞ (or equivalently 𝜖 = 0), our setting reduces to the classical
setting, and (4.2) tells that 𝑥′1 = 𝑥1 (the right end-point when the
set becomes empty). Hence, (4.3) becomes 𝐼∗(𝑥) = ∫ 𝑥0 1[𝑥1 ,∞)(𝑡)𝑑𝑡 =
(𝑥 − 𝑥1)+, which is exactly 𝐼∗𝑐 (𝑥).

4.2. Tail value-at-risk

In this section, we study the case in which the DM is a TVaR
minimizer.

Definition 4.1. The TVaR of a random variable 𝑍 at the confidence
level 𝛼 ∈ (0, 1), under probability measure 𝑃 , is defined as

TVaR𝑃𝛼 (𝑍) = 1
1 − 𝛼 ∫

1

𝛼
VaR𝑃𝑡 (𝑍)𝑑𝑡, (4.4)

with

VaR𝑃𝛼 (𝑍) = inf {𝑧 ∈ R ∶ 𝑃 (𝑍 ≤ 𝑧) ≥ 𝛼} .

The distortion function for TVaR at the confidence level 𝛼 ∈ (0, 1)
is given by 𝑔(𝑥) = min{1, 𝑥

1−𝛼 } (Dhaene et al., 2006), which is indeed
ncreasing and concave. Note that this distortion function 𝑔 is not
twice) differentiable, and thus Assumption 1 does not hold.

We focus on the following case:

+ 𝜃 < 1
1 − 𝛼

, (4.5)

which is the most common case in practice.7
We first look at the case when 𝛽 = 0, and the 𝐿2 constraint is slack.

Then, it follows from Theorem 3.2 that 𝑡0 = 𝑔−1(1) = 1 − 𝛼. Since
𝑆Q(𝑥) > 1

1+𝜃 > 1−𝛼 = 𝑡0 for 𝑥 ∈ [0, 𝑥0), it follows from Theorem 3.2 that
𝑆̃∗(𝑥) = 𝑆Q(𝑥) for 𝑥 ∈ [0, 𝑥0). It is easy to see that (1+𝜃)𝑥 < min{1, 𝑥

1−𝛼 }
when 𝑥 < 1

1+𝜃 , and thus 𝑥1 = 𝑥0. Therefore, a worst-case survival
function of 𝑋 is given by

𝑆̃∗(𝑥) = 𝑆Q(𝑥)1[0,𝑥0)(𝑥) + 𝑆
Q(𝑥)1[𝑥0 ,𝑀](𝑥) = 𝑆Q(𝑥). (4.6)

Thus, if 𝜖 ≥ ∫ 𝑀0 (𝑆̃∗(𝑥)−𝑆Q(𝑥))2𝑑𝑥 = 0, a worst-case survival function of
𝑋 is given by 𝑆Q(𝑥). From Lemma 3.1, we get that the corresponding
optimal indemnity function is given by 𝐼∗(𝑥) = (𝑥 − 𝑥0)+. Since 𝜖 ≥ 0
always holds, the case with 𝛽 > 0 becomes irrelevant.

The intuition of these findings with TVaR is as follows. It will
be optimal to insure risks larger than 𝑥0 via a stop-loss indemnity,
and thus the retained risk is capped by a deductible. The probability
under Q that the retained risk is equal to the deductible (maximum
loss) is large enough, according to (4.5) so that the TVaR is equal
to this deductible. Under alternative distributions, the value of TVaR
cannot increase strictly as the TVaR cannot exceed the maximum loss.
Therefore, a worst-case probability measure is given by 𝑆Q(𝑥).

5. Under the 𝑳𝟏 distance

In this section, we revisit Problem 1 but with the 𝐿1 distance. As
shown by many works in the literature, e.g., Panaretos and Zemel

7 In insurance regulation, 𝛼 is usually chosen to be close to 1, e.g. 0.99 or
.975 based on the Swiss Solvency Test (SST) or BCBS (2013). Then, it follows
+ 𝜃 < 1 for reasonable values of the risk loading 𝜃.
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(2019), Villani (2009), the 𝐿1 distance coincides with the first-order
Wasserstein distance8:

𝐷1(𝐹 𝑃 , 𝐹Q) ∶= ∫

∞

−∞
|𝐹 𝑃 (𝑥) − 𝐹Q(𝑥)|𝑑𝑥 = ∫

1

0
|(𝐹 𝑃 )−1(𝑡) − (𝐹Q)−1(𝑡)|𝑑𝑡

= inf
𝑋∼𝐹𝑃 ,𝑌∼𝐹Q

E[|𝑋 − 𝑌 |],

(5.1)

here 𝐹 𝑃 , 𝐹Q are two CDFs, and (𝐹 𝑃 )−1 and (𝐹Q)−1 are their corre-
ponding quantile functions. The above equation also serves as a bridge
o analytically compare the 𝐿𝑝 distance and the 𝑝th-order Wasserstein
istance. In particular, for 𝑝 ∈ Z+, if 𝐷𝑝(𝐹 𝑃 , 𝐹Q) ≥ 1, then

𝑝(𝐹 𝑃 , 𝐹Q) =
(

∫

∞

−∞
|𝐹 𝑃 (𝑥) − 𝐹Q(𝑥)|𝑝𝑑𝑥

)
1
𝑝
≤ ∫

∞

−∞
|𝐹 𝑃 (𝑥) − 𝐹Q(𝑥)|𝑝𝑑𝑥

≤∫

∞

−∞
|𝐹 𝑃 (𝑥) − 𝐹Q(𝑥)|𝑑𝑥 = ∫

1

0
|(𝐹 𝑃 )−1(𝑡) − (𝐹Q)−1(𝑡)|𝑑𝑡

≤

(

∫

1

0
|(𝐹 𝑃 )−1(𝑡) − (𝐹Q)−1(𝑡)|𝑝𝑑𝑡

)
1
𝑝
(

∫

1

0
1𝑞𝑑𝑡

)
1
𝑞

=

(

∫

1

0
|(𝐹 𝑃 )−1(𝑡) − (𝐹Q)−1(𝑡)|𝑝𝑑𝑡

)
1
𝑝

,

where the last inequality is a consequence of the Hölder inequality with
1
𝑝 + 1

𝑞 = 1. As such, if the DM adopts 𝜖 > 1 in her 𝜖 , applying the 𝐿𝑝
distance would result in more choices of probability measures.

In view of the equivalence between the 𝐿1 distance and the first-
order Wasserstein distance, the results obtained in this section also
partially generalize those in Birghila and Pflug (2019).

For a given worst-case survival function, the results in Section 3.1
still hold. With the 𝐿1 distance, we then focus on the following
problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀

0
|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)|𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

(5.2)

Similar to the discussions in Section 3.2, we know that the worst-case
survival function 𝑆∗∗(𝑥), given by

𝑆∗∗ = 𝑎𝑟𝑔 𝑠𝑢𝑝𝑆𝑃 ∈𝑋 ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀

0
|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)|𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

should satisfy 𝑆∗∗(𝑥) ≥ 𝑆Q(𝑥) for all 𝑥 ≥ 0. Since 𝑆Q is strictly feasible
to Problem (5.2), as per Slater’s condition, solving (5.2) is equivalent
to solving its dual:

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)|
)

𝑑𝑥, (5.3)

for some 𝛽 ≥ 0.
Again, we treat the cases when 𝛽 = 0 and 𝛽 > 0 in different ways.

he following theorem summarizes the worst-case survival function for
he case when 𝛽 = 0.

heorem 5.1. If 𝜖 ≥ ∫ 𝑀0 |𝑆̃∗(𝑥) − 𝑆Q(𝑥)|𝑑𝑥 where

̃∗(𝑥) =
(

𝑡0 ∨ 𝑆Q(𝑥)
)

1[0,𝑥0)(𝑥) + 𝑔
−1((1 + 𝜃)𝑆Q(𝑥))1[𝑥0 ,𝑥1)(𝑥) + 𝑆

Q(𝑥)1[𝑥1 ,𝑀](𝑥),

here 𝑡0, 𝑥0 and 𝑥1 are defined in Theorem 3.2, then a worst-case survival
unction of 𝑋 is given by 𝑆∗∗ = 𝑆̃∗.

8 Here, the notation 𝑋 ∼ 𝐹 𝑃 means that the CDF of the random variable 𝑋
s 𝐹 𝑃 .
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Fig. 1. The distortion functions for different parameters.

In the case where 𝛽 > 0 in (5.3), we have the following theorem.

Theorem 5.2. Let 𝑥0 and 𝑥1 be defined in Theorem 3.2. For Prob-
lem (5.3), when 𝛽 > 0, the worst-case survival function of 𝑋 is uniquely
given by

𝑆∗∗(𝑥; 𝛽) = 𝑆̂(𝑥; 𝛽)1[0,𝑥0)(𝑥) +
(

𝑆̂(𝑥; 𝛽) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥))
)

1[𝑥0 ,𝑥1)(𝑥)

+ 𝑆Q(𝑥)1[𝑥1 ,𝑀](𝑥),

(5.4)

where

𝑆̂(𝑥; 𝛽) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑔′(1−) ≥ 𝛽,

𝑡1, if 𝑔′(1−) < 𝛽 < 𝑔′(𝑆Q(𝑥)+),

𝑆Q(𝑥), if 𝑔′(𝑆Q(𝑥)+) ≤ 𝛽.

(5.5)

where 𝑡1 satisfies 𝑔′(𝑡−1 ) ≥ 𝛽 and 𝑔′(𝑡+1 ) ≤ 𝛽. Now, 𝑆∗∗(𝑥; 𝛽) solves Problem
(5.2) where 𝛽 is such that

∫

𝑀

0
|𝑆∗∗(𝑥; 𝛽) − 𝑆Q(𝑥)|𝑑𝑥 = 𝜖. (5.6)

Furthermore, 𝛽 is decreasing with respect to 𝜖.

Clearly, it is true that

|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)| ≥ (𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2 for 𝑥 ≥ 0,

and so it follows that any distribution function that satisfies the con-
straint of Problem (5.2) also satisfies the constraint of Problem (3.4)
under the same 𝜖.9 Thus, applying the 𝐿1 distance results in a smaller
uncertainty set for the distributions, which is a subset of the uncertainty
set under the 𝐿2 distance. If 𝛽 in (5.5) is larger (which represents a
stronger effect of the constraint in (5.2)), then Theorem 5.2 tells that
𝑆∗∗(𝑥; 𝛽) = 𝑆Q(𝑥) for small 𝑥, which implies that the DM would only

9 The problems being compared here are Problems (5.2) and (3.4), where
we study the effect of changing the order of 𝐿𝑝 distance only. For the con-
straints of original problems, we have 𝐷2(𝐹 𝑃 , 𝐹Q) = (∫ ∞

0 (𝑆𝑃 (𝑥)−𝑆Q(𝑥))2𝑑𝑥)
1
2 ≤

√

𝜖 under the 𝐿2 distance and 𝐷1(𝐹 𝑃 , 𝐹Q) = ∫ ∞
0 (𝑆𝑃 (𝑥) − 𝑆Q(𝑥))𝑑𝑥 ≤ 𝜖 under

the 𝐿1 distance.
700
assign more weight to the probabilities for medium-sized losses. This is
partially attributable to the smaller distributional uncertainty set.

6. Numerical examples

In this section, we present a numerical example to analyze the effect
of the distortion function on the worst-case survival function as well
as the optimal indemnity function. We also present another example
to study the effect of the order of the 𝐿𝑝 distance on the worst-case
survival function and the optimal indemnity function.

6.1. The effect of the distortion function on the worst-case survival function
and indemnity function

We provide a numerical analysis under the 𝐿2 distance under the
following setup:

• The concave distortion function of the DM is of the power type,
also known as proportional hazards (PH) transform (Wang, 1995),
i.e.,

𝑔(𝑥) = 𝑥𝑝

where we focus on 𝑝 = 0.3, 0.5 or 0.7. A lower value of 𝑝
corresponds to a more concave distortion function and, thus, a
higher aversion to mean-preserving spreads (Yaari, 1987).

• The benchmark loss distribution is the exponential distribution
with mean 1000, i.e.,

𝑆Q(𝑥) = 𝑒−
𝑥

1000 , 𝑥 ∈ [0, 106].

• The safety loading factor is equal to 𝜃 = 0.1.

Fig. 1 illustrates the distortion functions under the different power
parameters. A larger value of 𝑝 corresponds with a less concave dis-
tortion function. For 𝑝 = 0.3, 0.5 and 0.7, the smallest values of 𝜖 for
the 𝐿2-distance-based constraints to be slack are given by 0.377, 0.514
and 0.807 respectively. To investigate the effect of 𝑝 on the worst-case
survival function, we look into two cases — when the 𝐿2 constraint is
always slack and when the 𝐿2 constraint is always binding. For the
second case, we select 𝜖 = 0.2. By applying Theorems 3.2 and 3.3,
the worst-case survival functions are shown in Fig. 2. Two interesting
observations can be made:

• For the case when the 𝐿2 constraint is slack, we have 𝑆∗
1 (𝑥) ≤

𝑆∗
2 (𝑥) ≤ 𝑆∗

3 (𝑥). In other words, if denoting by 𝑋1, 𝑋2 and 𝑋3 the
random variables whose survival functions are 𝑆∗

1 , 𝑆
∗
2 and 𝑆∗

3 , we
have 𝑋1 ≤𝑠𝑡 𝑋2 ≤𝑠𝑡 𝑋3, where 𝑍 ≤𝑠𝑡 𝑌 means that 𝑍 is smaller
than 𝑌 in terms of the first order stochastic dominance.

• For the case when the 𝐿2 constraint is binding, we have

∫

∞

0
𝑆∗
1 (𝑥)𝑑𝑥 = 1004.8 < ∫

∞

0
𝑆∗
2 (𝑥)𝑑𝑥 = 1005.6 < ∫

∞

0
𝑆∗
3 (𝑥)𝑑𝑥 = 1007.4.

Note that any two of the three worst-case survival functions cross
each other only once. Based on Definition 2.2 and Theorem 2.3
of Cheung et al. (2015), we have 𝑋1 ≤𝑖𝑐𝑥 𝑋2 ≤𝑖𝑐𝑥 𝑋3, where
𝑋1, 𝑋2, 𝑋3 denote the random variables whose survival functions
are 𝑆∗

1 , 𝑆
∗
2 , 𝑆

∗
3 , and 𝑍 ≤𝑖𝑐𝑥 𝑌 means that 𝑍 is smaller than 𝑌 in

terms of the increasing convex order.

It may seem counter-intuitive that a DM who is less risk averse
(larger 𝑝) would assign more weight to the probabilities of large losses.
We attribute this observation to the effect of insurance. Fig. 3 displays
the net price, i.e. (1+𝜃)𝑆Q(𝑥)−𝑔(𝑆∗(𝑥)), for the marginal coverage 𝐼 ′(𝑥)
for a loss 𝑥. Note that the DM would purchase insurance only when
the net price is negative. In either left or right panel of Fig. 3, the DM
who is more risk averse (small 𝑝) purchases more insurance. Under this
situation, the DM would not assign more weight to the part of the risk
that has been transferred to the insurer.
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Fig. 2. (Left) the worst-case survival functions for different parameters 𝑝 when the 𝐿2 constraints are slack; (right) the worst-case survival functions for different parameters 𝑝
when the 𝐿2 constraints are binding.
Fig. 3. (Left) the net price for purchasing 𝐼 ′(𝑥) when the 𝐿2 constraints are all slack; (right) the net price for purchasing 𝐼 ′(𝑥) when the 𝐿2 constraints are all binding. The net
price is given by (1 + 𝜃)𝑆Q(𝑥) − (𝑆∗(𝑥))𝑝.
Fig. 4. The worst-case survival functions under the 𝐿1 and 𝐿2 distance metrics.
701
6.2. The effect of the order of 𝐿𝑝 distance on the worst-case survival
function and indemnity function

In this section, we investigate the effect of the order of 𝐿𝑝 distance
on the worst-case survival function and the optimal indemnity function.
We consider the DM whose distortion function is 𝑔(𝑥) = 𝑥0.7. As shown
in Section 5, the constraint under the 𝐿1 distance is more restrictive
than that under the 𝐿2 distance for the same value of 𝜖. Under the
setting of our example, the smallest values of 𝜖 for the 𝐿1 and 𝐿2

constraints to be slack are given by 13.66 and 0.807 respectively. In
what follows, we select 𝜖 = 5 such that the constraint under the 𝐿1

distance becomes binding while the constraint under the 𝐿2 distance
is slack. Fig. 4 shows the worst-case survival functions under the two
different 𝐿𝑝 distance metrics. As expected, the worst-case survival
function under the 𝐿1 distance gets closer to the benchmark survival
function. Furthermore, under the 𝐿1 distance, the DM would assign
more weight to the probabilities for the medium-sized losses.

Fig. 5 exhibits the net prices for purchasing 𝐼 ′(𝑥) under the worst-
case survival functions as shown in Fig. 4. Since the uncertainty set
for distributions under the 𝐿1 distance is a subset of that under the 𝐿2

distance, it follows that the net price under the 𝐿1 distance is higher
than that under the 𝐿2 distance. Also, the DM who applies the 𝐿2

distance would retain less risk to herself.
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,

Fig. 5. The net prices for purchasing 𝐼 ′(𝑥) under the worst-case survival functions in
Fig. 4, given by (1 + 𝜃)𝑆Q(𝑥) − (𝑆∗(𝑥))𝑝.

Fig. 6. The illustration of 𝑥0 and 𝑥1.

7. Concluding remarks and future research

This paper investigates a distributionally robust insurance problem
from the viewpoint of a decision-maker (DM). The DM is assumed
to consider all distributions close to the benchmark distribution, with
‘‘closeness’’ measured by either the 𝐿2 or 𝐿1 distance. Subsequently, the
DM minimizes the distortion risk measure of the terminal loss under the
worst-case distribution. We explicitly derive both the worst-case distri-
bution and the optimal indemnity. The optimal insurance indemnity is
typically of a layer-type form. If the benchmark distribution of the DM
is the one used for insurance pricing, then the worst-case distribution
has three pieces, and its tail will follow that of the benchmark distribu-
tion. In a specific example where the DM uses TVaR, we find that the
worst-case distribution exactly matches the benchmark distribution in
the most common situation. Additionally, we compare the worst-case
distributions using the 𝐿1 and 𝐿2 distance metrics. We present some
numerical examples to demonstrate the effects of risk aversion level and
the order of 𝐿𝑝 distance on the worst-case distribution and indemnity
function.

We also extend our results to cases where the DM’s benchmark
distribution differs from the distribution used for pricing. Then, there
exists belief heterogeneity between the DM and insurer regarding the
benchmark distribution, and the effect of such belief heterogeneity
702
is studied for the robust insurance problem. However, this intro-
duces significantly more complexity to specific problems, even in cases
where the DM uses TVaR. We leave the study of specific cases in
which the solution is tractable for future research. While this pa-
per mainly focuses on the case where the expected-value premium
principle is applied, other premium principles, such as the mean–
variance or mean-standard-deviation premium principles, also warrant
investigation, which we leave for future research.
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Appendix A. Proofs

Proof of Lemma 3.1

This result is well-known in the literature, but we provide a proof
here for completeness.

Note that by using the Comonotonic additivity and Translation
invariance of the distortion risk measure, as well as the integral rep-
resentation of 𝜌𝑃𝑔 (𝐼(𝑋)) (Cheung & Lo, 2017):

𝜌𝑃𝑔 (𝐼(𝑋)) = ∫

𝑀

0
𝑔
(

𝑆𝑃 (𝑥)
)

𝑑𝐼(𝑥),

the objective of Problem 1 can be written as

𝜌𝑃𝑔 (𝑋 − 𝐼(𝑋) + 𝜋(𝐼)) = 𝜌𝑃𝑔 (𝑋) − 𝜌𝑃𝑔 (𝐼(𝑋)) + 𝜋(𝐼)

= 𝜌𝑃𝑔 (𝑋) + ∫

𝑀

0
((1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥)))𝑑𝐼(𝑥).

(A.1)

Based on the above equation, we can re-write the inner problem as

inf
𝐼∈ ∫

𝑀

0

(

(1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥))
)

𝑑𝐼(𝑥)

= inf
𝜂∈̃ ∫

𝑀

0

(

(1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥))
)

𝐼 ′(𝑥)(𝑥)𝑑𝑥

= inf
𝜂∈̃ ∫

𝑀

0

(

(1 + 𝜃)𝑆Q(𝑥) − 𝑔(𝑆𝑃 (𝑥))
)

𝜂(𝑥)𝑑𝑥, (A.2)

where the equation holds due to (2.3), and

̃ ∶=
{

𝜂 ∶ [0,𝑀] ↦ [0, 1] ||
|

𝜂 is Lebesgue measurable
}

.

Then, to minimize the integral of (A.2), we only need to minimize its
integrand function at each 𝑥 ∈ [0,∞), which directly yields

𝜂∗(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if (1 + 𝜃)𝑆Q(𝑥) < 𝑔(𝑆𝑃 (𝑥)),

𝛾(𝑥), if (1 + 𝜃)𝑆Q(𝑥) = 𝑔(𝑆𝑃 (𝑥)),

0, if (1 + 𝜃)𝑆Q(𝑥) > 𝑔(𝑆𝑃 (𝑥)),

for any 𝛾 that is a Lebesgue measurable and [0, 1]-valued function. This
concludes the proof. □

Proof of Theorem 3.2

Since 𝑔 is a concave function and satisfies 𝑔(0) = 0 and 𝑔(1) = 1, the
mapping 𝑡 ↦ 𝑔(𝑡) − (1 + 𝜃)𝑡 can have 0, 1, or infinitely many roots on
the interval (0, 1).

With the definitions of 𝑥0 and 𝑥1 (illustrated in Fig. 6), we first
examine the following problem:

sup ∫

𝑀
(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥

𝑆𝑃 ∈𝑋 0
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C

C

= sup
𝑆𝑃 ∈𝑋

∫

𝑥0

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥

+ ∫

𝑥1

𝑥0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥

+ ∫

𝑀

𝑥1

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥. (A.3)

The survival function in the solutions to the above problem may not be
unique, and we denote the set of solutions as 𝑠𝑋 . We find the solution
in 𝑠𝑋 that solves the next problem

min
𝑆𝑃 ∈𝑠𝑋 ∫

𝑀

0

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥

= min
𝑆𝑃 ∈𝑠𝑋

∫

𝑥0

0

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥 + ∫

𝑥1

𝑥0

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥

+ ∫

𝑀

𝑥1

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥. (A.4)

Given the definition of 𝑥0, if 𝑥 < 𝑥0, then (1+𝜃)𝑆Q(𝑥) ≥ 1 holds true,
resulting in the equation 𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) = 𝑔(𝑆𝑃 (𝑥)). Since 𝑔 is
increasing and concave, we define 𝑡0 = 𝑔−1(1), then any 𝑡 ∈ [𝑡0, 1] can
maximize 𝑔(𝑡) over [0, 1]. To minimize ∫ 𝑥00

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥 over all

𝑆𝑃 ∈ 𝑠𝑋 , we take 𝑆̃∗(𝑥) = 𝑡0 ∨ 𝑆Q(𝑥).
When 𝑥 ∈ [𝑥0, 𝑥1), we note that 𝑔(𝑆𝑃 (𝑥))∧(1+𝜃)𝑆Q(𝑥) ≤ (1+𝜃)𝑆Q(𝑥).

To maximize 𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) over 𝑆𝑃 ∈ 𝑋 , it is clear that
solutions 𝑆𝑃 ∈ 𝑠𝑋 satisfy 𝑆𝑃 (𝑥) ≥ 𝑔−1((1 + 𝜃)𝑆Q(𝑥)). To minimize
∫ 𝑥1𝑥0

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥 over all 𝑆𝑃 ∈ 𝑠𝑋 , we take 𝑆̃∗(𝑥) = 𝑔−1((1 +

𝜃)𝑆Q(𝑥)) for 𝑥 ∈ [𝑥0, 𝑥1).
When 𝑥 ∈ [𝑥1,𝑀], based on the definition of 𝑥1 we have

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

≤
(

𝑔(𝑆𝑃 (𝑥)) ∧ 𝑔(𝑆Q(𝑥))
)

≤ 𝑔(𝑆Q(𝑥)).

Therefore, we take 𝑆̃∗(𝑥) = 𝑆Q(𝑥) for 𝑥 ∈ [𝑥1,𝑀], and this automati-
cally minimizes ∫ 𝑀𝑥1

(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥 over 𝑆𝑃 ∈ 𝑠𝑋 .

Now, let

𝑆̃∗(𝑥) =
(

𝑡0 ∨ 𝑆Q(𝑥)
)

1[0,𝑥0)(𝑥) + 𝑔
−1 ((1 + 𝜃)𝑆Q(𝑥)

)

1[𝑥0 ,𝑥1)(𝑥) + 𝑆
Q(𝑥)1[𝑥1 ,∞)(𝑥),

we show that this is indeed a survival function. First, 𝑆̃∗ is decreasing
on [0, 𝑥0), [𝑥0, 𝑥1) and [𝑥1,𝑀], and is right-continuous (since 𝑆Q is right-
continuous). Now take arbitrary 𝑎0 ∈ [0, 𝑥0), 𝑎1 ∈ [𝑥0, 𝑥1) and 𝑎2 ∈
[𝑥1,𝑀]. Since (1+ 𝜃)𝑆Q(𝑥) ≤ 1 on [𝑥0, 𝑥1), we have 𝑔−1((1+ 𝜃)𝑆Q(𝑎1)) ≤
𝑔−1(1) = 𝑡0 ≤ 𝑡0 ∨ 𝑆Q(𝑎0). Since (1 + 𝜃)𝑆Q(𝑥) ≥ 𝑔(𝑆Q(𝑥)) on [𝑥0, 𝑥1), we
have 𝑔−1((1+𝜃)𝑆Q(𝑎1)) ≥ 𝑆Q(𝑎1) ≥ 𝑆Q(𝑎2). Thus, 𝑆̃∗(𝑥) is decreasing on
[0, 𝑥0) ∪ [𝑥0, 𝑥1) ∪ [𝑥1,𝑀]. This confirms that 𝑆̃∗ is a survival function.

It is apparent that 𝑆̃∗ is the survival function 𝑆𝑃 ∗ that solves

max
𝑆𝑃 ∈𝑋 ∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥.

Furthermore, 𝑆̃∗ minimizes ∫ 𝑀0
(

𝑆𝑃 (𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥 among the sur-

vival functions that maximize ∫ 𝑀0
(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥. Thus,
if 𝜖 ≥ ∫ 𝑀0

(

𝑆̃∗(𝑥) − 𝑆Q(𝑥)
)2 𝑑𝑥, then the worst-case survival function is

given by 𝑆∗(𝑥) = 𝑆̃∗(𝑥). □

Proof of Theorem 3.3

For a given 𝛽 > 0, we can rewrite Problem (3.5) as follows:

sup
𝑆𝑃 ∈𝑋

∫

𝑥0

0

(

𝑔(𝑆𝑃 (𝑥)) − 𝛽(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2
)

𝑑𝑥

+ ∫

𝑀

𝑥0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑆𝑃 (𝑥) − 𝑆Q(𝑥))2
)

𝑑𝑥.
(A.5)

To facilitate the subsequent discussions, we define the following func-
tions:

𝐾1(𝑡) = 𝑔(𝑡) − 𝛽(𝑡 − 𝑆Q(𝑥))2,

𝐾 (𝑡) = (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑡 − 𝑆Q(𝑥))2,
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𝐾3(𝑡) = 𝑔(𝑡) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑡 − 𝑆Q(𝑥))2

for 𝑡 ∈ [0, 1]. To solve Problem (A.5), we will consider the following
cases:

ase 1. 𝑥 ∈ [0, 𝑥0)
In this case, our goal is to maximize 𝑔(𝑆𝑃 (𝑥)) − 𝛽(𝑆𝑃 (𝑥) −
𝑆Q(𝑥))2 for each 𝑥 ∈ [0, 𝑥0), with 𝑆𝑃 ∈ 𝑋 . Since 𝑔(𝑡) and
−𝛽(𝑡 − 𝑆Q(𝑥))2 are both concave functions of 𝑡, the function
𝐾1(𝑡) is concave. Note that 𝐾 ′

1(𝑡) = 𝑔′(𝑡) − 2𝛽(𝑡 − 𝑆Q(𝑥)), which
is strictly decreasing due to 𝛽 > 0. We further note that
𝑔′(0+)−2𝛽(0−𝑆Q(𝑥)) > 0, and thus the optimal 𝑡 that maximizes
𝐾1(𝑡) over [0, 1] is positive. Next, we will discuss two sub-cases:
Sub-case 1: If 𝑔′(1−) − 2𝛽𝐹Q(𝑥) < 0, then the optimal 𝑡
that maximizes 𝐾1(𝑡) is an element of (0, 1). To accommodate
the points at which 𝑔 is not differentiable, the solution that
maximizes 𝐾1(𝑡) over [0, 1], which is denoted by 𝑆̃(𝑥), satisfies

𝑔′(𝑆̃(𝑥)−)−2𝛽(𝑆̃(𝑥)−𝑆Q(𝑥)) ≥ 0, 𝑔′(𝑆̃(𝑥)+)−2𝛽(𝑆̃(𝑥)−𝑆Q(𝑥)) ≤ 0

(A.6)

where 𝑔′(𝑡−) ∶= lim𝑥→𝑡− 𝑔′(𝑥) and 𝑔′(𝑡+) = lim𝑥→𝑡+ 𝑔′(𝑥). Note
that if 𝑔 is differentiable at 𝑆̃(𝑥), then (A.6) becomes

𝑔′(𝑆̃(𝑥)) − 2𝛽(𝑆̃(𝑥) − 𝑆Q(𝑥)) = 0,

which is the traditional first-order condition for maximizing
the concave function 𝐾1(𝑡). If 𝑥1 > 𝑥2, then 𝑆Q(𝑥1) ≤ 𝑆Q(𝑥2),
and

𝑔′(𝑆̃(𝑥1)−)−2𝛽𝑆̃(𝑥1) ≥ −2𝛽𝑆Q(𝑥1) ≥ −2𝛽𝑆Q(𝑥2) ≥ 𝑔′(𝑆̃(𝑥2)+)−2𝛽𝑆̃(𝑥2).

Hence 𝑆̃(𝑥1) ≤ 𝑆̃(𝑥2). This implies that 𝑆̃(𝑥) is decreasing. Note
that 𝑔′(𝑆Q(𝑥)+)−2𝛽(𝑆Q(𝑥)−𝑆Q(𝑥)) ≥ 0, and thus 𝑆̃(𝑥) ≥ 𝑆Q(𝑥).
Sub-case 2: If 𝑔′(1−) − 2𝛽𝐹Q(𝑥) ≥ 0, then the optimal 𝑡 that
maximizes 𝐾1(𝑡) over [0, 1] is equal to 1.
Now define

𝑆̂(𝑥) =

{

1, if 𝑔′(1−) − 2𝛽𝐹Q(𝑥) ≥ 0,

𝑆̃(𝑥), if 𝑔′(1−) − 2𝛽𝐹Q(𝑥) < 0,

Note that 𝑔′(1−) − 2𝛽𝐹Q(𝑥) is decreasing in 𝑥, so 𝑆̂(𝑥) is
decreasing. Hence, the optimal survival function on [0, 𝑥0] is
then given by 𝑆̂(𝑥).

ase 2. 𝑥 ∈ [𝑥0,𝑀]
In this case, let 𝑡∗(𝑥) = 𝑔−1((1 + 𝜃)𝑆Q(𝑥)) ∈ [0, 1]. If 𝑡 ≤ 𝑡∗(𝑥), or
equivalently, 𝑔(𝑡) ≤ (1 + 𝜃)𝑆Q(𝑥), then 𝐾3(𝑡) = 𝐾1(𝑡), which
is concave on [0, 𝑡∗(𝑥)]. If 𝑡 ≥ 𝑡∗(𝑥), or equivalently, 𝑔(𝑡) ≥
(1 + 𝜃)𝑆Q(𝑥), then 𝐾3(𝑡) = 𝐾2(𝑡), which is concave on [𝑡∗(𝑥), 1].
Note that

𝐾 ′
3(𝑡

∗(𝑥)−) = 𝐾 ′
1(𝑡

∗(𝑥)−) = 𝑔′
(

𝑡∗(𝑥)−
)

− 2𝛽
(

𝑡∗(𝑥) − 𝑆Q(𝑥)
)

and

𝐾 ′
3(𝑡

∗(𝑥)+) = 𝐾 ′
2(𝑡

∗(𝑥)+) = −2𝛽
(

𝑡∗(𝑥) − 𝑆Q(𝑥)
)

.

We have 𝐾 ′
3(𝑡

∗(𝑥)−) ≥ 𝐾 ′
3(𝑡

∗(𝑥)+), which implies that 𝐾3(𝑡) is
concave on [0, 1].

Next, we will discuss two sub-cases:
Sub-case 1: If 𝑥 < 𝑥1, then (1+ 𝜃)𝑆Q(𝑥) ≥ 𝑔(𝑆Q(𝑥)), or equivalently,

𝐾 ′
3(𝑡

∗(𝑥)+) ≤ 0. In this case, the maximum of 𝐾3(𝑡) on [0, 1] is attained
within [0, 𝑡∗(𝑥)]. Note that 𝐾3(𝑡) = 𝐾1(𝑡) when 𝑡 ∈ [0, 𝑡∗(𝑥)]. Then, similar
to the discussion of Case 1, the optimal survival function in this case
is represented by 𝑆∗(𝑥) = 𝑆̃(𝑥) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥)), where 𝑆̃(𝑥) satisfies
(A.6).

Sub-case 2: If 𝑥 ≥ 𝑥1, then (1+ 𝜃)𝑆Q(𝑥) ≤ 𝑔(𝑆Q(𝑥)), or equivalently,
𝐾 ′

3(𝑡
∗(𝑥)+) ≥ 0. In this case, the maximum of 𝐾3(𝑡) on [0, 1] is attained

within [𝑡∗(𝑥), 1]. Note that 𝐾3(𝑡) = 𝐾2(𝑡) when 𝑡 ∈ [𝑡∗(𝑥), 1], where 𝐾2(𝑡)
is apparently a quadratic function. Therefore, in this case the optimal

∗ Q
survival function is given by 𝑆 (𝑥) = 𝑆 (𝑥).
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Now let

𝑆∗(𝑥) = 𝑆̂(𝑥)1[0,𝑥0)(𝑥)+
(

𝑆̃(𝑥) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥))
)

1[𝑥0 ,𝑥1)(𝑥)+𝑆
Q(𝑥)1[𝑥1 ,𝑀](𝑥).

e have shown that 𝑆∗ element-wisely maximizes the integrand func-
ion of the problem (A.5). Furthermore, 𝑆∗ is right continuous and
ecreasing on [0, 𝑥0), [𝑥0, 𝑥1) and [𝑥1,𝑀]. Finally, we will prove that
∗ is a decreasing function on the interval [0,𝑀]. Take arbitrary 𝑎1 ∈

[0, 𝑥0), 𝑎2 ∈ [𝑥0, 𝑥1) and 𝑎3 ∈ [𝑥1,𝑀], we have

𝑆̃(𝑎2) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑎2)) ≤ 𝑆̃(𝑎2) ≤ 𝑆̃(𝑎1) ≤ 𝑆̂(𝑎1),

and

𝑆Q(𝑎3) ≤ 𝑆Q(𝑎2) ≤ 𝑆̃(𝑎2) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑎2)), (A.7)

where the second inequality of (A.7) is due to 𝑆Q(𝑥) ≤ 𝑆̃(𝑥) and
𝑔(𝑆Q(𝑥)) ≤ (1 + 𝜃)𝑆Q(𝑥) on [𝑥0, 𝑥1). This shows that 𝑆∗ is decreasing
on its domain [0,𝑀].

Next, we show the existence of 𝛽 such that ∫ 𝑀0 (𝑆∗(𝑥; 𝛽)−𝑆Q(𝑥))2𝑑𝑥
= 𝜖. We only discuss the case where the support of 𝑋 under Q is [0,𝑀]
as the proofs for other cases are similar. Note that if 𝛽 → 0, then as per
(3.9) 𝑆̂(𝑥; 𝛽) → 1, which leads to 𝑆∗(𝑥; 𝛽) ≥ 𝑆̃∗(𝑥) for all 𝑥 ∈ [0,𝑀],
where 𝑆̃∗(𝑥) is given by (3.7). As such,

∫

𝑀

0
(𝑆∗(𝑥; 𝛽) − 𝑆Q(𝑥))2𝑑𝑥 ≥ ∫

𝑀

0
(𝑆̃∗(𝑥) − 𝑆Q(𝑥))2𝑑𝑥 > 𝜖.

If 𝛽 → ∞, then based on (3.9) and (3.10) 𝑆̂(𝑥; 𝛽) → 𝑆Q(𝑥), which results
in

∫

𝑀

0
(𝑆∗(𝑥; 𝛽) − 𝑆Q(𝑥))2𝑑𝑥 = 0 < 𝜖.

Now, consider an arbitrary sequence {𝛽𝑛}𝑛=1,2,… → 𝛽0, where {𝛽𝑖}𝑖=0,1,…
∈ (0,∞). Since 𝑔(⋅) is almost everywhere differentiable on [0, 1], we
have that 𝑆∗(𝑥; 𝛽𝑛) converges pointwisely to 𝑆∗(𝑥; 𝛽0) almost every-
where. Since

∫

𝑀

0
(𝑆∗(𝑥; 𝛽𝑛) − 𝑆Q(𝑥))2𝑑𝑥 ≤ ∫

𝑀

0
(1 − 𝑆Q(𝑥))2𝑑𝑥 <∞,

by using Lebesgue’s Dominated Convergence Theorem, we have

∫

𝑀

0
(𝑆∗(𝑥; 𝛽𝑛) − 𝑆Q(𝑥))2𝑑𝑥 → ∫

𝑀

0
(𝑆∗(𝑥; 𝛽0) − 𝑆Q(𝑥))2𝑑𝑥.

As such, 𝛽 → ∫ 𝑀0 (𝑆∗(𝑥; 𝛽) − 𝑆Q(𝑥))2𝑑𝑥 is a continuous mapping.
Therefore, for any 𝜖 ∈ (0, ∫ 𝑀0 (𝑆̃∗(𝑥) − 𝑆Q(𝑥))2𝑑𝑥), where 𝑆̃∗(𝑥) is given
by (3.7), it follows from the intermediate value theorem that there
exists a 𝛽 > 0 such that ∫ 𝑀0 (𝑆∗(𝑥; 𝛽) − 𝑆Q(𝑥))2𝑑𝑥 = 𝜖.

When 𝛽 > 0, then the integrand function of (3.5) is strictly concave
in 𝑆𝑃 (𝑥), which naturally leads to the uniqueness of 𝑆∗(𝑥; 𝛽) that solves
(3.5).

At last, we show that 𝛽 is decreasing with respect to 𝜖. Given 𝛽2 >
𝛽1 > 0, if 𝑔′(1−) − 2𝛽2𝐹Q(𝑥) < 0 while 𝑔′(1−) − 2𝛽1𝐹Q(𝑥) ≥ 0, then
𝑆̂(𝑥; 𝛽1) = 1 > 𝑆̂(𝑥; 𝛽2) = 𝑆̃(𝑥; 𝛽2). If 𝑔′(1−) − 2𝛽𝑖𝐹Q(𝑥) < 0 for both
𝑖 = 1, 2 and we assume that 𝑆̃(𝑥; 𝛽2) > 𝑆̃(𝑥; 𝛽1), then we have

0 ≥ 𝑔′(𝑆̃(𝑥; 𝛽1)+) − 2𝛽1(𝑆̃(𝑥; 𝛽1) − 𝑆Q(𝑥))

≥ 𝑔′(𝑆̃(𝑥; 𝛽1)+) − 2𝛽2(𝑆̃(𝑥; 𝛽1) − 𝑆Q(𝑥))

> 𝑔′(𝑆̃(𝑥; 𝛽2)−) − 2𝛽2(𝑆̃(𝑥; 𝛽2) − 𝑆Q(𝑥)),

which contradicts with

𝑔′(𝑆̃(𝑥; 𝛽2)−) − 2𝛽2(𝑆̃(𝑥; 𝛽2) − 𝑆Q(𝑥)) ≥ 0.

As such 𝑆̃(𝑥; 𝛽2) ≤ 𝑆̃(𝑥; 𝛽1). In other words, 𝑆̂(𝑥; 𝛽) is decreasing in 𝛽.
Then, it is straightforward that 𝛽 is decreasing with respect to 𝜖. This
concludes the proof. □

Proof of Proposition 4.1

Here, (i) follows directly from the fact that when 𝑥 ∈ [0, 𝑥′0),
𝑔′(1−) − 2𝛽𝐹Q(𝑥) ≥ 0, and thus 𝑆∗(𝑥; 𝛽) = 𝑆̂(𝑥; 𝛽) = 1. In other words,

′
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the DM assigns zero probability to the event {𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∈ [0, 𝑥0)}.
To prove (ii), it should be noted that

𝑑
(

𝑔−1((1 + 𝜃)𝑡) − 𝑡
)

𝑑𝑡
= 1 + 𝜃
𝑔′

(

𝑔−1((1 + 𝜃)𝑡)
) − 1 ≥ 1 + 𝜃

𝑔′(𝑡)
− 1 ≥ 0,

if 𝑔−1((1 + 𝜃)𝑡) ≥ 𝑡 and 1 + 𝜃 ≥ 𝑔′(𝑡). If 𝑥 ∈ [𝑥0, 𝑥1), we have
−1((1 + 𝜃)𝑆Q(𝑥)) ≥ 𝑆Q(𝑥) and 1 + 𝜃 ≥ 𝑔′(𝑆Q(𝑥)) (as illustrated by
ig. 6). Therefore, 𝑔−1((1 + 𝜃)𝑆Q(𝑥)) − 𝑆Q(𝑥) is decreasing in 𝑥. Since
′(𝑔−1((1 + 𝜃)𝑆Q(𝑥))) is increasing in 𝑥, then

′(𝑔−1((1 + 𝜃)𝑆Q(𝑥))) − 2𝛽
(

𝑔−1((1 + 𝜃)𝑆Q(𝑥)) − 𝑆Q(𝑥)
)

s increasing in 𝑥. Therefore, when 𝑥 ∈ [𝑥′0, 𝑥
′
1), we have

′(𝑔−1((1 + 𝜃)𝑆Q(𝑥))) − 2𝛽
(

𝑔−1((1 + 𝜃)𝑆Q(𝑥)) − 𝑆Q(𝑥)
)

< 0.

ote that 𝑆̃(𝑥; 𝛽) satisfies

′(𝑆̃(𝑥; 𝛽)) − 2𝛽(𝑆̃(𝑥; 𝛽) − 𝑆Q(𝑥)) = 0.

hus, 𝑔−1((1 + 𝜃)𝑆Q(𝑥)) > 𝑆̃(𝑥; 𝛽), which results in 𝑆∗(𝑥; 𝛽) = 𝑆̃(𝑥; 𝛽) for
∈ [𝑥′0, 𝑥

′
1). Now, consider the following two cases.

• For 𝑥 ∈ [0, 𝑥′0), 𝑆
∗(𝑥; 𝛽) = 1, then 𝑓 ∗(𝑥; 𝛽) = 0 ≤ 𝑓Q(𝑥).

• For 𝑥 ∈ [𝑥′0, 𝑥
′
1), 𝑆

∗(𝑥; 𝛽) = 𝑆̃(𝑥; 𝛽), then it holds that

𝑔′(𝑆̃(𝑥; 𝛽)) = 2𝛽
(

𝑆̃(𝑥; 𝛽) − 𝑆Q(𝑥)
)

,

which, after differentiating both sides with respect to 𝑥, becomes

𝑔′′(𝑆̃(𝑥; 𝛽))(−𝑓 (𝑥; 𝛽)) = 2𝛽(𝑓Q(𝑥) − 𝑓 (𝑥; 𝛽)) ≥ 0

where 𝑓 (𝑥; 𝛽) = − 𝜕𝑆̃(𝑥;𝛽)
𝜕𝑥 . Hence, 𝑓Q(𝑥) ≥ 𝑓 (𝑥; 𝛽).

n words, compared with the benchmark distribution, the DM puts less
eight on [0, 𝑥′1) under the worst-case distribution. Similarly, it can be

proven that the DM puts more weight on [𝑥′1, 𝑥1) under the worst-case
distribution. □

Proof of Theorem 5.2

With the definition of 𝑥0, Problem (5.3) can be written as

sup
𝑆𝑃 ∈𝑋

∫

𝑥0

0

(

𝑔(𝑆𝑃 (𝑥)) − 𝛽|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)|
)

𝑑𝑥

+ ∫

𝑀

𝑥0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽|𝑆𝑃 (𝑥) − 𝑆Q(𝑥)|
)

𝑑𝑥.
(A.8)

ow, we solve Problem (A.8) by considering the following cases.

ase 1. 𝑥 ∈ [0, 𝑥0)
Based on the discussion following Problem (5.2), we are only
interested in the survival functions which are greater than
𝑆Q(𝑥) for all 𝑥 ≥ 0. Therefore, we propose to solve the
following problem:

max
𝑡∈[𝑆Q(𝑥),1]

𝑔(𝑡) − 𝛽(𝑡 − 𝑆Q(𝑥)), (A.9)

which is concave in 𝑡.
If 𝑔′(𝑆Q(𝑥)+) ≤ 𝛽, then

𝑆Q(𝑥) = arg max
𝑡∈[𝑆Q(𝑥),1]

𝑔(𝑡) − 𝛽(𝑡 − 𝑆Q(𝑥)).

If 𝑔′(1−) ≥ 𝛽, then

1 = arg max
𝑡∈[𝑆Q(𝑥),1]

𝑔(𝑡) − 𝛽(𝑡 − 𝑆Q(𝑥)).

If 𝑔′(𝑆Q(𝑥)+) > 𝛽 > 𝑔′(1−), then

𝑡1 = arg max 𝑔(𝑡) − 𝛽(𝑡 − 𝑆Q(𝑥)),

𝑡∈[𝑆Q(𝑥),1]



European Journal of Operational Research 316 (2024) 694–706T.J. Boonen and W. Jiang

C

where 𝑡1 satisfies 𝑔′(𝑡−1 ) ≥ 𝛽 and 𝑔′(𝑡+1 ) ≤ 𝛽. Thus, the worst-case
survival function at 𝑥 ∈ [0, 𝑥0) is given by

𝑆̂(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑔′(1−) ≥ 𝛽,

𝑡1, if 𝑔′(1−) < 𝛽 < 𝑔′(𝑆Q(𝑥)+),

𝑆Q(𝑥), if 𝑔′(𝑆Q(𝑥)+) ≤ 𝛽.

ase 2. 𝑥 ∈ [𝑥0,𝑀]
Since we are only interested in the survival functions that are
greater than 𝑆Q(𝑥), we will solve the following problem:

max
𝑡∈[𝑆Q(𝑥),1]

𝐾(𝑡) ∶= 𝑔(𝑡) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑡 − 𝑆Q(𝑥)). (A.10)

Define 𝑡∗(𝑥) = 𝑔−1((1+𝜃)𝑆Q(𝑥)). When 𝑡 > 𝑡∗(𝑥), or equivalently,
𝑔(𝑡) > (1 + 𝜃)𝑆Q(𝑥), we have 𝐾(𝑡) = (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑡− 𝑆Q(𝑥)).
When 𝑡 ≤ 𝑡∗(𝑥), or equivalently, 𝑔(𝑡) ≤ (1 + 𝜃)𝑆Q(𝑥), we have
𝐾(𝑡) = 𝑔(𝑡)−𝛽(𝑡−𝑆Q(𝑥)). Let 𝑥1 be defined in Theorem 3.2, we
have the following two sub-cases.
Sub-case 1: When 𝑥 < 𝑥1, or equivalently, 𝑡∗(𝑥) ≥ 𝑆Q(𝑥), we
can calculate that

lim
𝑡→𝑡∗(𝑥)−

𝐾 ′
3(𝑡) = 𝐾 ′

3(𝑡
∗(𝑥)−) = 𝑔′(𝑡∗(𝑥)−) − 𝛽

and

lim
𝑡→𝑡∗(𝑥)+

𝐾 ′
3(𝑡) = 𝐾 ′

3(𝑡
∗(𝑥)+) = −𝛽.

Thus, the maximum of 𝐾3(𝑡) on [0, 1] can only be attained
within [𝑆Q(𝑥), 𝑡∗(𝑥)]. Note that on this interval, 𝐾3(𝑡) = 𝑔(𝑡) −
𝛽(𝑡−𝑆Q(𝑥)), thus the worst-case survival function for this case
is given by 𝑆̂(𝑥) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥)).
Sub-case 2: When 𝑥 ≥ 𝑥1, or equivalently, 𝑡∗(𝑥) ≤ 𝑆Q(𝑥),
Problem (A.10) becomes

max
𝑡∈[𝑆Q(𝑥),1]

(1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑡 − 𝑆Q(𝑥)),

which is decreasing in 𝑡. Thus, the worst-case survival function
for this case is given by 𝑆Q(𝑥).

Appendix B. The case with a different benchmark distribution

In the main text, we have discussed the worst-case distribution
for the DM when her benchmark distribution is given by Q. In this
section we consider the case when the DM uses another benchmark
distribution. For convenience, we denote by B ∈ ([0,𝑀]) the DM’s
benchmark distribution. Under the 𝐿2 distance, the main problem is
now given by the following:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥)
)

𝑑𝑥,

s.t. ∫

𝑀

0
(𝑆𝑃 (𝑥) − 𝑆B(𝑥))2𝑑𝑥 ≤ 𝜖, 𝜖 > 0.

(B.1)

Under the same reasoning as for (3.5), solving Problem (B.1) is equiv-
alent to solving

sup
𝑆𝑃 ∈𝑋

∫

𝑀

0

(

𝑔(𝑆𝑃 (𝑥)) ∧ (1 + 𝜃)𝑆Q(𝑥) − 𝛽(𝑆𝑃 (𝑥) − 𝑆B(𝑥))2
)

𝑑𝑥 (B.2)

for some 𝛽 ≥ 0.
As in Section 3.2, we first present the result for the case when 𝛽 = 0.

Theorem B.1. Let 𝑥0 be defined in Theorem 3.3. Define

 ∶=
{

𝑥 ∈ [𝑥0,𝑀] ∶ (1 + 𝜃)𝑆Q(𝑥) ≥ 𝑔(𝑆B(𝑥))
}

,

 ∶= [𝑥0,𝑀]∖.

If 𝜖 ≥ ∫ 𝑀0 (𝑆̃∗(𝑥) − 𝑆B(𝑥))2𝑑𝑥, where

̃∗ B −1 Q B
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𝑆 (𝑥) = (𝑡0 ∨ 𝑆 (𝑥))1[0,𝑥0)(𝑥) + 𝑔 ((1 + 𝜃)𝑆 (𝑥))1(𝑥) + 𝑆 (𝑥)1(𝑥),
where 𝑡0 is defined in Theorem 3.2, then the worst-case survival function
that solves (B.2) is given by 𝑆∗ = 𝑆̃∗.

Proof. The proof is similar to the proof of Theorem 3.2, and the only
thing that needs to be shown is that 𝑆̃∗ is decreasing on [0, 𝑥0) ∪∪.
To do so, we take 𝑎1 ∈ [0, 𝑥0), 𝑎2 ∈  and 𝑎3 ∈ , and analyze the
following cases.

• If 𝑎1 < 𝑎2, then

𝑆∗(𝑎2) = 𝑔−1((1 + 𝜃)𝑆Q(𝑎2)) ≤ 𝑔−1(1) ≤ 𝑡0 ∨ 𝑆Q(𝑎1) = 𝑆∗(𝑎1).

• If 𝑎1 < 𝑎3, then

𝑆∗(𝑎3) = 𝑆B(𝑎3) ≤ 𝑡0 ∨ 𝑆B(𝑎1) = 𝑆∗(𝑎1).

• If 𝑎2 < 𝑎3, then

𝑆∗(𝑎3) = 𝑆B(𝑎3) ≤ 𝑆B(𝑎2) ≤ 𝑔−1((1 + 𝜃)𝑆Q(𝑎2)) = 𝑆∗(𝑎2).

• If 𝑎3 < 𝑎2, then

𝑆∗(𝑎2) = 𝑔−1((1+𝜃)𝑆Q(𝑎2)) ≤ 𝑔−1((1+𝜃)𝑆Q(𝑎3)) ≤ 𝑆B(𝑎3) = 𝑆∗(𝑎3).

Summarizing the above results indicates that 𝑆∗ is indeed decreasing
on [0, 𝑥0) ∪ ∪ . □

When the constraint of Problem (B.1) is binding (i.e., 𝛽 > 0), as in
Theorem 3.3, we have the following result for the worst-case survival
function.

Theorem B.2. Let 𝑥0 be as defined in Theorem 3.2 and  and  be as
defined in Theorem B.1. If 𝛽 > 0 in Problem (B.2), the worst-case survival
function of 𝑋 is given by

𝑆∗(𝑥; 𝛽) = 𝑆̂(𝑥; 𝛽)1[0,𝑥0)(𝑥) +
(

𝑆̃(𝑥; 𝛽) ∧ 𝑔−1((1 + 𝜃)𝑆Q(𝑥))
)

1(𝑥) +𝑆B(𝑥)1(𝑥),

where

𝑆̂(𝑥; 𝛽) =

{

1, if 𝑔′(1−) − 2𝛽𝐹B(𝑥) ≥ 0,

𝑆̃(𝑥; 𝛽), if 𝑔′(1−) − 2𝛽𝐹B(𝑥) < 0,

where 𝑆̃(𝑥; 𝛽) satisfies

𝑔′(𝑆̃(𝑥; 𝛽)−) − 2𝛽(𝑆̃(𝑥; 𝛽) −𝑆B(𝑥)) ≥ 0, 𝑔′(𝑆̃(𝑥; 𝛽)+) − 2𝛽(𝑆̃(𝑥; 𝛽) −𝑆B(𝑥)) ≤ 0.

Here, 𝛽 is such that

∫

𝑀

0
(𝑆∗(𝑥; 𝛽) − 𝑆B(𝑥))2𝑑𝑥 = 𝜖.

Proof. The proof is similar to the proof of Theorem 3.3, except for the
proof that 𝑆∗ is decreasing on [0, 𝑥0) ∪∪. This can be shown in the
same way as in the proof of Theorem B.1. □
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