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Abstract

Molecular dynamics simulations for dislocation motion are conducted in a body centered cubic
TaCrVW multi-principal element alloy (MPEA) with different chemical randomness based on
a newly developed machine learning potential. The simulated critical stress for dislocation
motion in samples with increasing level of randomness are analyzed in terms of three
contributions: (1) Peierls stress (from 438 to 431 MPa), (2) strengthening from the average
fault energy (from 261 MPa to near zero), and (3) strengthening due to local fluctuations of
fault energy from the average value (from 394 to 566 MPa). As the alloy randomness increases,
the Peierls stress as predicted from lattice distortion is rather invariant within the range studied,
while there is a clear decreasing trend of the average fault energy and hence the associated
strengthening. There is an increasing trend of strength contribution (3) as the alloy randomness
increases, which offsets the decreasing trend of strength contribution (2). The overall strength
of the TaCrVW alloy is therefore rather invariant within the range 964-1259 MPa with different
randomness. The present work elucidates the physical basis of strength in the studied TaCrVW

alloy.
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1. Introduction

High-entropy, or multi-principal element alloys (MPEAs), have attracted extensive
research interest recently due to their outstanding strength, corrosion resistance, and damage
tolerance [1-5]. Refractory MPEAs composed chiefly of refractory elements, often with body-
centered cubic (BCC) structure, are promising candidates for extreme-condition applications,
especially in aerospace and power-generation sectors [6,7].

Instead of being an ideal random solid solution (RSS), local chemical ordering is often
observed in MPEAs after thermomechanical processing both from computational simulations
and experiments [8-11]. The local chemical ordering induced reduction in randomness (entropy)
can influence the mobility of defects, like vacancies and dislocations, thereby affecting
deformation behaviors and mechanical properties [12-14]. Most studies reported a
strengthening effect of randomness decrease from extra energy consumption for ordering bond
breakage [11,12,15], while softening or negligible effects have also been observed [16-18]. The
underlying mechanism for the effects of randomness on strength has been attributed to the
competition of reduced lattice distortion (misfit) and extra energy for order breaking, but
quantitative understanding is still lacking [16]. Existing models such as that developed by
Curtin and co-workers [19,20] are for high-entropy alloys in the ideal RSS state, while effects
of randomness change after thermal processing on misfit and dislocation interactions have not
been explicitly accounted for.

Unlike traditional BCC metals and alloys, in which screw dislocations govern plastic
deformation by the kink-pair processes [21-25], the mobility of edge dislocations has been
reported to be comparable to that of screw dislocations in the BCC MPEAs from nanoscale
pinning processes, thereby contributing equally to strength as screw [26,27]. Moreover, an
experimental study has reported a significant fraction of non-screw dislocations distributed
across the entire single crystal [28]. Therefore, edge dislocation behavior in BCC MPEAs is
significant and requires in-depth investigation. Dislocation morphology in MPEAs can be
influenced by randomness [15,29]; in particular, we have recently shown that in a face-centered
cubic (FCC) MPEA, the wavy dislocation morphology can contribute to strength [30].

However, how the randomness change influences the dislocation-waviness introduced strength
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is not known in BCC MPEAs.

For the above reasons, in this work we have conducted atomistic simulations to reveal the
edge dislocation mobility based on a machine-learning interatomic potential, using TaCrVW
as a model BCC MPEA. Randomness changes and the corresponding spatial fluctuation in the
fault energy are demonstrated, as well as unusual dislocation pinning and unpinning processes.
The simulated critical stress for dislocation motion is interpreted by different strength
contributors including Peierls stress and fault energy effects, with the objective to understand

the underlying physical basis of strength in the studied alloy.

2. Methodology

2.1 Machine-learning interatomic potential

Machine-learning has emerged recently as a tool to develop interatomic potentials with
accuracy comparable to density functional theory (DFT) calculations [31]. Moment tensor
potential (MTP) [32,33], with its proven balance between accuracy and computational cost [34],
was used in this study for TaCrVW alloy. Two key parameters determining the potential
performance, radius cutoff (R,,;) and maximum level (lev,,q,), were chosen as 5 A and 20,
respectively. The energy and force weights for training were set as 1 and 0.01, respectively.
Detailed configuration information for training and validation data sets is given in
Supplementary Note 1 [35](see also reference [36-46] therein).

The energy and force data of configurations for training were calculated from DFT using
the Vienna Ab-initio Simulation Package (VASP) [47,48], with projector-augmented plane
wave (PAW) generated pseudopotentials [49,50] and the Perdew-Burke-Ernzerh of (PBE)
exchange-correlation functional [51]. The cutoff energy was set as 500 eV, and an automatic
generation scheme was used to specify k-points a sampling spacing of about 2z x 0.025 AL,
The energy and force thresholds for self-consistency and structure relaxation were set as 107
eV and 0.01 eV/A, respectively. A single gamma centered k-point mesh was used for ab initio
MD calculation to generate configurations at finite temperatures, followed by accurate energy

and force calculations.



2.2 Simulation cell and dislocation dynamics simulation

Simulations in this study were performed by the large-scale molecular dynamics massively
parallel simulator (LAMMPS) [52], and defects were identified by the dislocation extraction
algorithm (DXA) [53] and visualized via the open visualization tool (OVITO) [54]. Fig. 1
illustrates the simulation cell, with orthogonal coordinate system X = [111] (Ly ~ 300 A), Y =
[112] (Ly =~ 150 &), Z=[110] (L, ~ 200 A).
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FIG. 1. Schematic illustration of MD simulation box for dislocation mobility. The red line represents a wavy
dislocation; the green plane corresponds to the dislocation glide plane.

As in previous studies [16,17], periodic boundary conditions were applied in the X and Y
directions, and free surface boundary condition in the Z direction. A 1/2 <111> edge dislocation
was introduced to different positions of the center layer of the samples with different
randomness (as described in Section 2.3). The samples with a dislocation were initially energy
minimized, followed by equilibration at the target temperature for 50 ps at isothermal-isobaric
(NPT) ensemble with stresses in X and Y directions relaxed. The top and bottom atom layers
with thickness of 10 A in the Z direction were fixed, and shear stress was applied to the top Z-
layers. In the loading procedure, a gradually ramped loading function was used to minimize
stress waves, in which the shear stress increased from zero with a rate of 50 MPa per 5 ps until
reaching the target value. The applied stress was then held constant for 200 ps, and the

dislocation position was recorded and analyzed.

2.3 Hybrid Monte-Carlo/molecular-dynamic (MC/MD) simulation

Configurations with different degrees of randomness were obtained from hybrid MC/MD



simulations as implemented in LAMMPS package [52]. The initial structure with dimensions
of [Ly, Ly,21.7 A] was created by random substitution with the targeted atomic ratio. Periodic
boundary conditions were applied in three orthogonal X-Y-Z directions, and the sample was
equilibrated at the prescribed annealing temperature for 50 ps under the NPT ensemble after
energy minimization, followed by the hybrid MC/MD procedure, where random exchanges of
atoms with distinct species were attempted based on the Metropolis algorithm [55]. Trial runs
were carried out to see the effects of different MC and MD steps per cycle, and it was found
that running one MD relaxation step after ten MC swap attempts yielded results consistent with
running ten MD relaxation steps after one MC swap attempt, see Fig. S.2 [35]. For the results
presented below, ten MC swap attempts were performed for each MD step with a timestep of
1fs. The converged configuration was then quenched to zero temperature and duplicated along
the Z ([110]) direction to create cell with size of [Ly, Ly, L] for the subsequent dislocation

dynamics simulation.

2.4 Local chemical ordering calculation

The Warren-Cowley (WC) order parameter [56] is used to characterize the chemical
ordering of configurations from the hybrid MC/MD simulations. The chemical ordering

.. PAU . —Cj ..
parameter is defined as agjr = ;f’ — where PAli is the probability of finding a j-type atom
ey

around an i-type atom in the neighbor shell Ar;;, §

ij> is the Kronecker delta function, and ¢;

ij

. . . ij . " ij
is the concentration of j-type atom. A near-zero aAri,- represents an RSS; a positive a,. for

the same element pairs (i =) shows segregation; negative WC parameters for different species

pairs suggest cluster ordering of the two elements.

2.5 Fault energies calculation

Stacking faults were created by shifting atoms in the upper half of the simulation block
relative to the lower half along X direction. Periodic boundary conditions were applied in X
and Y coordinates. The global diffuse antiphase boundary energy (y ?4P8) was calculated from

the energy difference between the fully relaxed initial and final configurations (after
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displacement by one b). For the local yP4PB spatial distribution over the slip plane, the

configuration was divided into columns along the normal direction of the (110) slip plane with
a square cross-section of 6 A x 6 A. The local y24PB was calculated by considering the energy
changes of these columns, via constrained energy minimization (relaxation only along Z
direction) of the final structure to maintain conservation of atoms in each column. The slip-
plane averaged value of the y24PE calculated this way is a global antiphase boundary energy
that is somewhat higher than the fully relaxed value yP4PB (see Table 1), because the

relaxation now is constrained along the Z direction [57].

3. Results and discussion
3.1 Machine-learning interatomic potential

The interatomic potential for TaCrVW MPEA was developed based on the MTP
formalism [33]. Fig. 2 presents a comparison of MTP- and DFT-predicted energies and forces
for the training and testing configurations. The additional testing set, which contains stacking-
fault and dislocation-dipole configurations, is used to further validate the MTP for its
application to dislocation simulation. The overall root-mean-square errors (RMSEs) of the
training and testing configurations (including general testing and additional testing sets) are,
respectively, 2.304 meV/atom and 6.481 meV/atom for energies, and 0.088 eV/A and 0.206
eV/A for atomic forces.

Moreover, a comparison of the elastic constants predicted by the developed MTP and DFT
can be found in Table S.1 [35], which shows high consistencies between the two methods. To
further validate the reliability of the MTP before applying to dislocation simulation, the
dislocation mobilities under constant shear stress in the four pure metal systems were also
calculated and compared with those calculated from other potentials. The results shown in Fig.

S.1 [35] indicate good consistencies with other potentials.
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FIG. 2. Machine-learning interatomic-potential estimation. Energies and forces for training and testing
configurations from DFT and MTP results are shown. The general testing set includes different AIMD and binary
configurations similar to the training set; the additional testing set includes stacking-fault and dislocation-dipole
configurations.

3.2 Local chemical ordering and diffuse antiphase boundary energies (y?4°5)

Hybrid MC/MD calculations were first conducted from 600 K to 1800 K to obtain
configurations with different degrees of randomness, and the potential energy per atom (E)
was captured as a function of swap attempts. Fig. 3(a) presents the 800 K-annealed results, in
which E, decreases gradually with MC steps, thereby forming a more stable configuration. The

E, vs swap attempts for samples processed at other conditions can be found in Fig. S.3 [35].

The pairwise WC parameters (see Methods) in the first nearest neighbor shells, Ar; =

0~29A, are shown in Fig. 3(b). The al® ¢ is negative and decreases with annealing

temperature, indicating Ta-Cr ordered phase formation at a lower annealing temperature. Fig.
3(c) and (d) show atomic configurations for 600 K-annealed and RSS, respectively. The 600 K
processed configuration exhibits dramatic phase separation, where obvious Ta-Cr rich regions
are marked. Therefore, further dislocation dynamics simulations were only conducted for

configurations annealed at 800 K and above.
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FIG. 3. Local chemical ordering for configurations annealed at different temperatures. (a) £, vs swap
attempts for 800 K annealing; (b) chemical ordering parameters at different annealing temperatures; (c) and
(d) configurations (visualized by OVITO [54]) annealed at 600 K and RSS, viewed along [-110]
perpendicular to slip plane; (e) Diffuse antiphase boundary energies (y?4P8) variation after several b slip for

configurations annealed at different temperatures.

TABLE I. Lattice properties for samples with different randomness, including lattice constant (a), elastic
constants (Ci;, Ci2, Cu4), Zener’s anisotropy ratio (4), shear modulus (), Poisson's ratio (v), and diffuse

antiphase boundary energy (yP4PE from full relaxation, and y24PEfrom constrained relaxation).

Annealing Temperature (K)

Properties Random
600 800 1000 1200 1500 1800

a[A] 3.0995 3.1001 3.1007 3.1009 3.1012 3.1013 3.1035
Cu [GPa] 3935 3905 3860 3835 38l7 3799 3783
Ci2 [GPa] 1513 1539 1553 1559 1561 1562 157
Cy4 [GPa] 60.7 60.3 60.0 59.7 59.7 59.4 60.2
A 0.50 0.51 0.52 0.52 0.53 0.53 0.54
u [GPa] 85.8 84.5 83.2 82.4 82.1 81.5 81.7



n 0345 0347 0349 0350 0350 0350  0.350
yPAPE[m]/m2] 84 70 50 36 27 18 -1 (~0)

YPAPE[m]/m2] 101 89 75 63 56 47 33

Table I lists the bulk properties for samples annealed at different temperatures. The lattice
constant decreases slightly as the annealing temperature and randomness decreases. The yPAPB
for the first b slip increases from near zero for the random system to 84 mJ/m? for the 600 K-
processed configuration, as shown in Table 1 and Fig. 3(e), which can be attributed to the extra
energy consumption for ordering-bond destruction across the slip plane for more ordered
systems. Specifically, the negative yP4PB for the second b slip for the lower-temperature
annealed samples can be understood by the restoration of the more stable local ordering phase.

Moreover, yPAPB

vanishes with repeated shears by b on the same slip plane, as shown in Fig.
3(e), which indicates that five successive shears by b can break the local chemical ordering
between the atomic layers across the glide plane, in consistence with a previous investigation
[L5].

3.3 Pinning and unpinning mechanism of dislocation segments

Fig. 4(a) shows a series of dislocations extracted every 2 ps from the MD simulation. The
lines are severely curved and do not move smoothly due to the inhomogeneous local
environment. Some regional segments can slip forward, while others are quasi-static because
of insufficient energy obtained to conquer the local obstacles. Local traps pin the immobile
segments, thereby line length will increase by bowing and energy is gained from the external
stress. Dislocation segments will be unpinned until enough energy is obtained to overcome the
local resistance, considerably different from the smooth movement of straight dislocations in

pure metallic systems [26,58].

Local yP4PB is used to examine the influence of local fault-energy fluctuation on the

pinning of dislocation segments. The spatial variation and statistical distribution of the local

DAPB

Ve over the glide plane for the RSS sample are plotted in Fig. 4(a) and (b), respectively.

From Fig. 4(a), the local yP4PE exhibits severe fluctuation, with some local regions exhibiting

DAPB

Ye values as high as 400 mJ/m?. As we have analyzed recently [30], such regions of high
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local yPAPE are potential pinning sites for dislocations motion since gliding across them would

be accompanied by local high faulting energy barriers, and here, we provide evidence for this
in the present alloy. Due to the trapping processes, the velocities of different segments along
the same dislocation vary. To identify the pinning sites, local velocities along dislocations are
estimated, and segments with a local velocity lower than 1 A/ps are captured as pinning sites.
For instance, Fig. 4(c) shows five dislocations extracted from Fig. 4(a), and the corresponding
local velocities are illustrated in Fig. 4(d). After mapping the local velocities and positions to
the spatial distribution of local y24PE on the slip plane, we can obtain the local y24PE at the
pinned regions. Fig. 4(b) shows a comparison of the yP4F® statistic distribution over the whole
glide plane and at pinning sites for the RSS state; it can be seen that the mean y24FE at the
pinning sites p,= 73.02 mJ/m? is higher than the mean u,= 33.26 mJ/ m* for the whole glide

plane. For the alloys processed at other conditions, the same trends are observed as shown in

Fig. S.4 [35].
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FIG. 4 Dislocation motion accompanied by local pinning and unpinning. (a) Curved dislocations as superimposed
onto the spatial distribution map of local y24PE over the glide plane in RSS; (b) statistical distribution of local
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Ye over the whole glide plane and at pinning sites, with mean values u and standard deviations o; (c)-(d)

llustrate several dislocations and their local velocities.
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3.4 Critical shear stress for dislocation motion

The critical shear stress (CRSS) for the entire dislocation line to glide continuously across
the slip plane as a function of the annealing temperature is shown in Fig. 5. Different from most
previous studies that randomness decrease can result in strengthening [15,30], the average
CRSS in the TaCrVW alloy at 5 K varies from 964 MPa to 1259 MPa for samples with different
levels of randomness. Moreover, for a sample with finite randomness, the CRSS calculated
from five independent MD simulations (with initial dislocations located at five different
positions of the slip plane) scatter significantly, as shown in Fig. 5. Note that a softening
behavior of edge dislocations in an 800 K-annealed MoNbTaW sample has been reported
previously [16], and the mechanism was attributed to a competition between the improved
strength resulting from the increasing in ordering degree and reduced strength arising from the
decreasing of lattice friction compared with the random state. However, no quantitative
evidence has been given for such a conjecture; thus, in-depth investigation on the different
strength contributions is essential to reveal the underlying mechanism.

The CRSS and the corresponding standard deviations at 300 K for the first slip of
dislocation (dislocation glides across the slip plane for the first time), and at 5 K for the fifth
slip (dislocation glides across the slip plane repeatedly for the fifth time, so the ordering across
the glide plane has been destroyed), are also illustrated in Fig. 5. The average CRSS calculated
at 300 K for samples of different randomness shows a similar trend but with reduced values
compared with the 5 K first slip results. The average CRSS for dislocation multi-slip decreases
gradually as the sample randomness decreases. An increment of the CRSS for the 1800 K-
annealed sample for multi-slip compared with first slip, and a decrease or invariance for other

DAPB

samples can be noted. From Fig. 3(e), the generalized y vanishes after five successive

passes of the dislocation, which indicates a decrease in strength contribution from the

generalized yPAPB

compared with the first slip. Therefore, considering the elevated strength
for the multi-slip for the 1800 K-annealed samples, there should be other strengthening factors

after the breakage of ordering bonds, which will be discussed in Section 4 below.
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FIG. 5 Critical shear stress for configurations processed at different conditions, at 5 K and 300 K for the
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4. Competing contributions to strength

To explain the variation of strength with the annealing condition in Fig. 5, we analyze the
effects of randomness on the intrinsic Peierls stress of the alloy, as well as on the strength

DAPB

arising from the global y and its local fluctuations.

4.1 Effects of randomness on Peierls stress strengthening

First, we consider the Peierls stress, and in particular, how this is influenced by the lattice

distortion introduced by the randomness of the alloy. The Peierls stress is given as [59,60]:

79 = L exp [- 24 (1)

where p is shear modulus, v is Poisson’s ratio, b is Burger’s vector and d is the interplanar

spacing. When applied to an MPEA, the length scales b and d will be affected by the lattice
distortion of the alloy, and 1.02 is used here for %. Fig. S.5(a) shows the distribution of the
change of the Voronoi volume, AV, relative to the volume ¥}, of the perfect Voronoi cell
without lattice distortion, as computed from structures after annealing. It can be seen that the
standard deviation AV increases from 0.35 for the 800 K-annealed sample to 0.53 for the RSS

state. To examine how the lattice distortion may affect the Peierls stress, we modify a model

developed by Zhang et al. [61], in which stochasticity is introduced into the Peierls stress by
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scaling the stacking-fault energy (SFE) with a random variable. Here, the effect of the SFE
fluctuation will be dealt with separately as another strength contribution (see section 4.2 below),
and for the Peierls stress, we consider that randomness is introduced into the length scales b
and d in eqn. (1), which can be related to the fluctuation of the Voronoi cell volume as observed
in Fig. S.5. Considering that the primitive cell of the crystal is a rectangular block of volume
V = b2d, where b? is the area on the slip plane, and d is the interplanar spacing of the slip
plane, when expressed in units of b3 the Voronoi cell volume is V/b3 = d/b. As lattice
distortion exists, Voronoi cell volume should fluctuate, which can be represented by scaling
d/b by a random variable w drawn from the normal distribution of mean 1 and standard

deviation A, i.e.

w

ST
l
SR

)

On substituting eqn. (2) into eqn. (1), the Peierls stress becomes 1, = 12_—“1/ exp [—

2nd
P Y a)], the

(

mean value of which is
(1) = [ 15 (@) Py(w)dw = 5 X (T}), 3)

—1)2
where P,(w) = - %] is the normal distribution of w with mean 1 and standard

mdel]
v OXP
deviation A. In eqn. (3),

O | o0 _2md(w-1) (w-1)2
(tp) = A\/Efo exp[ b(1-v) 202

] dw (4)
is a normalization factor that depends on A, v and (d/b). For simplicity, A here is taken to be
the AV /V, obtained from the distributions of the Voronoi-volume change shown in Fig. S.5
[35]. Then, as A increases from 0.028 for the 800 K-annealed sample to 0.037 for the RSS,
with the values of y and v taken from Table 1, the corresponding Peierls stress changes only
slightly from 438 MPa to 431 MPa, as randomness in the alloy increases. This is because, as
shown in Fig. S.5(b) [35], the factor (%) actually does not change significantly from 1 when
the lattice distortion A changes within the range from 0.028 to 0.037 for the present alloy
system; instead, the slight changes in the Peierls stress are due to the slight reduction in u as
randomness increases (Table 1), while the variation A in the lattice distortion does not

constitute a significant factor to change the Peierls stress.
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4.2 Effects of randomness on fault energy strengthening

We have recently investigated the effects of ordering on strengthening due to fault energy
for an FCC MPEA [30], and here, we apply this model to elucidate the strengthening
mechanism of the present TaCrVW alloy. In this model, the fault energy offers two types of
strength contributions. First, strengthening arises from the diffuse antiphase boundary

DAPB

generated in the wake of a moving dislocation, the energy of which, the global y , varies

with randomness as shown in Fig. 3(e) for the present alloy. Secondly, as mentioned above, the
local regions on the slip plane with higher-than-average y24FE are potential pinning sites;
hence a dislocation traversing in a field of such pinning sites will continuously adopt different
wavy shapes as depicted in Fig. 6(a), and hence its line-tension energy will fluctuate to give

rise to a strength contributor. By considering energy balance, the sweep distance w(y)

between two successive wavy states (which are not necessarily equilibrium states) satisfies [30],

b [y w) dy =2 [y iw o)1 dy + [ ()’ v y) dx) dy 5)
where y(x,y) is the spatial distribution of local fault energy, T=aub’ is the line tension of the
dislocation with o dependent on the dislocation character, and u is the shear modulus. In eqn.
(5), 7, is the fault-introduced resistance stress, and 7,b = f, — ff, where f, and f; are
respectively the force on unit length of dislocation due to the applied stress and Peierls stress.
As discussed above, the y(x,y) may be written as y(x,y) = ¥ + Ay(x,y) where ¥ is the
global average y(x,y) (the quantity listed in Table 1), and Ay(x,y) is the fluctuating part
that results in wavy dislocations. Then, the fault introduced resistance can be decomposed into
two parts as 7, = Ty + Ty, Where

Ty =v/b (6)
is the resistance stress due to the average y°4P® (y), and 1,, is that due to the fluctuations

of yPAPE given by

T Wl ay
2b [ w(y)dy

To calculate 7,, from eqn. (7), wavy snapshots of a travelling dislocation were captured from

(7

TAV

the MD simulation and the sweep distance w(y) between two successive snapshots was

calculated and fitted to an N-degree Fourier series
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w) = A + I, A sin (52 + o) (8)
Then, eqn. (7) will take the form [30]:

aubn? ¥ k;?
Ty ¥ )

where k; = A;/¢; is for the Fourier harmonics. Eqn. (9) then enables 7,, to be calculated.

4.3 Strength contributors
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FIG. 6. Theoretical analysis of critical stress for dislocation motion. (a) Schematic diagram showing forces
acting on a wavy dislocation shape Wi(y) and its next position Wi+i(y), with sweep distance of wi(y) in
between. f,, frand 7, b are force induced by the applied stress, Peierls stress and stacking-fault introduced
resistance, respectively; (b) resistance stress due to fault-energy fluctuations (7,, ) for the first and fifth slip
by "4[111] across the glide plane; (c) comparison of MD calculated critical stress () and theoretical
estimates of different strength contributions (7, = Peierls stress, 7, = ¥/b is the stress from average

DAPB and Ty, is the stress from fault-energy fluctuations) for different condition processed samples. For

Y
RSS, Curtin's theoretical model is also presented as a comparison. Error bars correspond to the standard
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deviations of each data point.

Fig. 6(c) shows the estimated values of the different strength contributors. First, the Peierls

stress 7, remains almost constant at around 431-438 MPa for the samples with different
randomness. Then, the 75 calculated from ¥ (yP4PF) in Table 1 exhibits a rise as the

randomness decreases, €.g., 67 MPa and 261 MPa for the 1800 K and 800 K-annealed sample,
respectively.

Finally, the 7,, resistance was calculated from eqn. (9). Sweep distance w(y) is obtained
from the difference between two neighbouring line states Wj+1-W;, after which 8-degree Fourier
fitting was conducted for w(y) to obtain the k; and A, parameters in eqn. (9). Using u in
Table 1, b calculated from the lattice constant, and a = 0.125 [19,20], a series of 7,, were
obtained, and the average value and standard deviation in each state are shown in Fig. 6(b). As
is similar to the scatter of the MD calculated CRSS, the 7,, also scatters significantly. The
average Ty, for the first-slip at 5 K simulation increases from 394 MPa for the 800 K-
annealed sample to 566 MPa for the random state. Interestingly, the increase of 7, with
randomness almost balances out the decrease of 7y, thus, leading to the small variation of the
final critical stress. Moreover, from Fig. 6(b), the average 5, for the fifth slip at 5 K and first
slip at 300 K are both higher than the 5 K first slip results. These findings indicate that
randomness (entropy) increase can contribute to the rise of 7,, by affecting the dislocation

morphology.
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FIG. 7. Comparison of 2D FFT distribution of the local y24P2 map for first and fifth slip by %2 [111]
across the glide plane. Fx and Fy denote frequencies in X and Y directions.

To further validate the last point, we performed two-dimensional fast Fourier transform
(2D FFT) of the local ’4PE map to reveal its harmonics, from which we can obtain information
about the FFT peaks and their locations in the reciprocal space, which are strengthening factors.
Fig. 7(a) and (b) compare the 2D FFT results for the local 24P map for the first and fifth slip
for the 1800 K annealed sample, from which it can be seen that stronger peaks are present in
the fifth slip sample, which has higher entropy due to the destroyed ordering. These peak values
reflect strong pinning sites, which can result in higher waviness of the dislocations, thus leading
to higher 7,,. For samples with other randomness, similar observations can be made, as shown
in Fig. S.6 [35].

Taking the above three contributions together, comparison with the MD results is made in
Fig. 6(c), with discrepancies lower than +20%. As mentioned above, 7, and 7; show an
apparent opposite relationship with chemical randomness, while 7, exhibits an almost
constant value. For the ideal RSS, 7,, reaches 566 MPa, which takes up more than half of the
total strength, while for the 800 K-processed sample, the three components all make significant
contributions.

In addition, Curtin et al.'s model [20], which considers line tension and misfit, is also used
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in the comparison for the ideal RSS state:

s 2
Teurtin = 0.04a_§[1(1'_*_;)5[2710’_)+A‘/1%]3 (10)

Here, g = ’%c“(cn—clz) is the isotropic shear modulus, v is the Poison's ratio, b is the

Burgers vector, and AV, = V,, — V is the volume misfit, where V}, is the atomic volume for
metal n, V is calculated from Vegard's law. The calculated strength from this model, Tcyy¢in,
is 1166 MPa, as illustrated in Fig. 6(c), which agrees reasonably with the MD simulation (1259
MPa) and theoretical prediction (1027 MPa) in this study.

Summary

In summary, we developed a new machine-learning interatomic potential for a BCC
TaCrVW refractory MPEA and applied it to dislocation dynamics study over a wide range of
randomness. An analytical model considering the Peierls stress, generalized fault energy and
its fluctuation induced resistance is developed. With randomness decreasing, the strength
introduced by the average fault energy rises, while local fault energy fluctuation produces less
wavy dislocations thus contributing less to the total strength. The opposite trends of
strengthening due to the average and fluctuation of the fault energy fortuitously cancel out, thus
the final critical stress exhibits little variance for samples with different randomness. These
findings demonstrate the unique strengthening mechanism in MPEAs with different

randomness.
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