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Abstract 
Molecular dynamics simulations for dislocation motion are conducted in a body centered cubic 

TaCrVW multi-principal element alloy (MPEA) with different chemical randomness based on 

a newly developed machine learning potential. The simulated critical stress for dislocation 

motion in samples with increasing level of randomness are analyzed in terms of three 

contributions: (1) Peierls stress (from 438 to 431 MPa), (2) strengthening from the average 

fault energy (from 261 MPa to near zero), and (3) strengthening due to local fluctuations of 

fault energy from the average value (from 394 to 566 MPa). As the alloy randomness increases, 

the Peierls stress as predicted from lattice distortion is rather invariant within the range studied, 

while there is a clear decreasing trend of the average fault energy and hence the associated 

strengthening. There is an increasing trend of strength contribution (3) as the alloy randomness 

increases, which offsets the decreasing trend of strength contribution (2). The overall strength 

of the TaCrVW alloy is therefore rather invariant within the range 964-1259 MPa with different 

randomness. The present work elucidates the physical basis of strength in the studied TaCrVW 

alloy. 

 

Keywords 
Multi-principal element alloys, Local fault-energy fluctuation, Local chemical ordering, 

Dislocation segments pinning. 

 



 

 2 

1. Introduction 
High-entropy, or multi-principal element alloys (MPEAs), have attracted extensive 

research interest recently due to their outstanding strength, corrosion resistance, and damage 

tolerance [1-5]. Refractory MPEAs composed chiefly of refractory elements, often with body-

centered cubic (BCC) structure, are promising candidates for extreme-condition applications, 

especially in aerospace and power-generation sectors [6,7]. 

Instead of being an ideal random solid solution (RSS), local chemical ordering is often 

observed in MPEAs after thermomechanical processing both from computational simulations 

and experiments [8-11]. The local chemical ordering induced reduction in randomness (entropy) 

can influence the mobility of defects, like vacancies and dislocations, thereby affecting 

deformation behaviors and mechanical properties [12-14]. Most studies reported a 

strengthening effect of randomness decrease from extra energy consumption for ordering bond 

breakage [11,12,15], while softening or negligible effects have also been observed [16-18]. The 

underlying mechanism for the effects of randomness on strength has been attributed to the 

competition of reduced lattice distortion (misfit) and extra energy for order breaking, but 

quantitative understanding is still lacking [16]. Existing models such as that developed by 

Curtin and co-workers [19,20] are for high-entropy alloys in the ideal RSS state, while effects 

of randomness change after thermal processing on misfit and dislocation interactions have not 

been explicitly accounted for.  

Unlike traditional BCC metals and alloys, in which screw dislocations govern plastic 

deformation by the kink-pair processes [21-25], the mobility of edge dislocations has been 

reported to be comparable to that of screw dislocations in the BCC MPEAs from nanoscale 

pinning processes, thereby contributing equally to strength as screw [26,27]. Moreover, an 

experimental study has reported a significant fraction of non-screw dislocations distributed 

across the entire single crystal [28]. Therefore, edge dislocation behavior in BCC MPEAs is 

significant and requires in-depth investigation. Dislocation morphology in MPEAs can be 

influenced by randomness [15,29]; in particular, we have recently shown that in a face-centered 

cubic (FCC) MPEA, the wavy dislocation morphology can contribute to strength [30]. 

However, how the randomness change influences the dislocation-waviness introduced strength 
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is not known in BCC MPEAs. 

For the above reasons, in this work we have conducted atomistic simulations to reveal the 

edge dislocation mobility based on a machine-learning interatomic potential, using TaCrVW 

as a model BCC MPEA. Randomness changes and the corresponding spatial fluctuation in the 

fault energy are demonstrated, as well as unusual dislocation pinning and unpinning processes. 

The simulated critical stress for dislocation motion is interpreted by different strength 

contributors including Peierls stress and fault energy effects, with the objective to understand 

the underlying physical basis of strength in the studied alloy. 

2. Methodology 

2.1 Machine-learning interatomic potential 

Machine-learning has emerged recently as a tool to develop interatomic potentials with 

accuracy comparable to density functional theory (DFT) calculations [31]. Moment tensor 

potential (MTP) [32,33], with its proven balance between accuracy and computational cost [34], 

was used in this study for TaCrVW alloy. Two key parameters determining the potential 

performance, radius cutoff (𝑅!"#) and maximum level (𝑙𝑒𝑣$%&), were chosen as 5 Å and 20, 

respectively. The energy and force weights for training were set as 1 and 0.01, respectively. 

Detailed configuration information for training and validation data sets is given in 

Supplementary Note 1 [35](see also reference [36-46] therein).  

The energy and force data of configurations for training were calculated from DFT using 

the Vienna Ab-initio Simulation Package (VASP) [47,48], with projector-augmented plane 

wave (PAW) generated pseudopotentials [49,50] and the Perdew-Burke-Ernzerh of (PBE) 

exchange-correlation functional [51]. The cutoff energy was set as 500 eV, and an automatic 

generation scheme was used to specify k-points a sampling spacing of about 2π × 0.025 Å-1. 

The energy and force thresholds for self-consistency and structure relaxation were set as 10-6 

eV and 0.01 eV/Å, respectively. A single gamma centered k-point mesh was used for ab initio 

MD calculation to generate configurations at finite temperatures, followed by accurate energy 

and force calculations. 
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2.2 Simulation cell and dislocation dynamics simulation 

Simulations in this study were performed by the large-scale molecular dynamics massively 

parallel simulator (LAMMPS) [52], and defects were identified by the dislocation extraction 

algorithm (DXA) [53] and visualized via the open visualization tool (OVITO) [54]. Fig. 1 

illustrates the simulation cell, with orthogonal coordinate system X = [111] (𝐿' ≈ 300	Å), Y = 

[112-] (𝐿( ≈ 150	Å), Z = [1-10] (𝐿) ≈ 200	Å).  

 

FIG. 1. Schematic illustration of MD simulation box for dislocation mobility. The red line represents a wavy 

dislocation; the green plane corresponds to the dislocation glide plane. 

As in previous studies [16,17], periodic boundary conditions were applied in the X and Y 

directions, and free surface boundary condition in the Z direction. A 1/2 <111> edge dislocation 

was introduced to different positions of the center layer of the samples with different 

randomness (as described in Section 2.3). The samples with a dislocation were initially energy 

minimized, followed by equilibration at the target temperature for 50 ps at isothermal-isobaric 

(NPT) ensemble with stresses in X and Y directions relaxed. The top and bottom atom layers 

with thickness of 10 Å in the Z direction were fixed, and shear stress was applied to the top Z-

layers. In the loading procedure, a gradually ramped loading function was used to minimize 

stress waves, in which the shear stress increased from zero with a rate of 50 MPa per 5 ps until 

reaching the target value. The applied stress was then held constant for 200 ps, and the 

dislocation position was recorded and analyzed. 

 

2.3 Hybrid Monte-Carlo/molecular-dynamic (MC/MD) simulation 

Configurations with different degrees of randomness were obtained from hybrid MC/MD 
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simulations as implemented in LAMMPS package [52]. The initial structure with dimensions 

of [𝐿', 𝐿(, 21.7 Å] was created by random substitution with the targeted atomic ratio. Periodic 

boundary conditions were applied in three orthogonal X-Y-Z directions, and the sample was 

equilibrated at the prescribed annealing temperature for 50 ps under the NPT ensemble after 

energy minimization, followed by the hybrid MC/MD procedure, where random exchanges of 

atoms with distinct species were attempted based on the Metropolis algorithm [55]. Trial runs 

were carried out to see the effects of different MC and MD steps per cycle, and it was found 

that running one MD relaxation step after ten MC swap attempts yielded results consistent with 

running ten MD relaxation steps after one MC swap attempt, see Fig. S.2 [35]. For the results 

presented below, ten MC swap attempts were performed for each MD step with a timestep of 

1fs. The converged configuration was then quenched to zero temperature and duplicated along 

the Z ([1-10]) direction to create cell with size of [𝐿', 𝐿(, 𝐿)] for the subsequent dislocation 

dynamics simulation. 

 

2.4 Local chemical ordering calculation 

The Warren-Cowley (WC) order parameter [56] is used to characterize the chemical 

ordering of configurations from the hybrid MC/MD simulations. The chemical ordering 

parameter is defined as 𝛼∆+
,- =

.∆"#$
#$ /!$

0#$/!$
 , where 𝑃∆+

,- is the probability of finding a j-type atom 

around an i-type atom in the neighbor shell ∆𝑟,-, 𝛿,- is the Kronecker delta function, and 𝑐- 

is the concentration of j-type atom. A near-zero 𝛼∆1#$
,-  represents an RSS; a positive 𝛼∆+

,-  for 

the same element pairs (i =j) shows segregation; negative WC parameters for different species 

pairs suggest cluster ordering of the two elements.  

 

2.5 Fault energies calculation 

Stacking faults were created by shifting atoms in the upper half of the simulation block 

relative to the lower half along X direction. Periodic boundary conditions were applied in X 

and Y coordinates. The global diffuse antiphase boundary energy (𝛾23.4) was calculated from 

the energy difference between the fully relaxed initial and final configurations (after 
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displacement by one b). For the local 𝛾!23.4  spatial distribution over the slip plane, the 

configuration was divided into columns along the normal direction of the (1-10) slip plane with 

a square cross-section of 6 Å ×	6 Å. The local 𝛾!23.4  was calculated by considering the energy 

changes of these columns, via constrained energy minimization (relaxation only along Z 

direction) of the final structure to maintain conservation of atoms in each column. The slip-

plane averaged value of the 𝛾!23.4 calculated this way is a global antiphase boundary energy 

that is somewhat higher than the fully relaxed value 𝛾23.4  (see Table 1), because the 

relaxation now is constrained along the Z direction [57]. 

 

3. Results and discussion 

3.1 Machine-learning interatomic potential 

The interatomic potential for TaCrVW MPEA was developed based on the MTP 

formalism [33]. Fig. 2 presents a comparison of MTP- and DFT-predicted energies and forces 

for the training and testing configurations. The additional testing set, which contains stacking-

fault and dislocation-dipole configurations, is used to further validate the MTP for its 

application to dislocation simulation. The overall root-mean-square errors (RMSEs) of the 

training and testing configurations (including general testing and additional testing sets) are, 

respectively, 2.304 meV/atom and 6.481 meV/atom for energies, and 0.088 eV/Å and 0.206 

eV/Å for atomic forces.  

Moreover, a comparison of the elastic constants predicted by the developed MTP and DFT 

can be found in Table S.1 [35], which shows high consistencies between the two methods. To 

further validate the reliability of the MTP before applying to dislocation simulation, the 

dislocation mobilities under constant shear stress in the four pure metal systems were also 

calculated and compared with those calculated from other potentials. The results shown in Fig. 

S.1 [35] indicate good consistencies with other potentials.  
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FIG. 2. Machine-learning interatomic-potential estimation. Energies and forces for training and testing 

configurations from DFT and MTP results are shown. The general testing set includes different AIMD and binary 

configurations similar to the training set; the additional testing set includes stacking-fault and dislocation-dipole 

configurations.  

3.2 Local chemical ordering and diffuse antiphase boundary energies (𝜸𝑫𝑨𝑷𝑩) 

Hybrid MC/MD calculations were first conducted from 600 K to 1800 K to obtain 

configurations with different degrees of randomness, and the potential energy per atom (Ep) 

was captured as a function of swap attempts. Fig. 3(a) presents the 800 K-annealed results, in 

which Ep decreases gradually with MC steps, thereby forming a more stable configuration. The 

Ep vs swap attempts for samples processed at other conditions can be found in Fig. S.3 [35]. 

The pairwise WC parameters (see Methods) in the first nearest neighbor shells，∆𝑟,- =

0	~	2.9	Å，are shown in Fig. 3(b). The 𝛼9:%/;1  is negative and decreases with annealing 

temperature, indicating Ta-Cr ordered phase formation at a lower annealing temperature. Fig. 

3(c) and (d) show atomic configurations for 600 K-annealed and RSS, respectively. The 600 K 

processed configuration exhibits dramatic phase separation, where obvious Ta-Cr rich regions 

are marked. Therefore, further dislocation dynamics simulations were only conducted for 

configurations annealed at 800 K and above. 
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FIG. 3. Local chemical ordering for configurations annealed at different temperatures. (a) Ep vs swap 

attempts for 800 K annealing; (b) chemical ordering parameters at different annealing temperatures; (c) and 

(d) configurations (visualized by OVITO [54]) annealed at 600 K and RSS, viewed along [-110] 

perpendicular to slip plane; (e) Diffuse antiphase boundary energies (𝛾!"#$) variation after several b slip for 

configurations annealed at different temperatures. 

TABLE I. Lattice properties for samples with different randomness, including lattice constant (a), elastic 

constants (C11, C12, C44), Zener’s anisotropy ratio (A), shear modulus (µ), Poisson's ratio (n), and diffuse 

antiphase boundary energy (𝛾!"#$ from full relaxation, and 𝛾%!"#$from constrained relaxation). 

Properties 
Annealing Temperature (K) 

Random 
600 800 1000 1200 1500 1800 

a [Å] 3.0995 3.1001 3.1007 3.1009 3.1012 3.1013 3.1035 

C11 [GPa] 393.5 390.5 386.0 383.5 381.7 379.9 378.3 

C12 [GPa] 151.3 153.9 155.3 155.9 156.1 156.2 157 

C44 [GPa] 60.7 60.3 60.0 59.7 59.7 59.4 60.2 

A 0.50 0.51 0.52 0.52 0.53 0.53 0.54 

µ [GPa] 85.8 84.5 83.2 82.4 82.1 81.5 81.7 

(c) (d)

Ta-Cr ordering

(a) (b)

(e)
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n 0.345 0.347 0.349 0.350 0.350 0.350 0.350 

𝛾%&'([mJ/m2] 84 70 50 36 27 18 -1 (~0) 

𝛾)%&'([mJ/m2]	 101 89 75 63 56 47 33 

 

Table I lists the bulk properties for samples annealed at different temperatures. The lattice 

constant decreases slightly as the annealing temperature and randomness decreases. The 𝛾23.4 

for the first b slip increases from near zero for the random system to 84 mJ/m2 for the 600 K-

processed configuration, as shown in Table 1 and Fig. 3(e), which can be attributed to the extra 

energy consumption for ordering-bond destruction across the slip plane for more ordered 

systems. Specifically, the negative 𝛾23.4  for the second b slip for the lower-temperature 

annealed samples can be understood by the restoration of the more stable local ordering phase. 

Moreover, 𝛾23.4 vanishes with repeated shears by b on the same slip plane, as shown in Fig. 

3(e), which indicates that five successive shears by b can break the local chemical ordering 

between the atomic layers across the glide plane, in consistence with a previous investigation 

[15]. 

3.3 Pinning and unpinning mechanism of dislocation segments 

Fig. 4(a) shows a series of dislocations extracted every 2 ps from the MD simulation. The 

lines are severely curved and do not move smoothly due to the inhomogeneous local 

environment. Some regional segments can slip forward, while others are quasi-static because 

of insufficient energy obtained to conquer the local obstacles. Local traps pin the immobile 

segments, thereby line length will increase by bowing and energy is gained from the external 

stress. Dislocation segments will be unpinned until enough energy is obtained to overcome the 

local resistance, considerably different from the smooth movement of straight dislocations in 

pure metallic systems [26,58]. 

Local 𝛾!23.4  is used to examine the influence of local fault-energy fluctuation on the 

pinning of dislocation segments. The spatial variation and statistical distribution of the local 

𝛾!23.4 over the glide plane for the RSS sample are plotted in Fig. 4(a) and (b), respectively. 

From Fig. 4(a), the local 𝛾!23.4  exhibits severe fluctuation, with some local regions exhibiting 

𝛾!23.4 values as high as 400 mJ/m2. As we have analyzed recently [30], such regions of high 
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local 𝛾!23.4 are potential pinning sites for dislocations motion since gliding across them would 

be accompanied by local high faulting energy barriers, and here, we provide evidence for this 

in the present alloy. Due to the trapping processes, the velocities of different segments along 

the same dislocation vary. To identify the pinning sites, local velocities along dislocations are 

estimated, and segments with a local velocity lower than 1 Å/ps are captured as pinning sites. 

For instance, Fig. 4(c) shows five dislocations extracted from Fig. 4(a), and the corresponding 

local velocities are illustrated in Fig. 4(d). After mapping the local velocities and positions to 

the spatial distribution of local 𝛾!23.4 on the slip plane, we can obtain the local 𝛾!23.4 at the 

pinned regions. Fig. 4(b) shows a comparison of the 𝛾!23.4 statistic distribution over the whole 

glide plane and at pinning sites for the RSS state; it can be seen that the mean 𝛾!23.4  at the 

pinning sites 𝜇<= 73.02 mJ/m2 is higher than the mean 𝜇#= 33.26 mJ/ m2 for the whole glide 

plane. For the alloys processed at other conditions, the same trends are observed as shown in 

Fig. S.4 [35]. 

 
FIG. 4 Dislocation motion accompanied by local pinning and unpinning. (a) Curved dislocations as superimposed 

onto the spatial distribution map of local 𝛾)%&'( over the glide plane in RSS; (b) statistical distribution of local 

𝛾)%&'( over the whole glide plane and at pinning sites, with mean values 𝜇 and standard deviations 𝜎; (c)-(d) 

illustrate several dislocations and their local velocities.  

(a) (b)

(c) (d)
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3.4 Critical shear stress for dislocation motion	

The critical shear stress (CRSS) for the entire dislocation line to glide continuously across 

the slip plane as a function of the annealing temperature is shown in Fig. 5. Different from most 

previous studies that randomness decrease can result in strengthening [15,30], the average 

CRSS in the TaCrVW alloy at 5 K varies from 964 MPa to 1259 MPa for samples with different 

levels of randomness. Moreover, for a sample with finite randomness, the CRSS calculated 

from five independent MD simulations (with initial dislocations located at five different 

positions of the slip plane) scatter significantly, as shown in Fig. 5. Note that a softening 

behavior of edge dislocations in an 800 K-annealed MoNbTaW sample has been reported 

previously [16], and the mechanism was attributed to a competition between the improved 

strength resulting from the increasing in ordering degree and reduced strength arising from the 

decreasing of lattice friction compared with the random state. However, no quantitative 

evidence has been given for such a conjecture; thus, in-depth investigation on the different 

strength contributions is essential to reveal the underlying mechanism. 

The CRSS and the corresponding standard deviations at 300 K for the first slip of 

dislocation (dislocation glides across the slip plane for the first time), and at 5 K for the fifth 

slip (dislocation glides across the slip plane repeatedly for the fifth time, so the ordering across 

the glide plane has been destroyed), are also illustrated in Fig. 5. The average CRSS calculated 

at 300 K for samples of different randomness shows a similar trend but with reduced values 

compared with the 5 K first slip results. The average CRSS for dislocation multi-slip decreases 

gradually as the sample randomness decreases. An increment of the CRSS for the 1800 K-

annealed sample for multi-slip compared with first slip, and a decrease or invariance for other 

samples can be noted. From Fig. 3(e), the generalized 𝛾23.4 vanishes after five successive 

passes of the dislocation, which indicates a decrease in strength contribution from the 

generalized 𝛾23.4 compared with the first slip. Therefore, considering the elevated strength 

for the multi-slip for the 1800 K-annealed samples, there should be other strengthening factors 

after the breakage of ordering bonds, which will be discussed in Section 4 below. 
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FIG. 5 Critical shear stress for configurations processed at different conditions, at 5 K and 300 K for the 

first slip, and 5 K for the fifth slip. R denotes random solid solution. Error bars correspond to the standard 

deviations of each data point. 

4. Competing contributions to strength 
To explain the variation of strength with the annealing condition in Fig. 5, we analyze the 

effects of randomness on the intrinsic Peierls stress of the alloy, as well as on the strength 

arising from the global 𝛾23.4 and its local fluctuations. 

 

4.1 Effects of randomness on Peierls stress strengthening 

First, we consider the Peierls stress, and in particular, how this is influenced by the lattice 

distortion introduced by the randomness of the alloy. The Peierls stress is given as [59,60]: 

𝜏<= =
>?
9/@

exp @− >AB
C
B        (1) 

where µ is shear modulus, 𝜈 is Poisson’s ratio, b is Burger’s vector and d is the interplanar 

spacing. When applied to an MPEA, the length scales b and d will be affected by the lattice 

distortion of the alloy, and 1.02 is used here for B
C
. Fig. S.5(a) shows the distribution of the 

change of the Voronoi volume, ∆𝑉 , relative to the volume 𝑉<  of the perfect Voronoi cell 

without lattice distortion, as computed from structures after annealing. It can be seen that the 

standard deviation ∆𝑉 increases from 0.35 for the 800 K-annealed sample to 0.53 for the RSS 

state. To examine how the lattice distortion may affect the Peierls stress, we modify a model 

developed by Zhang et al. [61], in which stochasticity is introduced into the Peierls stress by 
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scaling the stacking-fault energy (SFE) with a random variable. Here, the effect of the SFE 

fluctuation will be dealt with separately as another strength contribution (see section 4.2 below), 

and for the Peierls stress, we consider that randomness is introduced into the length scales b 

and d in eqn. (1), which can be related to the fluctuation of the Voronoi cell volume as observed 

in Fig. S.5. Considering that the primitive cell of the crystal is a rectangular block of volume 

𝑉 = 𝑏>𝑑, where 𝑏> is the area on the slip plane, and 𝑑 is the interplanar spacing of the slip 

plane, when expressed in units of 𝑏D  the Voronoi cell volume is 𝑉/𝑏D = 𝑑/𝑏 . As lattice 

distortion exists, Voronoi cell volume should fluctuate, which can be represented by scaling 

𝑑/𝑏 by a random variable 𝜔 drawn from the normal distribution of mean 1 and standard 

deviation ∆, i.e. 

𝜔 B
C
→ B

C
                               (2) 

On substituting eqn. (2) into eqn. (1), the Peierls stress becomes 𝜏<∗ =
>?
9/F

exp @− >AB
(9/F)C

𝜔B, the 

mean value of which is  

〈𝜏<∗〉 = ∫ 𝜏<∗(𝜔)	𝑃I(𝜔)𝑑𝜔
J
= = 𝜏<= × 〈𝜏̃<∗〉,       (3) 

where 𝑃I(𝜔) =
9

∆√>A
exp @− (I/9)*

>∆*
B is the normal distribution of 𝜔 with mean 1 and standard 

deviation ∆. In eqn. (3),  

〈𝜏̃<∗〉 =
9

∆√>A
∫ exp @− >AB(I/9)

C(9/F)
− (I/9)*

>∆*
B 𝑑𝜔J

=                     (4) 

is a normalization factor that depends on ∆, 𝜈 and (𝑑/𝑏). For simplicity, ∆ here is taken to be 

the ∆𝑉/𝑉< obtained from the distributions of the Voronoi-volume change shown in Fig. S.5 

[35]. Then, as ∆ increases from 0.028 for the 800 K-annealed sample to 0.037 for the RSS, 

with the values of 𝜇 and 𝜈 taken from Table 1, the corresponding Peierls stress changes only 

slightly from 438 MPa to 431 MPa, as randomness in the alloy increases. This is because, as 

shown in Fig. S.5(b) [35], the factor 〈𝜏̃<∗〉 actually does not change significantly from 1 when 

the lattice distortion ∆ changes within the range from 0.028 to 0.037 for the present alloy 

system; instead, the slight changes in the Peierls stress are due to the slight reduction in 𝜇 as 

randomness increases (Table 1), while the variation ∆  in the lattice distortion does not 

constitute a significant factor to change the Peierls stress.  
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4.2 Effects of randomness on fault energy strengthening 

We have recently investigated the effects of ordering on strengthening due to fault energy 

for an FCC MPEA [30], and here, we apply this model to elucidate the strengthening 

mechanism of the present TaCrVW alloy. In this model, the fault energy offers two types of 

strength contributions. First, strengthening arises from the diffuse antiphase boundary 

generated in the wake of a moving dislocation, the energy of which, the global 𝛾23.4, varies 

with randomness as shown in Fig. 3(e) for the present alloy. Secondly, as mentioned above, the 

local regions on the slip plane with higher-than-average 𝛾!23.4  are potential pinning sites; 

hence a dislocation traversing in a field of such pinning sites will continuously adopt different 

wavy shapes as depicted in Fig. 6(a), and hence its line-tension energy will fluctuate to give 

rise to a strength contributor. By considering energy balance, the sweep distance 𝑤(𝑦) 

between two successive wavy states (which are not necessarily equilibrium states) satisfies [30],  

𝜏L𝑏	 ∫ 	𝑤(𝑦)	𝑑𝑦M
= = :

> ∫ [𝑤N(𝑦)]>	𝑑𝑦M
= + ∫ V∫ 𝛾(𝑥, 𝑦)	𝑑𝑥O(P)

= Y 	𝑑𝑦M
=             (5) 

where	 𝛾(𝑥, 𝑦) is the spatial distribution of local fault energy, T=αµb2 is the line tension of the 

dislocation with α dependent on the dislocation character, and µ is the shear modulus. In eqn. 

(5), 𝜏L  is the fault-introduced resistance stress, and 𝜏L𝑏	 = 𝑓% − 𝑓Q , where 𝑓%  and 𝑓Q  are 

respectively the force on unit length of dislocation due to the applied stress and Peierls stress. 

As discussed above, the 𝛾(𝑥, 𝑦) may be written as 𝛾(𝑥, 𝑦) = 𝛾̅ + ∆𝛾(𝑥, 𝑦) where 𝛾̅ is the 

global average 𝛾(𝑥, 𝑦)	(the quantity listed in Table 1), and ∆𝛾(𝑥, 𝑦) is the fluctuating part 

that results in wavy dislocations. Then, the fault introduced resistance can be decomposed into 

two parts as 𝜏L = 𝜏LR + 𝜏∆L, where 

𝜏LR = 𝛾̅/𝑏                                (6) 

is the resistance stress due to the average 𝛾23.4 (𝛾̅), and 𝜏∆L is that due to the fluctuations 

of	 𝛾!23.4 	 given by 

𝜏∆L ≈
:
>C

∫ TO+(P)U
*
	BP,

-

∫ 	O(P)	BP,
-

                            (7) 

To calculate 𝜏∆L from eqn. (7), wavy snapshots of a travelling dislocation were captured from 

the MD simulation and the sweep distance w(y) between two successive snapshots was 

calculated and fitted to an N-degree Fourier series 
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𝑤(𝑦) = 𝜆= + ∑ 𝜆, sin V
>AP
ℓ#
+ 𝜙,YX

,Y9          (8) 

Then, eqn. (7) will take the form [30]:  

 𝜏∆L ≈
Z?CA*∑ \#*#

]-
                             (9) 

where 𝑘, = 𝜆,/ℓ, is for the Fourier harmonics. Eqn. (9) then enables 𝜏∆L to be calculated. 

 

4.3 Strength contributors  

 
FIG. 6. Theoretical analysis of critical stress for dislocation motion. (a) Schematic diagram showing forces 

acting on a wavy dislocation shape Wi(y) and its next position Wi+1(y), with sweep distance of wi(y) in 

between. fa, ff and 𝜏&𝑏 are force induced by the applied stress, Peierls stress and stacking-fault introduced 

resistance, respectively; (b) resistance stress due to fault-energy fluctuations (𝜏∆&) for the first and fifth slip 

by ½[111] across the glide plane; (c) comparison of MD calculated critical stress (𝜏(!) and theoretical 

estimates of different strength contributions (𝜏)  = Peierls stress, 𝜏& = 𝛾̅/𝑏  is the stress from average 

𝛾!"#$ , and 𝜏∆& is the stress from fault-energy fluctuations) for different condition processed samples. For 

RSS, Curtin's theoretical model is also presented as a comparison. Error bars correspond to the standard 

fa
!gb

x

y

ff

Wi(y) Wi+1(y)
wi(y)

L

(a) (b)

(c)
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deviations of each data point. 

Fig. 6(c) shows the estimated values of the different strength contributors. First, the Peierls 

stress 𝜏<  remains almost constant at around 431-438 MPa for the samples with different 

randomness. Then, the 𝜏LR  calculated from 𝛾̅  (𝛾23.4 ) in Table 1 exhibits a rise as the 

randomness decreases, e.g., 67 MPa and 261 MPa for the 1800 K and 800 K-annealed sample, 

respectively.  

Finally, the 𝜏∆L resistance was calculated from eqn. (9). Sweep distance w(y) is obtained 

from the difference between two neighbouring line states Wj+1-Wj, after which 8-degree Fourier 

fitting was conducted for w(y) to obtain the 𝑘,  and 𝜆= parameters in eqn. (9). Using 𝜇 in 

Table 1, b calculated from the lattice constant, and 𝛼	= 0.125 [19,20], a series of 𝜏∆L were 

obtained, and the average value and standard deviation in each state are shown in Fig. 6(b). As 

is similar to the scatter of the MD calculated CRSS, the 𝜏∆L also scatters significantly. The 

average  𝜏∆L  for the first-slip at 5 K simulation increases from 394 MPa for the 800 K-

annealed sample to 566 MPa for the random state. Interestingly, the increase of 𝜏∆L  with 

randomness almost balances out the decrease of 𝜏LR , thus, leading to the small variation of the 

final critical stress. Moreover, from Fig. 6(b), the average 𝜏∆L for the fifth slip at 5 K and first 

slip at 300 K are both higher than the 5 K first slip results. These findings indicate that 

randomness (entropy) increase can contribute to the rise of 𝜏∆L by affecting the dislocation 

morphology.  
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FIG. 7. Comparison of 2D FFT distribution of the local 𝛾)%&'( map for first and fifth slip by ½ [111] 

across the glide plane. Fx and Fy denote frequencies in X and Y directions. 

To further validate the last point, we performed two-dimensional fast Fourier transform 

(2D FFT) of the local gDAPB map to reveal its harmonics, from which we can obtain information 

about the FFT peaks and their locations in the reciprocal space, which are strengthening factors. 

Fig. 7(a) and (b) compare the 2D FFT results for the local gDAPB map for the first and fifth slip 

for the 1800 K annealed sample, from which it can be seen that stronger peaks are present in 

the fifth slip sample, which has higher entropy due to the destroyed ordering. These peak values 

reflect strong pinning sites, which can result in higher waviness of the dislocations, thus leading 

to higher 𝜏∆L. For samples with other randomness, similar observations can be made, as shown 

in Fig. S.6 [35]. 

Taking the above three contributions together, comparison with the MD results is made in 

Fig. 6(c), with discrepancies lower than ±20%. As mentioned above, 𝜏∆L and 𝜏LR  show an 

apparent opposite relationship with chemical randomness, while 𝜏<  exhibits an almost 

constant value. For the ideal RSS, 𝜏∆L reaches 566 MPa, which takes up more than half of the 

total strength, while for the 800 K-processed sample, the three components all make significant 

contributions.   

In addition, Curtin et al.'s model [20], which considers line tension and misfit, is also used 
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in the comparison for the ideal RSS state: 

  𝜏!"1#,^ = 0.04𝛼/
.
/𝜇̅f.01.213g

4
/h∑ 67∆87*7

93*
i
*
/                         (10)   

Here, 𝜇̅ = j.
*;44(;../;.*)  is the isotropic shear modulus, 𝜈  is the Poison's ratio, 𝑏-  is the 

Burgers vector, and ∆𝑉 = 𝑉 − 𝑉-  is the volume misfit, where 𝑉  is the atomic volume for 

metal n, 𝑉-  is calculated from Vegard's law. The calculated strength from this model, 𝜏!"1#,^, 

is 1166 MPa, as illustrated in Fig. 6(c), which agrees reasonably with the MD simulation (1259 

MPa) and theoretical prediction (1027 MPa) in this study.  

Summary 
In summary, we developed a new machine-learning interatomic potential for a BCC 

TaCrVW refractory MPEA and applied it to dislocation dynamics study over a wide range of 

randomness. An analytical model considering the Peierls stress, generalized fault energy and 

its fluctuation induced resistance is developed. With randomness decreasing, the strength 

introduced by the average fault energy rises, while local fault energy fluctuation produces less 

wavy dislocations thus contributing less to the total strength. The opposite trends of 

strengthening due to the average and fluctuation of the fault energy fortuitously cancel out, thus 

the final critical stress exhibits little variance for samples with different randomness. These 

findings demonstrate the unique strengthening mechanism in MPEAs with different 

randomness. 
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