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More than two decades ago, the numerical instabilities of particle clustering and non-physical 
fractures encountered in the simulations of typical elastic dynamics problems using updated 
Lagrangian smoothed particle hydrodynamics (ULSPH) was identified as tensile instability. 
Despite continuous efforts in the past, a satisfactory resolution for the simulations of these 
problems has remained elusive. In this paper, the concept of hourglass modes, other than tensile 
instability, is first explored for the discretization of shear force, arguing that the former may 
actually lead to the numerical instabilities in these simulations. Based on such concept, we present 
an essentially non-hourglass formulation by utilizing the Laplacian operator which is widely used 
in fluid simulations. Together with the dual-criteria time stepping, adopted into the simulation of 
solids for the first time to significantly enhance computational efficiency, a comprehensive set of 
challenging benchmark cases is used to showcase that our method achieves accurate and stable 
SPH elastic dynamics.

1. Introduction

Smoothed particle hydrodynamics (SPH), original proposed by Lucy [1] and Gingold and Monaghan [2] for simulating astro-

physical problems, is a fully Lagrangian particle-based method. In SPH, the physical quantities such velocity, position, and stress are 
carried by each particle, and the motion of particles is described in the Lagrangian framework, which is naturally well-suited for 
simulating problems involving large deformations, especially fracture and failure. Over the past 40 years, SPH has been extensively 
developed and improved, and it has been successfully applied to simulate various physical problems including fluid dynamics [3–6], 
solid dynamics [7–11], and fluid-solid interactions [12–15].

Based on whether the particle configurations, which define the neighbors of each particle, are updated during the simulation, 
the SPH methods for solid dynamics can be classified into the total Lagrangian SPH (TLSPH) [16] and updated Lagrangian SPH 
(ULSPH) [7,17]. TLSPH and ULSPH cater to different domains and address specific sets of physical problems based on their unique 
characteristics. TLSPH is able to handle the elastic and plastic dynamics efficiently as it saves the time required for updating particle 
configurations. Compared with TLSPH, while ULSPH is able to cope with material failure and fracture beyond elastic or plastic 
deformations more naturally with updating particle configurations at each time step, it faces two important drawbacks associated 
with elastic dynamics: one is the persistent issue of the numerical instability (particle clustering and numerical fractures); the other 
is poorer efficiency due to the computational effort and memory latency when the particle configurations are updated frequently.
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Fig. 1. Illustration for (a) no numerical instabilities, (b) non-physical fractures and (c) zigzag pattern in ULSPH simulations of 2D oscillating plates. The particles are 
colored with von Mises stress.

As shown in Fig. 1b for a typical example, the numerical instability involving particle clustering and non-physical fractures 
presented in the simulations of many elastic dynamics problems with the standard ULSPH formulation is often considered as tensile 
instability, a fundamental numerical issue caused by the tensile stress and was introduced by Swegle et al. [18] in 1995. Since 
then, different approaches have been proposed to address this problem [19–23]. However, these methods also have their own issues, 
such as failure to maintain conservation properties, low computational efficiency, or limited applicability, being only suitable for 
specific cases rather than universally applicable [24–26]. Later, in 2000, inspired by the repulsive interactions observed among 
closely spaced atoms, Monaghan [17] introduced a small repulsive force (named the artificial stress) between particles in SPH based 
on the concept of counteracting the tension to prevent particle clustering and then remove the instability. Gray et al. [7] further 
developed this approach by determining the parameters in artificial stress from the dispersion relation for elastic waves. Despite the 
broader recognition compared to many other approaches in addressing the instability in SPH elastic dynamics, the artificial stress 
method still faces the following limitations: (1) it has two parameters requiring case-dependent tuning; (2) it may fail in scenarios 
where the deformation is significant or when dealing with materials featuring high Poisson’s ratio [27,28]; (3) its extension for 
three-dimensional (3D) simulations is yet to be developed. The third issue is due to the fact that the derivation of the artificial stress 
term is based on a two-dimensional (2D) scenario [7], and this approach is not only computationally intensive but also difficult 
to perform in 3D scenarios [29,30]. To our best knowledge, there are no documented instances utilizing this artificial stress term 
directly in 3D simulations.

An interest phenomenon one can observe is that, as shown in Fig. 1c, although the artificial stress can eliminate non-physical 
fractures in some cases, the artifacts with zigzag patterns appear in the stress profile. This issue is not unique for the specific cases, 
and can be found in other ULSPH methods aimed at mitigating tensile instability [27,31]. The zigzag pattern is a typical numerical 
instability phenomenon well known as hourglass modes, another fundamental numerical issue related to collocation methods [32,33]. 
Hourglass modes were also found in TLSPH elastic dynamics, when the deformation is very large [32], even though TLSPH does not 
suffer from the tensile instability [16].

In this work, based on the above observations, we propose to address the numerical instability observed in the ULSPH simulations 
of elastic dynamics problems, i.e., non-physical fractures and zigzag patterns, in the respect of hourglass modes other than tensile 
instability. From this very different point of view, we develop a non-nested ULSPH formulation for computing the shear stress induced 
acceleration and essentially eliminate the hourglass modes. With extensive numerical examples, we show that the new formulation is 
numerically stable and able to obtain very smooth particle distribution and stress profiles (as shown in Fig. 1a for a typical example.) 
2

Note that, different from reference [7], the present formulation works for both 2D and 3D scenarios. Also note that, unlike the 
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tensile-instability control (TIC) method [31] requiring to identify inner and surface particles for different treatments, the present 
method doses not lead to such complexity.

Another contribution of this work is that, to improve computational efficiency, a dual-criteria time stepping method [34] is 
incorporated into ULSPH simulations of elastic dynamics for the first time. There are two time steps named the advection time step 
and the much smaller acoustic time step. By updating of particle configurations only in the advection time step, the frequency for 
updating particle configurations can be minimized, and the calculation time can be reduced. It is worth mentioning that the speed of 
sound in solid simulations is the true sound speed, much higher than the artificial sound speed used in the weekly compressible SPH 
(WCSPH) method for fluids. This implies the dual-criteria time stepping scheme leads to a significant enhancement in computational 
efficiency for solid simulations.

The remainder of this article is arranged as follows. The basic theory of elastic dynamics is introduced in Section 2. The original 
formulation and the present essentially non-hourglass formulation for elastic dynamics are described in Section 3 and Section 4

respectively. The dual-criteria time stepping scheme for solid simulations is described in Section 5, and a set of benchmark cases for 
elastic dynamics are then used to validate the convergence, accuracy and stability of the proposed method in Section 6. Section 7

draws the conclusion. For future in-depth research, all the code used in this study has been open-sourced in the SPHinXsys repository 
[35] at https://www .sphinxsys .org and https://github .com /Xiangyu -Hu /SPHinXsys.

2. Governing equations and constitutive relations

In a Lagrangian framework, the governing equations include mass and momentum conservation for continuum mechanics are 
defined as

d𝜌

d𝑡
= −𝜌∇ ⋅ 𝐯 (1)

d𝐯
d𝑡

= 1
𝜌
∇ ⋅ 𝝈 + 𝐠 (2)

where 𝜌 is the density, 𝐯 is velocity, 𝑡 is the time, 𝝈 is the stress tensor, and 𝐠 is the body force. The total stress tensor 𝝈 can be 
divided into two terms, i.e., the hydrostatic pressure and the shear stress, as shown below.

𝝈 = −𝑝𝐈+ 𝝈
𝑠 (3)

where 𝑝 is the hydrostatic pressure, 𝐈 is the identity matrix, and 𝝈𝑠 is the shear stress. The pressure 𝑝 can be evaluated from density 
based on an artificial equation of state [7].

𝑝 = 𝑐20 (𝜌− 𝜌0) (4)

where 𝜌0 and 𝜌 are the initial and the current density respectively. 𝑐0 is the sound speed, which is expressed as [27]

𝑐0 =
√

𝐸

3(1 − 2𝜈)𝜌0
(5)

where 𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio of the given material. The shear stress is the integral of the shear stress rate 
with respect to time.

𝝈
𝑠 =

𝑡

∫
0

�̇�
𝑠d𝑡 (6)

For a linear elastic model, the shear stress rate is defined as

�̇�
𝑠 = 2𝐺(�̇�− 1

𝑑
𝑡𝑟(�̇�)𝐈) (7)

where G is the shear modulus. 𝑡𝑟(𝜑) indicates the trace of a variable 𝜑 and �̇� is the change rate with time for the variable 𝜑 (𝜑 is 
an arbitrary variable). 𝑑 represents the space dimension, and 𝑑 = 2 and 3 for 2D and 3D cases respectively. �̇� is strain rate, which is 
defined as

�̇� = 1
2
(∇𝐯+ (∇𝐯)𝑇 ) (8)

where ∇𝐯 donates the velocity gradient, and superscript 𝑇 indicates the transpose of a tensor.

3. Original SPH formulation

According to Eq. (2) and Eq. (3), The acceleration related to volumetric (hydrostatic pressure) and deviatoric part (shear stress) 
of the stress tensor can be express as

1

3

�̇�𝑝 = −
𝜌
∇𝑝 (9)

https://www.sphinxsys.org
https://github.com/Xiangyu-Hu/SPHinXsys
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�̇�𝑠 = 1
𝜌
∇ ⋅ 𝝈𝑠 (10)

where �̇�𝑝 and �̇�𝑠 donate the velocity change rate (acceleration) induced by hydrostatic pressure and shear stress respectively. Then 
the total velocity change rate �̇�=�̇�𝑝+�̇�𝑠+𝐠.

A low-dissipation Riemann solver [36,37] is incorporated in the WCSPH to discrete the continuity equation and the momentum 
equation for hydrostatic pressure.

d𝜌𝑖

d𝑡
= 2𝜌𝑖

∑
𝑗

𝑚𝑗

𝜌𝑗
(𝑈∗ − 𝐯𝑖𝑗𝐞𝑖𝑗 )

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
(11)

d𝐯𝑝
𝑖

d𝑡
= −2

∑
𝑗

𝑚𝑗

𝑃 ∗

𝜌𝑖𝜌𝑗
∇𝑖𝑊𝑖𝑗 (12)

Here, 𝑊𝑖𝑗 represents 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ), which is the kernel function. 𝐫 is particle position and ℎ is the smoothing length. The subscripts 𝑖
and 𝑗 donate particle numbers, and 𝑚 is the particle mass. 𝐞𝑖𝑗 is the unit vector pointing from particle 𝑗 to particle 𝑖 and 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 . 
∇𝑖𝑊𝑖𝑗 =

𝜕𝑊 (𝑟𝑖𝑗 ,ℎ)
𝜕𝑟𝑖𝑗

𝐞𝑖𝑗 is the derivative of kernel function, and 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗 | is the distance between two particles. 𝑈∗ and 𝑃 ∗, which 
are obtained from the low-dissipation Riemann solver [36,37], are the solutions of an inter-particle Riemann problem along the unit 
vector pointing from particle 𝑖 to 𝑗. 𝑈∗ and 𝑃 ∗ are expressed as [36]

𝑈∗ =
𝜌𝐿𝑐𝐿𝑈𝐿 + 𝜌𝑅𝑐𝑅𝑈𝑅 + 𝑃𝐿 − 𝑃𝑅

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
(13)

𝑃 ∗ =
𝜌𝐿𝑐𝐿𝑃𝑅 + 𝜌𝑅𝑐𝑅𝑃𝐿 + 𝛽𝜌𝐿𝑐𝐿𝜌𝑅𝑐𝑅(𝑈𝐿 −𝑈𝑅)

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
(14)

The subscripts 𝐿 and 𝑅 indicate the left and right states from Riemann problem, and are defined as{
(𝜌𝐿,𝑈𝐿,𝑃𝐿, 𝑐𝐿) = (𝜌𝑖,𝐯𝑖 ⋅ 𝐞𝑖𝑗 , 𝑃𝑖, 𝑐0𝑖)
(𝜌𝑅,𝑈𝑅,𝑃𝑅, 𝑐𝑅) = (𝜌𝑗 ,𝐯𝑗 ⋅ 𝐞𝑖𝑗 , 𝑃𝑗 , 𝑐0𝑗 )

(15)

𝑐0 is the speed of sound as defined in Eq. (5). 𝛽 in Eq. (14) is a dissipation limiter, which is set as [36]

𝛽 =min{3max
[
(𝑃𝐿 + 𝑃𝑅)(𝑈𝐿 −𝑈𝑅)

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
,0
]
,1.0} (16)

The shear acceleration �̇�𝑠 can be discretized by

d𝐯𝑠
𝑖

d𝑡
=
∑
𝑗

𝑚𝑗

𝝈
𝑠
𝑖
+ 𝝈

𝑠
𝑗

𝜌𝑖𝜌𝑗
⋅∇𝑖𝑊𝑖𝑗 (17)

Refer to Eq. (6)-Eq. (8), the velocity gradient needs to be discretized for computing shear stress 𝝈𝑠
𝑖

and 𝝈𝑠
𝑗
, which has the following 

form [38]

∇𝐯 =
∑
𝑗

𝐯𝑖𝑗 ⊗∇𝑖𝑊𝑖𝑗𝑉𝑗 (18)

where 𝑉𝑗 is the volume of particle 𝑗.
In the original SPH formulation, it is evident that shear acceleration �̇�𝑠 is derived from the shear stress by Eq. (17). To compute 

the shear stress, the process involves initially determining velocity gradients by Eq. (18), followed by calculating strain rates with Eq. 
(8). Subsequently, the stress rate is evaluated by Eq. (7), and integrating the stress rate over time based on Eq. (6) yields the shear 
stress. In the entire process, it is observed that two consecutive summations are performed on neighboring particles. Additionally, the 
result of the first summation (Eq. (18)) serves as an input variable in the second summation (Eq. (17)), revealing a nested structure, 
referred to by Morris et al. [3] as “nested summation” and by Hu and Adams [6,39] later as “nested application”.

4. Essentially non-hourglass SPH formulation

The formulation in section 3 suffers from hourglass issues induced by zero energy modes [40], which is characterized by a pattern 
of particle displacement that does not correspond to rigid body motion but still results in zero strain energy [40–42]. As shown in 
Fig. 2, we use a simple case to demonstrate the zero energy modes. The particles are uniformly distributed along the 𝑥-axis, and 
the particles change from time step 𝑛 to time step 𝑛 + 1 with the velocity 𝑣𝑖 = 𝑣1 = 𝑣4 = −𝑣2 = −𝑣3. Under these circumstances, the 
original SPH calculations yield a zero velocity gradient for particle 𝑖 based on Eq. (18), consequently leading to a negligible stress 
increment. In other words, this deformation mode is not resisted [41] and, naturally, cannot recover even under elastic deformation 
conditions, which leads to an inaccurate estimation of the shear stress and shear acceleration [33].

In a recent effective remedy for hourglass modes in TLSPH [33], the particle acceleration due to the divergence of shear stress 
is directly obtained from a one-step Laplacian formulation of the particle displacement other than the nested implementation of the 
4

2nd-order derivatives used in the original TLSPH. Actually, such non-nested SPH formulation of Laplacian is widely used in SPH 
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Fig. 2. Illustration of zero energy modes by considering a simple case. The particles are uniformly distributed along the 𝑥-axis, and change from time step 𝑛 to time 
step 𝑛 + 1 with the velocity perpendicular to the x-axis (𝑣𝑖 = 𝑣1 = 𝑣4 = −𝑣2 = −𝑣3).

fluid dynamics for computing the viscous-force term in the Navier-Stokes equations [3,6,43], and is found much stabler than the 
nested counterpart. Inspired by these previous solutions, we apply a Laplacian operator to calculate the shear acceleration directly 
in ULSPH simulations of elastic dynamics.

Firstly, we re-formulated the theoretical expression for shear acceleration by combining Eq. (6)-Eq. (10)

�̇�𝑠 = 𝐺

𝜌
∇ ⋅

𝑡

∫
0

(∇𝐯+ (∇𝐯)𝑇 − 2
𝑑
∇ ⋅ 𝐯𝐈)d𝑡 (19)

By substituting the first Hamiltonian operator on the right-hand side into the integral symbol, the following equation can be obtained

�̇�𝑠 = 𝐺

𝜌

𝑡

∫
0

(∇2𝐯+∇∇ ⋅ 𝐯− 2
𝑑
∇∇ ⋅ 𝐯)d𝑡 (20)

When considering weakly compressible conditions, i.e., ∇ ⋅ 𝐯 ≈ 0, Eq. (20) can be simplified to

�̇�𝑠 ≈ 𝐺

𝜌

𝑡

∫
0

(∇2𝐯)d𝑡 (21)

It should be noted that, even for incompressible materials, the theoretical velocity divergence is zero but not necessarily numerically 
zero. Therefore, assuming the velocity divergence to be zero may introduce certain errors. Nevertheless, the results of extensive test 
cases in Section 6 exhibit strong agreement with both theoretical solutions and numerical results reported in literature, which suggests 
that the introduced error is not noticeable. The Laplacian operator needs to be discretized for calculating the shear acceleration. Refer 
to the literature [38], ∇2𝐯 can be discretized as

∇2𝐯 = 2
∑
𝑗

𝐯𝑖𝑗
𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
𝑉𝑗 (22)

However, the aforementioned formula does not fulfill the requirement for rigid rotational invariance. In other words, using this 
discretized form of the second derivative of velocity to compute shear acceleration in Eq. (21) cannot remove the effects of rigid 
rotation. Monaghan and Gingold [44] proposed the artificial viscosity in inviscid SPH considering the linear and angular momentum 
in 1993. Cleary et al. [45,46] discretized the viscous-force term similar to the artificial viscosity. Based on previous works [44–46], 
we adopt a discretization for the second derivative of velocity that conforms to the requirement of rigid rotational invariance, to 
eliminate the contribution of rigid rotation to the shear acceleration that should not have occurred in the first place, as shown in Eq. 
(23). It is important to note that while Eq. (23) exhibits local inconsistency due to the truncated kernel domains for surface particles, 
it does not affect global consistency, as theoretically proved by Colagrossi et al. [47].

∇2𝐯 = 2𝜁
∑
𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗 (23)

where 𝜁 is a positive parameter related to the smoothing length ℎ and the type of kernel function [39]. 𝜁 needs to be calibrated with 
numerical experiments. Through empirical calibration with solutions from known exact transient flow, Cleary [45] determined that 
the value of 𝜁 is 4.96333. Cummins and Rudman [48] discovered that, when utilizing a pressure projection in incompressible SPH 
simulations of 2D flows, the parameter 𝜁 is determined to be 4.167. Hu and Adams [39] assigned a value of 𝑑 + 2 (𝑑 is the spatial 
dimension) to the parameter 𝜁 in SPH simulations of incompressible viscous flow. In this study, considering the chosen kernel type 
and smoothing length, the coefficient 𝜁 is determined as 0.7𝑑+2.1 (3.5 for 2D scenarios and 4.2 for 3D scenarios) through numerical 
5

experiments conducted on 2D and 3D oscillating plates (section 6.1 and 6.2), alongside a comparison with theoretical values.
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Then the non-nested formulation of shear acceleration can be written as

d𝐯𝑠
𝑖

d𝑡
= 2𝜁 𝐺

𝜌𝑖

𝑡

∫
0

(∑
𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)
d𝑡 (24)

Compared to original SPH methods, this formula is capable of eliminating zero energy modes, i.e., it can account for the variations 
in shear acceleration caused by the motion illustrated in Fig. 2. Eq. (24) is the final form of shear acceleration without hourglass 
modes, and thus can eliminate numerical instabilities in essence. It should be noted that the shear acceleration calculated at time 
step 𝑛 will be used at the next time step 𝑛+ 1.

5. Dual-criteria time stepping

As we mentioned in Section 1, due to the necessity of updating particle configurations at each computational time step, a 
persistently challenging issue in ULSPH is its low computational efficiency. In this section, the dual-criteria time stepping originally 
proposed for fluid simulations [34] is introduced to solid simulations for the first time, to improve the calculation efficiency by 
reducing the frequency for updating particle configurations, while maintain high computation accuracy at the same time.

The dual-criteria time stepping strategy employs a larger advection time step △𝑡𝑎𝑑 , and a smaller acoustic time step △𝑡𝑎𝑐 . The 
particle configuration is updated in the advection time step △𝑡𝑎𝑑 , which is defined as

△𝑡𝑎𝑑 = 𝐶𝐹𝐿𝑎𝑑

ℎ|𝐯|𝑚𝑎𝑥 (25)

where 𝐶𝐹𝐿𝑎𝑑 = 0.2, |𝐯|𝑚𝑎𝑥 is the maximum particle advection speed and ℎ is the smoothing length. The acoustic time step △𝑡𝑎𝑐 , 
involving the update of particle properties such velocity and density, has the following form

△𝑡𝑎𝑐 = 𝐶𝐹𝐿𝑎𝑐

ℎ

𝑐0 + |𝐯|𝑚𝑎𝑥 (26)

where 𝐶𝐹𝐿𝑎𝑐 = 0.4 and 𝑐0 is the sound speed.

Then the position-based Verlet scheme is applied for the acoustic time integration [49]. The beginning of the acoustic time step 
is indicated by superscript 𝑛, and the midpoint and new time step are donated by superscript 𝑛 + 1

2 and 𝑛 + 1 respectively. In the 
Verlet scheme, the particle position and density are firstly updated to the midpoint with

⎧⎪⎨⎪⎩
𝐫𝑛+

1
2 = 𝐫𝑛 + 1

2△𝑡𝑎𝑐𝐯𝑛

𝜌
𝑛+ 1

2 = 𝜌𝑛 + 1
2△𝑡𝑎𝑐(

d𝜌

d𝑡
)𝑛

(27)

Then the velocity is updated to the new time step after the particle acceleration is determined.

𝐯𝑛+1 = 𝐯𝑛 +△𝑡𝑎𝑐(
d𝐯
d𝑡

)𝑛 (28)

Finally, the particle position and density are updated to the new time step by

⎧⎪⎨⎪⎩
𝐫𝑛+1 = 𝐫𝑛+

1
2 + 1

2△𝑡𝑎𝑐𝐯𝑛+1

𝜌𝑛+1 = 𝜌
𝑛+ 1

2 + 1
2△𝑡𝑎𝑐(

d𝜌

d𝑡
)𝑛+1

(29)

All the physical variables are updated in the smaller acoustic time step △𝑡𝑎𝑐 , while the particle configuration (i.e., the neighbors of 
each particle) is updated in the larger advection time step △𝑡𝑎𝑑 . In this study, the advection time step △𝑡𝑎𝑑 is approximately 5-10 
times larger than the acoustic time step △𝑡𝑎𝑐 , with some variation depending on the material parameters and maximum velocity. 
Consequently, compared to the previous single time step method, the dual-criteria time stepping approach presented in this study 
can save 80%-90% of the time required for updating particle configurations.

6. Numerical examples

In this section, several benchmark cases are tested, and the results are compared with analytical solutions or the results from 
other numerical studies, from both qualitative and quantitative perspectives. Specifically, our results are compared with the results 
obtained using original SPH formulation and original formulation with artificial stress [7], to illustrate the calculation accuracy, 
stability, and robustness of the present method. Several abbreviations for different SPH methods are defined to facilitate the writing 
and reading of the article. The original SPH method is defined as “SPH-OG”; the original SPH method with introducing artificial stress 
[7] is represented by “SPH-OAS”; the present essentially non-hourglass formulation is expressed as “SPH-ENOG” in the following 
text. There are two artificial coefficients in the artificial stress term, and the selection of them refers to the literature [7] in this 
6

section.
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Fig. 3. Flowcharts of the original and the present essentially non-hourglass SPH formulations.

The 5th-order Wendland kernel [50] with a smoothing length of ℎ = 1.3𝑑𝑝 and the cut-off radius equals to 2.6𝑑𝑝, where 𝑑𝑝 is 
the initial particle spacing, is applied for all the cases in this paper. All the physical quantities in this article are presented in the 
dimensionless form.

In this newly-developed non-hourglass formulation, we skip the calculation of shear stress and the shear acceleration is computed 
directly. The shear stress can be obtained separately by Eq. (6)-Eq. (8) if needed. The velocity gradient in Eq. (8) is discretized by

∇𝐯 =
∑
𝑗

𝐯𝑖𝑗 ⊗ (𝐁𝑖∇𝑖𝑊𝑖𝑗 )𝑉𝑗 (30)

where 𝐁𝑖 is the correction matrix for kernel gradient [19,51,52] and is defined as

𝐁𝑖 =

(∑
𝑗

𝐫𝑖𝑗∇𝑖𝑊𝑖𝑗𝑉𝑗

)−1

(31)

To enhance clarity, Fig. 3 provides flowcharts delineating the calculation processes for the original and current SPH formulations. 
All the simulations in this section are run on a CentOS-8 system with 32 cores. The detail information of the CPU is “64 Intel(R) 
Xeon(R) Gold 6226R CPU @ 2.90GHz”.

6.1. 2D oscillating plate

As shown in Fig. 4, a 2D plate with one edge fixed is firstly used to verify the proposed method, and the results are compared 
with previous theoretical [53] and numerical [7] solutions. The length and thickness of the plate are 𝐿 and 𝐻 respectively, and the 
left part is fixed to produce a cantilever plate. Observation point-1 is set at the middle of the tail, and the vertical displacement of the 
point is recorded as the deflection, with upward being positive and downward being negative. Observation point-2 and Observation 
point-3 are used to measure the stress. An initial velocity 𝑣𝑦, which perpendicular to the plate strip, is applied with

𝑣𝑦(𝑥) = 𝑣𝑓 𝑐0
𝑓 (𝑥)
𝑓 (𝐿)

(32)

where the constant 𝑣𝑓 is an input parameter, 𝑐0 is the sound speed as defined in Eq. (5) and

𝑓 (𝑥) = (sin(𝑘𝐿) + sinh(𝑘𝐿))(cos(𝑘𝑥) − cosh(𝑘𝑥))

−(cos(𝑘𝐿) + cosh(𝑘𝐿))(sin(𝑘𝑥) − sinh(𝑘𝑥))
(33)

where 𝑘𝐿 = 1.875 is determined by cos(𝑘𝐿) cosh(𝑘𝐿) = −1. The frequency 𝜔 of the oscillating plate is theoretically given by

𝜔2 = 𝐸𝐻2𝑘4
(34)
7

12𝜌0(1 − 𝜈4)
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Fig. 4. Model setup for 2D oscillating plate.

Fig. 5. Evolution of particle configuration with time (t=0.05, 0.37 and 0.67) for (a) SPH-OG, (b) SPH-OAS, and (c) SPH-ENOG. The particles are colored by von Mises 
stress and 𝑣𝑓 = 0.05.

The material and dimensional parameters in this case follow literatures [7,27], i.e., density 𝜌0 = 1000, Young’s modulus 𝐸 =
2 × 106, Poisson’s ratio 𝜈 = 0.3975, 𝐿 = 0.2, and 𝐻 = 0.02.

As shown in Fig. 5(a), SPH-OG leads to severe numerical instabilities (non-physical fractures and zigzag patterns in Fig. 1) when 
simulating elastic deformation. Numerical fractures occur at the beginning of the simulation (𝑡 = 0.05); the zigzag particle distribution 
and the non-uniform profile of von Mises stress indicate the hourglass modes. Fig. 5(b) shows the results obtained by SPH-OAS, in 
which the non-physical fractures can be suppressed. However, the zigzag patterns still occur and became visually evident when 
𝑡 = 0.37. This is because the error in the original formulation is in integral form, which gradually accumulates over time. The results 
produced by the present SPH-ENOG are shown in Fig. 5(c). Clearly, neither non-physical fractures and zigzag patterns appear even 
when the time 𝑡 = 0.67. The particle distribution is still uniform, and the stress profile is smooth.

The convergence of the present new formulation is validated in Fig. 6. Three cases with different resolutions (𝐻∕𝑑𝑝 = 10, 
𝐻∕𝑑𝑝 = 20 and 𝐻∕𝑑𝑝 = 30) are tested and the variation of deflection and energy of the system over time are illustrated in Fig. 6a 
and Fig. 6b, respectively. It can be observed that, with the increase of resolution, the differences between different solutions are 
deceasing, which is consistent with the results in literatures [7,27,33,14] and indicates the convergence of this present algorithm. 
The theoretical values of the deflection over time are also depicted in Fig. 6a [14]. It is evident that as the resolution improves, 
the numerical results rapidly converge towards the theoretical values. Fig. 6b shows the variation of elastic strain energy, kinetic 
energy, and total energy with time for the present SPH-ENOG with 𝐻∕𝑑𝑝 = 30, while the theoretical solution for kinetic energy is 
also presented for ease of comparison. It can be observed that the calculated changes in kinetic energy align well with the theoretical 
values. Moreover, kinetic energy and elastic strain energy alternate changes, while their sum, the total energy, remains nearly 
constant, although there is a slight decrease in total energy throughout the process due to numerical dissipation.

Then a stress testing is performed with a long-time simulation, to check the stability of the current algorithm. As shown in Fig. 7, 
the simulation lasts for over 30 oscillations, and the result from SPH-OAS is also illustrated for comparison. Here, the two simulations 
are run with single time step [27], as we want to minimize the accumulated integration error in long-time simulations. The images 
above and below the curves in Fig. 7 respectively represent the particle distribution obtained using SPH-ENOG and SPH-OAS at a 
8

time around 10. As depicted in Fig. 7, with the proposed SPH-ENOG, the particle and stress distribution still keep uniform until the 
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Fig. 6. Convergence verification for the 2D oscillating plate with the present SPH-ENOG: (a) The change of deflection with time; (b) the variation of elastic strain 
energy, kinetic energy, and total energy with time (𝐻∕𝑑𝑝 = 30). Here, 𝐿=0.2, 𝐻=0.02, and 𝐯𝑓 =0.01.

Fig. 7. Test the long-term stability for the SPH-ENOG, the result is compared with the SPH-OAS. Here, 𝐿=0.2, 𝐻=0.02, 𝐻∕𝑑𝑝 = 10 and 𝐯𝑓 =0.05. The particles are 
colored by von Mises stress.

end of the simulation; while for SPH-OAS, the hourglass issue appears to be serious at 𝑡 ≈ 10. Moreover, with the present SPH-ENOG, 
the deflection only decreases marginally at 𝑡 around 10 compared with the deflection at 𝑡 = 0. The slight decrease in deflection over 
time is due to the numerical dissipation introduced in the Riemann solver [36]. On the contrary, the SPH-OAS exhibits rapid energy 
decay, thus it cannot be used for long-duration computations.

Furthermore, the accuracy is checked and verified with theoretical solutions and SPH-OAS from Gray et al.’s work [7]. As shown 
in Table 1, the first period of oscillation is recorded for both SPH-ENOG and SPH-OAS with 𝐿=0.2, 𝐻=0.02 and 𝐻∕𝑑𝑝 = 30. 
Compared with the analytical solution, the errors of the SPH-ENOG are at the same level as SPH-OAG, confirming the accuracy of 
the current SPH-ENOG. It should be noted that the analytical solution is obtained based on a thin plate model. If the thickness of the 
plate is reduced to 𝐻=0.01, the error with 𝑣𝑓=0.001 for the SPH-ENOG also decreases to around 0.6%, which is in consistent with 
previous studies [7,27].

The calculated stress of the present ULSPH-ENOG is verified with the ULSPH-OAS and TLSPH [33]. Fig. 8 shows the change of 
von Mises stress with the deflection increasing from zero to the maximum value for observation point-2 and point-3. We ran the code 
provided in reference [33] and obtained the results of TLSPH as a reference value. It can be observed that, at the lower deflection 
(0-0.01), the results of ULSPH-ENOG and ULSPH-OAS are close and both align well with the results of TLSPH. As the deflection 
increases (0.01-0.03), ULSPH-ENOG continues to match well with TLSPH results, while the discrepancy between ULSPH-OAS and 
TLSPH results gradually increases due to errors introduced by the hourglass.

Simultaneously, we provided visual evidence to demonstrate that the non-physical fractures occur after zigzag patterns (hourglass 
modes). As shown in Fig. 9, when we simulate the 2D oscillating plate using the SPH-OG, we first observe the appearance of zigzag 
patterns at the initial stage (𝑡 = 0.012), and non-physical fractures gradually emerge afterwards at 𝑡 = 0.021. Additionally, the findings 
9

in Fig. 5c demonstrate that the elimination of hourglass modes also results in the disappearance of non-physical fractures, even in 



Journal of Computational Physics 510 (2024) 113072S. Zhang, S.D.N. Lourenço, D. Wu et al.

Table 1

Comparison of oscillation periods 𝑇 obtained from the present 
SPH-ENOG, SPH-OAS and analytical solutions. Here, 𝐿=0.2, 
𝐻=0.02 and 𝐻∕𝑑𝑝 = 30.

𝑣𝑓 0.001 0.01 0.03 0.05

𝑇 (Analytical) 0.254

𝑇 (SPH-ENOG) 0.262 0.263 0.268 0.279

𝑇 (SPH-OAS) 0.273 0.273 0.275 0.278

Error (SPH-ENOG) 3.1% 3.5% 5.5% 9.8%
Error (SPH-OAS) 7.5% 7.5% 8.3% 9.4%

Fig. 8. The variation of von Mises stress as the deflection increases from zero to its maximum value for (a) observation point-2 and (b) observation point-3. Here, 
𝐿=0.2, 𝐻=0.02, 𝐻∕𝑑𝑝 = 10 and 𝐯𝑓 =0.01.

Fig. 9. Illustration for occurrences of zigzag pattern and non-physical fractures in 2D oscillating plates with the SPH-OG. The zigzag pattern appears at the initial 
stages when (a) 𝑡 = 0.012, and the non-physical fractures can be observed later at (b) 𝑡 = 0.021. The particles are colored by von Mises stress and 𝑣𝑓 = 0.05.

regions subjected to notable tensile stresses. This suggests that, unlike in fluid dynamics, the non-physical fractures in elastodynamics 
are caused by the hourglass modes, or it is just another form of hourglass modes.

Next, we demonstrate the differences in computational results between adopting (Eq. (23)) or not adopting (Eq. (22)) rigid 
rotation-invariant formulations in discretizing the second derivative of velocity gradient. As shown in Fig. 10, it can be observed 
that when without the rigid rotation-invariant form, the behavior of the oscillating plate does not oscillate as expected, but exhibits 
a strong resistance to motion. This is because, the influence of rigid rotation is not eliminated in the non-conservative form, which 
means that rigid rotation can also produce significant shear forces, thereby hindering the plate’s motion. Correspondingly, the 
behavior of the plate can be correctly estimated with the rigid rotation-invariant form.

The performance of dual-criteria time stepping scheme is tested with the SPH-ENOG, and the results from previous single time 
stepping method [27] are used for comparison. As shown in Table 2, the simulation ends at physical time 𝑡 = 1, and the wall-clock 
time spent for dual-criteria (donate as 𝑇𝑑 ) and single-criteria (donate as 𝑇𝑠) time stepping is recorded. It can be seen the computing 
10

efficiency of the dual-criteria time steeping is approximately twice that of the previous method.
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Fig. 10. Demonstration of the differences in the behavior of oscillating plates when discretizing the second derivative of velocity gradient with and without the 
rigid rotation-invariant formulation: (a) with the rigid rotation-invariant formulation; (b) without the rigid rotation-invariant formulation. Here, 𝐿=0.2, 𝐻=0.02, 
𝐻∕𝑑𝑝 = 10 and 𝐯𝑓 =0.05. The particles are colored by von Mises stress.

Table 2

Comparison of computational effi-

ciency for dual-criteria (𝑇𝑑 ) and single-

criteria (𝑇𝑠) time stepping scheme with 
the 2D oscillating beam. Here, 𝐿=0.2, 
𝐻=0.02 and 𝐯𝑓 =0.05. The simulation 
stops at physical time 𝑡 = 1 and the 
wall-clock time spent is recorded. 𝑁𝑝

represents the total particle number.

𝐻∕𝑑𝑝 10 20 30

𝑁𝑝 (k) 1.6 5.8 12.6

𝑇𝑑 25.8 66.3 130.1

𝑇𝑠 43.0 139.5 333.0

6.2. 3D oscillating plate

The oscillation of a 3D thin plate, with a simple support boundary condition for all lateral edges, is considered in this section. As 
shown in Fig. 11, a square plate with length 𝐿 = 0.4, width = 0.4 and height 𝐻 = 0.01 is constructed [13,33,54]. A simple boundary 
condition is applied to the particles in the middle of the four lateral sides. Specifically, the displacement of these particles along the 
𝑧-direction is fixed. An observation point is set at the center of the plate to measure the deflection. The particles are subjected to the 
initial velocity 𝑣𝑧

𝑣𝑧(𝑥, 𝑦) = sin 𝑚𝜋𝑥

𝐿
sin 𝑛𝜋𝑦

𝑊
(35)

where 𝑚 and 𝑛 donate integers controlling the vibration mode in 𝑥 and 𝑦 directions respectively. The theoretical vibration period for 
the 3D thin plate is given by

𝑇 = 2
𝜋

[(
𝑚

𝐿

)2
+
(

𝑛

𝑊

)2
]−1√

𝜌0𝐻

𝐷
(36)

where 𝐷 represents the flexural rigidity and is defined as

𝐷 = 𝐸𝐻3

12(1 − 𝜈2)
(37)

The material parameters are set as follows: density 𝜌0 = 1000, Young’s modulus 𝐸 = 1 × 108, and Poisson’s ratio 𝜈 = 0.3.

Firstly, the particle distribution and the profile of von Mises stress are checked. Fig. 12 illustrates the deformed particle config-

uration with von Mises stress contour obtained by the SPH-ENOG at time 𝑡 = 0.01 for vibration modes (𝑚, 𝑛) = (1, 1) and (2, 2). The 
11

SPH-ENOG can generate a smooth stress profile without non-physical fractures and zigzag patterns. Fig. 13 shows the evolution of 



Journal of Computational Physics 510 (2024) 113072S. Zhang, S.D.N. Lourenço, D. Wu et al.

Fig. 11. Model setup for the 3D oscillating plate, and the observation point locates at the center of the plate.

Fig. 12. 3D oscillating plates obtained by the SPH-ENOG at time 𝑡 = 0.01 for vibration modes (𝑚, 𝑛) = (1, 1) and (2, 2). The figures are colored by von Mises stress and 
the spatial particle discretization 𝐻∕𝑑𝑝 = 9.

Fig. 13. Convergence verification for the 3D oscillating plate with the present SPH-ENOG: (a) The change of deflection with time; (b) the variation of elastic strain 
energy, kinetic energy, and total energy with time (𝐻∕𝑑𝑝 = 9). Here, (𝑚, 𝑛) = (1, 1).

the deflection (displacement along 𝑧-axis of the observation point) and the system’s energy with time. As can be seen in Fig. 13a, with 
the increase of resolution (decrease of initial particle spacing 𝑑𝑝), the deflection and gradually approach the analytical solutions, 
indicating the convergence of the SPH-ENOG. Fig. 13b illustrates a good agreement between the calculated kinetic energy and the 
theoretical values with 𝐻∕𝑑𝑝 = 9. The elastic strain energy and kinetic energy alternate, while the total energy remains relatively 
constant. Moreover, the first periods of oscillations with different (𝑚, 𝑛) values and resolutions are calculated and compared with 
analytical solutions, to further validate the convergence and accuracy of the present SPH-ENOG. As shown in Table 3, the periods 
converge rapidly with increasing resolutions and agree well with the analytical solutions. 

The performance of dual-criteria time stepping scheme is tested with the SPH-ENOG for 3D oscillating plates, and the results from 
previous single time stepping method is used for comparison. As shown in Table 4, the simulation ends at physical time 𝑡 = 0.1, and 
12

the wall-clock time spent for dual-criteria (donate as 𝑇𝑑 ) and single-criteria (donate as 𝑇𝑠) time stepping is recorded. Clearly, when 
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Table 3

Comparison of the first oscillation period 𝑇 obtained the present SPH-

ENOG and analytical solutions.

SPH-ENOG 𝐻∕𝑑𝑝 = 3 𝐻∕𝑑𝑝 = 5 𝐻∕𝑑𝑝 = 9 Analytical

(𝑚,𝑛) = (1,1) 0.0572 0.0543 0.0529 0.0532

(𝑚,𝑛) = (2,1) 0.0231 0.0218 0.0212 0.0213

(𝑚,𝑛) = (2,2) 0.0148 0.0140 0.0136 0.0133

Table 4

Comparison of computational efficiency for 
dual-criteria (𝑇𝑑 ) and single-criteria (𝑇𝑠) 
time stepping scheme with the 3D oscillating 
beam. Here, (𝑚, 𝑛) = (2, 2). The simulation 
stops at physical time 𝑡 = 0.1 and the wall-

clock time spent is recorded. 𝑁𝑝 represents 
the total particle number.

𝐻∕𝑑𝑝 3 5 9

𝑁𝑝 (k) 44.7 204.0 1179.4

𝑇𝑑 122.6 981.3 10629.4

𝑇𝑠 331.2 2683.1 30273.3

Fig. 14. Model setup for 2D colliding rubber rings.

using the dual-criteria time stepping approach, the computational time reduces to approximately one-third of the time required for 
single-criteria time stepping.

6.3. 2D colliding rubber rings

The collision of two rubber rings is simulated in this section refer to literatures [7,17,27]. As shown in Fig. 14, two rings with inner 
radius 0.03 and outer radius 0.04 are moving towards each other with the initial velocity magnitude 𝑣0 (the relative velocity of the 
two rings is 2𝑣0), and the distance between the centers of the two rings is 0.09. The initial uniform particle distribution is achieved 
by a level-set based pre-processing technique [55]. We employ an irregular initial particle distribution to address a generic scenario. 
The choice of an irregular distribution is made to avoid the simplification inherent in a radial particle distribution [27], especially 
when dealing with complex geometries. When two rings collide with each other, a significant tensile force will be generated. In this 
case, we will show that the numerical fracture produced by SPH-OG and the zigzag particle/stress distribution produced by SPH-OG 
and SPH-OAS do not occur in the present SPH-ENOG. The material parameters are set as follows: density 𝜌0 = 1200, Young’s modulus 
𝐸 = 1 × 107, and Poisson’s ratio 𝜈 = 0.4. The initial particle spacing is 0.001.

Fig. 15 shows the evolution of particle configuration for the SPH-OG, SPH-OAS and the present SPH-ENOG when the initial 
velocity magnitude 𝑣0 = 0.06𝑐0. Clearly, the SPH-OG suffers from serious non-physical fractures and zigzag patterns at the beginning 
of the computation (𝑡 = 0.002), and the calculation process can barely continue. For the SPH-OAS, the non-physical fractures can 
be suppressed, and the particle distribution is uniform at the initial stage (t=0.002). However, with the passage of time, the zigzag 
distribution of particle configuration and von Mises stress gradually becomes apparent. Note that, similar zigzag stress distribution 
can also be observed from the simulation using the recent tensile instability control (TIC) scheme [31] even with vary regular initial 
particle distribution (see Figs. 20 and 24 in reference [31]). While for the SPH-ENOG, the particle and stress distribution are uniform 
during the whole calculation process, and the numerical instabilities can be completely removed.

Fig. 16 illustrates the variation of elastic strain energy, kinetic energy, and total energy over time for the left (represented by solid 
lines) and right (represented by dots) rings. The stress distribution of rings at different time points (𝑡 = 0.002, 0.005 and 0.01) is also 
13

illustrated. Firstly, it can be observed that the energy variation trends of the left and right rings are completely identical. To sum up, 
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Fig. 15. Evolution of particle configuration with time (𝑡 = 0.002, 0.005, 0.008 and 0.012) for 2D colliding rubber rings. The results are obtained by different SPH 
methods, i.e., SPH-OG (left column), SPH-OAS (middle column), and SPH-ENOG (right column). The initial velocity magnitude 𝑣0 = 0.06𝑐0 and the figures are colored 
by von Mises stress.

Fig. 16. The variation of elastic strain energy, kinetic energy, and total energy over time for the left (represented by solid lines) and right (represented by dots) rings. 
The distributions of von Mises at 𝑡 = 0.002, 0.005 and 0.01 are also illustrated. The initial velocity magnitude 𝑣0 = 0.06𝑐0 .

while experiencing occasional fluctuations, the overall energy diminishes progressively over time, dropping from the initial value of 
65.88 to 55.61 at the conclusion of the simulation. Simultaneously, it’s noticeable that kinetic energy undergoes a swift reduction 
shortly after the collision of the two rings, reaching its minimum value at approximately 𝑡 = 0.005. Following this, with the gradual 
separation of the two rings, kinetic energy gradually ascends, in stark contrast to the complete reversal observed in the change of 
elastic strain energy.

Then we increase the initial velocity 𝑣0 to 0.07𝑐0, to test the stability and robustness of the present SPH-ENOG. As shown in 
Fig. 17, the non-physical fractures and zigzag patterns become more significant for the SPH-OAS, compared with Fig. 15 when 
𝑣0 = 0.06𝑐0. Particularly, after the collision and rebound of the two rings (𝑡 = 0.012), the zigzag distribution of particles cannot be 
restored, indicating that this accumulated integration error over time is significant. On the contrary, the present SPH-ENOG can 
produce a uniform particle and stress distribution throughout the entire process.

Furthermore, the initial velocity is increased to 𝑣0 = 0.08𝑐0. It can be seen from Fig. 18, not only zigzag patterns, but also 
14

numerical fractures appear when 𝑡 ⩾ 0.005 for the SPH-OAS. Fortunately, the present SPH-ENOG performs well even at such large 
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Fig. 17. Evolution of particle configuration with time (𝑡 = 0.002, 0.005, 0.008 and 0.012) for 2D colliding rubber rings. The results are obtained by different SPH 
methods, i.e., SPH-OAS (left column) and SPH-ENOG (right column). The initial velocity 𝑣0 = 0.07𝑐0 and the figures are colored by von Mises stress.

Fig. 18. Evolution of particle configuration with time (𝑡 = 0.002, 0.005, 0.008 and 0.012) for 2D colliding rubber rings. The results are obtained by different SPH 
methods, i.e., SPH-OAS (left column) and SPH-ENOG (right column). The initial velocity 𝑣0 = 0.08𝑐0 and the figures are colored by von Mises stress.

initial velocity, and all numerical instabilities can be perfectly eliminated, which suggests the stability and robustness of the present 
SPH-ENOG.

6.4. 3D colliding rubber balls

The 2D colliding rubber rings are extended to 3D to validate the proposed SPH-ENOG for 3D scenarios. The initial setup follows 
Fig. 19, i.e., two hollow rubber balls with inner radius 0.03 and outer radius 0.04 are moving towards each other. The initial 
15

distance between the centers of the two balls is 0.09 and the initial velocity magnitude for each ball is 𝑣0. The initial particle spacing 
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Fig. 19. Model setup for (a) 3D colliding hollow rubber balls and (b) the half of each ball are showcased for proper visualization.

Fig. 20. Evolution of particle configuration with time (𝑡 = 0.001, 0.003, 0.005 and 0.007) for 3D colliding rubber balls. The results are obtained by the present 
SPH-ENOG. The initial velocity magnitude 𝑣0 = 0.08𝑐0 and the figures are colored by von Mises stress.

Fig. 21. Setup for (a) a tensile test and (b) a punch test.

𝑑𝑝 = 0.001 and the uniform particle distribution at the beginning is realized by Yu et al.’s method [55]. The selection of material 
parameters follows section 6.3.

Fig. 20 shows the collision process of two balls at different times (𝑡 = 0.001, 0.003, 0.005 and 0.007) with the present SPH-

ENOG. The initial velocity is set as 𝑣0 = 0.08𝑐0. Half of each ball is displayed separately here for proper visualization. Obviously, the 
distribution of von Mises stress is smooth, and the particle configuration is uniform, which means numerical fractures and zigzag 
patterns can be completely removed.

6.5. A tensile test

We examine a case dominated by tensile stresses [10] to evaluate the effectiveness of the algorithm proposed in this study in 
eliminating numerical instabilities. As illustrated in Fig. 21a, a square plate with dimensions of 1 × 1, fixed at its bottom edge, is 
subjected to rapid upward stretching with a substantial velocity 𝑣𝑝𝑢𝑙𝑙 = 500. Refer to Lee et al. [10], the material parameters are 
16

defined as follows: density 𝜌0 = 7000, Young’s modulus 𝐸 = 2.1 × 1010, and Poisson’s ratio 𝜈 = 0.3. 
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Fig. 22. Sequence of deformed shapes for the tensile test case using FEM [10], CCFVM [10] and the present SPH-ENOG. The initial particle spacing is 1/15.

Fig. 22 depicts the shape changes of the square plate at different time points. Additionally, results obtained from standard 
Finite Element Method (FEM) and cell centred Finite Volume Method (CCFVM) as presented in literature [10] are showcased for 
comparison. The initial particle spacing is 1/15 according to Lee et al. [10]. Under these circumstances, the results from FEM are 
deemed reliable and serve as a reference solution. Observably (Fig. 22), akin to the outcomes from CCFVM [10], the results obtained 
from the present SPH-ENOG align well with those from FEM. This indicates the accuracy of the proposed algorithm in addressing 
cases dominated by tensile stress. Fig. 23 shows the stress distribution of the square plate at different times (𝑑𝑝 = 0.025 [10]). 
Notably, neither non-physical fractures nor zigzag patterns have occurred, underscoring the robust effectiveness of our algorithm 
even in scenarios where tensile stress prevails.

6.6. A punch test

We present a punch test case [10] wherein a flat square rubber plate with a side length of one unit is fixed using rollers positioned 
at the bottom and on both the left and right sides. The prescribed punch velocity, 𝑣𝑝𝑢𝑛𝑐ℎ = 100, is applied to the right half of the 
domain, as shown in Fig. 21b. The material parameters are defined as follows [10]: density 𝜌0 = 1100, Young’s modulus 𝐸 = 1.7 ×107, 
and Poisson’s ratio 𝜈 = 0.45.

Fig. 24 showcases the shapes of the square at different time instants, along with the results from standard FEM and CCFVM 
[10] for comparison. It can be observed that although there are certain deviations compared to the results obtained from the grid-

based method, the overall variation trend remains consistent. Additionally, a key focus of this case study is to demonstrate that the 
proposed method can achieve a smooth pressure distribution. The occurrence of volumetric locking is a widely recognized challenge 
in standard FEM analysis for almost incompressible rubber materials. In order to mitigate this issue, the mean dilatation approach is 
commonly adopted. However, regrettably, the results obtained using such approach often exhibit spurious pressure modes [10]. The 
present formulation, as illustrated in Fig. 25a, effectively addresses this issue, ensuring a smooth pressure distribution where positive 
values represent compression. A uniform distribution of von Mises stress (Fig. 25b) confirms that the present method can eliminate 
hourglas modes. 

6.7. 2D rubber ball-plate interaction

Another interesting problem with large deformations and tensions produced is simulated in this section. As shown in Fig. 26a, 
17

a rubber ball with a radius of 0.05 is used to impact a rubber plate [27]. The plate, fixed at both ends, has dimensions of 0.5 in 



Journal of Computational Physics 510 (2024) 113072S. Zhang, S.D.N. Lourenço, D. Wu et al.

Fig. 23. Evolution of von Mises stress with time for the tensile test case. The initial particle spacing is 0.025.
18

Fig. 24. Sequence of deformed shapes for the punch test using standard FEM [10], CCFVM [10] and the present SPH-ENOG. The initial particle spacing is 0.1.
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Fig. 25. Evolution of (a) pressure and (b) von Mises stress with time for the punch test. The initial particle spacing is 0.05.

Fig. 26. Model setup for (a) 2D rubber ball-plate interaction, and (b) 3D rubber ball-plate interaction.

length and 0.02 in width. The center of the ball is located 0.1 units away from the center of the plate, and the initial velocity of the 
rubber ball is 𝑣0. The material parameters of the rubber ball and the target plate are the same [27], i.e., density 𝜌0 = 1200, Young’s 
modulus 𝐸 = 1 × 107, and Poisson’s ratio 𝜈 is set as 0.49 to produce a large deformation, mimicking realistic rubber materials. The 
initial particle spacing is 0.0025.

Fig. 27 illustrates the process of collision between the rubber ball and the target plate with an initial velocity of 0.02𝑐0. Significant 
tensions will be generated on the plate after the ball touches it. Serious zigzag particle distribution and numerical fractures can 
be observed when using the SPH-OG (Fig. 27a). For the SPH-OAS (Fig. 27b), the numerical fractures can be suppressed but the 
zigzag pattern still exists. While with the present SPH-ENOG (Fig. 27c), the numerical fractures and zigzag patterns can be removed 
simultaneously. The phenomena are consistent with the results from the oscillating plate and colliding rubber rings/balls described 
in Section 6.1 and Section 6.3.

Afterwards, we increase the initial velocity of the ball (𝑣0 = 0.06𝑐0) to test the stability and applicability of the SPH-OAS and 
SPH-ENOG under a more demanding condition. It can be seen that the zigzag pattern still exists for the SPH-OAS (Fig. 28a), and 
to make matters worse, the numerical fractures start to appear at 𝑡 = 0.012 and become very severe later. However, our method 
19

(Fig. 28b) still performs well under such condition, and numerical instabilities do not occur.
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Fig. 27. 2D rubber ball-plate interaction with initial ball velocity 0.02𝑐0 at different times. The results are obtained by (a) SPH-OG, (b) SPH-OAS and (c) SPH-ENOG 
respectively. The figures are colored by von Mises stress.

Fig. 28. 2D rubber ball-plate interaction with initial ball velocity 0.06𝑐0 at different times. The results are obtained by (a) SPH-OAS and (b) SPH-ENOG respectively. 
The figures are colored by von Mises stress.

To further challenge the proposed SPH-ENOG, the initial velocity is set to 𝑣0 = 0.12𝑐0 and extremely large tensions will be 
generated under such condition. As shown in Fig. 29, surprisingly, the particle configuration still keeps a uniform distribution and a 
smooth stress profile can be obtained, implying the robustness and stability of the current SPH-ENOG.

6.8. 3D rubber ball-plate interaction

We further consider the collision of the rubber ball and plate in 3D situations, as shown in Fig. 26b. The plate with a size of 
0.5 × 0.02 × 0.5 is fixed on all four edges. The line connecting the center of the ball and the center of the plate is perpendicular to 
the plane of the plate, and the direction of initial velocity 𝑣0 lies along this line. The materials of the rubber ball and plate follow 
20

section 6.7, and the initial particle spacing is 0.0025.
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Fig. 29. 2D rubber ball-plate interaction with initial ball velocity 0.12𝑐0 at different times. The results are obtained by the present SPH-ENOG and the figures are 
colored by von Mises stress.

Fig. 30. 3D rubber ball-plate interaction with initial ball velocity 0.12𝑐0 at different times. The results are obtained by the present SPH-ENOG and the figures are 
colored by von Mises stress.

The results with the SPH-ENOG and 𝑣0 = 0.12𝑐0 are shown in Fig. 30. The profile of von Mises stress is smooth throughout the 
calculation process and there are no occurrences of numerical fractures. This demonstrates the capability of the present SPH-ENOG 
in eliminating numerical instabilities (numerical fractures and zigzag patterns) for 3D situations.

6.9. Bouldery debris flow impacting flexible barrier

In this section, a more complicated case, intricately linked to practical engineering application, is employed to validate the 
robustness of the algorithm proposed in this paper.

In mountainous areas, flexible steel net barriers are frequently employed to alleviate geological risks such as rockfall and debris 
flow occurrences [56,57]. Within the debris flow mass, natural boulders or sizable hard inclusions are widespread, tending to 
accumulate at the forefront of the flow [58]. The interaction between bouldery debris flows and flexible barriers are simulated in 
this section, and the model setup follows a previous experimental study [57].

As shown in Fig. 31, the simulation initiates with the removal of the rigid plate, followed by the release and sliding of the initial 
deposit of bouldery debris flows on the baseplate. Bouldery debris flows are simulated using solid particles with different sizes, and 
eventually, they come to a halt in front of the flexible barrier, causing significant deformation of the barrier as well. The movement 
and deformation of both debris flows and the barrier are computed using the algorithm proposed in this paper, while our primary 
focus is on the flexible barrier in this particular case, as it exhibits significant deformation. Refer to the experimental setup [57], a 
layer of membrane is placed on the upstream surface of the flexible barrier, serving as a net-like structure to obstruct and detain 
debris flow materials. Differing from the experimental setup, we removed the transverse rigid support within the barrier to induce 
21

greater deformation of the barrier, challenging the algorithm proposed in this study. The length and width of the baffle are both 4.5 
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Fig. 31. Model setup for simulating the impact of bouldery debris flows on flexible barriers.

[57], and the distance between the rigid plate and baffle is 10.5. The density and Young’s modulus of the debris flow materials are 
2500 and 1 × 1010 respectively according to the physical testing [57], and the Poisson’s ratio is set to 0.2. For the flexible baffle, the 
density, Young’s modulus and Poisson’s ratio are set to 1200, 1 × 107 and 0.47 in this case. The angle between the baseplate and the 
horizontal plane is 30 degrees.

As depicted in Fig. 32, the simulation outcomes reveal the movement of the debris flow initiated by gravity, culminating in its 
collision with the barrier, inducing substantial deformation of the latter. Observably, our algorithm demonstrates stable performance 
even under intricate scenarios. Furthermore, the stress distribution on the barrier is uniform and smooth, with no occurrences of 
numerical instabilities, which is crucial for accurately simulating the elastic deformation phase prior to material failure.

6.10. Spinning plate

In Section 6.1-6.9, we demonstrate the stability and accuracy of the proposed method through multiple case studies. However, 
in certain cases that are highly sensitive to angular momentum, although the present formulation still obtains regular particle 
distribution and smoothed stress profile without numerical instability, it may not yield as accurate result as expected. This is due to 
the proposed formulation for shear acceleration does not strictly satisfy angular momentum conservation (while linear momentum is 
conserved). Although the discretized form of the second derivative of velocity (Eq. (23)) ensures angular momentum conservation, 
integrating it over time (Eq. (24)) leads to deviation of total angular momentum. Here, we begin with simulating a case known as the 
spinning plate [10], to illustrate the issue of angular momentum conservation. Subsequently, we provide a mathematical explanation 
for it.

The setup for the spinning plate is given in Fig. 33. A square plate with a side length of one rotates around its center without any 
initial deformation or constraints, with an angular velocity of 𝜔 = 50. The material parameters are set as follows according to [10]: 
density 𝜌0 = 1100, Young’s modulus 𝐸 = 1.7 ×107, and Poisson’s ratio 𝜈 = 0.45. An observation point is placed at the top-right corner 
of the plate to measure the displacement and velocity. 

Fig. 34 illustrates the configuration of the square and the temporal evolution of the pressure distribution. Fig. 35 depicts the 
variation of certain physical quantities during the computational process. While non-physical fractures and zigzag modes do not 
occur, it can be seen that the velocity variation (Fig. 35b) at the observation point is inaccurately estimated. Specifically, the velocity 
does not return to its initial value when the square returns to its initial position. This discrepancy arises from the lack of angular 
momentum conservation (while linear momentum is conserved), as illustrated in Fig. 35c. The variation in angular momentum also 
results in considerable deviations of the system’s kinetic energy and total energy, as depicted in Fig. 35d.

Next, we will explain why integrating Eq. (23), which guarantees conservation of angular momentum, over time (Eq. (24)) results 
in the loss of angular momentum conservation. We will illustrate this through a simple scenario. As shown in the Fig. 36, four 
particles are positioned at the four corners of a square and rotate around the center of the square, spanning from time 𝑡0 (𝑡0 = 0) to 
time 𝑡1. Theoretically, the angular momentum of each particle is conserved, indicating that the net torque 𝜏 = 𝐱×𝐅 =𝑚𝐱× 𝐚 exerted 
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on them should be zero. Here, 𝐱 is the position vector, 𝐅 is the total force, 𝑚 is mass, and 𝐚 is the acceleration.
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Fig. 32. Simulation process of the bouldery debris flow impacting the flexible barrier at (a) 𝑡 = 1, (b) 𝑡 = 2 and (c) 𝑡 = 3. The enlarged figures on the right column 
depict the side view and front view of the barrier at t=3, and the barrier is colored by von Mises stress.

Fig. 33. Setup for the spinning plate.

Firstly, we consider the shear acceleration of particle 𝑖 at time 𝑡0 (𝑡0 = 0) based on Eq. (24)

𝐚𝑠
𝑖
(𝑡0) = 2𝜁 𝐺

𝜌𝑖
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∫
𝑡0

(∑
𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)
d𝑡

= 2𝜁 𝐺
𝜌𝑖

(∑
𝑗

𝐞𝑖𝑗 ⋅ 𝐯𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗

)
𝑡1

(38)

The shear acceleration of particle 𝑖 is influenced by a total of three particles: 𝐚𝑠
𝑖
(𝑡0) = 𝐚𝑠

𝑖→𝑗1
(𝑡0) + 𝐚𝑠

𝑖→𝑗2
(𝑡0) + 𝐚𝑠

𝑖→𝑗3
(𝑡0). Here, 𝑖 → 𝑗1

represents the interaction between particle 𝑖 and particle 𝑗1. According to Eq. (38), the direction of 𝐚𝑠
𝑖→𝑗1

(𝑡0) is along the line 
connecting particles 𝑖 and 𝑗1, and the same applies to interactions between other pairs of particles. Since 𝐚𝑠

𝑖→𝑗1
(𝑡0) and 𝐚𝑠

𝑖→𝑗2
have 

equal magnitudes, their sum is in the direction of the line connecting 𝑖 and 𝑗3, which is the direction of 𝐚𝑠
𝑖→𝑗3

(𝑡0). Therefore, the 
direction of 𝐚𝑠

𝑖
(𝑡0) is along the line connecting 𝑖 and 𝑗3, as shown in the Fig. 36a. Hence, it can be calculated that at time 𝑡0, the 

torque of particle 𝑖: 𝜏𝑖(𝑡0) =𝑚𝑖𝐱𝑖(𝑡0) × 𝐚𝑠
𝑖
(𝑡0) = 0. Similarly, it can be computed that the torque at each of the other points is also zero. 
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Therefore, during the transition of particle configuration from time 𝑡0 to 𝑡1, angular momentum of the system is conserved.
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Fig. 34. The evolution of pressure and square shape at different instants for the spinning plate.

Fig. 35. The temporal evolution of some physical quantities of the spinning plate: (a) the horizontal and vertical components of displacement at the observation point; 
(b) the horizontal and vertical components of velocity at the observation point; (c) the total linear momentum and angular momentum of the square; (d) the elastic 
strain energy, kinetic energy and total energy of the square.

Subsequently, we examine the acceleration of point 𝑖 at time 𝑡1
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(39)
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= 𝐚𝑠
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(𝑡0) + Δ𝐚𝑠

𝑖
(𝑡1)
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Fig. 36. Understanding the cause of angular momentum non-conservation: four particles are positioned at the four corners of a square and rotate around its center.

where Δ𝐚𝑠
𝑖
(𝑡1) represents the increment in shear acceleration calculated at time 𝑡1. Same to the analysis for the direction of 𝐚𝑠

𝑖
(𝑡0), 

the direction of Δ𝐚𝑠
𝑖
(𝑡1) is along the line connecting 𝑖 and 𝑗3 at time 𝑡1, as shown in the Fig. 36b. Then the torque of particle 𝑖 at time 

𝑡1: 𝜏𝑖(𝑡1) =𝑚𝑖𝐱𝑖(𝑡1) × 𝐚𝑠
𝑖
(𝑡1) =𝑚𝑖𝐱𝑖(𝑡1) × (𝐚𝑠

𝑖
(𝑡0) +Δ𝐚𝑠

𝑖
(𝑡1)) =𝑚𝑖𝐱𝑖(𝑡1) × 𝐚𝑠

𝑖
(𝑡0). Due to the non-zero values of both 𝐱𝑖(𝑡1) and 𝐚𝑠

𝑖
(𝑡0), and 

their directions not lying on the same line, we can conclude that 𝜏𝑖(𝑡1) =𝑚𝑖𝐱𝑖(𝑡1) ×𝐚𝑠
𝑖
(𝑡0) ≠ 0. In addition, it can be calculated that the 

torques of particle 𝑗1, 𝑗2, and 𝑗3, as well as particle 𝑖, are in the same direction. Therefore, the conservation of angular momentum 
in the system does not hold.

7. Conclusion and outlook

In this work, the numerical instability exhibited by the simulations of typical elastic dynamics problems with ULSPH is addressed 
in the respect of hourglass modes other than that of tensile instability. Based on such point of view, an essentially non-hourglass for-

mulation for ULSPH by decomposing the shear acceleration with the Laplacian operator. This newly-developed method is applicable 
for both 2D and 3D scenarios without introducing case-dependent tuning parameters. The convergence and accuracy of the present 
method are verified through several fundamental test cases. The results show that the present method is numerically stable, without 
non-physical fractures and zigzag patterns. The stability and robustness of the non-hourglass formulation are confirmed through 
long-term simulations and simulations under extreme conditions. Furthermore, a dual-criteria time stepping scheme is employed to 
increase the calculation efficiency. For 2D and 3D oscillating plates, the computational time is reduced to approximately one-half and 
one-third, respectively, compared to the original calculations using single-criteria time stepping approach. It is needed to note that, 
the formulation does not strictly adhere to the conservation of angular momentum, which limits the application for some problems.

This research also clarified that, for the classic elastic dynamics problems, such as oscillation beam, colliding rings, etc, previously 
used to demonstrate tensile instability, the instability is actually due to hourglass modes other than tensile forces. This is evident 
by extensive numerical examples showing that after adopting a formulation handling hourglass modes, even the tensile regions are 
still the same, the instability vanishes. However, this clarification does not exclude tensile instabilities occur in other, especially 
more complex scenarios. ULSPH for solid is actually very similar to SPH for fluid except the main different model on shear stress. 
Since, with the standard non-hourglass formulation for fluid shear force (from which the present method is derived), the SPH fluid 
simulation still suffers from tensile instability, similar issues in ULSPH elastic dynamics would not be out of expectation.

It is worth mentioning that although the present formulation is proposed and validated for elastic dynamics, it is possible to extend 
the current work, including the point-of-view on hourglass modes and non-nested formulation, to plastic dynamics for modeling 
material fracture and failure. For this, we still expect to utilize the non-nested formulation to ensure numerically stability. Also 
note that, with more complex material model, the deformation and velocity field may be much more complex than those in elastic 
dynamics, one may need to further handle tensile instability.
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