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Abstract—Automatic Vehicle Identification (AVI) technology 

has been widely used for real-time path travel time estimation. For 

a study path equipped with AVI sensors at both ends, the 

difference between the timestamps of vehicles entering and leaving 

the path is AVI data. In urban areas, there can be several 

alternative routes and vehicle entry/exit points for the study path. 

Consequently, invalid AVI data occur that fall outside the scope of 

the travel time of the study path. Some AVI technologies based on 

identification information of vehicles can match vehicles precisely. 

However, for cities like Hong Kong with concerns of privacy 

issues, only commercial vehicle data can be collected. Under this 

scenario, the resultant AVI data are accurate but with few valid 

samples in a relatively short time interval due to the unavailability 

of private car data. The estimation accuracy of path travel times 

on a real-time basis will then be affected significantly by the 

existence of invalid AVI data. In this paper, a novel unsupervised 

algorithm is proposed to filter out real-time invalid AVI data 

efficiently although there is no ground truth available for training 

purposes. It is tested and compared with other benchmark 

algorithms on two selected paths in the Hong Kong urban road 

network. It is found that the proposed unsupervised algorithm can 

still filter limited but accurate AVI data with satisfactory 

performance. Sensitivity tests with ground truth are also 

conducted with different sampling rates. Some insightful findings 

are given for filtering AVI data under various scenarios.  

 
Index Terms—data filtering, functional principal component 

analysis, automatic vehicle identification, advanced traveler 

information systems 

I. INTRODUCTION 

VER the past two decades, automatic vehicle 

identification (AVI) data have been increasingly 

explored for use in advanced traffic management 

systems (ATMSs) and advanced traveler information systems 

(ATISs). These data are collected using various AVI sensors, 

such as Radio Frequency Identification (RFID) tag readers, 

automatic license plate recognition (ALPR) cameras, and 

Bluetooth MAC address readers. Thus, a vehicle passing an 

AVI sensor has its specific identifiers (e.g., RFID tags for RFID 

tag readers and license plate numbers for ALPR cameras) and 

the corresponding timestamp recorded. These data from 

successive AVI sensors are matched to the vehicle and used to 
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calculate its travel time [1]–[4], which is denoted as AVI data.  

According to the uniqueness of the identifier of each vehicle, 

there are two types of AVI data. On the one hand, Bluetooth 

sensors can collect numerous AVI data. However, the MAC 

address identified by Bluetooth sensors can be provided by 

either vehicles, or passengers within the same vehicle and even 

pedestrians on the roadside through their mobile devices. 

Therefore, the collected AVI data is inaccurate. On the other 

hand, for AVI technologies requiring identifier information 

(e.g., RFID and ALPR), AVI data are collected accurately but 

the sampling rate is very few in a relatively short time interval 

due to privacy issues.  

The availability of identifier information in the database 

depends on the corresponding privacy issues concerned by 

different cities [5], [6]. In Hong Kong, only AVI data on 

commercial vehicles are available for collection. The sampling 

rate is relatively low without the collection of AVI data on 

private cars. As a path is defined as the corridor of interest 

between two AVI sensors and path travel time refers to the time 

required to transverse the path, these AVI data can be used for 

real-time estimation of path travel times, and the estimates can 

then be supplied to travelers and management authorities [7]. In 

this paper, real-time path travel time estimation is referred to as 

an estimated path travel time for the current time interval on the 

current day.  

Some AVI records from RFID tag readers and ALPR 

cameras may be inappropriate for real-time path travel time 

estimation. Similar to the data cleaning process of GPS data that 

can accurately capture the trajectory of vehicles for travel time 

estimation [8]–[14], AVI data also need data preprocessing 

before real-time path travel time estimation.  

As discussed by researchers such as [1] and [15], errors may 

arise from vehicles being misidentified, stopping en-route (e.g., 

see Fig. 1), or choosing unusually long routes (e.g., detours) 

between two locations that are equipped with AVI sensors. 

Thus, invalid data (or outliers) are most often obtained if AVI 

sensors (i) are far apart, implying that vehicle detours or stops 

are more frequent, or (ii) contain many short-spacing 

intersections and frequent frontage access (which explains why 
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it can be more difficult to obtain valid AVI data from urban 

roads than from freeways).  

The path travel times derived from an AVI system under 

these circumstances can be regarded as invalid AVI data, which 

must be removed by novel filtering algorithms to extract valid 

AVI data for use in real-time path travel time estimation. Fig. 1 

illustrates one scenario in which AVI data from an AVI system 

may be invalid. Vehicle B travels to a petrol station after being 

detected by AVI sensor 1, and hence the travel time of vehicle 

B is much longer than that of vehicle A; accordingly, the AVI 

data collected from vehicle B is invalid.  

Fig. 1. Example of invalid AVI data in an AVI system.  

 

AVI data is categorized as real-time AVI data or historical 

AVI data, depending on when it is collected. In this paper, real-

time AVI data are collected in the current and previous time 

intervals on the current day, while historical AVI data are 

acquired on previous days. Both these two data categories 

contain valid and invalid AVI data. As real-time AVI data are 

generally used for real-time path travel time estimation [16]–

[18], it is critically important to remove invalid real-time AVI 

data by novel filtering algorithms to enable real-time path travel 

time estimation.  

Furthermore, for AVI technologies based on identifier 

information in cities with privacy issues, the collected AVI data 

are accurate with fewer samples. It is more challenging to 

distinguish invalid real-time AVI data from limited accurate 

real-time AVI data with a low sampling rate. Therefore, this 

paper focuses more on filtering accurate but limited real-time 

AVI data. 

Data-filtering and outlier-detection algorithms have been 

developed for other traffic variables, including flow [19] and 

speed [20]. These algorithms assume that most data are valid 

and hence they remove only small portions of invalid data [21]. 

However, for AVI data with low sampling rates, its distribution 

can be more scattered and varied. Thus, a large proportion of 

AVI data may be invalid. Furthermore, the occurrence of longer 

travel times by path is more frequent when traffic is congested. 

It is a challenge to distinguish invalid data from comparatively 

long travel times by path under this scenario [22]. As existing 

filtering algorithms only make use of real-time AVI data, the 

 
1https://www.td.gov.hk/en/transport_in_hong_kong/transport_figures/index

.html 

resultant time windows lack rigorous mathematical guarantees, 

particularly for limited real-time AVI data with low sampling 

rates. Therefore, existing filtering algorithms may not be 

effective. 

There are some existing offline algorithms for the filtering of 

historical AVI data. These algorithms are devoted to the data 

clustering or modeling of travel time distributions using a large 

amount of historical AVI data [23]–[27]. However, these 

algorithms lack sufficient computation time to provide time 

windows for filtering real-time AVI data. Consequently, 

various data-filtering algorithms have been developed to screen 

out invalid real-time AVI data in real-time applications.  

A summary of the existing algorithms for filtering real-time 

AVI data is presented in Table I. It indicates that the 

performance of existing filtering algorithms depends largely on 

real-time AVI data, which means that their performance 

drastically decreases if the collected real-time AVI data are 

limited. Therefore, there is a need for a novel filtering algorithm 

capable of effectively extracting real-time AVI data, especially 

when they are limited. The use of historical AVI data including 

both valid and invalid AVI data collected in previous days can 

be very helpful in this regard.  

The effect of complex network structure in urban areas has 

not been investigated in most previous studies on AVI data 

filtering. Attention has been mainly given to freeways [28], 

which have relatively simple network topologies and very few 

entries and exits between pairs of AVI sensors. Moreover, the 

numerous entries, exits, and bus stops along the urban study 

paths (as used in the case study) may indicate that valid real-

time AVI data can be limited, which adversely affects the 

performance of existing filtering algorithms used for real-time 

path travel time estimation.  

When valid real-time AVI data is limited, it is worthwhile to 

investigate temporal variance-covariance (var-cov) 

relationships between path travel times at different time 

intervals and on different days from historical AVI data. They 

are significantly beneficial for filtering out invalid real-time 

AVI data and for real-time path travel time estimation.  

It is the first-time historical AVI data is used for filtering real-

time AVI data, as shown in Table I. A novel filtering algorithm 

is proposed to filter out invalid real-time AVI data for real-time 

path travel time estimation, without ground truth for training 

purposes. As no ground truth is used for training, it is also 

referred as to the proposed unsupervised algorithm in this 

paper.  

The proposed unsupervised algorithm is particularly useful 

when privacy policies prohibit the availability of many valid 

AVI data from privately-owned vehicles (e.g., Hong Kong only 

allows the collection of AVI data from commercial vehicles. 

These commercial vehicles include goods vehicles, non-

franchised and franchised buses, and private cars owned by 

commercial companies, which account for approximately 19% 

of the total vehicle fleet in Hong Kong1) for utilization in the 

development of various intelligent transportation systems 

(ITS). 

AVI sensor  

  003      5  0      3  

  000      5  0         

 rigin Destination

  000     5  0      3  

Travel time of vehicle A    0 min

A

 

Travel time of vehicle     30 min

 

 

Petrol station

RFID tag readers

 Vehicle ID  timestam  

                  

AVI sensor  

RFID tags

  003      5  0      0  



3 

T-ITS-22-02-0533  

Furthermore, most existing filtering algorithms use simple 

first-order central tendency measures, such as observed mean 

or median values, of AVI data. In contrast, the proposed 

unsupervised algorithm considers both first- and second-order 

statistical properties of AVI data via a functional principal 

component analysis (FPCA). The mean and standard deviation 

of estimated path travel times by FPCA can help to construct a 

dynamic time window for filtering out invalid real-time AVI 

data for real-time path travel time estimation on urban arterials. 

TABLE I 

SUMMARY OF FILTERING ALGORITHMS FOR REAL-TIME AVI DATA 

 

Literature Input data Time window 
Path travel time 

estimates 
Road type 

Distance 

between two 

AVI sensors 
(km) 

Type of AVI 

sensors 

Interval of 
updating time 

window (min) 

[29] R Distribution center - 
Highway 
(3 km) 

0.9–3.7 

Dedicated Short 

Range 
Communication 

sensors 

5 

[30] R Distribution center Mean from data Freeway 1.6 
Bluetooth MAC 
address readers 

5 

[31] R Median and variance Median from data Urban arterials - ALPR cameras 2 and 5 

[32] R 
Mean and variance, and 

transition identification 
Mean from data Urban arterials 6.2 RFID tag readers 2 

[33] R 
Mean and variance, and 

transition identification 
Mean from data 

Freeway and 

urban arterial 

4.0 (freeway) 

and 1.9 (urban 
arterial) 

RFID tag readers 2 

[34]–[36] R Mean Mean from data Freeway - RFID tag readers 0.5, 2, and 15 

This paper 
R + H 

(First time) 
Statistical model 

Conditional mean 
from model 

Urban arterials 
4.3, 4.5, and 

9.2 
RFID tag readers  2 

Note: R = real-time AVI data; H = historical AVI data.  
 

FPCA is a statistical tool for functional data analysis that uses 

advanced feature approximation techniques. It has received 

increasing attention in recent related studies, as it can be used 

for analyzing highly stochastic data. For example, [37] 

proposed an FPCA model to predict traffic flows, and [38] and 

[39] have used FPCA to identify and monitor traffic patterns. In 

addition, [40] applied FPCA to model the variability and 

reliability of freeway travel times. Furthermore, [41] performed 

FPCA of global positioning system data to predict vehicle speed 

distributions. [37] and [38] adopted FPCA to satisfactorily 

predict and estimate link and path travel time variations. 

Moreover, [43] further highlighted the merits of FPCA on path 

travel time predictions under abnormal traffic conditions.  

The FPCA model regards the path travel time as a stochastic 

process [42]–[44]. In this paper, the FPCA model has been 

extended to generate temporal var-cov relationships between 

path travel times. These relationships are then used to develop 

the proposed unsupervised algorithm for filtering limited but 

accurate real-time AVI data, which enables the real-time 

estimation of path travel times without ground truth for training 

purposes. 

The major contributions of this paper are summarized into 

the following three categories. 

1) It is the first time that a novel unsupervised algorithm 

is proposed, with the usage of historical AVI data but without 

using historical ground truth for training purposes, for 

constructing dynamic time windows to filter out invalid real-

time AVI data from limited real-time AVI data.  

2) A FPCA-based model is adapted to consider both the 

historical and real-time AVI data for modeling their temporal 

var-cov relationships between path travel times at different time 

intervals and on different days. Both mean and standard 

deviation of the path travel times are estimated by the proposed 

FPCA model and used for the improvement of the real-time 

AVI data filtering performance.  

3) Sensitivity tests are conducted to examine the effects 

of different sampling rates of the real-time AVI data or the valid 

real-time AVI data only in order to verify the generality and 

robustness of the proposed unsupervised algorithm without or 

with the use of the ground truth for training purposes.  

The remainder of this paper is organized as follows. Section 

II presents the methodology of the proposed unsupervised 

algorithm for filtering real-time AVI data. Section III reports 

the numerical results obtained for the two case studies in Hong 

Kong by applying the proposed unsupervised algorithm in 

comparison with the other three corresponding existing 

algorithms for screening out invalid real-time AVI data, 

together with sensitivity tests on the sampling rates of real-time 

AVI data and valid real-time AVI data on estimation accuracy 

without and with ground truth. Finally, concluding remarks and 

suggestions for future research are given in Section IV.  

II. METHODOLOGY 

To illustrate the essential ideas of the methodology, any 

given path with two AVI sensors at both ends is considered. In 

this setting, the 𝑖th AVI data measured on the day 𝑑 is denoted 

as 𝑥𝑖,𝑑 . The corresponding timestamp of 𝑥𝑖,𝑑  when it is 

collected is represented by 𝑡𝑖,𝑑. The set of days with historical 

AVI data is defined as 𝐷, while the current day is denoted as 

𝑑∗ . The assignment of 𝑑  from set 𝐷  or {𝑑∗ } depends on 

whether it is historical or real-time AVI data. 

The proposed unsupervised algorithm aims to provide a 

dynamic time window for screening out invalid real-time AVI 

data. The dynamic time window consists of the upper bound 

𝑈(𝑡∗) and the lower bound 𝐿(𝑡∗), where 𝑡∗ is the timestamp 

when real-time filtering is performed. In the proposed 
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unsupervised algorithm, the available data are the real-time 

AVI data before time 𝑡 on the current day 𝑥𝑑∗,𝑖
𝐴𝑉𝐼 , for 𝑡𝑑∗,𝑖

𝐴𝑉𝐼 ≤ 𝑡, 

and historical AVI data 𝑥𝑑,𝑖
𝐴𝑉𝐼 , for 𝑑 ∈ 𝐷.  

 

A. Proposed Unsupervised Algorithm 

Fig. 2 provides the framework of the proposed unsupervised 

algorithm. There are two stages and five steps in the framework 

with corresponding equation numbers shown at each step. 

Detailed descriptions of these two stages and five steps are 

given in the following paragraphs.  

Stage 1 involves offline training, which uses historical AVI 

data for the development of the trained FPCA models. Stage 2 

concerns the real-time filtering of real-time AVI data, in which 

the trained FPCA models are used to construct the dynamic 

time windows to screen out invalid real-time AVI data. 

As the backbone of the methodology framework, FPCA 

models are trained to map the predictor to the response [43]. 

Thus, the eigenfunctions and principal components must be 

trained for the predictor and the response. Then, the conditional 

distributions of the response based on the predictor can be 

obtained and represented by the trained eigenfunctions and 

principal components [41], [45], [46]. In the proposed 

unsupervised algorithm, the historical AVI data is considered 

as the predictor, and the response is the offline path travel time 

estimated from sufficient historical AVI data using existing 

filtering algorithms, such as TransGuide algorithm [34]. They 

are preliminary travel time estimates shown in Step 1 without 

the use of ground truth. Therefore, the 𝑖 th preliminary travel 

time estimate is denoted as 𝑥𝑖,𝑑
′ , with the corresponding 

timestamp denoted as 𝑡𝑖,𝑑
′ . 

Selecting appropriate training set is performed in Step 2. It is 

based on the temporal var-cov relationships between the path 

travel times on different days. Afterward, learning training sets 

is proceeded with the modeling of the temporal var-cov 

relationships between the path travel times at different time 

intervals in Step 3. Dynamic time windows are constructed 

based on the mean and standard deviation of estimated path 

travel times provided by the proposed FPCA model in Step 4. 

The resulting FPCA models are adopted for real-time filtering 

to determine the dynamic time windows in a rolling horizon 

scheme for the latest real-time AVI data in Step 5.  

B. Selecting Appropriate Training Set 

Historical AVI data may reflect different traffic patterns due 

to the changing traffic demand and network supply (e.g., 

incidents and sensor failures). If the traffic patterns are different 

from that of the current day, then those historical AVI data may 

provide little useful information for constructing the current 

day’s dynamic time windows. Accordingly  historical AVI data 

that contain similar traffic patterns to the current day are 

selected for filtering real-time AVI data. 

To this end, the temporal var-cov relationships between path 

travel times on different days are modeled by FPCA to reflect 

the similarities of traffic patterns across multiple days. At time 

𝑡 , historical AVI data at time 𝑡𝑖,𝑑 ∈ [𝑡 − 𝑇, 𝑡]  is considered, 

where the 𝑇 is the length of the study horizon and it is the unit 

for the rolling horizon scheme presented later. The AVI data 

𝑥𝑖,𝑑 is the sum of travel time and measurement error 𝜀𝑖,𝑑, and 

are given by (1), as follows:  

𝑥𝑖,𝑑 = 𝜇𝑋(𝑑) + ∑ 𝜉𝑘
𝐷𝜙𝑘(𝑑)

𝐾𝐷

𝑘=1 + 𝜀𝑖,𝑑  (1) 

where 𝜇𝑋(𝑑) is the mean function of travel times from AVI 

data on day 𝑑 , which is 𝑋(𝑑) ; 𝜉𝑘
𝐷  is the score of the 𝑘 th 

functional principal component; 𝜙𝑘(𝑑) is the eigenfunction of 

the 𝑘th functional principal component from AVI data on day 𝑑 

for |𝐷| days according to the Karhunen-Loève representation; 

and 𝐾𝐷is the number of functional principal components from 

AVI data for |𝐷| days, where 𝜀𝑖,𝑑 represents the measurement 

error of the 𝑖th travel time from AVI data on day 𝑑. 

 
Fig. 2. Framework of the proposed unsupervised algorithm.  

 

Equation (1) assumes that the path travel time data in 

[𝑡 − 𝑇, 𝑡] is continuous in 𝑑, and the corresponding path travel 

time from the AVI data 𝑋(𝑑) is given by (2), as follows: 

𝑋(𝑑) = 𝜇𝑋(𝑑) + ∑ 𝜉𝑘
𝐷𝜙𝑘(𝑑)

𝐾𝐷

𝑘=1   (2) 

where the function 𝜇𝑋(𝑑) is given by 

𝜇𝑋(𝑑) = 𝐸(𝑋(𝑑)) (3) 

The covariance function of path travel times from AVI data 

between day 𝑑1  and 𝑑2  (temporal var-cov relationships 

between path travel times on different days) is denoted by 

𝐻(𝑑1, 𝑑2) and is provided by (4), as below: 

𝐻(𝑑1, 𝑑2) = ∑ 𝜆𝑘
𝐷𝜙𝑘(𝑑1)

𝐾
𝑘=1 𝜙𝑘(𝑑2)  (4) 

where 𝜆𝑘
𝐷  is the eigenvalue of the 𝑘 th functional principal 

component from AVI data. 

It is assumed that the weighting or score of the functional 

principal component 𝜉𝑘
𝐷 has the statistical properties given by 

(5) and (6), as below:  

𝐸(𝜉𝑘
𝐷) = 0 (5) 
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𝑉𝑎𝑟(𝜉𝑘
𝐷) = 𝜆𝑘

𝐷 (6) 

The covariance 𝐻(𝑑1, 𝑑2)  is derived by solving the 

following minimization (7) for the AVI data:  

𝑚𝑖𝑛
𝛽0,𝛽1,𝛽2

∑ ∑ 𝜅𝐶 (
𝑑3−𝑑1

ℎ𝐶
) 𝜅𝐶 (

𝑑4−𝑑2

ℎ𝐶
)

𝑁𝑑
𝑖=1 ∙

|𝐷|
1≤𝑑3≤𝑑4

(
𝐶𝑜�̂�(𝑥𝑖,𝑑3 , 𝑥𝑖,𝑑4)−𝛽0 − 𝛽1(𝑑3 − 𝑑1)

−𝛽2(𝑑4 − 𝑑2)
)

2

  

(7) 

where 𝐶𝑜�̂�(𝑥𝑖,𝑑3 , 𝑥𝑖,𝑑4)  represents the estimated travel time 

covariance between day 𝑑3 and 𝑑4, the estimates of the model 

coefficients 𝛽0, 𝛽1, 𝛽2 are dependent on days 𝑑1 and 𝑑2, and 𝑁𝑑 

is the number of samples within the study horizon on day 𝑑. 

The estimates of 𝛽0 are denoted as �̂�0(𝑑1, 𝑑2) and an estimate 

of 𝐻(𝑑1, 𝑑2)  is obtained from �̂�(𝑑1, 𝑑2) = �̂�0(𝑑1, 𝑑2) . 

Moreover, 𝜅𝐶 is a kernel function in which ℎ𝐶  is the bandwidth 

that enables calibration of the covariance function. 

Referring to the covariance function of path travel times for 

different days �̂�(𝑑1, 𝑑2), the samples with larger covariance 

values are selected and used to calibrate the model. 𝐷∗is the set 

of days after sample selection, which is determined by (8): 

𝐷∗ = {𝑑 ||�̂�(𝑑1, 𝑑2)| ≥ 𝐻∗, 𝑑 ∈ 𝐷}  (8) 

where 𝐻∗  is the threshold of the path travel time covariance 

between different days.  

 

C. Learning Training Set 

In this section, two FPCA models are proposed to model 

temporal var-cov relationships between path travel times at 

different time intervals. The first FPCA model is based on the 

predictor (i.e., historical AVI data). The second FPCA model is 

based on the responses, which are preliminary travel time 

estimates in the proposed unsupervised algorithm. 

The historical AVI data 𝑥𝑖,𝑑 is modeled in (9), as follows: 

𝑥𝑖,𝑑 = 𝜇𝑋(𝑡𝑖,𝑑) + ∑ 𝜉𝑘𝜙𝑘(𝑡𝑖,𝑑)
𝐾𝑇

𝑘=1 + 𝜀𝑖,𝑑, 𝑑 ∈ 𝐷∗  (9) 

where 𝜇𝑋(𝑡𝑖,𝑑)  is the mean function of the measured travel 

times at time 𝑡𝑖,𝑑 ; 𝜉𝑘  represents the score/weight of the 𝑘 th 

functional principal component; 𝜙𝑘(𝑡𝑖,𝑑) is the eigenfunction 

of the 𝑘th functional principal component from AVI data at time 

𝑡𝑖,𝑑; 𝐾𝑇 is the number of functional principal components from 

AVI data during study horizon 𝑇. 

Analogously, the path travel time based on AVI data 𝑋(𝑡) 
can be described as (10) below: 

𝑋(𝑡) = 𝜇𝑋(𝑡) + ∑ 𝜉𝑘𝜙𝑘(𝑡)
𝐾𝑇

𝑘=1   (10) 

where 𝜇𝑋(𝑡) is given by (11), as below: 

𝜇𝑋(𝑡) = 𝐸(𝑋(𝑡)) (11) 

𝐻(𝑡1, 𝑡2) is denoted as the covariance function of path travel 

times from AVI data between time 𝑡1 and 𝑡2 (temporal var-cov 

relationships between path travel times at different time 

intervals) in (12), as below: 

𝐻(𝑡1, 𝑡2) = ∑ 𝜆𝑘𝜙𝑘(𝑡1)
𝐾𝑇

𝑘=1 𝜙𝑘(𝑡2)  (12) 

Again, the weighting/score of functional principal 

components has the same statistical properties as shown in (5) 

and (6). 

If a response 𝑥𝑖,𝑑
′  is available at time 𝑡𝑖,𝑑

′  on day 𝑑, (9) can be 

expressed as (13): 

𝑥𝑖,𝑑
′ = 𝜇𝑋′(𝑡𝑖,𝑑

′ ) + ∑ 𝜉𝑘
′𝜙𝑘

′ (𝑡𝑖,𝑑
′ )𝐾′𝑇

𝑘=1 , 𝑑 ∈ 𝐷∗ (13) 

where 𝜇𝑋′(𝑡𝑖,𝑑
′ ) is the mean function of responses over study 

horizon 𝑇; 𝜉𝑘
′  is the score/weight of the 𝑘th functional principal 

component of the responses; 𝜙𝑘
′ (𝑡𝑖,𝑑

′ ) is the eigenfunction of 

the 𝑘th functional principal component of the responses at time 

𝑡𝑖,𝑑
′ ; and 𝐾′𝑇 is the number of functional principal components 

of the responses during study horizon 𝑇. 

Correspondingly, the path travel time based on the responses 

can be expressed as (14), as below: 

𝑋′(𝑡) = 𝜇𝑋′(𝑡) + ∑ 𝜉𝑘
′𝜙𝑘

′ (𝑡)𝐾′𝑇

𝑘=1   (14) 

where 𝜇𝑋′(𝑡) given by (15), as follows: 

𝜇𝑋′(𝑡) = 𝐸(𝑋′(𝑡)) (15) 

𝐻′(𝑡1, 𝑡2) is denoted as the covariance function of path travel 

times for responses between time 𝑡1  and 𝑡2  during study 

horizon T (temporal var-cov relationships between path travel 

times at different time intervals), as below: 

𝐻′(𝑡1, 𝑡2) = ∑ 𝜆𝑘
′ 𝜙𝑘

′ (𝑡1)
𝐾′𝑇

𝑘=1 𝜙𝑘
′ (𝑡2)  (16) 

where 𝜆𝑘
′  is the eigenvalue of the 𝑘 th functional principal 

component of responses.  

The predictors 𝑥𝑖,𝑑  and responses 𝑥𝑖,𝑑
′  can be used to 

calibrate the above-described FPCA-based models. The details 

of the procedure for calibrating mean functions, covariance 

functions, and functional principal components (including 

weighting/score and eigenfunctions) are available in the 

literature [41], [43], [45], [46]. The number of functional 

principal components is generally determined by applying one 

of the following three methods: the fraction of variance 

explained, the Akaike information criterion, or the Bayesian 

information criterion.  

 

D. Constructing Dynamic Time Window 

The principal analysis by conditional expectation (PACE) is 

now formulated for the FPCA models presented in the previous 

section, for use in data filtering. The objective is to relate the 

models derived from the predictors and the responses via the 

method of additive models [41], [43], [46]. Specifically, the 

conditional distributions of the responses derived from the AVI 

data are adopted. The advantage of this PACE approach is its 

superiority over other approaches under the Gaussian 

assumption [47]. 

Application of the functional additive model [46] provides 

the conditional model (17), as below: 

𝐸(𝑋′(𝑡)|𝑋(𝑡)) = 𝜇𝑋′(𝑡) + ∑ (∑ 𝐸(𝜉𝑞
′ |𝜉𝑘)

𝐾𝑇

𝑘=1 )𝐾′𝑇

𝑞=1 𝜙𝑞
′ (𝑡)  

 (17) 
Similar to the calibration procedure adopted in the general 

FPCA model, 𝑓𝑞𝑘(𝜉𝑘) = 𝐸(𝜉𝑞
′ |𝜉𝑘) on each day 𝑑, 𝑓𝑞𝑘(𝜉) can 

be obtained by minimizing the following expression with 

respect to 𝛾0 and 𝛾1: 

𝑚𝑖𝑛
𝛾0,𝛾1

∑ 𝜅𝑓 (
�̂�𝑘,𝑑−𝜉

ℎ𝑓
) [𝜉𝑘,𝑑

′ − 𝛾0 − 𝛾1(𝜉 − 𝜉𝑘,𝑑)]
2

𝑑∈𝐷∗   

 (18) 
where 𝜉𝑘,𝑑  and 𝜉𝑘,𝑑

′  are the estimated 𝜉𝑘  and 𝜉𝑘
′ , respectively, 

on each day 𝑑 . This leads to 𝑓𝑞𝑘(𝜉) = 𝛾0(𝜉). Moreover, the 

conditional covariance function is given by (19), as follows: 
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𝐶𝑜𝑣(𝑋′(𝑡1), 𝑋
′(𝑡2)|𝑋(𝑡)) 

= ∑ 𝑣𝑎𝑟( 𝜉𝑞
′ |𝑋(𝑡))𝜙𝑞(𝑡1)

𝐾′𝑇

𝑞=1 𝜙𝑞(𝑡2)  
(19) 

By using the property of variance, 𝑣𝑎𝑟( 𝜉𝑞
′ |𝑋(𝑡))  can be 

further expanded such that (19) can be rewritten as (20) below: 

𝐶𝑜𝑣(𝑋′(𝑡1), 𝑋
′(𝑡2)|𝑋(𝑡)) 

= ∑ [𝑣𝑎𝑟( 𝜉𝑞
′ ) + ∑ 𝐸 ((𝜉𝑞

′ )
2
−𝐾𝑇

𝑘=1
𝐾′𝑇

𝑞=1

𝑣𝑎𝑟( 𝜉𝑞
′ )| 𝜉𝑘)−𝐸

2(𝜉𝑞
′ | 𝜉𝑘)] ∙ 𝜙𝑞(𝑡1)𝜙𝑞(𝑡2)  

= 𝐻′(𝑡1, 𝑡2) +

∑ ∑ [𝑔𝑞𝑘(𝜉𝑘)
𝐾𝑇

𝑘=1 −𝐾′𝑇

𝑞=1 𝑓𝑞𝑘
2 (𝜉𝑘)]𝜙𝑞(𝑡1)𝜙𝑞(𝑡2)  

(20) 

where 𝑔𝑞𝑘(𝜉𝑘) is given by (21), as follows: 

𝑔𝑞𝑘(𝜉𝑘) = 𝐸 [(𝜉𝑞
′ )

2
− 𝑣𝑎𝑟( 𝜉𝑞

′ )|𝜉𝑘] (21) 

By setting 𝑓𝑞𝑘(𝜉𝑘) = 𝑓𝑞𝑘(𝜉𝑘), an estimate of 𝑔𝑞𝑘(𝜉𝑘) can be 

further acquired by minimizing the following expression (22) 

with respect to 𝜂0 and 𝜂1: 

𝑚𝑖𝑛
𝜂0,𝜂1

∑ 𝜅𝑔 (
�̂�𝑘,𝑑−𝜉𝑘

ℎ𝑔
) [𝜉𝑞,𝑑

′ 2
− 𝑣𝑎𝑟( 𝜉𝑞,𝑑

′ ) −𝑑∈𝐷∗

𝜂0 − 𝜂1(𝜉𝑘 − 𝜉𝑘,𝑑)]
2

  

(22) 

which leads to �̂�𝑞𝑘(𝜉𝑘) = �̂�0(𝜉𝑘).  

The conditional mean of responses based on path travel times 

derived from AVI data and the conditional covariance of 

responses based on travel times from AVI data can be modeled 

as (23) and (24), respectively, as follows:  

�̂�(𝑋′(𝑡)|𝑋(𝑡)) = �̂�𝑋′(𝑡) + ∑ (∑ 𝑓𝑞𝑘(𝜉𝑘)
𝐾𝑇

𝑘=1 )𝐾′𝑇

𝑞=1 �̂�𝑞
′ (𝑡) 

 (23) 
𝐶𝑜�̂�(𝑋′(𝑡1), 𝑋

′(𝑡2)|𝑋(𝑡))  

= ∑ (𝑣𝑎𝑟( 𝜉𝑞
′ ) + ∑ (�̂�𝑞𝑘(𝜉𝑘) −

𝐾𝑇

𝑘=1
𝐾′𝑇

𝑞=1

𝑓𝑞𝑘
2 (𝜉𝑘))) �̂�𝑞

′ (𝑡1)�̂�𝑞
′ (𝑡2)  

(24) 

The conditional mean and covariance function of responses 

derived from path travel times determined from AVI data can 

be obtained from (23) and (24) by learning from historical 

information on the predictors and responses. 

Proposition 1 presents the uniform convergence properties of 

the conditional model of path travel time estimation. The 

conditional mean and covariance of estimated path travel times 

are accurate when the number of path travel time data |𝐷∗| →
+∞. If more principal components are considered (i.e., 𝐾𝑇 , 𝐾′𝑇 

is large), more data samples are required. 

Proposition 1. (The uniform convergence of the 

conditional modeling of path travel time) 

Suppose that the number of travel time data |𝐷∗| → +∞ and 

the path travel time on each day in 𝐷∗ are i.i.d., and that the 

mean �̂�(𝑋′(𝑡)|𝜑(𝑡))  and the covariance 

𝐶𝑜�̂�(𝑋′(𝑡1), 𝑋
′(𝑡2)|𝑋(𝑡)) in the calibrated conditional model 

of travel time in (23) and (24) approximate the actual 

conditional mean and covariance with the error rate 𝑂𝑝 (
𝐾𝑇𝐾′𝑇

√|𝐷∗|
). 

Thus, mathematically (25) and (26) are presented: 

𝑠𝑢𝑝
𝑡∈𝑇

|�̂�(𝑋′(𝑡)|𝑋(𝑡)) − 𝐸(𝑋′(𝑡)|𝑋(𝑡))| = 𝑂𝑝 (
𝐾𝑇𝐾′𝑇

√|𝐷∗|
) 

 
2https://www.dropbox.com/s/07twpatvmr2rxrm/Online%20supplement.pdf

?dl=0. 

 (25) 
𝑠𝑢𝑝
𝑡∈𝑇

|𝐶𝑜�̂�(𝑋′(𝑡1), 𝑋
′(𝑡2)|𝜑(𝑡)) −

𝐶𝑜𝑣(𝑋′(𝑡1), 𝑋
′(𝑡2)|𝜑(𝑡))| = 𝑂𝑝 (

𝐾𝑇𝐾′𝑇

√|𝐷∗|
)  

(26) 

The corresponding proofs can be found in Appendix 1 in the 

online supplement2. 

Based on the conditional mean and covariance function of 

path travel times, 𝑈(𝑡∗) and 𝐿(𝑡∗) as upper and lower bounds 

the dynamic time windows can be obtained from (27) and (28): 

𝑈(𝑡∗) = �̂�(𝑋′(𝑡∗)|𝑋(𝑡∗))  

            +𝑍𝛼/2 ∙ 𝐶𝑜�̂�(𝑋
′(𝑡1

∗), 𝑋′(𝑡2
∗)|𝜑(𝑡∗))

1

2  
(27) 

𝐿(𝑡∗) = �̂�(𝑋′(𝑡∗)|𝑋(𝑡∗))  

            −𝑍𝛼/2 ∙ 𝐶𝑜�̂�(𝑋
′(𝑡1

∗), 𝑋′(𝑡2
∗)|𝜑(𝑡∗))

1

2  
(28) 

The invalid real-time AVI data can then be filtered out if they 

are not falling within the dynamic time window [𝐿(𝑡∗), 𝑈(𝑡∗)]. 
At each time interval 𝑡∗, the time window is updated based on 

the rolling horizon scheme, as detailed in the following section. 

E. Rolling Horizon Scheme  

The rolling horizon scheme is adopted following previous 

real-time applications [43], [48]. The dynamic time windows 

governed by 𝑈(𝑡∗) and 𝐿(𝑡∗) (which are determined from the 

proposed unsupervised algorithm) are updated in each time 

interval 𝑡∗, when these new real-time AVI data are streamed for 

filtering. The filtering framework generates the dynamic time 

windows for each rolling step (i.e., 2 min in this paper) using 

the flexible and adaptive rolling horizon (study horizon) 𝑇. In 

contrast, most existing data filtering algorithms have adopted a 

fixed rolling horizon for their applications [43], [48]. 

III. NUMERICAL EXPERIMENTS 

In this section, the proposed unsupervised algorithm is 

examined in case studies of two selected paths using real-world 

data collected from the Hong Kong urban road network. 

A. Traffic Data 

The historical ground truth travel time data are obtained from 

the Hong Kong Journey Time Indication System (JTIS), the 

path travel time estimates of which have been independently 

validated using floating car survey data [32], [49]. The path 

travel time estimates provided by JTIS are instantaneous travel 

times. An example of the real-time information supplied by the 

JTIS [50] is depicted in Fig. 3. The numbers displayed in the 

digital signs are journey times (or path travel times) in minutes 

from the locations of these signs to the exits of the 

corresponding road tunnels crossing Victoria Harbor in Hong 

Kong. The colors of the digits in the display panel represent the 

congestion levels of each route: red digits indicate congested 

traffic  <  5 km h   yellow digits im ly slow traffic   5 –50 

km/h), and green digits reveal free-flowing traffic  > 50 km h . 

As there are a limited number of AVI sensors (RFID tag 

readers) in the JTIS, and the average distance between these 

sensors is relatively long, the rates at which AVI data are 
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sampled in the JTIS are very low. Accordingly, some point 

sensors are also deployed in the JTIS to provide additional data 

at selected locations along major paths in urban areas. These 

point sensors collect the point speed data of vehicles traveling 

along the major paths. The combination of AVI and point 

sensor data enables the JTIS to generate updated real-time path 

travel time estimates along major routes in Hong Kong urban 

areas once every 2 min [49]. As reported, independent floating 

car surveys have confirmed the validity of JTIS path travel time 

estimates [32], [49]. Hence, the path travel time information 

provided by the JTIS is regarded as the ground truth for this 

study. 

 
Fig. 3 . Illustration of the Journey Time Indication System in 

Hong Kong. 

 

B. Experimental Set-ups 

Case studies on two selected paths in the Hong Kong urban 

road network are performed using real-world data. Fig. 4 and 

Table II show the locations and characteristics of these two 

selected paths, respectively.  

 
Fig. 4 . Overview of the two study paths in Hong Kong. 

 

Study path 1 is 9.2-km long and connects the Island Eastern 

Corridor on Hong Kong Island to the Western Harbor Crossing 

in Kowloon; its free-flow path travel time is 8.4 min. Study path 

2 is 8.8-km long and connects Gascoigne Road and the entry of 

the Eastern Harbor Crossing; its free-flow travel time is 7.9 

min. A pair of AVI sensors are installed at both ends of both 

paths. An additional AVI sensor 4 is installed in the middle of 

study path 2 to collect more AVI data in order to enable the real-

time estimation of path travel times.  

These two study paths differ primarily in the number of AVI 

sensors and bus stops in Table II. In addition, there is a 

signalized intersection on study path 1 but not on study path 2. 

The study paths contain several bus stops and frontage access 

with entries and exits. These site characteristics can lead to very 

few valid real-time AVI data available for real-time path travel 

time estimation. Fig. 5(a) shows the low sampling rates of valid 

real-time AVI data for both paths. Based on descriptions of 

[33], a low sampling rate refers to as representatively two or 

three AVI data per 2-min time interval. However, in the case 

study as shown in Fig. 5(a), there are only 12% and 30% of 2-

min time intervals with no less than 2 valid real-time AVI data 

on study paths 1 and 2 respectively. It can be seen in Fig. 5(a) 

and Table II that the existence of signalized intersections and 

more bus stops on study path 1 further decreases the sampling 

rates of valid real-time AVI data. Moreover, there are more than 

50% of 2-min time intervals without any valid real-time AVI 

data or real-time AVI data from Fig. 5(a) and Fig. 5(b). The 

latter consists of both valid and invalid AVI data.  

The AVI data and JTIS ground truth collected on all 

weekdays in 2017 and January 2018 are used in these two case 

studies. Public holidays and days with adverse weather and 

incidents are excluded. Hence, data of 299 days in 2017 are 

employed for training. Data from January 8th to 12th in 2018 are 

adopted for testing and evaluation for the rest of the 

experiments unless other specifications. The rolling step chosen 

is 2 min, and the confidence level for the dynamic time window 

is 90%. 

 

C. Results 

The performance of the proposed unsupervised filtering 

algorithm is compared with that of the three corresponding 

existing algorithms that are commonly used in practice for 

filtering real-time AVI data. The algorithm developed by [34] 

is used to generate preliminary travel time estimates for 

historical AVI data. The proposed unsupervised algorithm is 

denoted as U1, and the other three corresponding existing 

algorithms are the most up-to-date algorithms for filtering real-

time AVI data, which have been used successfully for decades 

in various ITS projects [31], [33], [34]. The algorithm of [33] is 

denoted as U2; that of [31] as U3; and that of [34] as U4. These 

existing algorithms use real-time AVI data while U1 utilizes 

both real-time and historical AVI data. 

The mean absolute error (MAE) and the mean absolute 

percentage error (MAPE), which are given by (29) and (30), 

respectively, are used to evaluate the filtering performance of 

algorithms with respect to the JTIS ground truth.  

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑋𝑡 − �̂�𝑡|
𝑇
𝑡=1   (29) 

𝑀𝐴𝑃𝐸 =
100

𝑇
∑

|𝑋𝑡−�̂�𝑡|

𝑋𝑡

𝑇
𝑡=1   (30) 

where 𝑋𝑡 are true values and �̂�𝑡 are estimated values. 

RFID tag reader Point sensor

 TI   ath travel 

time estimates 

              

Legend 

 rigin Destination

AVI sensor

Path direction    

Victoria  ar or

Path distance   .  km

Path distance   .  km

AVI sensor 3

 rigin  

 rigin  

 tudy  ath  

 tudy  ath  

 ong  ong Island

AVI sensor  

AVI sensor 5

Destination  

Destination  

AVI sensor  

AVI sensor  

 owloon  r an Area
  km



8 

T-ITS-22-02-0533  

  
(a) (b) 

Fig. 5 . Sampling rates of (a) valid real-time AVI data, and (b) real-time AVI data on both study paths. 

 
TABLE II 

SUMMARY OF TWO STUDY PATHS 

 

 Study path 1 Study path 2 

Number of AVI 
sensors along the 

study path 

Two Three 

Road type 
Urban arterials with 

bus stops and 

signalized junction 

Urban arterials with 

bus stops only 

Path length (km) 9.2 8.8 
Number of bus stops 20 8 

Number of entries 

along the study path 
(e.g., slip road and 

frontage access) 

13 13 

Number of exits 
along the study path 

(e.g., slip road and 

frontage access) 

13 11 

Free-flow travel time 

(min) 
8.4 7.9 

Speed limits (km/h) 
70 (31%), 50 (18%), 
60 (19%), 80 (32%) 

70 (58%), 50 (20%), 
80 (22%) 

Number of point 
sensors 

Seven Five 

 

Fig. 6 illustrates the contribution of using historical AVI data 

for filtering out invalid real-time AVI data. For limited real-

time AVI data with low sampling rates, there is a chance that 

the transition between congestion and free-flow conditions can 

hardly be recognized properly by the existing filtering 

algorithms  e.g.      Dion’s algorithm  which has already 

considered the transition recognition of the real-time traffic 

conditions by looking back real-time AVI data in consecutive 

preceding time intervals). As shown in Fig. 6, the black circles 

indicate that U2 fails to select valid real-time AVI data. In 

contrast, U1 with the use of historical AVI data performs well 

in filtering the limited real-time AVI data. The temporal var-

cov relationships between path travel times on different days 

modeled in (4) can help to recognize traffic conditions by time 

of day. It is also observed that most of the relevant ground truth 

is captured within the dynamic time windows resulting from U1 

throughout the day. 

Table III compares the filtering performance of the proposed 

unsupervised algorithm with benchmarks with respect to the 

mean/standard deviation of estimated path travel times. U1 

outperforms the other three existing unsupervised algorithms 

from both aspects. For the mean of path travel times, the MAPE 

of U1 is 19.3% for study path 1 and 16.1% for study path 2. For 

the standard deviation of path travel times, the MAE values of 

U1 are 0.61 min and 0.52 min for study paths 1 and 2, 

respectively. The comparison of results between U1 and the 

other three existing unsupervised algorithms provides evidence 

in supporting the contribution of making use of historical AVI 

data. 

 

D. Sensitivity Analysis  

In the real world, historical ground truth data on path travel 

times can be available (e.g., existing path travel time estimates 

from existing ATISs, and samples collected independently from 

floating car surveys). It is a special case of research problem in 

this paper when historical ground truth is ready for training 

purposes. Under this scenario,  𝑥𝑖,𝑑
′  denotes the 𝑖th ground truth 

on path travel time, with the corresponding timestamp denoted 

as 𝑡𝑖,𝑑
′  in Step 1 of Fig. 2.  

With the use of historical ground truth for training purposes, 

S1 represents the proposed unsupervised algorithm under this 

scenario. Three existing advanced supervised learning 

algorithms are selected for benchmark comparison. The long 

short-term memory neural network LSTM NN in [51] is 

denoted as S2. The LSTM encoder-decoder model in [52] is 

denoted as S3. The attention-based periodic-temporal neural 

network in [53] is denoted as S4. It should be noted historical 

ground truth in 2017 (299 weekdays) is used for training. 

In contrast to other neural networks that have black-box 

procedures and non-explanatory performance, the FPCA model 

provides explicit descriptions of the temporal var-cov 

relationships between path travel times at different time 

intervals and on different days [43]. Moreover, as the FPCA 

model enables a better understanding of trends [54], it can be 

used to quantify the uncertainty of valid real-time AVI data 

with low sampling rates, particularly those data that are 
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scattered and time-varying. The input data used in the 

sensitivity analysis include historical AVI data, historical JTIS 

ground truth, and real-time AVI data.  

 
Fig. 6 . Filtering performance of U1 and U2 on study path 

2 by time of day. 

 
TABLE III 

COMPARISON OF FILTERING PERFORMANCE WITH  RESPECT TO THE 

MEAN/STANDARD DEVIATION OF PATH TRAVEL TIMES 
 

Algorithms 

Study path 1 Study path 2 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

U1 (proposed 
unsupervised 

algorithm) 

19.3/15.6 2.94/0.61 16.1/13.2 2.53/0.52 

U2 (Dion’s 
algorithm) 

20.2/19.3 3.14/0.67 18.2/16.9 2.74/0.56 

U3 (Median-based 

filter) 
21.4/22.4 3.32/0.81 19.4/18.2 2.89/0.63 

U4 (TransGuide) 22.1/27.1 3.49/0.94 20.1/20.4 3.01/0.68 

 

Table IV gives the comparison results on the mean of 

estimated path travel times under this scenario. The MAPE of 

S1 is 11.4% for study path 1 and 5.1% for study path 2. It is 

found that S1 performs better than the other benchmarks. 

Besides, it should be noted that other benchmarks can only 

provide the mean of estimated travel times. But S1 can also 

produce the corresponding results and the standard deviation of 

estimated path travel times. In the case study, the corresponding 

MAPE and MAE are 12.7% and 0.5 min for study path 1, and 

9.5% and 0.36 min for study path 2. These results can 

demonstrate the contribution of using the proposed FPCA 

model to capture the temporal var-cov relationships between 

path travel times at different time intervals and on different days 

for data filtering and path travel time estimation.  

The average computational times of the proposed 

unsupervised and benchmarks without (U1-U4) and with (S1-

S4) ground truth are provided. All experiments are conducted 

on a standard computer with an AMD Ryzen 5 5600X processor 

(3.7 GHz, 6 cores) in Table V. The average computational time 

required to obtain dynamic time windows and path travel time 

estimates varies from 0.07 to 0.63 min. It is found that the U1 

is applicable for real-time ITS applications, that is, U1 can filter 

the real-time AVI data collected at about each 1.5-min time 

interval, and then rapidly (within 0.55 min) generate the real-

time path travel time estimates. 
TABLE IV 

COMPARISON OF FILTERING PERFORMANCE ON THE MEAN OF PATH 

TRAVEL TIMES WHEN HISTORICAL GROUND TRUTH IS USED FOR TRAINING 

 

Algorithms 

Study path 1 Study path 2 

MAPE 
(%) 

MAE 
(min) 

MAPE 
(%) 

MAE 
(min) 

S1 (proposed unsupervised 

algorithm with the use of 
historical ground truth) 

11.4 1.79 5.1 0.81 

S2 (LSTM NN) 15.3 2.38 7.5 0.95 

S3 (encoder-decoder model) 14.1 2.21 6.6 0.88 
S4 (periodic-temporal NN) 12.5 1.96 6.4 0.87 

 
TABLE V 

THE AVERAGE COMPUTATIONAL TIME OF THE ALGORITHMS 

 

Algorithms 

The average computational time required to 

obtain travel time estimates and filtering 
windows for each time interval (min) 

Study path 

1 

U1/S1 0.52/0.55 

U2/S2 0.13/0.63 

U3/S3 0.07/0.5 

U4/S4 0.1/0.52 

Study path 

2 

U1/S1 0.51/0.52 

U2/S2 0.2/0.57 

U3/S3 0.17/0.6 

U4/S4 0.15/0.55 

 

Another sensitivity analysis is conducted to examine the 

effect of sampling rates of real-time AVI data on the 

performance of the proposed unsupervised algorithm. As study 

path 2 has more AVI sensors than study path 1, the range of 

sampling rate for study path 1 is greater. Moreover, it can be 

used to investigate the AVI data filtering problem under 

different sensor failure scenarios for further study. Therefore, 

study path 2 is used for the sensitivity analysis to examine the 

effects of sampling rates. 

In Fig. 7, U1 performs much better than the other 3 

benchmarks, in terms of the probabilities of absolute percentage 

errors of the estimates less than 20% (i.e., 83% against 56%-

60%). However, S1 only performs slightly better than the other 

benchmarks (i.e., 93% against 88%-91%). It demonstrates that, 

with the use of historical AVI data only, the proposed 

unsupervised algorithm U1 can lead to promising results even 

when ground truth is not available for training purposes. 

To further investigate the effects of sampling rates of valid 

real-time AVI data on the proposed unsupervised algorithm, 

another sensitivity test is carried out. 30 out of 299 weekdays in 

2017 are randomly segregated from the original training set and 

used as the new validation set. The performance of the proposed 

unsupervised algorithm on both study paths is provided in Fig. 

8. It is noted that when the sampling rate of valid real-time AVI 

data is no less than 2 valid AVI data per 2-min interval, the 

performance of U1 is similar on different datasets (95% of the 

absolute percentage errors less than 15.2% and 14.9% for study 

paths 1 and 2, respectively). It demonstrates the generality and 

robustness of the proposed unsupervised algorithm. In general, 

it is found in Fig. 8 that 95% of the absolute percentage errors 

of the estimates are less than 20%. 
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Fig. 7. Sensitivity test with various sampling rates of real-

time AVI data on study path 2. 

 

Additionally, as shown in Fig. 5(a), study path 2 with more 

AVI sensors would have a higher percentage of 2-min intervals 

with no less than 2 valid data than that of study path 1. Hence, 

the performance of both S1 and U1 for study path 2 is better 

than that of study path 1 as shown in Tables III and IV. The 

same finding can also be found in Fig. 8, even the validation 

dataset is different in Fig. 8 and Tables III and IV. 

As the case study is performed using accurate but limited 

real-time AVI data, it is worthwhile to discuss the performance 

of U1 on inaccurate real-time AVI data with more samples (e.g., 

Bluetooth data). It is assumed that this type of AVI data has a 

much lower percentage of valid real-time AVI data. Therefore, 

the performance will deteriorate due to the extremely low 

sampling rate of valid real-time AVI data for U1. Further study 

should be carried out in the future if this type of AVI data is 

available. 

To test the effect of historical ground truth data, a sensitivity 

test is performed by reducing the number of days with historical 

ground truth data. A percentage varying from 0% to 90% of 

historical ground truth data is removed to test the performance 

of S1. The result is given in Table VI. The percentage of 

absolute percentage errors less than 20% is reduced to 83% or 

lower if less than 50% of the historical ground truth is used for 

training purposes. It implies that U1 is better than S1 in practice 

particularly when less than half of the historical ground truth on 

path travel time is available for filtering of real-time AVI data 

and real-time path travel time estimation. 
TABLE VI 

SENSITIVITY TEST WITH DIFFERENT PERCENTAGES OF HISTORICAL 

GROUND TRUTH REMOVED IN 2017 DATA ON STUDY PATH 2 

 

Percentage of historical ground 

truth removed in 2017 data (%) 

Percentage of absolute percentage 

errors less than 20% (%) 

0 93 

10 90 

30 86 
50 83 

70 78 

90 76 

 

With reference to the above (8), the threshold 𝐻∗ of the 

covariance of path travel times on different days for the 

sampling of historical AVI data in S1 is examined in a 

sensitivity test, The relevant results are given in Table VII, in 

which the optimum thresholds of 𝐻∗for study paths 1 and 2 are 

10.8 and 9.6 min2, respectively. It also shows that the variation 

of 𝐻∗affects the results significantly. For study path 1, only 

74% of absolute percentage errors are less than 20% when there 

is a 20% deviation from the optimum threshold. 𝐻∗ can also be 

an annual average figure, as it is based on weekday data in 2017 

(excluding public holidays, and days with adverse weather and 

incidents) to capture the seasonal variation of path travel times. 

Moreover, the optimum threshold is based on the current 

dataset, but 𝐻∗may deviate from the actual optimum threshold, 

as the latter will depend on the updated dataset.  

 

 
Fig. 8 . Sensitivity test of sampling rates of valid real-time AVI data on U1 for study path 1 (left) and study path 2 (right). 
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TABLE VII 

SENSITIVITY TEST OF THE PERCENTAGE DEVIATION OF THE RESULTS OF S1 

FROM THE OPTIMUM THRESHOLD 

 

 

Percentage of deviation 

from optimum threshold 

(%) 

0 10 20 

Value of threshold 

(min2) 

Study path 1 10.8 11.9 13 

Study path 2 9.6 10.6 11.5 

MAPE (%) 
Study path 1 11.4 12.6 13.4 

Study path 2 5.1 7.8 9.5 

Percentage of absolute 
percentage errors less 

than 20% (%) 

Study path 1 83 78 74 

Study path 2 93 86 82 

IV. CONCLUSION 

This paper proposes a novel unsupervised algorithm (U1) for 

filtering limited but accurate real-time AVI data without ground 

truth for training. Instead, it makes use of real-time AVI data 

collected on the same day and historical AVI data collected on 

previous days. The temporal variance-covariance relationships 

between path travel times at different time intervals and on 

different days are explicitly considered in the proposed FPCA 

model. Both mean and standard deviation of the path travel 

times are estimated and used for the improvement of the real-

time AVI data filtering performance. As the proposed FPCA 

model can effectively reduce the dimension of high-variability 

data, the corresponding PACE approach is used to construct the 

dynamic time windows in the proposed unsupervised 

algorithm. The real-time dynamic time windows are generated 

via a rolling horizon scheme. Furthermore, the asymptotic 

properties of the proposed unsupervised algorithm have been 

theoretically proven to demonstrate their ability to generate 

reliable dynamic time windows for real-time AVI data filtering 

and real-time path travel time estimation.  

The performance of U1 is compared respectively with three 

existing data filtering algorithms in the case studies using real-

world data collected from two selected paths in the Hong Kong 

urban road network. The comparison between the data filtering 

performance of U1 and U2 by time of day demonstrates the 

merit of using historical AVI data. It is also found that U1 

outperforms the existing algorithms in terms of both mean and 

standard deviation of estimated path travel times.  

A sensitivity analysis is conducted for a special case when 

ground truth is available for training. The proposed 

unsupervised algorithm with ground truth for training (namely 

S1) outperforms other benchmarks in terms of both mean and 

standard deviation of estimated path travel times. It illustrates 

the merit of using the proposed FPCA model for modeling 

temporal variance-covariance relationships between path travel 

times at different time intervals and on different days. Another 

sensitivity test is also performed to demonstrate the merits of 

using historical AVI data when real-time AVI data is sampled 

at a very low rate. U1 performs much better than the other 3 

benchmarks, in terms of the probabilities of absolute percentage 

errors of the estimates less than 20% (i.e., 83% against 56%-

60%).  

The sensitivity test on sampling rates of valid real-time AVI 

data demonstrates the generality and robustness of the proposed 

unsupervised algorithm. When there are no less than 2 valid 

real-time AVI data per 2-min interval, 95% probability of 

generating absolute percentage errors of less than 20%. 

Moreover, the performance of U1 on different study paths is 

similar under this scenario, which implies that the proposed 

unsupervised algorithm is generalized with robust performance. 

The expected worsened performance on inaccurate real-time 

AVI data with more samples (e.g., Bluetooth) is also discussed 

with the assumed lower sampling rate of valid real-time AVI 

data. Filtering of this type of AVI data is suggested for further 

study if this dataset is available. 

Moreover, an additional sensitivity test is carried out to show 

the advantage of U1. The percentage of absolute percentage 

errors less than 20% is reduced to 83% or lower if less than 50% 

of the historical ground truth is used for training purposes. It 

implies that U1 is better than S1 in reality when less than half 

of the historical ground truth on path travel time is available for 

filtering of real-time AVI data and real-time path travel time 

estimation. 

In the future, other types of traffic-related data, such as 

weather, traffic accidents, vehicular flow data, bus frequencies, 

signal timing, and road types could be incorporated into the 

proposed unsupervised algorithm for improving the data 

filtering performance. As both AVI sensors and point sensors 

are deployed in the JTIS, it is interesting to explore the sensor-

location problems and trade-offs of these two types of traffic 

sensors. Similarly, it is also planned to extend the proposed 

unsupervised algorithm to examine the effects of sensor failure 

on data from multiple AVI sensors at urban road corridors, by 

considering network topology and measurement errors. 

REFERENCES 

[1] A. H. F. Chow, A. Santacreu, I. Tsapakis, G. 

Tanasaranond  and T.  heng  “Em irical assessment of 

ur an traffic congestion ” J. Adv. Transp., vol. 48, no. 

8, pp. 1000–1016, Dec. 2014, doi: 10.1002/atr.1241. 

[2] F. Soriguera and M. Martinez-DIa   “Freeway Travel 

Time Information from Input- Output Vehicle Counts: 

A Drift  orrection  ethod  ased on AVI Data ” IEEE 

Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5749–

5761, 2021, doi: 10.1109/TITS.2020.2992300. 

[3] M. M. Ahmed and M. A. Abdel-Aty  “The via ility of 

using automatic vehicle identification data for real-time 

crash  rediction ” IEEE Trans. Intell. Transp. Syst., 

vol. 13, no. 2, pp. 459–468, 2012, doi: 

10.1109/TITS.2011.2171052. 

[4] X. Zhou and  .  .  ahmassani  “Dynamic origin-

destination demand estimation using automatic vehicle 

identification data ” IEEE Trans. Intell. Transp. Syst., 

vol. 7, no. 1, pp. 105–114, 2006, doi: 

10.1109/TITS.2006.869629. 

[5] Y. Zhu  Z.  e  and W.  un  “ etwork-Wide Link 

Travel Time Inference Using Trip-Based Data from 

Automatic Vehicle Identification Detectors ” IEEE 

Trans. Intell. Transp. Syst., vol. 21, no. 6, pp. 2485–

2495, 2020, doi: 10.1109/TITS.2019.2919595. 



12 

T-ITS-22-02-0533  

[6] D. Xia, L. Zheng, Y. Tang, X. Cai, L. Chen, W. Liu, 

and D.  un  “Link-Based Traffic Estimation and 

Simulation for Road Networks Using Electronic 

Registration Identification Data ” IEEE Trans. Veh. 

Technol., vol. 71, no. 8, pp. 8075–8088, Aug. 2022, doi: 

10.1109/TVT.2022.3171835. 

[7] U. Mori, A. Mendiburu, M. Álvarez, and J. A. Lozano, 

“A review of travel time estimation and forecasting for 

Advanced Traveller Information  ystems ” 

Transportmetrica A: Transp. Sci., vol. 11, no. 2, pp. 

119–157, 2015, doi: 10.1080/23249935.2014.932469. 

[8] R. Gao, F. Sun, W. Xing, D. Tao, J. Fang, and H. Chai, 

“ TTE   ustomi ed Travel Time Estimation via 

 o ile  rowdsensing ” IEEE Trans. Intell. Transp. 

Syst., vol. 23, no. 10, pp. 19335–19347, Oct. 2022, doi: 

10.1109/TITS.2022.3160468. 

[9] P. Wang, Z. Huang, J. Lai, Z. Zheng, Y. Liu, and T. Lin, 

“Traffic   eed Estimation  ased on  ulti-Source GPS 

Data and  ixture  odel ” IEEE Trans. Intell. Transp. 

Syst., vol. 23, no. 8, pp. 10708–10720, 2021, doi: 

10.1109/TITS.2021.3095408. 

[10] D.  orrea and  .    ay  “ r an  ath travel time 

estimation using GPS trajectories from high-sampling-

rate ridesourcing services ” J. Intell. Transp. Syst., pp. 

1–16, Sep. 2022, doi: 

10.1080/15472450.2022.2124867. 

[11] C. Wang, F. Zhao, H. Zhang, H. Luo, Y. Qin, and Y. 

Fang  “Fine-Grained Trajectory-Based Travel Time 

Estimation for Multi-City Scenarios Based on Deep 

Meta-Learning ” IEEE Trans. Intell. Transp. Syst., vol. 

23, no. 9, pp. 15716–15728, Sep. 2022, doi: 

10.1109/TITS.2022.3145382. 

[12] Y. Zhu  Y. Ye  Y. Liu  and  .  . Q. Yu  “ ross-Area 

Travel Time Uncertainty Estimation From Trajectory 

Data  A Federated Learning A  roach ” IEEE Trans. 

Intell. Transp. Syst., vol. 23, no. 12, pp. 24966–24978, 

Dec. 2022, doi: 10.1109/TITS.2022.3203457. 

[13] W. Zhou, X. Xiao, Y. Gong, J. Chen, J. Fang, N. Tan, 

N. Ma, Q. Li, C. Hua, S. Jeon, and J. Zhang  “Travel 

Time Distribution Estimation by Learning 

Re resentations  ver Tem oral Attri uted Gra hs ” 

IEEE Trans. Intell. Transp. Syst., vol. 24, no. 5, pp. 1–

13, 2023, doi: 10.1109/tits.2023.3247884. 

[14] Y. Ye  Y. Zhu   .  arkos  and  .  . Q. Yu  “ atETA  

A Categorical Approximate Approach for Estimating 

Time of Arrival ” IEEE Trans. Intell. Transp. Syst., vol. 

23, no. 12, pp. 24389–24400, Dec. 2022, doi: 

10.1109/TITS.2022.3207894. 

[15]  . Ro inson and  . Polak  “ vertaking rule method for 

the cleaning of matched license- late data ” J. Transp. 

Eng., vol. 132, no. 8, pp. 609–617, 2006, doi: 

10.1061/(ASCE)0733-947X(2006)132:8(609). 

[16] X. Zhan  R. Li  and  . V.  kkusuri  “Link-based traffic 

state estimation and prediction for arterial networks 

using license- late recognition data ” Transp. Res. Part 

C: Emerg. Technol., vol. 117, p. 102660, 2020, doi: 

10.1016/j.trc.2020.102660. 

[17]  .  hen  G. Yu  P.  hen  and Y. Wang  “A co ula-

based approach for estimating the travel time reliability 

of ur an arterial ” Transp. Res. Part C: Emerg. 

Technol., vol. 82, pp. 1–23, 2017, doi: 

10.1016/j.trc.2017.06.007. 

[18] K. Kwong, R. Kavaler, R. Rajagopal, and P. Varaiya, 

“Arterial travel time estimation  ased on vehicle re-

identification using wireless magnetic sensors ” 

Transp. Res. Part C: Emerg. Technol., vol. 17, no. 6, 

pp. 586–606, 2009, doi: 10.1016/j.trc.2009.04.003. 

[19] L. Li  X.  u  Y. Wang  Y. Lin  Z. Li  and Y. Li  “Ro ust 

causal dependence mining in big data network and its 

a  lication to traffic flow  redictions ” Transp. Res. 

Part C: Emerg. Technol., vol. 58, pp. 292–307, 2015, 

doi: 10.1016/j.trc.2015.03.003. 

[20] P.  hakra orty   .  egde  and A.  harma  “Data-

driven parallelizable traffic incident detection using 

spatio-tem orally denoised ro ust thresholds ” Transp. 

Res. Part C: Emerg. Technol., vol. 105, pp. 81–99, 

2019, doi: 10.1016/j.trc.2019.05.034. 

[21]  .  hen  W. Wang  and  . Van Zuylen  “A com arison 

of outlier detection algorithms for IT  data ” Expert 

Syst. Appl., vol. 37, no. 2, pp. 1169–1178, 2010, doi: 

10.1016/j.eswa.2009.06.008. 

[22] Y.  hang  X. Li   .  ia  Z. Yang  and Z. Liu  “Freeway 

Traffic State Estimation Method Based on Multisource 

Data ” J. Transp. Eng. A: Syst., vol. 148, no. 4, pp. 1–

14, Apr. 2022, doi: 10.1061/JTEPBS.0000657. 

[23] S. Washington, M. Karlaftis, F. Mannering, and P. 

Anastasopoulos, Statistical and Econometric Methods 

for Transportation Data Analysis., FL, USA: Chapman 

and Hall/CRC, Boca Raton, 2020. 

[24] W. Qin  X.  i  and F. Liang  “Estimation of ur an 

arterial travel time distribution considering link 

correlations ” Transportmetrica A: Transp. Sci., vol. 

16, no. 3, pp. 1429–1458, 2020, doi: 

10.1080/23249935.2020.1751341. 

[25]  . Yun  W. Qin  X. Yang  and F. Liang  “Estimation of 

urban route travel time distribution using Markov 

chains and pair-co ula construction ” Transportmetrica 

B: Transp. Dyn., vol. 7, no. 1, pp. 1521–1552, 2019, 

doi: 10.1080/21680566.2019.1637798. 

[26] E.  a agli and  .  outso oulos  “Estimation of arterial 

travel time from automatic number plate recognition 

data ” Transp. Res. Rec., no. 2391, pp. 22–31, 2013, 

doi: 10.3141/2391-03. 

[27] P. Duan  G.  ao   .  ang  and  .  uang  “Estimation 

of Link Travel Time Distribution with Limited Traffic 

Detectors ” IEEE Trans. Intell. Transp. Syst., vol. 21, 

no. 9, pp. 3730–3743, 2020, doi: 

10.1109/TITS.2019.2932053. 

[28] J. J. V. Diaz, A. B. Rodriguez Gonzalez, and M. R. 

Wil y  “ luetooth Traffic  onitoring  ystems for 

Travel Time Estimation on Freeways ” IEEE Trans. 

Intell. Transp. Syst., vol. 17, no. 1, pp. 123–132, Jan. 

2016, doi: 10.1109/TITS.2015.2459013. 

[29]  . Park and Y.  im  “ odel for Filtering the  utliers 

in DSRC Travel Time Data on Interrupted Traffic Flow 

 ections ” KSCE J. Civ. Eng., vol. 22, no. 9, pp. 3607–

3619, 2018, doi: 10.1007/s12205-017-1333-z. 

[30] A. Haghani, M. Hamedi, K. F. Sadabadi, S. Young, and 

P. Tarnoff  “Data  ollection of Freeway Travel Time 

Ground Truth with  luetooth  ensors ” Transp. Res. 



13 

T-ITS-22-02-0533  

Rec., vol. 2160, no. 1, pp. 60–68, Jan. 2010, doi: 

10.3141/2160-07. 

[31] X.  a and  .  outso oulos  “Estimation of the 

automatic vehicle identification based spatial travel 

time information collected in  tockholm ” IET Intell. 

Transp. Syst., vol. 4, no. 4, pp. 298–306, 2010, doi: 

10.1049/iet-its.2009.0149. 

[32]  . L. Tam and W.  .  . Lam  “ sing automatic 

vehicle identification data for travel time estimation in 

 ong  ong ” Transportmetrica, vol. 4, no. 3, pp. 179–

194, Jan. 2008, doi: 10.1080/18128600808685688. 

[33] F. Dion and  . Rakha  “Estimating dynamic roadway 

travel times using automatic vehicle identification data 

for low sam ling rates ” Transp. Res. B: Methodol., vol. 

40, no. 9, pp. 745–766, 2006, doi: 

10.1016/j.trb.2005.10.002. 

[34] “Automated Vehicle Identification  odel De loyment 

Initiative System Design Document (A report prepared 

for TransGuide   outhwest Research Institute ”  

TxDOT, San Antonio, TX, 1998. 

[35]  . Tran tar  “Tran tar Descri tion ” 

http://traffic.houstontranstar.org (accessed May. 19, 

2023). 

[36]  .  .  ouskos  E.  iver  and L.  . Pignataro  “Transmit 

 ystem Evaluation ” Database, pp. 1–170, 1998, 

[Online]. Available: 

http://ntl.bts.gov/lib/16000/16700/16703/PB20001045

37.pdf. 

[37]  .  .  hiou  “Dynamical functional  rediction and 

classification, with application to traffic flow 

 rediction ” Ann. Appl. Stat., vol. 6, no. 4, pp. 1588–

1614, 2012, doi: 10.1214/12-AOAS595. 

[38] I. G. Guardiola  T. Leon  and F.  allor  “A functional 

approach to monitor and recognize patterns of daily 

traffic  rofiles ” Transp. Res. B: Methodol., vol. 65, pp. 

119–136, 2014, doi: 10.1016/j.trb.2014.04.006. 

[39] I. M. Wagner-Muns, I. G. Guardiola, V. A. 

 amaranayke  and W. I.  ayani  “A Functional Data 

Analysis A  roach to Traffic Volume Forecasting ” 

IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 

878–888, Mar. 2018, doi: 

10.1109/TITS.2017.2706143. 

[40]  .  .  hiou   . T. Liou  and W.  .  hen  “ odeling 

Time-Varying Variability and Reliability of Freeway 

Travel Time Using Functional Principal Component 

Analysis ” IEEE Trans. Intell. Transp. Syst., vol. 22, 

no. 1, pp. 257–266, 2021, doi: 

10.1109/TITS.2019.2956090. 

[41]  .  hen and  . G.  üller  “ odeling conditional 

distributions for functional responses, with application 

to traffic monitoring via GPS-ena led mo ile  hones ” 

Technometrics, vol. 56, no. 3, pp. 347–358, 2014, doi: 

10.1080/00401706.2013.842933. 

[42] R. X. Zhong, X. X. Xie, J. C. Luo, T. L. Pan, W. H. K. 

Lam  and A.  umalee  “ odeling dou le time-scale 

travel time processes with application to assessing the 

resilience of trans ortation systems ” Transp. Res. B: 

Methodol., vol. 132, pp. 228–248, Feb. 2020, doi: 

10.1016/j.trb.2019.05.005. 

[43] R. X. Zhong, J. C. Luo, H. X. Cai, A. Sumalee, F. F. 

Yuan  and A.  . F.  how  “Forecasting journey time 

distribution with consideration to abnormal traffic 

conditions ” Transp. Res. Part C: Emerg. Technol., vol. 

85, pp. 292–311, 2017, doi: 10.1016/j.trc.2017.08.021. 

[44]  .  .  elikoglu  “Flow-based freeway travel-time 

estimation: A comparative evaluation within dynamic 

 ath loading ” IEEE Trans. Intell. Transp. Syst., vol. 14, 

no. 2, pp. 772–781, 2013, doi: 

10.1109/TITS.2012.2234455. 

[45] F. Yao, H.-G. Müller, and J.-L. Wang  “Functional Data 

Analysis for   arse Longitudinal Data ” J. Am. Stat. 

Assoc., vol. 100, no. 470, pp. 577–590, Jun. 2005, doi: 

10.1198/016214504000001745. 

[46]  . G.  üller and F. Yao  “Functional additive models ” 

J. Am. Stat. Assoc., vol. 103, no. 484, pp. 1534–1544, 

2008, doi: 10.1198/016214508000000751. 

[47]  .  i and  . G.  üller  “  timal designs for 

longitudinal and functional data ” J. R. Stat. Soc. Series 

B: Stat. Methodol., vol. 79, no. 3, pp. 859–876, 2017, 

doi: 10.1111/rssb.12192. 

[48] T. L. Pan, A. Sumalee, R. X. Zhong, and N. Indra-

Payoong  “ hort-term traffic state prediction based on 

temporal-s atial correlation ” IEEE Trans. Intell. 

Transp. Syst., vol. 14, no. 3, pp. 1242–1254, 2013, doi: 

10.1109/TITS.2013.2258916. 

[49]  . L. Tam and W.  .  . Lam  “A  lication of 

automatic vehicle identification technology for real-

time journey time estimation ” Inf. Fusion, vol. 12, no. 

1, pp. 11–19, 2011, doi: 10.1016/j.inffus.2010.01.002. 

[50]  ong  ong Trans ort De artment  “ ourney Time 

Indication System,” 

https://www.td.gov.hk/en/transport_in_hong_kong/its/

its_achievements/journey_time_indication_system_/in

dex.html (accessed May. 19, 2023). 

[51] Q.  uyang  Y. Lv   .  a  and  . Li  “An L T -based 

method considering history and real-time data for 

 assenger flow  rediction ” Appl. Sci., vol. 10, no. 11, 

2020, doi: 10.3390/app10113788. 

[52] Z. Wang  X.  u  and Z. Ding  “Long-Term Traffic 

Prediction Based on LSTM Encoder-Decoder 

Architecture ” IEEE Trans. Intell. Transp. Syst., vol. 

22, no. 10, pp. 6561–6571, Oct. 2021, doi: 

10.1109/TITS.2020.2995546. 

[53] X.  hi   . Qi  Y.  hen  G. Wu  and  . Yin  “A   atial–

Tem oral Attention A  roach for Traffic Prediction ” 

IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 

4909–4918, Aug. 2021, doi: 

10.1109/TITS.2020.2983651. 

[54] P. Z. Hadjipantelis and H.-G.  üller  “Functional Data 

Analysis for Big Data: A Case Study on California 

Tem erature Trends ” in Handbook of Big Data 

Analytics, New York, NY, USA: Springer, 2018, pp. 

457–483. 

 



14 

T-ITS-22-02-0533  

Ang Li received B.Eng. degree in civil 

engineering from The Hong Kong 

Polytechnic University, Hong Kong and 

the M.Sc. degree in transportation 

engineering from The University of Hong 

Kong, Hong Kong. He is currently 

pursuing the Ph.D. degree in the 

Department of Civil and Environmental 

Engineering, The Hong Kong Polytechnic 

University. His research interests include travel time estimation 

and prediction, and intelligent transportation systems. 

 

 

 

William H. K. Lam received B.S. and 

M.S. degrees from the University of 

Calgary, Canada, and a Ph.D. degree in 

transportation engineering from the 

University of Newcastle upon Tyne, 

Newcastle, U.K. He is currently an 

Emeritus Professor of Civil and 

Transportation Engineering with the 

Department of Civil and Environmental Engineering, The Hong 

Kong Polytechnic University, Hong Kong. He has also been an 

Honorary Professor at the Institute for Transport and Logistics 

Studies, The University of Sydney, Australia since 2015. 

Prof. Lam is currently a member of the International 

Scientific Committee of the International Symposium on 

Transportation Network Resilience (INSTR) and has been the 

convenor of the International Advisory Committee of the 

International Symposium on Transportation and Traffic Theory 

(ISTTT) from 2015-2022. He is also the Founding Editor-in-

Chief of Transportmetrica and is now one of the Co-Editors-in-

Chief of Transportmetrica A: Transport Science. His current 

research interests include transport planning and traffic 

forecasting, ITS technology and development, smart 

surveillance and traffic simulation, public transport, and 

pedestrian studies. 

 

 

Wei Ma (Member, IEEE) received 

 achelor’s degrees in  ivil Engineering 

and Mathematics from Tsinghua 

University, China, master degrees in 

Machine Learning and Civil and 

Environmental Engineering, and PhD 

degree in Civil and Environmental 

Engineering from Carnegie Mellon 

University, USA. He is currently an 

assistant professor with the Department of Civil and 

Environmental Engineering at the Hong Kong Polytechnic 

University (PolyU). His research focuses on intersection of 

machine learning, data mining, and transportation network 

modeling, with applications for smart and sustainable mobility 

systems. 

 

 

Andy H. F. Chow (Member, IEEE) is 

currently an Associate Professor in 

Systems Engineering at the City 

University of Hong Kong. His research 

lies in developing tools for analyzing and 

managing transport systems. His doctoral 

dissertation on optimal control of dynamic 

transport networks completed in London 

received a Gordon Newell Memorial 

Dissertation Prize in 2008. Dr. Chow is a Board Member of the 

Hong Kong Society for Transportation Studies (HKSTS), 

Chartered Member of the Chartered Institute of Logistics and 

Transport (CILTHK), Member of the Institute of Electrical and 

Electronics Engineers (IEEE). 

 

 

S. C. Wong received the B.Sc. (Eng.) 

and M.Phil. degrees from The University 

of Hong Kong (HKU), and the Ph.D. 

degree in transport studies from University 

College London (UCL), U.K. He is 

currently a Chair Professor with the 

Department of Civil Engineering, HKU. 

His research interests include optimization 

of traffic signal settings, continuum 

modeling for traffic equilibrium problems, land use and 

transportation problems, dynamic highway and transit 

assignment problems, urban taxi services, and road safety. 

 

 

Mei Lam Tam received her B.Sc. and 

Ph.D. degrees from The Hong Kong 

Polytechnic University, Hong Kong. She is 

currently a Senior Research Fellow with 

the Department of Civil and Environmental 

Engineering, The Hong Kong Polytechnic 

University, Hong Kong. Her research 

interests include transport planning and 

traffic forecasting, travel time estimation and prediction, and 

intelligent transportation systems. 


