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Abstract Compaction bands are a type of localized deformation that can occur as diffuse or discrete bands
in porous rocks. While modeling of shear bands can replicate discrete and diffusive bands, numerical models of
compaction have so far only been able to describe the formation of discrete compaction bands. In this study, we
present a new thermodynamic approach to model compaction bands that is able to capture both discrete and
diffuse compaction band growth. The approach is based on a reaction‐diffusion formalism that includes an
additional entropy flux. This entropic velocity regularizes the solution, by introducing a characteristic diffusion
length scale and controlling the mode change from discrete to diffusive post‐localisation growth. The approach
is used to model compaction band growth in highly porous carbonates. The model can replicate the areas of
material damage exhibiting reduced porosity which are often observed as nuclei for the growth of compaction
bands in experiments. The model also has the versatility to predict the formation of diffuse compaction bands,
which is a significant advance in the field of compaction band modeling. The method can potentially be used for
investigating the effect of material heterogeneities on compaction band growth and is heuristic for developing
new methodologies for forecasting compaction band formation.

Plain Language Summary Compaction bands are areas of localized deformation in materials with
multiple phases, such as porous rocks. They form when one of the phases localizes and forms bands
perpendicular to the direction of the maximum principal effective stress. In this study, we present a new
thermodynamically consistent model for compaction bands in porous materials. The model is based on the
modified Cam‐Clay plasticity model, but it includes a number of additions to make it more realistic and to
account for the mesh sensitivity of numerical solutions. We test the new model against experimental results for
compaction bands in highly porous carbonate (Mt Gambier limestone). We find that the model can accurately
match the experimental results. This newmodel is a significant advance in the modeling of compaction bands. It
has the potential to be used to investigate the effect of material properties, heterogeneity and loading conditions
on compaction band formation, and to develop new methods for predicting compaction bands.

1. Introduction
Deformation bands are observed in a wide range of materials resulting from a variety of micro‐slips induced by
local damage of material, like decohesion, pore collapse, grain crushing, compaction, faulting, nucleation of
cavities or sliding on mineral or grain interfaces (Rice, 1976; Rudnicki & Rice, 1975). These local singularities in
otherwise homogeneously deforming bodies are appearing as strain localisation in narrow bands and can be
modeled by critical conditions in constitutive models for a stationary acceleration wave (Hill, 1962) corre-
sponding to vanishing wave speed of the acoustic tensor (Bigoni & Hueckel, 1991).

The basic theory has been confirmed in numerous numerical and laboratory experimental studies, however, the
relation of the macroscopic instability to the micro‐slip mechanism causing the material instability is still an
unresolved issue. The classical theory does not include microstructural parameters which become important at
the onset of localisation. Therefore upon the localisation phenomenon the validity limit of the classical theory is
reached and localisation bands of zero‐thickness are expected. For the case of a granular material the influence
of the microstructure on defining localisation band thickness was shown to be captured by Cosserat theory
(Mühlhaus & Vardoulakis, 1987). This led to the formulation of generalized plasticity models by inclusion of
higher‐order spatial gradients of the plastic strain (Mühlhaus & Aifantis, 1991). More recently probabilistic
micromechanics theories have been put forward (Einav & Collins, 2008) providing thermodynamic formulation
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of the relation between micro‐slips and localisation phenomena. Further developments of the theory of ther-
momechanics are reviewed in (Jacquey & Regenauer‐Lieb, 2021) and a robust numerical implementation for
rate‐dependent critical state line models for damageable materials has been developed (Jacquey, Regenauer‐
Lieb, & Cacace, 2021). Recently, a phase‐field formulation for compaction band formation has been proposed
where the physics of grain crushing in high porosity rocks is considered (Ip & Borja, 2022). In this contribution
we develop an extension of the damageable rate‐dependent critical state line model (Jacquey, Regenauer‐Lieb,
& Cacace, 2021) by including a reaction‐diffusion formalism for modeling the evolution of the microstructure
in the localisation band. The numerical models are tested against laboratory results of dynamic evolution of
compaction band dynamics in highly porous limestones (Chen et al., 2020a, 2020b).

Compaction bands are defined as narrow, tabular strain localisation features that form perpendicular to the di-
rection of maximum compressive stress (Baxevanis et al., 2006; Chemenda, 2009). Analytical and numerical
solutions following the classical theory of localisation (Rudnicki & Rice, 1975) for a Drucker‐Prager constitutive
model showed that the ratio between the band thickness and the band‐to‐band distance is related to the constitutive
and stress‐state parameters (Chemenda, 2009). In particular the hardening modulus and dilatancy factor were
found to have a first order influence on the spacing of the bands. The lack of an internal length scale in the
classical models is often apparent through mesh‐dependency of the numerical models. The usefulness of the
approach applied to interpret the fault network structures observed in the field was illustrated in (Chemenda
et al., 2014), however, the mesh sensitivity problem remained an open issue.

In this contribution we explore a new strategy for the numerical formulation inspired by closed‐form
analytical solutions of compaction band formation for porous media with a nonlinear power‐law viscous
reactive source term stemming from the deformation of the solid matrix (Alevizos et al., 2017; Veveakis &
Regenauer‐Lieb, 2015). The formulation reproduces the results of Terzaghi's consolidation theory for highly
permeable rocks with a low ratio of solid over fluid pressure diffusivities. At a critical ratio (⪆13) the
solution becomes singular and a compaction band nucleates. For higher ratios, the number of compaction
bands is expected to increase. The analytical solution was found to share the same problem of being unable
to predict the band width as in the classical theories. In the follow‐up numerical experiments, the width of
the bands can be regularized through considering the internally induced chemical reactions (Alevizos
et al., 2017). We generalize this consideration of reaction rates in the current work to regularize the evo-
lution of the damage variable via the dynamic renormalization of a reaction‐diffusion formalism at long time
scales.

In the following we will recap the previous formulation in (Jacquey & Regenauer‐Lieb, 2021) in the context of
the classical acoustic tensor theory and proceed with a proposed extension to regularize the width of the
deformation bands through considering the dynamic evolution of the localisation bands described by the
reaction‐diffusion approach. A thermodynamic approach based on an application of Onsager's reciprocacy
assumption for nonlocal, damageable rheology was introduced in (Lyakhovsky et al., 2011), which relates the
width of the localized zone to damage diffusion as well as the off‐fault damage to the efficiency of the damage‐
diffusion process (Kurzon et al., 2021). In this work we generalize the approach by introducing a characteristic
entropic velocity, obtained from a relaxation of Onsager's local equilibrium assumption for nonlocal damage
processes (Regenauer‐Lieb & Hu, 2023). The focus of the current work is hence on developing a self‐consistent
thermodynamic model that is capable of investigating the dynamics of the post‐localisation regime where
higher order strain gradients need to be considered. The nonlocal approach incorporates the effects of
microstructure on the macroscopic behavior of materials in continuum mechanics. The key idea we adopt is that
the stress at a point in a material depends not only on the strain at that point, but also on the strains at
neighboring points (Triantafyllidis & Aifantis, 1986). Consequently, we develop the mathematical and nu-
merical model and go on to test whether the model captures the rich dynamic field of post‐localisation evo-
lution of compaction band formation revealed in experiments with highly porous limestones (Chen
et al., 2020a, 2020b). After demonstrating the capability of the dynamically renormalized thermomechanics
approach, alleviating the long‐lasting mesh dependency issue, we proceed to discuss the potential of the
proposed model as well as the limitations.
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2. Theoretical and Numerical Models
2.1. Modified Cam‐Clay (MCC) Model for Damageable Elasto‐Plastic Materials

2.1.1. Elasto‐Plastic Materials

For elasto‐plastic materials subject to external loading, the rate of work Ŵ can be expressed via the double inner
product of Cauchy stress σ and the total strain rate ε̇ following

Ŵ = σ : ε̇ = Ψ̇ + Φ̂, Φ̂≥ 0 (1)

whereΨ̇(ε,ξ) = ∂Ψ
∂ε : ε̇ + ∂Ψ

∂ξ : ξ̇ is the rate form of Helmholtz free energy, andΦ̂ denotes the dissipation rate, with
the notation ⋅̂ representing the rate form of a non‐state function. Here, ξ is an internal variable, which is a tensorial
strain‐like quantity (Houlsby & Puzrin, 2007). For materials whose elastic moduli are independent of the plastic
deformation, that is, the so‐called “decoupled materials,” the internal variable in such cases can be identified as
the plastic strain ɛp (Collins & Houlsby, 1997), which results in

ε̇ = ε̇e
+ ε̇p, ε̇p

= ξ̇ (2)

Equation 2 shows the additive decomposition of the strain rate tensor based on thermodynamics principles, which
is commonly assumed in elasto‐plastic theories. In the following, we mainly focus on “decoupled materials,” and
the introduction about “coupled materials” can be found in the relevant literature (Collins, 2002). Like the
splitting of strain rate tensor, the Helmholtz free energy for the “decoupled” case can also be decomposed
additively into two parts as

Ψ(ε,ξ) = Ψe (εe) + Ψp (εp) (3)

where Ψe (ɛe) is the elastic Helmholtz free energy depending on the elastic deformation and Ψp (ɛ p) is the plastic
Helmholtz free energy depending on the plastic strain. For rate‐independent elasto‐plastic materials, the dissi-
pation function is homogeneous of degree 1 in the internal variable rate ξ̇ with the use of Euler's theorem (Zhao
et al., 2006), and Φ̂ can be expressed as

Φ̂ =
∂Φ̂
∂ ξ̇

: ξ̇ =
∂ Φ̂
∂ ε̇p : ε̇p (4)

Substituting Equations 2–4 into Equation 1, leads to

Ŵ = σ : ε̇e
+ σ : ε̇p

= Ψ̇
e
+ Ψ̇

p
+ Φ̂ =

∂Ψe

∂εe : ε̇e
+

∂Ψp

∂εp : ε̇p
+

∂Φ̂
∂ ε̇p : ε̇p

(5)

from which we can deduce that.

σ =
∂Ψe

∂εe (6a)

σ =
∂Ψp

∂εp +
∂Φ̂
∂ ε̇p = ϱ + χ (6b)

With the shift stress ϱ and dissipative stress χ defined respectively as

ϱ =
∂Ψp

∂εp (7)

χ =
∂Φ̂
∂ ε̇p (8)
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Equation 6a allows to recover the Hooke's law of elasticity by considering the following elastic Helmholtz free
energy

Ψe (εe) =
1
2
K( εev)

2
+
3
2
G(γe)2 (9)

where K and G are the bulk modulus and the shear modulus, respectively, εev = − εekk and γe =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3ee : ee

√

the

volumetric and shear elastic strain invariants, respectively, with ee = εe + 1
3ε

e
vI denoting the elastic deviatoric

strain tensor, and I representing the second‐rank identity tensor. The elastic stress‐strain relationship is thus
expressed as

σij = Cijkl : εekl, Cijkl = Kδijδkl + G(δikδjl + δilδjk −
2
3
δijδkl) (10)

where C is the elasticity tensor and δ the Kronecker delta. Equation 6b shows a fundamental relation in the
thermodynamics theory, which relates the true stress tensor (i.e. Cauchy stress σ) to the shift stress tensor ϱ and the
dissipative stress tensor χ. The shift stress ϱ is associated with the hardening (including softening) of the material
when the center of the yield function moves in the true stress space, and the dissipative stress χ is related to plastic
dissipation during loading. This decomposition of the true stress allows to formulate the yield function and the
flow rule in the dissipative stress space where non‐trivial description of strain localisation ranging from
compaction bands to shear‐enhanced compaction bands under different confining pressure can be captured, using
a relatively simple mathematical expression of the yield function.

In what follows, we present the thermodynamic derivation of a general family of critical state line models which
are commonly used for localisation study. Following (Collins, 2003; Collins & Kelly, 2002), the dissipation
function for critical state models can be expressed as

Φ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√

(11)

where the coefficients A and B are associated with the true pressure p = − σkk/3 and the consolidation pressure pc

A = (1 − γ)p +
1
2
γpc, B = μ[(1 − α)p +

1
2
αγpc] (12)

and ε̇pv and γ̇p are the rate of the plastic volumetric and shear strain invariants. The introduction of the consolidation
pressure provides a way to account for both plastic dilation and compression at different stress states while the
classical frictional formulation only considers the plastic dilation. Note that α and γ in Equation 12 are two
dimensionless coefficients smaller than one and μ is a dimensionless constant representing the friction of the
material. As the stress is usually decomposed into the mean effective and deviatoric parts for the analysis of
localisation problems, the dissipative stress in Equation 8 is similarly formulated as

π =
∂Φ̂
∂ε̇pv

=
A2ε̇pv
Φ̂

, χ =
∂Φ̂
∂γ̇p

=
B2γ̇ p

Φ̂
(13)

where π is the dissipative pressure and χ is the dissipative deviatoric stress. Rearranging Equation 13 and
substituting into Equation 11 give rise to

Φ̂ = Φ̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π2

A2 +
χ2

B2

√

(14)
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For Equation 14 to hold, it requires that either (a) the dissipation function Φ̂ is zero, which means there is no
plastic deformation and no energy is dissipated, that is, within the elastic regime, or (b) energy dissipation takes
place and the plastic deformation is not null. For the latter case, the dissipative stress invariants should satisfy the
following yield function

F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π2

A2 +
χ2

B2

√

− 1 = 0 (15)

It can be found that Equation 14 is similar to the Kuhn‐Tucker condition in the classical plasticity theory (Simo &
Hughes, 2006), while the only difference is that Equation 14 is formulated in the dissipative stress space (π, χ),
where the yield locus is an ellipse of semi‐axes A and B (see Figure 1a) as described by Equation 15. Similarly, the
classical return mapping strategy can be used here to determine the flow rules in the dissipative stress space via

ε̇pv = λ̇
∂F
∂π

, γ̇p = λ̇
∂F
∂χ

(16)

where λ̇ is the rate form of the strain multiplier which satisfies F = 0. Given that both the yield condition and flow
rules are formulated in the (π, χ) space, the transition to the real stress space can be realized by considering the
relationship in Equation 6b. To determine the shift stress, the following plastic free energy is adopted for the
critical state line models (Collins, 2003)

ψp (εp) =
1
2
Λγpc (εpv) =

1
2
Λγp0c exp(

εpv
Λ
) (17)

where Λ is the material constant known as the plastic compressibility and p0c the initial consolidation pressure.
Thus, the shift pressure is evaluated as

ϱ =
∂ψp

∂εpv
=
1
2
γp0c exp(

εpv
Λ
) (18)

which gives rise to the (true) mean effective stress p and the deviatoric stress q

p = ϱ + π, q = χ (19)

and the previous ellipse yield locus in the dissipative stress space is distorted in the true stress space as shown in
Figure 1b. The merit of using the forementioned thermomechanics framework to derive constitutive laws is that it
can allow non‐associative flow rules in the true stress space whereas maintaining associative flow rules in the

Figure 1. Yield function in (a) dissipative stress space and (b) true stress space. With the variation of α and γ as introduced in
Equation 12, the ellipse yield locus in the dissipative stress space is distorted in the true stress space, where the consolidation
pressure pc defines a cap to the elastic domain.
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dissipative stress space, and most importantly, the thermodancamic principles are preserved in the derivation
procedure (Collins, 2003; Collins & Houlsby, 1997; Jacquey & Regenauer‐Lieb, 2021).

2.1.2. Extension to Damageable Materials

As an extension of the above‐described elasto‐plastic model, a damage mechanics framework is incorporated into
the constitutive formulation. The use of damage mechanics allows for the consideration of dynamic alteration of
macroscopic properties, for example, the elastic moduli, without characterizing the microscopic geometry details
but rather by introducing an entropy inspired damage intensity variable which is driven by the thermodynamics
forces associated with the microscopic processes. Here, we consider a scalar damage intensity variable αd to
characterize the ratio of the effective area over the total area in a damageable material, and the elastic Helmholtz
free energy for damageable materials now becomes

Ψe (ε,αd) =
1
2
K(1 − αd)( εev)

2
+
3
2
(1 − αd)G(γe)2 (20)

with αd = 0 corresponding to no damage while αd = 1 meaning the material is fully damaged. The generalized
damage force dual to αd can be expressed by the true stress invariants as

χ̄d = −
∂Ψ
∂αd

=
1

2(1 − αd)
2(

p2

K
+

q2

3G
) (21)

Similar to Equation 11, the dissipation function which includes the damage effect can be formulated as follows

Φ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
A
rv
ε̇pv)

2

+ (
B
rs
γ̇p)

2

+ (
C
rd
α̇d)

2
√

(22)

where rs, rv, rd are coefficients associated with the contribution of shear, volumetric and damage deformation to
the total dissipated energy and they satisfy the following relationship (Mir et al., 2018)

r2v + r2s + r2d = 1 (23)

Equation 22 is an extension of the original dissipation function (11) for critical state models, where three more
coefficients rv, rs, rd are introduced to control the dissipation characteristics of damageable elasto‐plastic ma-
terials. It will be demonstrated in the following that these coefficients are able to affect the damage evolution,
resulting in different types of localisation patterns in numerical simulations.

We note here that the bulk modulus and the shear modulus are linearly dependent on variable αd representing the
damage intensity, that is, the extent of microcracking in a representative elementary volume (REV) selected
around a material point. As a REV‐averaged quantity, a scalar representation is adopted for the damage intensity
αd corresponding to the degree of mechanical degradation in the material properties. The model hence implies
applicability to two types of materials: (a) isotropic materials with mechanical properties reasonably assumed as
isotropic during material degradation, and (b) materials that respond to mechanical loading with microcracks
arising in plasticity zones in random directions. For materials under cyclic loading conditions where directional
damage memory develops (Browning et al., 2018), an extension of the current model to a tensorial representation
of damage will suit. Our primary aim of this contribution is to first develop a thermodynamically consistent model
with a relatively simple mathematical form which can characterize different post‐localisation features observed in
limestone experiments. We seek a mathematical model capable of describing both the well‐known discrete as well
as the diffuse mode of compaction band successfully reproduced in the laboratory. We will demonstrate that our
model as a self‐consistent thermodynamic formulation underpins the selection mechanism favoring one post‐
localisation mode over the other under prescribed conditions.

Based on the above dissipation function, the dissipative stress invariants can be expressed as
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π =
∂Φ̂
∂ε̇pv

=
A2ε̇pv
r2vΦ̂

(24)

χ =
∂Φ̂
∂γ̇p

=
B2γ̇p

r2sΦ̂
(25)

χd =
∂Φ̂
∂α̇d

=
C2α̇d

r2dΦ̂
(26)

where χd is the newly introduced dissipative damage force. Adopting the same procedure as that in Section 2.1.1,
the yield function for the damageable materials now becomes

F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2v
π2

A2 + r2s
χ2

B2 + r2d
χ2d
C2

√

− 1 = 0 (27)

and the flow rules can be expressed as

ε̇pv = λ̇
∂F
∂π

= λ̇
r2v

(1 + F)
π
A2 (28)

γ̇p = λ̇
∂F
∂χ

= λ̇
r2s

(1 + F)
χ
B2 (29)

α̇d = λ̇
∂F
∂χd

= λ̇
r2d

(1 + F)
χd
C2 (30)

Similar to Equation 12, quantities A, B and C can be related to the true pressure and damage variables as follows

A =
(1 − γ)
(1 − αd)

p +
1
2
γpc (31)

B = μ[p − α
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αd

√
(p −

1
2
γpc)] (32)

C =
rdχ̄d̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( r2s + r2d)
(p− 0.5γpc)

2

A2 + ( r2v + r2d)
q2
B2

√ (33)

Inserting Equations 31–33 into Equation 27, the same yield function as that used for elasto‐plastic materials can
be recovered

F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π2

A2 +
χ2

B2

√

− 1 = 0 (34)

Likewise, by combining Equations 28–30, the damage evolution equation can be further described in terms of the
volumetric and shear plastic strain rate as

α̇d =
( r2s + r2d) π

r2v χ̄d
ε̇pv +

( r2v + r2d) χ
r2s χ̄d

γ̇p (35)
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2.2. Localisation Criterion Determined by Acoustic Tensor Approach

The classical bifurcation theory for strain localisation in elasto‐plastic materials is based on a standing wavelength
solution of acceleration waves (Rudnicki & Rice, 1975). The theory has formed the basis of many experimental
and numerical experiments described by the following constitutive relationship:

δσij = D
ep
ijkl : δεkl (36)

where Dep
ijkl is the fourth‐order elasto‐plastic tensor relating a small increment of strain to a small increment of

stress. The onset of bifurcation from a homogeneous state to localized deformation is attributed to the loss of
positive definiteness of the acoustic tensor defined as

Γik = njD
ep
ijkl nl (37)

where n is the unit normal vector perpendicular to the localization plane.

We consider the tangent tensor for the damageable elasto‐plastic materials and first formulate the increments of
stress, plastic strain and damage respectively as.

δσij = (1 − αd)Cijkl : (δεkl − δεpkl) −
σij

1 − αd
δαd (38a)

δεpkl = δλp
∂F
∂χij

(38b)

δαd = δλp
∂F
∂χd

(38c)

Where δλp is the plastic multiplier increment and F the yield condition. By substituting Equation 38 into the
following consistency condition,

δF = ∂F
∂σij

: δσij +
∂F
∂εpij

: δεpij +
∂F
∂αd

: δαd (39)

the plastic multiplier increment can be determined explicitly as

δλp =
(1 − αd)

∂F
∂σij

: Cijkl : δεkl
∂F
∂σij

: ((1 − αd)Cijpq :
∂F
∂χpq

+
σij

1− αd

∂F
∂χd
) − ∂F

∂εpij
: ∂F

∂χij
− ∂F

∂αd

∂F
∂χd

= Pkl : δεkl (40)

Combining Equation 40 and Equation 38, the tangent damage elasto‐plastic tensor reads

Dep
ijkl = (1 − αd)Cijkl − (1 − αd)Cijpq :

∂F
∂χpq

Pkl −
σij

1 − αd
Pkl

∂F
∂χd

(41)

With this tangent tensor, the localization criterion can be assessed by calculating the determinant of acoustic
tensor as defined in Equation 37.

det(Γ)≤ 0 (42)

For a triaxial geometry as illustrated in Figure 2a, the unit vector n for characterizing the localization plane can be
determined by two angles θ and φ, giving rise to the following expression of n
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n =

⎛

⎜
⎜
⎜
⎜
⎝

sin(θ)sin(φ)

sin(θ)cos(φ)

cos(θ)

⎞

⎟
⎟
⎟
⎟
⎠

(43)

to simplify the analysis we consider the value of φ is fixed at π/2 and the localisation plane is now only determined
by θ which defines the angle between the localisation plane and the axial loading direction. Figure 2b shows the
determinant of acoustic tensor for the damageable elasto‐plastic material at a given set of parameters as listed in
Table 1. It can be found that the occurrence of localized deformation is dependent on confining pressure Pc. When
Pc is small, the determinant of acoustic tensor takes its minimum value at large θ, corresponding to the formation

of high‐angle shear bands. While as confining pressure increases to certain
large level, for example, 5 MPa, the localisation plane can become perpen-
dicular to the axial loading direction with θ = 0.

The above analysis is a widely used methodology for determining the local-
isation onset of a rate‐independent Cauchy medium. For more sophisticated
models, including the rate‐dependent Cauchy continuum (Stathas & Stefa-
nou, 2022), Cosserat or higher order continua (Abdallah et al., 2020; Rattez
et al., 2018) and multiphysics coupling processes (Hu et al., 2017; Jacquey,
Rattez, & Veveakis, 2021), the more general eigenvalue analysis is needed.
With the combination of perturbation method, the acoustic tensor approach
can be extended to take the form of a classical eigenvalue problem, where the
bifurcation behaviors rely on the eigenvalues of the acoustic tensor as well as
the perturbation wavelength (Stefanou & Gerolymatou, 2019). More detailed
descriptions about the bifurcation analysis are out of the scope of this
contribution, and we guide the readers to the above mentioned literature.

Figure 2. (a) Illustration of the localisation plane emerging in a triaxially compressed cylindrical rock specimen. The normal n to the localized plane can be determined
by the angle θ and φ. (b) Localisation domain for the Modified Cam‐Clay model in the true stress space. The insets demonstrate the localisation criterion as a function of
the plane angle θ under various confining pressure.

Table 1
Calibrated Parameters From the Triaxial Experiments

Parameter Symbol Value Units

Young's modulus E 525 MPa

Poisson's ratio ν 0.17 ‐

Friction coefficient μ 1.5 ‐

Plastic compressibilities Λ 2 ‐

Consolidation pressure pc 7.4 MPa

Yielding shape coefficient α 0.91 ‐

γ 0.91 ‐

Dissipation splitting coefficient rv 0.76 ‐

rd 0.5 ‐

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028100
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2.3. Reaction‐Diffusion Approach to Regularize the Localisation Pattern

In the above elasto‐plastic‐damageable formulations, there is no explicit consideration of the localized pattern's
length scale. To remedy this, we consider the localized band as a diffusive damage zone governed by a length
scale parameter l, and the development of this damage zone has a characteristic diffusion velocity Gc (a char-
acteristic entropic velocity of the reaction‐diffusion process, see Regenauer‐Lieb and Hu (2023) for a derivation),
which recasts the damage evolution equation into

α̇d = Gc(l∇2αd −
αd

l
) +

( r2s + r2d) π
r2v χ̄d

ε̇pv +
( r2v + r2d) χ

r2s χ̄d
γ̇p (44)

where the linear term with negative sign in the first bracket represents resistance to the diffusive spread of the
damage zone evolution process. From a thermodynamic perspective this resistance term links to the postulate that
the coupled positive‐negative entropy production processes in the damage zone request an uphill diffusion
process for mass balance (Regenauer‐Lieb & Hu, 2023). The physical interpretation of this positive‐negative
couple is the evolution process of a compaction band caused by grain crushing in a porous medium. There,
the outwards‐diffusing low density phase of the crushed grains (or powder) represents the positive diffusion
direction, whereas the inwards‐diffusing densification of the matrix is identified as the negative (resisting)
diffusion term. Both negative and positive diffusion processes need to equilibrate over the process time such that
the width of the compaction band is established. The addition to the reaction‐diffusion‐type equation is completed
by the last two positive reaction source terms on the RHS of Equation 44 related to plastic loading which promotes
damage evolution. The approach presented here is motivated by a unification (Regenauer‐Lieb & Hu, 2023) of
approaches of the reaction‐diffusion type; see for example, Veveakis and Regenauer‐Lieb (2015) and Alevizos
et al. (2017), where the concept of time‐dependent processes was utilized to regularize sharp fracture topology
into diffusive fracture zones without singularities in low permeable rocks. The existence of an entropic density l
corresponds to an equilibrium state toward which the compaction band forming evolves.

2.4. Numerical Implementation

The above‐described constitutive model along with the stress equilibrium and damage evolution equations are
implemented in a finite element solver LEMUR (muLtiphysics of gEomaterials using MUltiscale Rheologies).
The LEMUR simulator relies on the open‐source MOOSE platform which is built upon state‐of‐the‐art libraries
including libMesh and PETSc (Cacace & Jacquey, 2017; Permann et al., 2020; Poulet et al., 2017; Tang &

Figure 3. Stress update procedure for the Modified Cam‐Clay model.
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Hu, 2023). It provides a flexible framework to solve multiphysics and multicomponent coupled problems
implicitly with automatic differentiation and parallel computing.

The weak form of the governing equations can be found in the appendix while the stress update procedure for the
Modified Cam‐Clay (MCC) model is summarized in Figure 3, where a predictor‐corrector scheme is utilized in
our implementation. We first compute the trial stress based on the given strain increment at the current loading
step. Then, the yield function will be checked in the dissipative trial stress space. If the value of this yield function
in the dissipative stress space is smaller than the tolerance, this step will belong to an elastic step and the trial
stress will be set as the final stress without correction. But if the yield function exceeds the tolerance, this step will
be regarded as a plastic step and Newton‐Raphson iterations (Jacquey, Regenauer‐Lieb, & Cacace, 2021) will be
needed to determine the plastic increment of the strain invariant ɛv ≔ − ɛkk and γ ≔

̅̅̅̅̅̅̅̅
2/3

√
‖e‖, after which these

two plastic components will be used to correct the trial stress and finalize the stress update. In the LEMUR
simulator, the stress update procedure is implemented in a material module via the MOOSE framework while the
stress equilibrium and damage evolution equations are implemented in kernel modules. MOOSE allows a tight
coupling between these modules so that the variables (e.g., strain and damage) in kernels can be coupled into the
material module to produce material properties (e.g., true and dissipative stresses), and in turn these properties can
also be consumed by kernels so as to solve governing equations. An illustration of the coupling between different
modules can be found in Appendix A1.

3. Results
3.1. Standard Thermomechanics Approach

To validate the model, we utilize the experimental results obtained from the highly porous Mt. Gambier limestone
specimens tested in triaxial compression (Chen et al., 2020a, 2020b, 2022). The laboratory tests were conducted
based on two groups of specimens. One group has relatively large size, with the diameter of 30 mm and the height
of 60 mm, which is used for the mechanical tests, whereas another group has relatively small size
(h= 25.4 mm d= 12.7 mm), which is prepared for observing the compaction band formation using microCT. We
adopted a similar strategy for our numerical simulations, that is, the setup with the same geometric configuration
as the former group is first utilized for benchmarking the mechanical properties for example, strength and failure
mode, after which we used a decreased geometry size (the same as the size of the latter group) for compaction
banding investigation. The simulations consist of a pre‐compressing of the specimen to certain hydrostatic
pressure levels, and a following increase of the differential stress, simulating the loading sequence in the
experiments.

Figure 4 displays the simulation results against the experimental data. It shows that the MCC model can well
capture the mechanical data, with the deviatoric stress strength increasing first and then capped at higher mean
effective stress. When confining pressure is at low level, the mechanical behaviors fall into the brittle faulting
regime (Wong & Baud, 2012), where the formation of shear band appears to be the main failure mode. As
confining pressure increases, the mechanical response of the sample may enter a transition zone before entering
the final cataclastic flow region (Holcomb et al., 2007; Huang et al., 2019). Within the transition regime, the shear
band would evolve into shear‐enhanced compaction band or pure compaction band with an increased confining
pressure. Three subfigures in Figure 4 notably indicate this progressive evolution of the failure pattern when the
confining pressure is increased from 1 to 5 MPa, and the simulated failure modes are in good agreement with the
experimental observations. The best fit parameters for the yield strength are listed in Table 1.

In addition to the strength and failure mode analysis, some representative deviatoric stress strain curves are
presented in Figure 5. It is worthwile noting that by choosing an extreme end‐member material (Mt. Gambier
limestone which has a high porosity (50%)) we aim to test the model in the post‐localisation characteristics at
large compaction strain where mode changes (discrete vs. diffuse) have been observed in experiments. The
advantage of the approach is that it allows investigation of the response for modes of compaction triggered by
possible non‐local gradients of the damage evolution in the post‐localisation regime. One limitation of the current
model is that the highly porous limestone is not ideally homogeneous and the effect of collapse of large pores may
lead to noisy data on lateral strain. The effect of the collapse of large pores is especially noticeable at the
beginning of the experiment where the model prediction for an ideal homogeneous material may not well match
the observed axial strain of the heterogeneous sample, albeit the assumption of the sample undergoing an isotropic
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degradation at the upscaled level may still reasonably hold. The simulation therefore aims to match the data when
a consistent strain hardening shows up at the post‐yielding regime after a system‐spanning localisation appears
(the prominent rapid softening shown in experimental data), accompanied with periodic stress drops. This is
observed when the compaction strain is large and the confining pressure is high (Figure 5b). The stress drops at
the high confining pressure scenario may be related to the mechanism of pore collapse and grain crushing
(Abdallah et al., 2020, 2021), which tends to tighten the packing of microscopic configurations and thus results in
stress redistribution across the specimen (Fossen et al., 2018; Sulem & Vardoulakis, 1995). This point is

Figure 4. Initial yield stress and failure mode of Mt. Gambier limestone samples obtained from laboratory triaxial tests (Chen
et al., 2020a, 2020b, 2022) and the Modified Cam‐Clay model.

Figure 5. Representative deviatoric stress strain response at different confining pressures: (a) Strain softening occurs after
yielding at 0.5 MPa confining pressure. (b) Strain hardening shows up at the post‐yielding regime, accompanied with
recurring stress drops when confining pressure is 5 MPa. We attribute the initial stages of the experiment to the effect of
collapse of large pores, reflecting the initial heterogeneity of the porous limestone as documented by CT‐scans (Chen
et al., 2020a). The sample shows a consistent overall hardening trend after the internal heterogeneities have collapsed at an
axial strain of around 0.015. Simulation parameters were selected based on matching the post‐yielding regime data where a
consistent strain hardening appears with periodic stress drops.
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supported by the evidence presented in Section 3.3, where the porosity reduction is recorded via the X‐ray CT
analysis of compaction experiments.

The above benchmark analysis indicates that the MCC model formulated in the thermomechanics framework can
characterize the mechanical response of highly porous limestones at different stress states. In what follows, we
focus on the compactive failure regime underpinning the evolution of compaction band. Here the height of the
numerical setup is reduced to 25.4 mm (see Figure 6a) in order to be consistent with the experiments. Meanwhile,
for the purpose of computational efficiency, the 2D plane strain conditions were adopted for the simulation with
the aspect ratio of specimens set as 5.0. The effect of the aspect ratio on the compaction band pattern will be
presented in the next section. Figure 6b shows simulation results of a series of compaction bands appearing at a
confinement of 5MPa.Within the specimen, the array of discrete bands is equally spaced with the same thickness,

Figure 6. Plane strain compression of limestone specimen: (a) Schematic of the numerical setup, where structured
quadrilateral meshes with size h are used to discretize the space domain. The height of the setup is 25.4 mm and the aspect
ratio height over width is 5. (b) Overview of the interlayered compaction band pattern illustrated by the distribution of
damage intensity variable.

Figure 7. Sequential compaction band evolution and mesh dependency.
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and the corresponding dynamic evolution of the compaction bands is presented in Figure 7. It demonstrates that
the first band is triggered from the top boundary after the specimen undergoes a transition from the elastic to the
plastic regime. After initiation, the first compaction band stays unchanged over time (as standing waves) and the
next band will start to develop. This process will repeat until the specimen is saturated with the array of
compaction bands. The material properties here are assumed as homogeneous in the numerical demonstration,
while the effect of heterogeneity will be discussed in the Discussion. Quadrilateral elements were used in the
numerical experiment with varying mesh size and mesh dependence reveals in the post‐yield results. This is due to
the lack of consideration about the internal length scale characterizing the dynamic process of band formation.

3.2. Extending the Thermomechanics Approach via Reaction‐Diffusion Ansatz

Due to the inherent lack of internal length scale in the Thermomechanics Approach, mesh dependency inevitably
shows up in the numerical simulation of the localisation patterns. In this section we extend the model through an
entropic consideration of the reaction‐diffusion type in the sense of introducing a characteristic diffusion rate as
outlined in Section 2.3. The damage evolution Equation 35 used in Section 3.1 is hence now replaced by
Equation 44, while all the other formulations and parameters remain the same.

With this entropy inspired regularization technique implemented in the model, the localisation band formation
owns a diffusive nature controlled by a characteristic length scale l (see Equation 44). It is hence natural to study
first the influence of this parameter of length on the forming of localisation patterns. Different from the sequential
formation of compaction bands which are initially triggered by the top loading boundary in Figure 7, an initial
damage seed with the value 0.01 (see the tiny square in Figure 8a) is imposed in the middle of the specimen in
order to trigger the compaction banding. The simulation results in Figure 8 showcase that a compaction band is
formed from the location where the initial material defect is assumed, with varying the value of l. When l is small,
the damage band profile is relatively more localized with a smaller thickness, while as l increases a growth in the
band width is observed with a more diffused profile, as shown in Figure 8. With the value of l increases from
l = 0.8 mm to l = 2.4 mm, the width of the compaction band increases from 5.3 to 10.2 mm. Given that the band

Figure 8. Effect of l on material imperfection induced compaction bands. The parameters used are Gc = 8 × 10− 7m/s, rd = 0.58.
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formation in Figure 7 without regularization is highly mesh‐dependent due to missing of an internal length scale,
we proceed to investigate how well the band width is regularized incorporating the length parameter l into the
model by using different mesh sizes. The results in Figure 9 demonstrate that no significant variation is seen in the
localization band width when the mesh size reduces by half from 0.4 to 0.2 mm at a given value of l = 0.8 mm.
This suggests that the entropy inspired regularization technique that we propose in this study is capable of
mitigating the mesh dependency problem by correcting the mathematical ill‐posedness in the classical theories.

In addition to the length scale, a characteristic velocity parameter Gc is also introduced in the damage evolution
equation. This parameter has recently been introduced to complete the reaction‐diffusion framework proposed in
(Alevizos et al., 2017) through an entropic velocity (Regenauer‐Lieb & Hu, 2023) derived from upscaling the
entropy production of multiple coupled micro‐slip phenomena. Since this parameter is related to the diffusive
effect during the localized pattern formation, it can be inferred that if Gc is assigned with a very large value, the
generated damage zone may smear out the localized band ending up with appearing as a homogeneous pattern.
Thus, the value of Gc is chosen relatively small and this inference can be supported by the quasi‐static triaxial
experiments on Diemelstadt sandstone (Townend et al., 2008), where the propagating velocity of the compaction
band is found to be around 8 × 10− 5 m/s. The value of Gc may vary depending on the material properties as well as
the loading conditions.

In what follows, the effect of the magnitude of Gc on the localisation pattern formation will be demonstrated while
the inversion of its value from lab experiments is deferred to the next section. Figure 10 depicts the band for-
mation process with Gc ranging from 1 × 10− 8 ∼ 8 × 10− 7 m/s. It shows that the compaction band initiates and
develops from top to bottom in a sequential manner when there is no pre‐existing damage, that is, no material
imperfection seeding in the specimen. For a small value of Gc, the axial strain needs to reach about 4% for the
whole specimen to be saturated with an array of bands. For a larger value Gc, the compaction band array occupies
the whole specimen at a smaller axial strain. This suggests that a larger Gc accelerates the formation of compaction

Figure 9. Compaction bands formed at different mesh sizes incorporating the reaction‐diffusion regularization.
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bands whereas a smaller Gc prolongs the banding formation process. Besides, the variation of Gc also affects the
damage distribution along the specimen as well as the maximum value of damage within the localized bands as
demonstrated in Figure 10, which is about 0.8 for Gc = 1 × 10− 8 (Figure 10a) and decreasing to around 0.5 for
Gc = 1 × 10− 8 (Figure 10c).

The above analysis focuses on the parameter study of the newly introduced diffusion term in Equation 44. In what
follows, the effect of the last two reaction terms on the localisation pattern formation and the interactions between
the reaction terms and the diffusion term will be explored. For this purpose, different values of the dissipation
splitting coefficient rd and Gc are utilized for investigating the damage source terms and the diffusion term,
respectively. The corresponding localisation pattern is then analyzed by the total number of damage bands, the
average band thickness and the distance between each band, at a fixed axial strain of 3.5%. The results are
summarized into heat‐maps shown in Figure 11a. It shows that fewer bands appear when rd is relatively large and
this is especially the case when the parameter Gc is also small. Notably, for cases falling into the bottom‐right
region in Figure 11a1, there is only one band formed, and this single band keeps growing its width after initi-
ation during the whole loading process, resulting in the largest valus of the mean band thickness, that is, the
bottom‐right corner of Figure 11a2. By contrast, when rd is relatively small or when Gc is large, a larger number of
bands form along the specimen and the formation process is akin to the standing wave solution with regular band
thickness and spacing. Based on the distinct differences in pattern formation, the parametric space is divided into
three zones separated by the red line as shown in Figure 11, which can be interpreted as a result of the interplay
between the reaction source terms and the diffusion term. Within Zone 1 (see the labeling in Figure 11), the last
two damage source terms in Equation 44 become dominant due to relatively large rd, and the diffusion is relatively
insignificant in this case. Consequently, the damage source arising from the plastic deformation can not diffuse
efficiently to trigger the compaction band arrays, but rather nucleate and coalesce in one single band with an
increase in the band thickness under loading. In Zone 2, the diffusive effect becomes significant because of large
Gc, so that the damage source can diffuse effectively to trigger new compaction bands during the process. For
Zone 3, more than one discrete band appears in the specimen while the source terms may still cause some damage
coalescence, and hence the pattern morphology is classified as an in‐between region.

The aspect ratio of the specimen in the above analysis is fixed as height over width H/W = 5 (see Figure 6a). In
what follows, we investigate the morphology of localisation patterns at different aspect ratios by fixing the height
as 25.4 mm and altering the width. The combined effect of aspect ration and the dissipation splitting coefficient rd
on the damage band characteristics is summarized in Figure 11b, in which the heat‐maps are also divided into 3
zones, according to the number of bands generated in the specimen, similar as in Figure 11a. The value of the
mean band thickness and that of the mean distance between bands in millimeter are shown in Figures 11b2 and
11b3, respectively. Note that with the aspect ratio decreasing from 5 to 2, the average thickness of the band array
increases, for example, from about 2.6 to 6.8 mm at rd = 50%. This implies that under the proposed reaction‐

Figure 10. Effect of Gc on the evolution of compaction band arrays.
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diffusion regularization, the band thickness is not intrinsic (i.e., solely determined by the material properties) but
co‐determined by the specimen geometry and loading conditions. In other words, the internal length scale here
results from a dynamic interaction between the local and global scales that governs the pattern formation process.

Figure 11. Parametric diagram for the formation of compaction bands. The left panel (a1–a3) manifests the effect of Gc and rd on the pattern formation at a fixed aspect
ratio. The parametric space is categorized into 3 zones as separated by the red line. For Zone 1 with relatively large rd, the damage source terms cannot diffuse efficiently
to trigger compaction band arrays but rather nucleate and coalesce in one single band. While as Gc becomes relatively large in Zone 2 or Zone 3, the damage source can
diffuse effectively to trigger new compaction bands. The right panel (b1–b3) shows the combined influence of the aspect ratio and rd at a fixed value of Gc, also divided into
3 zones. The variation of the band width implies that the length characteristic of the compaction band is not an intrinsic material property but dependent also on the
specimen geometry and loading conditions.
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3.3. Comparison With Compaction Experiments on Mt. Gambier Limestone

In this section, the regularized numerical simulation results are compared with the compression experiments on
Mt. Gambier Limestone. The experiments are conducted via an X‐ray transparent triaxial cell with confining
pressure set at 5 MPa. During the loading process, the X‐ray CT scan is performed on the limestone sample at
different strain levels so as to identify the micro‐scale process associated with the compaction band formation.

The gray‐scale map in Figure 12 is 2D slices of X‐ray tomographs at three representative strain levels, where
white color represents grains while black color represents pores. By virtue of the X‐ray CT analysis, the porosity
profile at each loading stage is also plotted in Figure 12 as depicted by the green line. It can be found that the
compaction band initiates at the end of the sample with distinct porosity reduction, followed by progressive band
growth in the axial compression direction. This type of compaction band can be identified as a diffuse band due to
its width increasing characteristic. Given that the pattern formation within Zone 1 in Figure 11 also has such
thickness coarsening behavior, the parameters within this zone can be candidates to generate analogous patterns
numerically. Among these parametric candidates, as the use of different combinations of Gc and rd leads to

Figure 12. Comparison between the simulated diffuse compaction band and the porosity reduction profile obtained from the X‐ray CT analysis at different loading stages
in Mt. Gambier Limestone samples.
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different pattern evolution rates, the simulation results were carefully
compared with the experimental observations for the pattern formation
matching. Figure 12 demonstrates the simulated diffuse band with the best
fitting performance, and the corresponding regularization parameters are
listed in Table 2. The evolution of the damage band is in good agreement with
the porosity reduction profile, which suggests that the damageable MCC
model is capable of capturing the formation of diffuse compaction bands
arising from the microscopic processes such as pore collapse and grain
crushing during the triaxial loading. Compared with the band evolution rate

8 × 10− 5 m/s in Townend et al. (2008), the characteristic velocity Gc inverted here is significantly smaller due to
the different rock specimens used in experiments, that is, the specimens used by Townend et al. (2008) are
sandstones which are more homogeneous and less porous while here we used limestone samples.

It needs to be noted that each X‐ray scan in the above experiments takes around 1 hr, resulting in limited time
resolution for the observation of pattern formation. To mitigate this limitation, supplementary compaction ex-
periments were performed using the digital image correlation (DIC) technique providing a real‐time measurement
of the specimen deformation. But different from the above‐described X‐ray transparent triaxial loading cell, the
supplementary experiments were conducted using an optically transparent oedemetric setup, where the Mt.
Gambier limestone sample was placed in a thick‐walled acrylic tube to mimick an oedemetric loading condition
for soft rocks under compaction loading. The limestone sample was wrapped in a transparent membrane with
negligible thickness and Teflon spay was applied to eliminate the side friction between the sample and the interior
of the cylindrical chamber.

Figure 13 presents the DIC analysis results on the compressive strain distribution in the experiments. A tabular
compaction band, which may be triggered by a locally concentrated porosity increase, appeared first in the upper
portion of the sample. As the compaction loading continued, the first band grew in thickness and more bands
emerged in the highly porous limestone sample, comprising an array of discrete compaction bands. To reproduce
the band array numerically, we chose parameters from Zone 2 in Figure 11 for the simulation. In this procedure,
an initial damage seed was imposed (similar in size as shown in Figure 8a) at the location where the first band was
observed from the DIC analysis, for the nucleation of the simulated band. The simulated results with the best
fitting performance are displayed next to the experimental results in Figure 13. The simulated damage distribution
pattern well matches the experimental observations in terms of both the band width and the band spacing. Certain
discrepancy on the band close to the bottom plate appeared, which is mainly due to the fact that the numerical
experiment assumes an idealized boundary condition while in laboratory experiments there are shear offsets
occurring in the near‐boundary region. The corresponding regularization parameters are also listed in Table 2,
with the same value of Gc used for simulating the diffusive band growth within the Mt. Gambier Limestone
sample shown in Figure 12.

4. Discussion
The present manuscript was motivated by providing an analysis technique for the recent observation of
compaction bands in highly porous carbonates where a rich family of compaction localisation features was
observed. Of particular interest was trying to understand the reasoning for a transition from a mode of discrete
compaction band formation to a diffuse compaction band growth. The current numerical approaches have so far
only described the formation of discrete bands and the growth of diffuse bands was not yet available. Recent
progress on the numerical formulations for compaction band growth (Ip & Borja, 2022; Wang et al., 2023) has
overcome the inherent problem of mesh sensitivity of earlier numerical solutions by using a phase field approach,
however, the diffusive growth mode was not described. We have developed an alternative solution to overcome
the mesh‐sensitivity by extending a thermodynamic approach (Jacquey & Regenauer‐Lieb, 2021) with a newly
developed reaction‐diffusion formalism. In this approach we have considered an additional entropy flux
(Regenauer‐Lieb & Hu, 2023) that can regularize the solution through a characteristic diffusion length scale. The
addition of this new parameter not only solved the mesh‐dependency of the original thermodynamically based
formulation but led to a richer solution space of compaction bands including the diffuse mode.

The consideration of non‐local models follows a long tradition, introduced for the problem considered here, by
Triantafyllidis and Aifantis (1986) who first captured post‐localisation features such as deformation band width

Table 2
Parameters Inverted From the Compaction Experiments on Mt. Gambier
Limestone

Parameter Diffuse band Discrete band array Units

Gc 8 × 10− 7 8 × 10− 7 m/s

L 2.4 2.0 mm

rd 0.59 0.5 ‐
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by including higher‐order deformation gradients into the strain energy function. Similarly, the theory of critical
distances (Taylor, 2007) overcame the limitation of linear elastic fracture mechanics on capturing important
features of the physical mechanism of cracking processes through acknowledgment of mechanisms at the
microstructural level, represented by the introduction of a single length scale parameter. The recognition of these

Figure 13. Discrete compaction band arrays in Mt. Gambier Limestone samples. The left panel shows the compressive strain
pattern via digital image correlation analysis and the right panel is the simulated damage band patterns. The first compaction
band observed in experiments is considered as being triggered by a heterogeneity effect which is mimicked in the numerical
tests by applying an initial damage seed in the specimen.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028100

SUN ET AL. 20 of 26

 21699356, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028100, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



discrete features connected through a cascade of length scales in a hierarchical network of faults and fractures has
been used to reveal the critical point phenomena through the self‐similarity of the Gutenberg‐Richter relationship
of earthquakes (Naimark, 2008). The model presented here is a thermodynamics‐inspired approach sharing
resemblance with the original work of Lyakhovsky et al. (2011) for damageable materials but further incorporates
a recent postulate of an entropic velocity which is a characteristic of the dynamic interactions at microstructural
level in generic solid‐like materials (Regenauer‐Lieb & Hu, 2023).

The consideration of a new diffusion formulation of the damage zone which regularizes the growth of the
compaction band is described by the parameter Gc, the entropic velocity of the compaction band that also controls
the newly identified dynamic equilibrium diffusion length scale l interpreted as the maximum entropy density of
the state towards which the compaction band is equilibrating (Regenauer‐Lieb & Hu, 2023). The consideration of
an entropic flux at the scale of compaction bands can be derived directly from the dynamic interaction of the two
phases which are in the described limestone experiment the intact matrix and the crushed grains (Regenauer‐Lieb
& Hu, 2023). The entropic velocity stems from the interactions of a granular medium where the crushed grains
follow the path of the least resistance in the energy landscape during the minimization of the free energy, as the
compaction process proceeds, thus ensuring maximum entropy production in the dissipation process. If the
parameter Gc is large it promotes the formation of discrete compaction bands because together with the introduced
dynamic equilibrium length scale l it regularizes the solution by compensating the source term rd. For negligible
Gc the regularization collapses and the mesh sensitivity problem is encountered. The entropic velocity Gc is a
characteristic rate quantity controlling the speed of the compaction band formation process which is directly
measurable in experiments.

Our new formulation is numerically robust and therefore also allows the investigation of the effect of material
heterogeneities that can influence the growth of compaction bands. We have used this capability to replicate the
areas of increased porosity recorded in the limestone experiment in Figure 13 which were found to nucleate the
growth of the first compaction band in the experiment recorded by DIC. For the model of the diffuse compaction
band growth shown by the CT‐scan in Figure 12 we did not use a seed as the sample appeared to be homogenous
and the band nucleated on the boundary.

Althoughwe have in the current work tried to incorporate the microprocesses that are causing the compaction band
formation through a damage mechanics formulation we would like to highlight the main limitation of our current
approach. The nature of the formulation still relies on a macroscopic perspective which does not include the
microphysics of the processes. The consideration of the entropic velocity is the only microphysical property that is
present in the current formulation, however, the length scale l is still a geometrical constant and does not consider
the stochastic nature of the discrete interactions of the deformation processes inside the compaction band but
assumes that an equilibriumentropy density l exists towardswhich the state of the compaction band is equilibrating.
This assumption is an extension of Onsager's microreversible principle to non‐local dynamic equilibria and is
discussed in a separate contributionwhere a physics‐based approach is used to consider the interaction between the
solid skeleton and the crushed grains stemming from the small scale (Regenauer‐Lieb & Hu, 2023) thus allowing
the consideration of the dynamic processes that trigger the nucleation and growth of compaction bands.

Finally, we note that the emphasis of this study is placed on visco‐plastic failuremodes, which are characteristically
different from for example, elasto‐dynamic failure in brittle materials. The material under consideration (see
Figure A2) is a highly porous soft rock undergoing compaction with an application of confining pressure, which is
expected to exhibit “stable fracturing”, that is, the rate of damage accumulation slows down when damage ap-
proaches unity as Figure A2 illustrates, due to significant strain hardening. It is worth noting that during the stable
fracturing stage the growth rate of the lateral displacement of the compacting specimen also decreases, supporting
themechanism of prominent pore collapse in the case of sufficiently high confinement. The presentedmodel hence
does not intend to represent general failure mechanisms of brittle rocks but captures the ductilization effect (a
transition to ductile behavior occurring in porous rocks) enabled by confined compaction under room temperature
condition.

5. Conclusion
In this work we have presented a stable numerical method which regularizes the width of compaction and shear
bands using a thermodynamic perspective. The approach is in principle universally applicable to conditions in
laboratory experiments as described in this work but it provides equally a novel analysis technique for the
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deformation bands observed in field exposures. Under the assumption that these features constitute a stationary
instability, the numerical method therefore allows inversion of material parameters from observation of band
width and spacing considering the geometrical context of the width of the deformation and the length scale of the
banding features. The novel parameter describing the entropic velocity of compaction band growth Gc is, how-
ever, only available through analysis of time series which restricts its derivation to the laboratory or geophysical
observations of active fault zones.

Our new development has predicted a rich solution space including those not covered in classical compaction
models, both for numerical solutions and solid mechanical theories. Laboratory experiments have described a
class of diffuse compaction band growth which was not yet predicted by standard models or numerical experi-
ments. We have proposed here a novel thermodynamics‐inspired mechanism attempting to overcome the noto-
rious numerical mesh size issues for band spacing and width. We note, that although in the present work we have
focused on an analysis of compaction bands the formulation is generic and we hence expect a similar diffuse
dilatant or compactive shear band growth as observed in our numerical experiments. The numerical code can be
downloaded and further work for a systematic investigation of the formation of deformation bands in both nature
and the laboratory in encouraged.

Appendix A
A1. Finite Element Formulation

The governing equations solved in the LEMUR simulator include the equilibrium of momentum and the evolution
of damage. The damage evolution Equation 44 has been introduced in the main text, while the momentum
equilibrium in the domain B with boundary ∂B takes the form

⎧⎪⎪⎨

⎪⎪⎩

∇ ⋅ σ + ρg = 0 in B

n ⋅ σ = t̄ on ∂Bt

u = ū on ∂Bu

(A1)

where σ is the Cauchy stress, ρg is the body force, n represents the unit normal vector to the boundary ∂Bt where
the surface traction t̄ is prescribed, and ū is the prescribed displacement on the boundary ∂Bu.

Define the weighting functions η ∈V and ϕ∈W, which belong in the appropriate sets V andW, respectively. The
weak form of the governing equations can be written as.

∫
B

η ⋅ (∇ ⋅ σ + ρg)dV = 0 (A2a)

∫
B
ϕ ⋅ [α̇d − Gc(l∇2αd −

αd

l
) −

( r2s + r2d) π
r2v χ̄d

ε̇pv −
( r2v + r2d) χ

r2s χ̄d
γ̇p] = 0 (A2b)

Integrating by parts with the use of divergence theorem, the following variational equations for the momentum
equilibrium and damage evolution can be obtained.

∫
B

∇sη : σdV − ∫
B

η ⋅ ρgdV − ∫
∂Bt

η ⋅ t̄dA = 0 (A3a)

∫
B
ϕα̇ddV +∫

B
Gc(l∇ϕ ⋅∇αd + ϕ

αd

l
) dV − ∫

B
ϕ(
( r2s + r2d) π

r2v χ̄d
ε̇pv +

( r2v + r2d) χ
r2s χ̄d

γ̇p) dV = 0 (A3b)

Where ∇s = (∇ + ∇T)/2 denotes the symmetric gradient operator. In the LEMUR simulator, the variational
equations are implemented via the kernel module based on the MOOSE framework (Permann et al., 2020). For
Equation A3a, a stress divergence kernel which relies on the stress update procedure as described in the main text
is used to ensure the momentum equilibrium, while a damage evolution kernel is utilized for implementing
Equation A3b. In the damage kernel, a backwards‐Euler scheme is adopted to tackle the first integral term in
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Equation A3b, whereas the remaining regularized damage source needs to couple the stress and strain information
from the stress update procedure in the material module. Such coupled interaction between the kernel and material
modules is illustrated in Figure A1, along with the corresponding governing equations (strong form to simplify
notation).

A2. Damage Evolution via Single‐Element Test

As demonstrated by Equation 44, the damage accumulation is dependent on the deformation conditions as well as
the dissipation splitting coefficients. Here, single‐element tests are performed to illustrate representative damage
evolution during the compaction process. Given the non‐local nature of the regularized terms in Equation 44, Gc is

set as 0 to facilitate the single‐element analysis. The results in Figure A2 indicate that the change of either the
dissipation splitting coefficient rd or rv may alter the damage source terms in Equation 44, thus leading to damage
value variation at a given loading strain. Moreover, the damage rate of all curves in Figure A2 decreases with the
growth of the damage value. This is because by substituting Equation 21 into Equation 44, the last two damage
source terms are close to 0 as damage approaches to 1, resulting in vanishing damage increment in this case.

Figure A1. Interaction between the kernel and material modules in the LEMUR simulator.

Figure A2. Damage evolution in highly porous rock samples (under confining pressure of 5 MPa) via single‐element tests.
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A3. Rate‐Dependent Flow Rules

The flow rules in the main text are formulated in a rate‐independent manner. Here, we extend the constitutive laws
to take into account the rate‐dependent effects. To derive the visco‐plasticity model, we still make use of the
thermomechanics framework (Collins, 2003), assuming a dissipation function of the following form

Φ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2

+
1
2
η[(Aε̇pv)

2
+ (Bγ̇p)

2
]

√

(A4)

where η has the dimension of the inverse of the dissipation function, that is, Pa− 1 ⋅s. The dissipative stress in-
variants can still be defined as the derivatives of the above dissipation function.

π =
∂Φ̂
∂ε̇pv

=
A2ε̇pv̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ + ηA2ε̇pv = η

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
+ 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ A2ε̇pv (A5a)

χ =
∂Φ̂
∂γ̇p

=
B2γ̇p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ + ηB2γ̇p = η

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
+ 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ B2γ̇p (A5b)

Which can lead to.

ε̇pv =
π
A2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√

1 + η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ (A6a)

γ̇p =
χ
B2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√

1 + η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√ (A6b)

Substituting the above expressions into the first term on the RHS of Equation A4, one can obtain the following
identity

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Aε̇pv)
2
+ (Bγ̇p)

2
√

=

⟨

̅̅̅̅̅̅̅̅̅̅̅̅̅
π2
A2 +

χ2
B2

√

− 1⟩

η
=
〈F〉
η

(A7)

from which the yield function in the dissipative stress space can be identified F =
̅̅̅̅̅̅̅̅̅̅̅̅̅
π2
A2 +

χ2
B2

√

− 1. Note that

〈⋅〉≔ (⋅ + | ⋅ |)/2 are the Macaulay brackets, which can ensure the left term of Equation A7 is either null or
positive. With the above equality, the flow rules for the plastic strain rates as shown in Equation A6 can be
rewritten as follows.

ε̇pv =
〈F〉

η(1 + F)
π
A2 =

〈F〉
η

∂F
∂π

(A8a)

γ̇p =
〈F〉

η(1 + F)
χ
B2 =

〈F〉
η

∂F
∂χ

(A8b)

The flow rules derived here are the rate‐dependent end‐member of the model, and the derivation procedure is in
fact thermomechanics equivalent to the visco‐plastic flow rules introduced by (Perzyna, 1966).
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Data Availability Statement
The Finite Element Method code is available on Mendeley Data (Sun et al., 2023).
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