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Abstract

Ab-initio quantum chemistry simulations are essential for understanding elec-

tronic structure of molecules and materials in almost all areas of chemistry. A

broad variety of electronic structure theories and implementations has been

developed in the past decades to hopefully solve the many-body Schrödinger

equation in an approximate manner on modern computers. In this review, we

present recent progress in advancing low-rank electronic structure methodolo-

gies that rely on the wavefunction sparsity and compressibility to select the

important subset of electronic configurations for both weakly and strongly cor-

related molecules. Representative chemistry applications that require the

many-body treatment beyond traditional density functional approximations

are discussed. The low-rank electronic structure theories have further

prompted us to highlight compressive and expressive principles that are useful

to catalyze idea of quantum learning models. The intersection of the low-rank

correlated feature design and the modern deep neural network learning pro-

vides new feasibilities to predict chemically accurate correlation energies of

unknown molecules that are not represented in the training dataset. The

results by others and us are discussed to reveal that the electronic feature sets

from an extremely low-rank correlation representation, which is very poor for

explicit energy computation, are however sufficiently expressive for capturing

and transferring electron correlation patterns across distinct molecular

compositions, bond types and geometries.
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1 | INTRODUCTION

Ab-initio electronic structure theories have long been developed to solve approximate Schrödinger equations. A number
of standard blackbox many-body tools including perturbation theory (PT), coupled cluster (CC) and configuration inter-
action (CI) methods have been devised to predict electron correlation energies. By managing the particle (p)–hole
(h) excitation hierarchy, the original exponential complexity is lowered to polynomial costs associated with a much
reduced Hilbert space in which the wavefunction is represented. Among these methods, the exact MP2 (second-order
Møller–Plesset perturbation theory) forms the simplest wavefunction-based method which utilizes the perturbative 2p–
2h excitations relative to a single dominant reference (e.g., usually the Hartree–Fock Slater determinant) and scales as
O N5ð Þ where N is a general measure of system sizes. The canonical CCSD(T) ansatz with the 1p–1h excitations for sin-
gles, 2p–2h excitations for doubles and perturbative 3p–3h excitations for triples is the minimum wavefunction model
to obtain formally size-extensive and chemically accurate energies for close-shell molecules around equilibrium geome-
try, which however scales unfavorably as O N7ð Þ.

In the past several decades, the steep computational scalings have been suggested to be unphysical and must be
drastically reduced by exploiting the fundamental hypotheses for electron correlation,1 assuming that (1) molecular
properties are governed by the one-electron Hartree–Fock (HF) state; (2) correlation energies are additive to electron
pairs; (3) correlation energies are insensitive to the long-range environment. This milestone idea has been implemented
in many different schemes based on one-electron localization, including fragmentation methods,2–4 local correlation
methods,5–28 and many others by combining subsystem and local correlation approaches.29–47 Fragmentation methods,
which divide macromolecules of interest into fragments based on the atomistic locality adhere to a group of atoms,
solve all fragment problems separately, and combine fragment solutions to predict the macromolecular properties.
Instead, the electronic locality48,49 can be also exploited within a full system when the pair-electron operators are writ-
ten in various compact forms. However, the prediction accuracy of both methods is usually drawn from benchmark sys-
tems and lacks direct validation for nonstandard macromolecules. Despite of many demonstrative applications to
complex systems including biomolecules,23,26,50–54 macro-clusters and liquids,55–62 as well as condensed states,44,63–71

the post-HF treatment through fragmentations and local correlations remains generally underutilized.
The aforementioned hypotheses may be broken when a single-reference state contributes insignificantly to strongly

correlated systems, typically containing long π-conjugated carbon rings,72 transition-metal elements,73 and
homolytically broken bonds.74 Important contributions higher than 3p–3h excitation may arise with a prohibitively
long CC or CI expansion that hinders quantitative computation of electron correlation energies and other properties.
For one notorious example of Cr2 molecule containing a sextuple metal–metal bond, the single-reference CCSD(T) pre-
diction of Cr–Cr bond length75 severely deviates from the experimental value; when surveying the predicted Cr2 bind-
ing energies, the multireference computations yield a drastic range of the energy disagreements; however, it is possible
to reproduce a more quantitative Cr2 potential energy curve with more rigorous computations that include a large num-
ber of electronic configurations.76

One of the major challenges has been to design practical schemes for incorporating only important electronic con-
figurations (e.g., an array of determinants) into the wavefunction, which aim to avoid little contributions from configu-
ration components and reduce the computational cost. This idea conceptually derives from the nature of real physical
interactions in molecular Hamiltonians,77 and leads to a number of compressive and selective wavefunction representa-
tions implemented in state-of-the-art strong correlation methods for ab-initio quantum chemistry, including the density
matrix renormalization group (DMRG),78–83 the selected or adaptive CI,84–92 the many-body expansion full CI,93,94 the
heat-bath CI,95,96 the downfolded CI,97 the CC reduction,98–101 and selective high-level CC methods,102–104 a variety of
stochastic quantum Monte Carlo CI approaches,105–109 and quasiparticle-based geminal wavefunction methods.110–114

Recent benchmark studies of the non-relativistic frozen-core correlation energy of the benzene ground state91,115 indi-
cate a promising performance across a set of these methods yielding an energy deviation of about sub-kcal/mol, albeit
with a considerable amount of computational resources using double-ζ basis set. The next hurdle is to find an efficient
way of computing strongly correlated states of larger molecules with larger basis sets at comparable accuracy to
benzene.

The difficulties facing these methods for efficiently treating complex systems are almost all attributed to the rapid
expansion of the many-electron basis in which the wavefunction is represented with the increase of atom numbers. The
underlying origin of such problems is due to the profound area law that many-electron states do not follow116 in
the presence of long-range interactions between subsystems of 2D and 3D macromolecules, that is, the correlation
length increases with the increase of the system size.117 It has been realized that the range of the interaction terms in a
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Hamiltonian depends on the compactness of the many-electron basis in which the Hamiltonian is expressed. As a com-
mon practice, the one-electron localization has been widely used to retain only important determinants associated with
the short-range interactions for dynamic correlation. The computational efficiency is thus significantly gained by either
discarding long-range interactions or approximating them with classical or low-level couplings.35,118–121 However, even
weak interactions will mix many electronic configurations in largely unexplored subspaces necessary to determine the
physical states to chemical accuracy. Moreover, systems exhibiting near degeneracy of valence orbitals must entangle
the long-range electronic configurations that are almost entirely localized at intermediate distances,122 as shown in the
Hn bond breaking process.123,124 Despite of the notable success of these selective methods, the search of weakly inter-
acting configurations remains a daunting task for many electrons owning to the large size of Hilbert space.

The origin of the cost scalings of these high-level CC and CI methods is fundamentally traced to large systems com-
prising many atoms. This problem has been alternatively tackled with machine learning (ML) algorithms, with the abil-
ity of handling high-dimensional data structure in cheaper surrogate models than directly solving many-body electronic
states. Mathematically, there exists a nonlinear network model that can universally represent any smooth and continu-
ous multivariate function with sufficient neurons125,126; in practice, it has been shown to 1D or 2D Heisenberg models
that simple deep network models can represent their quantum many-body states with a much reduced number of the
hidden network parameters (e.g., neurons) compared with the original dimensionality of the Hilbert space, and the pre-
diction fidelity can be systematically improved by increasing the hidden variables127,128 For quantum chemistry Hamil-
tonian, machine learned configuration selection has demonstrated an efficient representability of learning networks for
expressing important Slater determinants.129,130 However, as the many-electron wavefunction does not change
smoothly as a function of atomic positions, especially when state degeneracies and crossings occur, there may be a con-
siderable challenge in directly predicting wavefunctions with ML models. A plethora of alternative machine learning
approaches in the past decade131–144 utilize the atomistic and electronic localities to further enhance the feature expres-
sibility based on physically relevant knowledge that can be extracted directly from local environments within atomic
subsystems or configuration subspaces.

In this advanced review, we will discuss the general idea, critical components of scale-up algorithm and applications
of various compression-based quantum chemistry methods to both weakly and strongly correlated molecules. It
becomes increasingly possible to handle previously difficult systems near chemical accuracy at reasonable costs, owning
to the algorithmic advancement of systematically improvable low-rank representations. These techniques not only con-
siderably shorten the many-body wavefunction parameters, but also facilitate quantum feature design for building an
effective mapping from atomistic/electronic attributes to differences in molecular properties.145 We will therefore also
discuss the relevant development of expression-based quantum chemical neural network models to highlight the impor-
tance of physically motivated low-rank information that needs to be properly formulated to account for the transferable
environment for atoms or electrons in molecule. Illustrative chemical applications will be demonstrated to molecular
systems and processes that are controversial to traditional density functional theory (DFT) and generic post-HF
computations.

2 | THEORY

2.1 | Low-rank wavefunction

In principle, a low-rank representation of any many-body electronic wavefunction exists for systems according to
Schmidt decomposition146: as a linear algebra result from Ψj iAB ¼

P
ijCij ij iA

N
jj iB for arbitrary bipartite subsystems A

enclosing states ij iA and B enclosing jj iB, the wavefunction is expressed equally well in the low-rank orthonormal basis
states αij iA for A and βij iB for B,

ΨABj i ¼
X
i

λi αij iA
O

βij iB, ð1Þ

where
P

iλ
2
i ¼ 1. If the full composite Hilbert space ℋ¼ℋA

N
ℋB would be partitioned into small and large subspaces

ℋA and ℋB of dim ℋAð Þ< <dim ℋBð Þ, a rather small number of low-rank states can be utilized to formulate the
wavefunction in the small subspace of the dimension dim ℋAð Þ. However, the exact Schmidt decomposition is not prac-
tically feasible as this would require the full system solution which is unknown prior to basis rotations from original
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ij iA and jj iB to Schmidt basis αij iA and βj
�� E

B
, respectively. Nevertheless, it is possible to start from a trial full system

wavefunction at low-level theory, typically uncorrelated mean-field wavefunction, as developed in the density matrix
embedding theory (DMET) for lattice models,147,148 quantum chemistry Hamiltonian149,150 and periodic solids.151,152

The DMET embedding theory is a reminiscent of low-rank Hamiltonian (H) construction of H¼PHP in the exact
Schmidt basis of P¼P

ij � dimℋA
αij iA βj

�� E
B

βj

D ��
B
αih jA resulting from many-particle rotations. In practice, the rotation can

be approximated as single-particle rotations from single-particle objects, such as overlap or one-body reduced density
matrix (1RDM) for designated fragments/baths of a trial wavefunction. This strategy has been discussed in various
schemes including bootstrap embedding,153–157 incremental embedding,158 correlated bath states,159 and complete
active space (CAS) DMET.160 Another interesting exploration to the low-rank wavefunction representation has been
directed to the ab-initio quantum embedding scheme for the full system in which important many-body effects are sys-
tematically described by explicitly correlating the product state of the fragment electronic and environmental Drude
oscillator wavefunctions variationally optimized in quantum Monte Carlo.161 However, it still remains an open question
to ensure the consistent fragment and bath description between the low- and high-level wavefunctions.

2.2 | Single-particle transformation

Another strategy is to set up the low-rank Hamiltonian by adopting a single-particle rotation that encodes the coarse
knowledge of dynamic electron correlations. Such methods were developed as early as the 1950s162 with introducing
the natural orbital (NO) set through the low-rank tunable operator

ba†χ ¼XNorb

p

ba†pUpχ , ð2Þ

with Norb the number of molecular orbitals, by diagonalizing correlated 1RDM of the full system, which reduces the

determinant space. Important NOs are selected according to their ordered eigenvalues nχ ¼U†χU to lower the Hamilto-

nian complexity in H¼P
χγhχγba†χbaγ þP

χγδξgχγδξba†χba†γbaξbaδ in an approximate form. This type of NOs has further pro-

moted other related approximations to the single-particle rotation U , including frozen NOs,163,164 pair-natural orbitals
(PNO, equally termed as pseudo-natural orbital in the early days)19,165–168 and optimized correlating orbitals.169,170 For

efficiently recovering the CI solution, the PNO makes a separate basis rotation ba†χij ¼PNvir
p ba†pUpχij (Nvir: the number of

virtual orbitals) for each bonding or non-bonding electron pair ij, leading to a very compact correlating subspace for the
pair. By combining PNOs with the electronic locality,49 the local PNO schemes have been extensively developed in
the recent decade for single-reference CC and PT theories21,25,26,32,119,171–178 as well as their multireference
variants.179–185 An intermediate scheme between the full system NO and the pairwise PNO has been proposed to assign

each single-particle rotation to an electronic orbital by ba†χi ¼PNvir
p ba†pUpχi , which makes the orbital-specific virtual (OSV)

approximation of Upχi and significantly reduces the complexities (see Section 3.2.1) arising for computing, storing and
manipulating electronic repulsion integrals in PNO-based methods. The OSV scheme has been developed to MP2,
CCSD and CCSD(T) theories,22–24,34,35 which have been further implemented in OSV-PNO hybrid ansätz.10,186–191 The
direction determination of Uij for PNOs

192,193 and Ui for OSVs
194 has been also developed to improve the correlation

convergence.

It is clear that the rotation by Uij and Ui generates partially non-orthogonal PNOs/OSVs between different pairs (ij
and kl)/orbitals (i and j) due to the non-vanishing U†

ijUkl ≠ 0 and U†
iUj ≠ 0. As a result, the PNO non-orthogonality

causes complications in carrying out extra linear algebraic operations associated with tremendous amounts of pairwise
PNOs and repulsion integrals if all interacting pairs are included, and thus severe memory issues occur for very large
molecules. The non-orthogonal OSVs considerably lower such complexities due to much fewer orbital-wise rotations of
Upχi , despite that each Ui is less compact than Uij. Moreover, this complication can be effectively removed when the
PNOs/OSVs are combined with the composite methods in various forms.31,35,40,69,71,195–199 It must be pointed out that
none of these techniques would be possible to compute large molecules at high efficiency without carefully handling
the subtle complexities of rotated integrals, the sorting of local interacting pairs or orbitals, the retention of important
low-rank rotations and the screening of long-range correlations, all of which are equally important in practical
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computations. We have found that the computational cost-accuracy balance is different between different implementa-
tion schemes of these approximations. At similar accuracy level, the approximation parameters and the energy conver-
gence performance are not directly comparable.200 The predefined parameters that are optimally tuned against the
benchmark results of small and medium molecules may not be easily validated for real large molecules, when assuming
size-extensive correlation errors. Nevertheless, these low-rank methods combined with local correlations have been
demonstrated to be capable of considerably shortening computations of the energies, structures and processes at differ-
ent post-HF levels of theory34,35,62,69,198,199,201–203 that were previously difficult.

2.3 | Many-particle transformation

For strong correlations, it is an attractive idea to be able to accurately express and solve model Hamiltonians in a sub-
space of much reduced dimensionality through the many-particle rotation of important electronic configurations, anal-
ogous to low-rank single-reference methods. We consider the m lowest eigenstates of an N�N Hamiltonian
H¼HA

N
HB for a bipartite system which is divided into the system A described by an m�m Hamiltonian HA and the

remaining environment B by HB. Turning back to the exact Schmidt basis representation, the projection
P¼P

ij � dimℋA
αij iA βij iB βj

D ��
B
αj
� ��

A maps the original problem into H¼ PHP requiring at most m2 eigenvectors for
exactly describing the m lowest states. On the other hand, under the complete decoupling limit, that is, when
H¼HA

N
IB
L

IA
N

HB is exactly block-diagonal between A and B subsystems, or alternatively when a many-particle
decoupling rotation U is found such that the U�1HU is completely decoupled between A and B, a model Hamiltonian
in the subspace ℋA for A can be formulated as HA ¼

P
i � dimℋA

αij iAHA αj
� ��

A which requires m eigenvectors for solving
the m states. Our analysis here, which does not provide a practical computational simplification, indicates that it is nec-
essary to express a low-dimensional Hamiltonian in an n�n model subspace with m< n<m2 in the presence of an
intermediate system-environment coupling for describing m low-lying states sufficiently accurately.

Since the 1950s, different old flavors of the many-particle decoupling operator U204–207 have been attempted to
make H block-diagonal by U�1HU, which were approximately solved by developing quasi-degenerate perturbation the-
ory204,207,208 and iterative determination techniques209–211 without inputting a priori knowledge of the exact solutions.
However, the convergence of this type of model Hamiltonians has been proved qualitatively poor in the presence of
intruder states that are nearly degenerate with some states in the preselected model subspace,211 which is a familiar
problem facing modern MS-CASPT2 (multistate complete active space second-order perturbation theory) method.212

The intruder-state problem is entirely avoidable in the driven similarity renormalization group approach,213–217 which
drives a continuous flow and decoupling of the Hamiltonian, practically truncated to one- and two-body operators
toward the limit of linearized canonical transformation theory.218 Although the choice of the decoupling rotations is
arbitrary, in rigorous computations, an accurate model Hamiltonian must be defined in a subspace that contains suffi-
cient components which largely overlap with a low-lying target state. An improved version of a more practical model
Hamiltonian is to incorporate an intermediate region between the system and environment subspaces, establishing an
intermediate effective Hamiltonian approach,219,220 which underlies a similar spirit that the DMET resurrects for intro-
ducing quantum bath states to buffer the system–environment interaction. The principle of intermediate effective Ham-
iltonians has been applied to improve the selected CI (sCI) approach221 for self-consistently selecting important
configurations222 toward the exact results of small polyatomic molecules, and recently invigorated to dress zero-order
model Hamiltonians by perturbation for direct diagonalization in small CAS-CI spaces.223

The model Hamiltonian methods discussed above enforce a severe requirement ΨP ¼ PΨ, indicating that the model
subspace projection (P) of an exact eigenstate (Ψ) of the original Hamiltonian must be a corresponding low-lying root
(ΨP) of the model Hamiltonian, which is rather difficult for the Bloch wave operator theory.210 While examining the
seminal idea of Löwdin partitioning technique,224,225 we consider the partitioning strategy that also fulfills this condi-
tion but conceptually different, leading to an effective Hermitian Hamiltonian H

P
in the model subspace P upon a

many-particle transformation ΩHΩ.

H
PΨP ¼EΨP,H

P ¼P ΩHΩð ÞP, ð3Þ

Ψ¼ΩΨP, Ω¼ Pþ 1
E�QHQ

QHP: ð4Þ
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Here, Q¼ 1�P is the outer subspace complementary to P. Ω behaves as an effective wave operator in another form
that restores the exact eigenstate from the model subspace and holds relations ΩP¼Ω, PΩ¼P, and Ω H,Ω½ � ¼ 0 similar
to the Bloch wave equation.210 This has instigated developments of the perturbative Ak and Bk methods,226 the latter of
which partitions the CI matrix with dominant configurations by including only the diagonal QHQ as the first-order per-
turbation. Further improved Bk variants include the state-specific shifted-Bk method227–231 and the multistate shifted-
Bk method combined with large sCI model subspaces,90 which shifts the energy by the second-order perturbation in
the denominator of Equation (4).

The super-operator Ω can be viewed as an external contraction and plays a key role in compressing critical outer
configurations in the complementary Q subspace. This suggests an attractive feature that the resulting dimensionality
of the model Hamiltonian H

P
is not affected by the number of configurations in the outer Q subspace. But there are

notable difficulties arising from the unknown energy and the need of inverting an exceedingly large matrix in the Ω
denominator. Iterative diagonalization methods have been introduced in connection to different PT functions, includ-
ing Rayleigh–Schrödinger PT,224,232 Brillouin–Wigner PT,233–236 and van Vleck PT,237 which exploit several tractable
perturbative functions of Ω toward the FCI convergence of small problems.

For relatively large-scale FCI matrices, we have recently developed a direct iterative method for determining the
model Hamiltonian H

P
at near-FCI accuracy by compressing selected outer determinants,97 which is termed down-

folded CI (dCI). This dCI algorithm relies on recursive formula of ΩijHΩij for a cluster-pair subspace Pij ¼ PiþPj, where
each cluster Pi (or Pj) contains a small number of energetically close determinants. The complementary subspace Qij for
each Pij is refined by taking important determinants, and then compressed into Pij in which H

P
is expressed. We have

found that many small interactions via QijHQ0
ij ≠ 0 from the outer subspace Q0

ij disconnected to Pij turn out to aggregate
into important contribution through the Ωij denominator. We therefore include them to modulate the connected
PijHQij couplings. In all early PT versions of Löwdin partitioning, these minor contributions inevitably lead to a very
large model subspace to couple with sufficient outer determinants for retrieving accurate dynamic correlations.

2.4 | Quantum machine learning

The difficulty associated with many electronic configurations has been largely resolved by the aforementioned theory
developments advancing sophisticated algorithms and implementations. The computational scope has been signifi-
cantly expanded for large systems and processes with greater predictive power. Despite of these developments, the
resulting computations would be still limited to merely single point computations, and difficult for problems necessary
to sample many atomic configurations, such as large-scale chemical space search and long-time ab-initio molecular
dynamics (MD) simulations that would solve the Schrödinger equation repeatedly. The quantum machine learning
(QML) provides another paradigm for making direct prediction of target molecules by learning the known solutions of
other molecules that can be readily obtained, as a substitute to the difficult solution of the target molecule. The QML
architecture attempts to encode high dimensional data structure with complex hidden patterns which bridge expressive
atomistic or electronic features with a variety of target properties by training a pool of known molecules. A notable
example is the QML determination of an end-to-end mapping between the electron density and external potential by
employing highly nonlinear data structure beyond traditional functional forms of DFT.133,238–242 It is important to
emphasize that it becomes increasingly difficult to generate the reference datasets containing many molecules, since
the QML training costs would be very demanding and even unfeasible as the molecule size grows across a threshold. It
is of crucial importance to develop QML methods that efficiently harvest the universal and transferable knowledge of
small molecules in reduced training datasets for expediting chemistry discovery of unknown complexes with predictive
insights.

Although there are many aspects to consider for refining QML architectures, physically motivated representations
of a chemical system are of critical importance to better data efficiency and transferability. The nearsightedness of an
electronic matter243 has become the core idea in driving QML developments closer to this goal. There have been two
main alternatives in implementing the nearsightedness: the local atomistic environments and the local electronic envi-
ronments. The former atomistic scheme has led to various kernel244–247 and neural network131,132,137,248,249 QML
models. A notable and indeed very successful strategy for enhancing transferability has been to approximate extensive
properties (e.g., the molecular total energy) with additive symmetry-constraint atom-centered functions which are
learned separately for each local atomistic environment. These models design real-space atom-specific pairwise
descriptors for 1- and 2-body interactions, and physically augmented many-body descriptors can be also added for
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non-pairwise interactions138,250 or via message passing neural networks.251 In a similar spirit to aforementioned post-
HF subsystem methods, the local atomic environments are used for either including only a limited range of atoms
within a predefined real-space cutoff once and for all131,132,136,249,252 which neglects long-range interatomic interactions,
or augmenting molecular fragments as necessary on the fly.140 It is obvious that there is an issue regarding the suffi-
ciency of the local environments, which depends on the nature of the system extension. However, an inclusion of the
longer-range interactions134,253 may deteriorate the resulting QML transferability with poor energy prediction of large
molecules if the training molecules are not large enough to represent the target structure and its chemical environment.
We have to point out that the tradeoff between non-locality and transferability is a delicate issue and has to be carefully
managed, since it is difficult to determine the prior importance of interatomic interactions.

The electronic locality explicitly accounts for electronic structures and interactions, which represents molecules
by electronic orbitals or densities starting from inexpensive low-level (e.g., mean-field) wavefunction properties. The
long-range electrostatic interactions are automatically included in a mean-field manner, leaving relatively short-
range interactions (e.g., dispersions) to be accounted in electronic QML models. Moreover, the intermediate elec-
tronic descriptors from the low-level electronic structure instruct a coarse mapping from an atomistic geometry to
an electronic distribution, which respects the quantum nature of electrons. However, the canonical HF or DFT
orbitals are delocalized over molecules and no longer transferable due to their orbital orthogonalization components
containing remote chemical environments. The nearsightedness of electronic interactions is ubiquitously resembled
by localizing canonical orbitals. An explicit example shows the reliable transferability of localized orbitals through
the determination of the electron densities obtained from the transfer of localized orbitals on molecular subunits
(atoms, bonds or functional groups) that turn out to be very similar to the exact HF ones.254 Recently developed
electronic QML models learn and predict ab-initio properties (e.g., electron correlation energy) with various baseline
descriptors derived from the correlation electron densities,255,256 local electronic orbitals,135,141,142,257–261 and post-HF
wavefunction amplitudes/density tensors,262–265 and so on. These proof-of-principle examples demonstrate an
improved flexibility and transferability of QML models, for which the prediction errors are relatively less dependent
on the range of chemical systems, albeit still limited to small organic molecules. It is not unexpected that the gener-
ation of orbital-based ab-initio descriptors may be prevented by prohibitive computational costs for a large number
of training molecules.

At the intersection between the low-rank post-HF theory and electronic QML surrogate scheme, there are several
important key advantages which mitigate these complexities, while still reserving chemically transferable and accurate
prediction. The basic idea is that, when the orbital-based ab-initio descriptors are expressed in sufficiently reduced low-
rank basis via single- (Section 2.2) or many-particle (Section 2.3) rotations, the expense of computing these descriptors
can be significantly lowered and the model transferability can be enhanced by learning simple molecules. Hence, we
have developed a transferable deep neural network (T-dNN) model143 using OSV-based descriptors for predicting chem-
ically accurate MP2 and CCSD correlation energies from a small training set containing small molecules. The low-rank
OSV algorithm of these descriptors virtually compresses a global correlating environment for all electrons in the
molecule into many local correlating environments, each for one electron, which simultaneously encodes the long-
range correlation and retains the transferable feature. One appealing aspect of this method is that the balance between
the non-locality and transferability can be systematically and automatically managed by tuning the compactness of
ordered OSV-based descriptors (see Section 3.4). Most importantly, the intrinsically low-dimensional structure of the
compressive input space may increase its inhomogeneity, favor better feature classification and selection, and prevent
the ever-growing scale of the electronic T-dNN model.266 We have provided a comprehensive study143 and shown that
the T-dNN prediction demonstrates an excellent transferability and data efficiency for a broad range of chemical sys-
tems, including alkanes, organic molecule and biomolecular interactions, and water clusters of various sizes and
morphologies.

3 | SCALE-UP ALGORITHM

We present several low-rank algorithms that scale up various ideas as discussed above for weak and strong correlations.
For expediting post-HF computations, the algorithms for small molecules need revision toward large molecules, for
which the computational cost shifts to operations associated with electronic repulsion integrals that determine the
important wavefunction components in both single- and multireference cases.

YANG 7 of 29

 17590884, 2024, 2, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1706 by U
niversity of H

ong K
ong, W

iley O
nline L

ibrary on [12/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.1 | Approximate single-particle rotation

The low-rank post-HF methods as described in Section 2.2 require the computation of single-particle rotation. The oper-
ational costs formally scale as O N3ð Þ, O N4ð Þ, and O N5ð Þ for frozen NOs, OSVs and PNOs, respectively, by their genuine
definitions. A demonstrative example shows that this expense cannot be ignored for large molecules, for instance, the
generation of OSVs is expensive for (H2O)190/cc-pVTZ water cluster, which takes about 400min (24 CPU cores,
2.30GHz) even using well optimized parallel implementation, two orders of magnitude slower than solving the OSV-
MP2 residual equations (Table 1). This results from large virtual blocks of 1RDM in the canonical MO basis, and can be
significantly lowered when the 1RDM is obtained in a reduced 2p–2h double excitation space in the projected atomic
orbital (PAO) basis.108,186 Similarly, this and similar complexities are even more severe for PNO-based methods, further
due to the O N2ð Þ pair growth, and alleviated by approximating the 1RDM in a prior truncated OSV basis,187 or in a
hierarchical PAO ! OSV ! PNO treatment by combining both,10,25 which also necessitates a rough estimate of MP2
pair screening before the PNOs are obtained. Apparently, the PNO accuracy is bounded to incomplete prior PAO
domains, and the PNO-MP2 pair distribution may be significantly different from initial estimates. In what follows, we
describe a low-rank one-off generation of OSVs which do not need estimated pair screening, which also makes it suit-
able for developing analytic gradients.

For each electronic spin-orbital i, we consider the OSV rotation Ui which diagonalizes the semi-canonical MP2
amplitude matrix Tii with elements Tii½ �ab ¼ iajib½ �= f aaþ f bb�2f iið Þ, where a,b, � � � and i, j, � � � denote the virtual and
occupied spin-orbitals, respectively. The matrix Tii has the rank kosv for measuring the intrinsic sparsity that determines
the low-rank efficiency of OSV-based post-HF methods. We find that, in most cases for correlation energies, the OSV
vector Ui from a low-rank amplitude Tii is sufficiently accurate, instead of using the exact Tii, and the generation of
OSVs is much more efficient from Tii.

35 Here, we use the N�kosv (kosv < <N) subset amplitude Tii as the basis to
expand the remaining N�kosv columns of the exact Tii of the dimension N�N ,

Tii ≈TiiCi, TiiCi�Tii

�� ��≤ δ, ð5Þ

where Tii has kosv columns of the exact amplitude Tii, and the unknown kosv�N interpolative vector Ci must contain
kosv�kosv identity submatrix for keeping selected kosv columns. In fact, Equation (5) resembles exactly the interpolative
decomposition that has been previously applied to localized Wannier function267 and electron repulsion integral com-
pression.268 Thus, the norm discrepancy can be minimized up to the precision δ.

However, the direct application of Equation (5) is expensive due to the large N�N amplitude Tii. We sort to a ran-
domized algorithm,269 in which by acting an n�N matrix Ri (n< <N and n is slightly greater than the rank kosv) to
Tii for a randomized fast Fourier transformation, the following minimization is carried out,

RiTiiCi�RTii

�� ��≤ σkþ1, ð6Þ

TABLE 1 Comparison of the average dimension (kosv) and sparsity (kosv=N�100%) of the low-rank semi-canonical amplitude Tii, the

timing (tosv) of OSV generation, and the accuracy of OSV-MP2 correlation energy (δE, relative to the result with exact OSVs of medium

losv ¼ 10�4) by tuning the interpolative decomposition rank (σkþ1) for C40H64O12 and (H2O)190.

C40H64O12/def2-TZVP (H2O)190/cc-pVTZ

Rank threshold (σkþ1) kosv (kosv=N�100%) tosv (s) δE (au) kosv (kosv=N�100%) tosv (min) δE (au)

10�4 182 (10.1%) 4.6 7:3�10�6 200 (2.0%) 22.5 2:3�10�5

10�5 303 (16.9%) 10.0 2:4�10�7

10�6 430 (23.9%) 18.7 2:1�10�9

10�7 564 (31.4%) 30.2 4:0�10�10

10�8 699 (38.9%) 41.1 < 10�10

Exact OSV 28.9 402.9

Note: Adapted with permission from Ref. [35]. Copyright 2021 American Chemical Society.
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where the error is bounded to the kþ1ð Þth greatest singular value σkþ1 of the projected n�N matrix RiTii, and RiTii

collects the kosv columns of RiTii. Solving Equation (6) normally costs O kosvnNð Þ for each electronic orbital, much
faster than O kosvN2ð Þ solving Equation (5). With the interpolative vector Ci identified, the approximate single-particle
rotation Ui for OSVs can be computed via the QR decomposition of Ci

35 at the reduced cost of O 2Nk2osv
� �

. Hence, the
interpolative decomposition significantly lowers the overall operational complexity of OSV generation from O ON3

� �
to

O ONð Þ for all occupied orbitals (measured by the O number of occupied orbitals). As seen in Table 1, it is clear that a
sparse subspace Tii of the tunable rank kosv < <N can well approximate the OSVs with negligible error to correlation
energies, as compared with results in the OSVs obtained from the exact amplitude Tii. For example, for a medium mole-
cule C40H64O12 with def2-TZVP basis, the interpolative decomposition accelerates the OSV generation by nearly seven
folds, as compared with the exact OSVs, causing only a minor correlation energy loss of 7:3�10�6au. For large
(H2O)190/cc-pVTZ computation, the timing is reduced from 400 to 22min.

3.2 | Weak electronic configuration

3.2.1 | Single-reference wavefunction

Another important part is to efficiently identify and treat important weak electronic configurations, such as the long-
range electronic correlation at a single-reference post-HF level similar to the short-range one. The total contribution
from the long-range correlation can become substantial and difficult to handle for macromolecules, due to a large
amount of such weak electron pairs and relevant electronic repulsion integrals which increases rapidly with the inter-
electronic distance. For example, the total PNO-MP2 contribution to the Auamin reaction energy from the long-range
pairs amounts to 22 kJ/mol118 which cannot be neglected, although each of the weak pairs has very small correlation
below 10�5 au. The long-range pairs are normally identified based on the spatial criterion (j ri� rj j >Rlong) using the
distance j ri� rj j of two local orbitals, which can be further refined by screening the estimated energy magnitude via
dipole–dipole interactions10,25 or high-order multipole.118 We note that the value of a proper spatial cutoff is largely
affected by the nature of molecules, and varies from one molecule to another. Hence the precise determination of
important long-range pairs is difficult from real space measurements alone, especially for molecules with extended π
conjugation.

To avoid caveats from real space selection, we have developed an algorithmic metric34,35 which assigns the long-
range pairs according to the intrinsic compactness of the OSV orbital-domain overlap μijνj

� �
that is capable of discern-

ing the weak interaction strength between remote electron pairs,

sij ¼
P

μν μijνj
� �2
ffiffiffiffiffiffiffiffi
ninj

p , ni ¼
X
μν

μijνih i2, ð7Þ

where ni is the total number of OSVs for the ith LMO. We apply the Cauchy-Schwarz inequality to sij which leads to
0< sij <1 for i≠ j and sii ¼ 1. Apparently, the magnitude of sij is closely related the nature of OSVs, which is adaptive to
molecular attributes. As such, for long π molecules which yield greater sij from more delocalized OSVs, more long-range
pairs emerge and can be included. This ensures that important long-range interactions can be adaptively, consistently
and automatically identified. For example, when the long-range pairs are assigned by 10�7 < slrij <10�2 using triple-ζ
basis sets, 25,179 long-range pairs out of 32,385 pairs are identified for extended C60@catcher, 144,247 long-range pairs
out of 289,180 pairs for (H2O)190, and only 13,870 long-range pairs out of 98,790 pairs for (Gly)40. As seen in Table 2,
the accuracy loss of the binding energy by discarding extremely remote pairs for which sddij ≤ 10�7 is negligible. We have
found (tab. S4 in Ref. [35]) that the basis set diffusion function does not necessarily lead to the inclusion of more long-
range pairs using the pair classification in Equation (7), as opposed to real space selections. Interestingly, when adding
diffuse basis functions, the amount of short-range pairs slightly decreases by 3%–4% for both C60@catcher and (H2O)32,
as a tradeoff with more OSVs.

The rapid computation of long-range pairs commonly invokes the semi-canonical formulation of

Elong
c ≈

P
ijab iajjb½ �2= f aaþ f bb� f ii� f jj

	 

without exchange terms,10,25,119 or iteratively solves the long-range amplitude

equations in the 2p–2h orbital-specific excitation subspace.35,118 However, one has to mention that the semi-canonical
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approximation is prone to large energy error and also problematic to energy gradients due to the contribution from the
response of long-range amplitudes; the iterative scheme accounts for only the genuine dispersion correlation for boo-
sting computational efficiency, which may be a source of important errors. It is therefore critical for the iterative
scheme to treat only the long-range pairs that truly contain negligible charge transfer and exchange correlation compo-
nents. In our work, we make efficient use of the OSV domain overlap which modulates the couplings between different
correlation components and is systematically tunable via slrij in Equation (7). We have found that within the range

10�7 < slrij <10�2, the resulting long-range pairs are dominated by only the dispersion correlations via i! μi, j! νif g
2p-2 h excitations for which the iterative scheme is sufficiently accurate. In the OSV basis, for solving the long-range

T
lr
ij , the dispersion-dominant amplitude equations are first projected out from the exact OSV-MP2 amplitude equations,

and then further reduced by coupling each long-range pair (T
lr
ij ) with only short-range diagonal pair amplitudes (T

sr
ii

and T
sr
jj ). Most importantly, the expense for computing the long-range repulsion integral iμijjνj

� �lr
is also much reduced

as the 3-center-2-electron integrals iμijP½ � on the fitting basis P are readily available from short-range pairs. This and
other costs arising from long-range correlations are significantly lowered in OSV-MP2 analytical energy theory.35 Over-
all, the OSV-based iterative scheme sets a promising stage for computing the long-range correlation and analytical
energy gradients at comparatively negligible cost, relative to these for solving the short-range contributions.

3.2.2 | Multireference wavefunction

The similar weak configuration prescreening from spatial or dipole–dipole interaction criteria has been introduced to
identify the long-range dynamic correlations arising from the “inactive ! external” and “active ! external” subclasses
of the excitation for PNO-based multireference CASPT2 and NEVPT2 approaches. Their correlation energies are esti-
mated with the cheap semi-canonical182 and high-order multipole approximations.184 For large molecules and basis
sets, this importance measure conveniently ranks a set of weakly coupling determinants that are connected to the active
space through first-order perturbative couplings. These advances substantially reduce the expenses for computing the
long-range dynamic correlations due to a large number of external orbitals, and shift the major computational bottle-
neck to the optimization of the reference CASSCF wavefunction which is limited to small active space. However, small
active space computations are prone to large error arising from an enormous amount of disconnected external
determinants, which are accumulated to make an important contribution to electron correlation through at least the
third-order energy perturbation. Therefore, modern multireference approaches, such as the variants of sCI, attempt to
gradually enlarge the active space by selecting non-negligible determinants and then perform the second-order PT cor-
rection on the resulting variational reference wavefunction. Notably, the importance of weak determinants is measured
by several alternative metrics, including an estimate of the first-order wavefunction amplitudes (

P
i
Hjici

E0�Hjj

����
����) for all deter-

minants in the CI by perturbatively selecting iteratively84 and a subset of them in the adaptive sampling CI,86,89 a sim-
ple measure by selecting the maximal max i Hjici

�� ��� �
in the heat-bath CI,95,96 as well as adaptive selection of CC

configurations by moment expansion.102–104 One has to be aware that, by iteratively selecting the tremendous number
of weakly coupled determinants toward the near-exact solution, the Hamiltonian matrix drastically expands and ulti-
mately exceeds the limit that modern computer resources can offer even for small molecules, such as benzene assessed
with cc-pVDZ basis in various state-of-the-art approaches.91,115 As a result, the application of these methods to more
realistic molecules and basis sets still faces great challenges.

TABLE 2 The impact of long-range pairs on the total and binding energies (au) for 190 H2O ! (H2O)190 with cc-pVTZ. The binding

energy is given as Ebind ¼E H2Oð Þ190�
P190

i Ei H2Oð Þ (not assuming identical water molecules).

slrij sr pairs lr pairs dd pairs E H2Oð Þ190
P190

i Ei H2Oð Þ jEbind j j δEbind j j δEbind=Ebind j
0 13,019 276,161 0 �51.476377 �50.182196 1.294182

10�7 13,019 144,247 131,914 �51.475779 �50.182196 1.293583 0.000598 0.05%

Note: The short-range (sr), long-range (lr), and discarded (dd) pairs are defined by 10�2 ≤ ssrij ≤ 1 and 10�7 < slrij <10�2 and sddij ≤ 10�7, respectively. Adapted with
permission from Ref. [35]. Copyright 2021 American Chemical Society.
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We consider our recent dCI Hamiltonian representation97 as an alternative toward alleviating this challenge, as
introduced with the tactics of simultaneously selecting and compressing weak configurations in Section 2.3. The dCI
algorithm recursively builds up a very compact effective Hamiltonian for enabling direct diagonalization in a small
model subspace P that is composite of cluster pairs Pij ¼

P
p � Pij

Φp

�� �
Φp
� �� containing a small number of determinants.

Disconnected determinants to the local cluster pair Pij are manifested and collected through the outer interactions
QijHQij that attenuate the coupling magnitudes. Taking each determinant Φp from a local cluster subspace Pij, its
numerically connected outer subspace Qij ¼

P
q � Qij

Φq

�� �
Φq
� �� and fully disconnected subspace Qij ¼

P
q � Qij

Φq

�� �
Φq
� ��

are identified as follows, respectively, according to the expectation value thresholds θ1 ¼ 10�8 and θ2 ¼ 10�6,

X
p

ΦpjHjΦq
� ��� ��> θ1, ð8Þ

ΦqjV 1ð Þ
ij jΦq

D E��� ���> θ2, ð9Þ

V 1ð Þ
ij ¼QijHQij

1
E�QijHQij

QijHQij, ð10Þ

where V 1ð Þ
ij is the local screening potential that determines the selection of disconnected weak configurations specific to

each cluster pair ij. As clearly revealed in Figure 1, the dCI correlation energies are improved by adding essential weak
determinants in the outer subspace, and converged to chemical (�1 kcal/mol) and near-FCI (�0.05 kcal/mol) accuracy
with the NQ= 64 k and NQ= 460 k determinants, respectively. The resulting effective Hamiltonian can be well represen-
ted in a small 2200�2200 model subspace enabling simple diagonalization, which is much smaller than the FCI prob-
lem. Apparently, the dCI selection and compression scheme is based on the quadratic outer coupling which is bounded
by ΦqjV 1ð Þ

ij jΦq

D E��� ���� QijHQij

�� ��2, as revealed in Equation (10). As the dCI search for important determinants is carried
out separately within local cluster-based subspaces, a simple parallelization scheme can be implemented for dCI com-
putations by distributing all local clusters.

3.3 | Low-rank analytical gradient theory

Another important aspect is to enable efficient post-HF molecular geometry and dynamics simulations for complex
molecules. In principle, the low-rank post-HF formulation as discussed in Section 2.2 requires the response

FIGURE 1 Convergence of the dCI energy errors for S0 (X1Σþ
g ) and S1 (B1Δg) states of C2 (dC–C==1.24253Å) with respect to the outer

subspace dimension NQ in the cc-pVTZ basis for NP ¼ 300 and NP ¼ 2200 of the model subspace. Reprinted with permission from Ref. [97].

Copyright 2022 American Chemical Society.
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contribution (E λf g
c ) from the single-particle transformation U to obtain correlation energy gradients (Eλ

c), in addition to
the relaxation of molecular (E λ½ �

c ) and atomic (E λð Þ
c ) orbitals.

Eλ
c ¼

dEc

dλ
¼E λf g

c þE λ½ �
c þE λð Þ

c , ð11Þ

U λð Þ¼U 0ð ÞO λð Þ, ð12Þ

U λf g ¼ dU λð Þ
dλ

¼U 0ð ÞO λf g, ð13Þ

where Ec is the post-HF correlation energy and λ denotes a perturbation from, for example, atomic position displace-
ments or an external field. It has been found that the absence of E λf g

c results in significant error in predicted molecular
structures.34,270

When a perturbation λ is applied to the system, the single-particle rotation U λð Þ is perturbed and λ-dependent,
which is represented exactly in a linear combination of the complete unperturbed rotation vectors U 0ð Þ with unknown
combination coefficients O λð Þ. The response U λf g of the perturbation-dependent rotation U λð Þ, as given in
Equation (13), is obtained if O λf g is solved. In the NO-based schemes, the low-rank components of the reference
U 0ð Þ ¼ U 0ð Þ

l ,U 0ð Þ
h

h i
are normally selected within a kept eigenvector subspace (U 0ð Þ

l ) of the virtual density matrix which is
decoupled from the discarded complementary subspace (U 0ð Þ

h ). The modern PNOs and OSVs are also similarly gener-
ated from the pair virtual density matrix and orbital-specific wavefunction amplitudes, respectively. This condition
ensures that the density matrix expressed in the U 0ð Þ basis is block-diagonal and the correlation energy is invariant to
the rotation within either the kept or the discarded subspace. Hence, the response vector U λf g must be obtained via the
rotation between the kept and discarded subspaces, which introduces for analytical theory new repulsion integrals in
the long discarded basis that are not present in the energy computation. In PNO-based MP2 method,25,202 this problem
is handled by computing the response vector U λf g from the hierarchical relaxations of both PAOs and PNOs based on
relatively compact discarded U 0ð Þ

h ; in the OSV-MP2 gradient theory,34,35 a compact U 0ð Þ
h is automatically identified from

the interpolative decomposition OSVs by tuning the rank of the semi-canonical amplitude matrix, as discussed in
Section 3.1 and Table 1.

Another hurdle is the computation of the gradient contribution from weak electron correlations. For OSV-MP2
wavefunction, the number of weak electron pairs has been dramatically reduced according the OSV overlap criterion in
Equation (7), and it is sufficient to consider only dispersion correlation (see Section 3.2.1) for which the cost is negligi-
ble, compared with strong electron pairs, since the computation of long-range integrals is avoided. According to our
experimental evaluation to OSV-MP2 energy gradients, we invoke another approximation to avoid the expensive com-
putation of the response of the one-electron part in the OSV-MP2 amplitude equations for weak pairs, which contribute
little to the final gradients. For example, the nonactin molecule contains 8214 weak pairs out of 11,026 total pairs. The
OSV-MP2 gradient error with def2-TZVP basis is only 1:2�10�5 au between the gradients with and without one-
electron contribution and the maximum deviation only 8:3�10�5 au. Overall, we considerably boost the CPU, memory,
and I/O efficiency for OSV-MP2 gradient evaluation without affecting accuracy.

3.4 | Cheap neural network learning

The low-rank post-HF methods discussed above are very useful for efficiently generating a large amount of almost
noise-free training data of many atomic configurations within reasonable computational time and resources, rather
than using cumbersome generic computations. However, the deep neural network training has to extract feature char-
acters of large-scale and often redundant datasets for a learned mapping from input to output vectors. At a more funda-
mental level, the efficiency and learnability of the neural network hinges on how relevant physical properties are
translated into the learning architecture.271 As the low-rank data representation encodes certain physics including sym-
metry and locality, conceptually, we argue that the systematically tuned low-dimensional data structure increases the
hierarchy and inhomogeneity of hidden features by removing the redundancy, and perhaps noise, in the generic
wavefunction. This facilitates refactoring the outstanding interaction feature for electron correlations and improves the
prediction transferability of the energy model between molecules of different size and geometry. Hence, the low-rank
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operators, in which the original raw information of electron correlations is compressed through a lossy transformation,
can are more expressive objects than handcrafted atom-based descriptors.

Bearing this in mind, in our electronic T-dNN model, we express the correlated descriptors143 taking only a few
OSVs, and we have found that the electron correlation characters are well reserved for making transferable prediction.
Based on numerical experimentation, we define the feature amplitudes that respect the unique physical nature of the

electron correlations according to the 2p–2h excitation patterns: vertical (vt, eT vtð Þ
ij,μν ¼

iμijjνj½ �
εij

), exchange (ex, eT exð Þ
ij,μν ¼

iμjjjνi½ �
εij

)

and charge transfer (ct1, eT ct1ð Þ
ij,μν ¼ iμijjνi½ �

εij
for type 1 and ct2, eT ct2ð Þ

ij,μν ¼
iμjjjνj½ �
εij

for type 2) correlations, which exhibit different

attenuation dependence on the ij pair separation. Here εij ¼ f iiþ f jj� f μiμi � f νjνj with f μiνj the elements of virtual–virtual
Fock matrix in the OSV basis, and there need only 8 OSVs μ1,μ2, � � �,μ8f g automatically selected according to the most
important singular values. One has to note that these feature amplitudes are extremely poor for directly computing cor-
relation energies, but they describe the near-sighted limit of the amplitude equations for guiding the neural network
learning of both MP2 and CCSD correlations. The feature amplitudes are further preprocessed to produce pseudo-
energy inputs to the network,

ee vtð Þ
ij,μν ¼ eT vtð Þ

ij,μν iμijjνj
� �

, ee exð Þ
ij,μν ¼ eT exð Þ

ij,μν iμjjjνi
h i

, ee ct1ð Þ
ij,μν ¼ eT ct1ð Þ

ij,μν iμijjνi½ �, ee ct2ð Þ
ij,μν ¼ eT ct2ð Þ

ij,μν iμjjjνj
h i

: ð14Þ

For each pair, the pseudo-energy tensor ee Xð Þ
ij for each type X uses only 64 exchange integrals. Our T-dNN model does

not require an MP2 computation and needs considerably fewer repulsion integrals than what were reported.257,260,265

The computation of these inputs is cheap and the main cost is dominated by the baseline HF with O N4ð Þ. The scaling
comparison is given in Table 3.The MPI-based parallel computation of the feature sets has been implemented by distrib-
uting LMO pairs over available processor cores, and nearly linear scaling computations per task can be carried out in
many steps.

We briefly summarize the exceptional transferability of the T-dNN surrogate model in various aspects across differ-
ent molecular sizes, datasets and conformations. For double-ζ basis sets, our results reveal that it is sufficient to predict
chemically accurate correlation energies by training the T-dNN model with only a small dataset containing a few hun-
dred molecules. For example, by only 100 training molecules randomly selected from QM9 dataset (including total
133,885 organic molecules), the mean absolute error (MAE) for CCSD/6–31g* correlation energies is about 1.05 kcal/
mol for predicting the remaining 99.925% QM9 molecules, and is further reduced to 0.58, 0.52, 0.46, and 0.45 kcal/mol
with 500, 1000, 2000, and 3000 training molecules, respectively. Moreover, by training only 100 QM9 molecular mono-
mers, the predicted CCSD/6–31g* interaction energies of selected dimer complexes in ACONF, PCONF, S66, BBI, and
SSI datasets are also accurate with MAEs <1 kcal/mol, including bimolecular interactions and non-covalent interac-
tions. For triple-ζ basis sets, the T-dNN model trained on 100 QM7b-T molecules makes OSV-MP2/cc-pVTZ prediction

TABLE 3 Computational costs of all major steps for feature generation with the numbers of occupied LMOs (O) and atoms (N).

Computational steps Asymptotic costs Asymptotic costs per MO/pair

RHF energy O N4ð Þ
Boys localization O N3ð Þ
iijjj½ � and ijjij½ � integrals O O2N2

� � O N2ð Þ
OSV generation O ONð Þ O Nð Þ
OSV overlap μijνj

� �
O O2N
� � O Nð Þ

OSV Fock μijFjνj
� �

O N2ð Þ O Nð Þ
OSV exchange integral O N2ð Þ O Nð Þ
Feature amplitudes eTij O Nð Þ Constant

Pseudo-energy input eeij O Nð Þ Constant

Note: Eight OSVs form the low-rank basis for descriptors. The asymptotic costs are estimated according to the linear growth of LMO pairs with N , the integral
sparse-fitting implementation, and the interpolative decomposition for generating OSVs.35 Adapted with permission from Ref. [143]. Copyright 2023 American

Chemical Society.
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with the MAE of 1.03 kcal/mol for all remaining QM7b-T molecules and 1.57 kcal/mol for molecules in another
GDB13-T datasets, and the prediction MAEs are lowered to 0.49 and 0.89 kcal/mol for QM7b-T and GDB13-T mole-
cules by training 800 QM7b-T molecules, respectively. The results suggest that more training molecules are necessary
using larger basis sets.

Interestingly, the T-dNN model trained on small 800 (H2O)16 clusters exhibits systematic parallel deviations from
the exact OSV-MP2/cc-pVTZ correlation energies by a few kcal/mol for (H2O)128 cluster of various conformations, as
revealed in Figure 2. Nonetheless, this kind of near-constant errors does not affect the curvature of the potential energy
surface by a constant global shift and thus we expect accurate geometry optimization and molecular dynamics simula-
tions from T-dNN prediction. Although the total prediction error grows from (H2O)32 to (H2O)128 with the number of
water molecules, the errors are systematic. When applying a global shift by the magnitude of the mean signed error, the
prediction mean absolute relative error (MARE) is only 0.77 kcal/mol for (H2O)128. These positive results indicate that
the electronic T-dNN model can transfer the underlying mapping between electron pairs and correlations toward larger
molecules.

4 | ILLUSTRATIVE APPLICATIONS

We applied the low-rank correlated methods to several controversial molecular phenomena to which traditional DFT
and post-HF methods are problematic. The development versions of OSV-MP2 and dCI programs35,97 were employed.
In the following illustration, we show that the scale-up algorithms of the low-rank OSV-MP2 analytical theory dis-
cussed above enable practical and accurate molecular structure optimization and Born–Oppenheimer molecular
dynamics simulation that are difficult to generic methods for relatively complex systems and chemical processes. The
first example devotes to the study of Cu-coordination structures (see Figure 3) of the interlocking Cu(I)–catenane
supramolecule272 that are managed by the ligand topologies and peripheral lengths, showing catalytic implications
opposite to DFT results. The second example reveals that the MP2 electron correlation effects, drawn from the 10 ps
classical-nuclei MD/NVE simulation driven by OSV-MP2 forces, retrieve the experimental broadening signature of the
N–H vibration associated with intramolecular double hydrogen transfer in porphycene complex, which may not be
attributed exclusively to proton quantum effects. The third application performs the hybrid OSV-MP2 and molecular
mechanics (MM) MD simulation of a water microdroplet and reveals a substantial water–water autoionization on the
microdroplet surface, which creates interfacial H2O

+/H2O
� radical pairs to catalyze an on-water reaction with two-

carbon Criegee intermediate on the air/water surface. In the last example, we turn to strongly correlated excited states,
and show that the low-rank dCI selection of important determinants is sufficient to recover near-exact excitation ener-
gies in both organic and transition metal compounds.

FIGURE 2 Comparison of the transferable predictions for MP2/cc-pVTZ energies from T-dNN model trained on small molecules. Left:

The systematic shift of the predicted energies for (H2O)128 with a T-dNN model trained on 800 (H2O)16. Blue dots represent the energies

from direct explicit computations. Right: The prediction errors for spherical water clusters of different sizes sampled from the molecular

dynamics NVT trajectories. Adapted with permission from Ref. [143]. Copyright 2023 American Chemical Society.
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4.1 | OSV-MP2 structure solver: Interlocking Cu–catenane supramolecular geometries

The mechanically interlocking tetradentate Cu(I)–catenane supramolecule (Figure 3) exhibits selective catalysis to
C(sp3)–O dehydrogenative reactions between phenol and bromodicarbonyl.272 The catalytic activity for a broad scope of
substrates can be managed by varying the ligand catenane topologies and peripheral lengths, which effectively adjusts
the Cu(I)–catenane bonds and hence the Cu(I) coordination environment. Experimentally, our collaborators have
shown that the Cu(L1) and Cu(L3) complexes in relatively loose mechanical bonds with long L1 (R = (CH2)8) and L3
(R = (CH2)10) ligands have a high catalytic yield of nearly 77%–80%, while the Cu(L2) complex in the tight Cu-N coor-
dination considerably reduces the product generation at a yield of only 52%.

We attempt to examine whether the tetradentate –Cu(N)4– coordination structure may be correlated with such cata-
lytic activities shown in experiments. To this end, the OSV-MP2 structures of [Cu(L1)]PF6, [Cu(L2)]PF6, and [Cu(L3)]
PF6 were optimized with the def2-TZVP basis and compared with traditional DFT B3LYP-D3BJ optimizations. As seen
in Table 4, the catenane ligand length in the number of methylene groups does not make a large impact on the Cu–N
distances from OSV-MP2 prediction, causing <2 pm variation in all Cu–N bond lengths. However, the B3LYP-D3BJ
computations lead to significantly longer Cu-N bond lengths and larger –Cu(N)4– coordination volume V coor than

FIGURE 3 Chemical formula of Cu(I)–catenane complex. Adapted with permission from Ref. [35]. Copyright 2021 American Chemical

Society.

TABLE 4 Comparison of the optimized –Cu(N)4– coordination structures for [Cu(L1)]PF6, [Cu(L2)]PF6, and [Cu(L3)]PF6 (Figure 3)

between OSV-MP2/def2-TZVP (all electrons) and B3LYP-D3BJ/Lanl2dz/6-31 g(d,p) levels of theory.

Method [Cu(L1)]PF6 [Cu(L2)]PF6 [Cu(L3)]PF6

OSV-MP2 d(N1–Cu) (pm) 202.22 200.22 201.75

d(N2-Cu) (pm) 197.53 197.44 198.26

d(N3-Cu) (pm) 202.30 200.51 201.39

d(N4-Cu) (pm) 197.47 197.12 198.23

V coor (pm
3) 3,377,975.78 3,346,818.43 3,366,231.91

ΔV coor (pm
3) 0.00 �31,157.35 �11,743.87

B3LYP-D3BJ d(N1-Cu) (pm) 205.48 204.50 205.52

d(N2-Cu) (pm) 204.99 208.76 208.21

d(N3-Cu) (pm) 205.48 204.01 205.58

d(N4-Cu) (pm) 205.00 209.68 207.53

d (pm3) 3,595,533.80 3,655,158.99 3,626,158.36

ΔV coor (pm
3) 0.00 59,625.19 30,624.56

Note: V coor is the volume of the –Cu(N)4– polyhedron. Adapted with permission from Ref. [35]. Copyright 2021 American Chemical Society.
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OSV-MP2, in particular with large bond elongations of Cu–N2 and Cu–N4 from medium [Cu(L1)]PF6 to either short
[Cu(L2)]PF6 or long [Cu(L3)]PF6. Moreover, the OSV-MP2 predicts the smallest V coor and hence strong interlocking
mechanical bonds for Cu L2ð Þ½ �P6 and larger V coor for Cu L1ð Þ½ �P6 and Cu L3ð Þ½ �P6, which is well aligned with the cata-
lytic efficacy ranking of Cu L2ð Þ½ �PF6 < < Cu L1ð Þ½ �P6 � Cu L3ð Þ½ �P6 given in experiments. However, the B3LYP-D3BJ
computation results in the –Cu(N)4– volume change by Cu L2ð Þ½ �P6 > Cu L3ð Þ½ �P6 > Cu L1ð Þ½ �P6, opposite to OSV-MP2
results and experiments. This study suggests that an ab-initio correlated model for post-HF energy and structure com-
putations is critical for discerning the delicate response of the coordination environment to ligand changes, which is
further implicated in the supramolecular catalytic efficiency.

4.2 | OSV-MP2 MD simulation: Tautomeric broadening of N–H vibrations in
porphycene

Porphycene (Pc, C20H14N4) provides a channel for fast double hydrogen transfer, resulting in tautomerization reactions
at room temperature along the N�H� � �N in the molecular cavity formed by four nitrogens.273 The hydrogen transfer
leads to different tautomers: cis-Pc tautomer with two hydrogens bonded to nitrogens on the same side and trans-Pc
tautomer with two hydrogens connected to nitrogens on the other side. However, the static computation of harmonic
frequencies predicts only a single strong N–H stretching vibration at around 2900 cm�1, while the experimental infrared
spectrum shows a significant N–H band broadening over 2000–3000 cm�1. The standard harmonic computation is
flawed in the absence of vibrational anharmonicity and intermode couplings, which turn out to be significant in
porphycene due to hydrogen transfer. The DFT-based ring-polymer path integral MD simulations ascribe the broad-
ened N–H vibrational bands around 2200–3200 cm�1 to the nuclear quantum effect of transferred protons.274 However,
the appearance of the N–H stretching signature is highly sensitive to the chosen DFT functionals.

We probed the origin of the broad N-H vibrational peak by performing the 10 ps classical-nuclei ab-initio MD/NVE
simulation using OSV-MP2 correlated model at a time step of 0.5 fs.35 Our computed OSV-MP2 vibrational density of
states (VDOS) retrieves both broadened low- and high-energy N–H stretching bands centered at 2600 and 3000 cm�1

(Figure 4), respectively, by propagating classical protons. However, the VDOS from the uncorrelated RHF MD simula-
tion does not yield any band signature in 2000–3200 cm�1, which indicates the importance of electron correlations. The
lower N–H band at around 2400–2600 cm�1 is weak and assigned to cis-Pc tautomer, and the relatively strong band at
2800–3300 cm�1 originates from the trans-Pc tautomer, showing more trans-Pc tautomers than cis-Pc due to fast hydro-
gen transfer. This is in contrast to the literature ring-polymer B3LYP-vdW/MD infrared spectrum274 which concludes a
larger portion of cis-Pc tautomer than trans-Pc and points to the effect of quantal protons. The results by us and others
imply that the origin of the broad N–H stretching bands is controversial between electron correlation and protonic
quantum effects. Further studies are needed to investigate the impact of the proton-coupled correlated electrons.

FIGURE 4 Left: Porphycene formula. Right: The VDOS spectra from the 10 ps MD/NVT simulation driven by RHF/6–31g* (red) and
OSV-MP2/6–31g* (blue) forces at T = 291.9 K, followed by another 10 ps NVE equilibration. The OSV-MP2 MD simulation was carried out

on 96 CPU cores (IntelXeon Platinum 9242@2.30 GHz). Adapted with permission from Ref. [35]. Copyright 2021 American Chemical

Society.
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4.3 | Multiscale OSV-MP2 QM/MM method: Surface water charge transfer and
reactivity

We implemented the multiscale OSV-MP2/MM method to drive long-time ab-initio MD simulations with the dynami-
cally adaptive QM-MM boundary for containing the constant number of QM molecules, including, for example, both
the reactive center and a sufficient amount of surrounding environment molecules. This method features the low-rank
OSV-MP2 electronic structure computation for explicitly treating QM molecules as well as the number-adaptive
scheme62,275 for updating the QM region along the time evolution. For explicitly including long-distance processes in
the QM region, such as proton translocation and charge transfer, we further implemented a reallocation scheme of flex-
ible QM center from which the numbers of QM and MM molecules are both constant on all full time-dependent
trajectories.

We next address an interesting aspect of molecular reactivities on the water microdroplet62 which exhibits a pro-
found difference of the air-water interfacial environment from the bulk water for expediting certain reactions. Regard-
ing the rich interfacial dangling protons near the air-water surface,276 reactants and intermediate states may be
favorably aligned to promote fast “on-water” reaction processes. High-level electronic structure methods are needed for
precisely distinguishing the electronic structures between interfacial and bulk waters. Hence, we first performed the
single-point OSV-MP2 computation of a large (H2O)190 microdroplet of the diameter of 22 Å with aug-cc-pVTZ basis,
and analyzed the ab-initio water charge distribution. The microdroplet surface undergoes spontaneous water–water
charge exchange that is highly inhomogeneous: a surprising large amount of charges up to �0:20 e per water are pre-
sent and create H2O

+/H2O
� radical pairs in the surface layer of 1–2Å depth, and the waters are neutral as usual with

only minor charge separations by 0:005 e per water near the microdroplet center.
The significance of the surface water radical pairs was investigated on an important atmospheric Criegee–water

reaction, as often encountered within aerosols and clouds formed in the troposphere that impacts the global climate.
Recent DFT-based QM/MM Born–Oppenheimer MD results suggest that CH2OO–water reaction may rapidly proceed
via several pathways,277,278 and anti-CH3CHOO is highly stable.279 However, we do not fully understand the Criegee
reactivities at the aqueous interface due to the presence of spontaneously charged waters. In our ab-initio simulation,
the QM and MM subsystems were defined by anti-CH3CHOO–(H2O)15 with OSV-MP2 and 1097 explicit water solvents
with TIP3P model, respectively. The hybrid OSV-MP2 QM/MM MD simulation reveals that the two-carbon anti-
CH3CHOO Criegee molecule moving closer to water on the surface, for example, the Criegee–water distance falls
within 1.5 Å, induces a conformation reorientation of 8 surface H2O in the QM region, yielding water–water charge
transfer on a negatively charged water by δ� ¼�0:20 near the surface and δþ ¼þ0:39 on the remaining 7 H2O

+ pene-
trating the water microdroplet. The resulting H2O

+/H2O
� pairs build up a local electric field pointing to the surface

(Figure 5a), which electrically reorients anti-CH3CHOO by pulling the positively charged Criegee Cc atom toward

(a) (b)

FIGURE 5 Water charge transfer creates the surface H2O
+/H2O

� radical pairs. The QM and MM subsystems are defined by anti-

CH3CHOO–(H2O)15 with OSV-MP2 and 1097 explicit water solvents with TIP3P model, respectively. (a) The resulting electrostatic potential

of the QM water molecules nearby the air-water interface. (b) The interfacial stabilization energies (δE, solid) and the electrostatic

contributions (dashed) when moving CI from air across the water microdroplet surface. Reprinted with permission from Ref. [62]. Copyright

2023 American Chemical Society.
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H2O
� near the surface, and the local field pushes an intramolecular electron transfer from the Criegee Cc to the termi-

nal Ot atom to facilitate the reaction.
The OSV-MP2 QM/MM MD simulation captures Criegee(H2O

�) intermediate state stabilized by an interfacial stabi-
lization energy (Figure 5b, with DLPNO-CCSD(T)/aug-cc-pVTZ energy model) due to Criegee–water electrostatic
attraction, for example, δE≈ �28 kcal/mol for anti-CH3CHOO estimated from one QM/MM MD trajectory at a short
Cc–Ow distance. δE is found to mainly arise from the interfacial stabilization of the anti-CH3CHOO–H2O

� electrostatic
interactions. As seen in Figure 5b, compared with the gas phase reaction, the interfacial stabilization energy of the tran-
sition state (TS) corresponding to d(Cc–Ow)= 1.9–2.0 Å is estimated to be �22 kcal/mol, much greater in magnitude
than the stabilization of �5 kcal/mol for the reactant state identified at d(Cc–Ow)= 2.5–2.6Å. This suggests that the
interfacial anti-CH3CHOO reaction with water becomes barrierless with an activation energy ETS,surface ¼ 0. By assum-
ing an activation energy of ETS,gas ¼ 7� 9 kcal/mol and ETS,gas ¼ 5� 6 kcal/mol for the gas phase anti-CH3CHOO reac-
tion with water monomer and dimer, respectively, we estimated an enhancement of the reaction rate coefficients by 5–
6 and 3–4 orders of magnitude for the barrierless anti-CH3CHOO/water reaction at the air-water interface at T¼ 300 K,
according to a simple rate model (e� ETS,surface�ETS,gasð Þ=kBT).

4.4 | Low-rank dCI effective Hamiltonian: Low-lying excited states

We finally turn to showcase the possibility of setting up dCI effective Hamiltonians for accurately computing correlated
molecular states that traditionally require a prohibitively long wavefunction expansion in the determinant basis. While
there is much room to improve the algorithmic efficiency for selecting important state-specific determinants, our dCI
assessment on low-lying states of several organic and Cu-ligand coordination compounds97 clearly reveals that the
molecular Hamiltonian is compressive and can be represented in compact dCI subspaces that are systematically tunable
toward chemical accuracy. These molecular excitation energies for various low-lying singlet and doublet states of differ-
ent character, shown in Table 5, agree to the reference DMRG-CI benchmark with deviation of 0.04–0.05 eV for which
the FCI expansion typically demands about 1013�1018 determinants with practical cc-pVTZ basis set. For achieving
chemical accuracy, the dCI recursive selection yields about NP= 650–2000 and NQ= 250,000–550,000 most important
determinants. These results clearly demonstrate the advantage of the dCI selection algorithm: despite of the broad scale
of FCI determinants across 5–6 orders of magnitude due to the diverse multireference character of these molecules, the
dimensions of the selected model and outer subspaces are drastically narrowed down to a range differing by less than a
factor of three among these molecules.

It is noted that the basis set impact leads to an increase of the dCI subspace dimensionality.97 For C2 molecule in
Table 5, by using the consistently augmented basis sets of cc-pVDZ, cc-pVTZ, and cc-pVQZ, the ground state energies
computed in a small NP = 2200 model subspace deviate from the DMRG-CI reference values by 0.08, 0.7, and 3.6 mau
with NQ = 64,000 outer determinants, respectively, and are reduced to 0.02, 0.09, and 0.8 mau with NQ = 400,000 outer
determinants, respectively. The increasing number of outer determinants necessary for reaching chemical accuracy is
however rather moderate, as compared with the blast increase of the FCI dimensions from 1:4�1011 for cc-pVDZ to
4:6�1018 for cc-pVTZ.

5 | CONCLUSION AND OUTLOOK

We have discussed the developments and results of various recent low-dimensional representations from large-scale
MP2 and CC to CI types of wavefunction. These methods make broad explorations in either single-reference or
multireference algorithms that attempt to automatically and systematically identify important wavefunction compo-
nents which dominantly contribute to electron correlations in a promising cost-accuracy balanced fashion. However,
Given the diverse correlation character of molecules, there is presently no single method that can be successfully
applied to treat all many-body problems. Although they differ from one another in the variety of wavefunction formula-
tions, implementation schemes and technical details, these approaches commonly feature a proper single-particle or
many-particle wavefunction transformation to rank the significance of electronic configurations replying on the
wavefunction sparsity or compressibility. It is important to point out that the transformation and ranking cause extra
operations bearing non-negligible costs that are not present in conventional correlated methods, and extensive efforts
have been made to reduce the ad-hoc impacts to the overall computational efficiency. In particular, for retrieving
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dynamic correlation from low-rank post-HF methods, a prior estimate of important wavefunction amplitudes from
single-particle objects is usually sufficiently accurate. However, an iterative augmentation of the sCI wavefunction is
normally necessary by selecting subclasses of configurations according to state-specific heuristic solutions, which is still
prone to an exponential scaling with the system size when exploring the configurational space.

The compressive design of correlated electronic structure methods offers exciting feasibilities to solve problems that
are traditionally difficult and controversial to generic DFT (with poor computational reliability) and post-HF (with poor
computational scalability) methods, which we briefly illustrate and discuss in this review. The weakly correlated ground
states can be now routinely handled by PNO- or OSV-based MP2 and CC methods for large molecules. In particular,
the low-rank MP2 analytical gradient theories offer an alternative to DFT for optimizing ab-initio structures of complex
molecule. For strongly correlated molecules, the variety of sCI implementations has been improved to afford highly
accurate computation of polyatomic molecules containing several non-hydrogen atoms, albeit consuming considerable
computational resources.

We have provided a snapshot of the current state-of-art in ML surrogate models for substituting explicit electronic
structure computations aiming for energy chemical accuracy. The low-rank technologies provide new idea for engineer-
ing electron-based transferrable and expressive feature sets, more than being used as toolkits for expediting correlated
many-body computation. An ongoing grand challenge, which is to reliably predict molecular energies of complex mole-
cules that are not well represented in ML training datasets, can be now clearly addressed when employing cheap low-
rank electronic descriptors that respect the electron correlated characters. We have demonstrated that accurate MP2
and CCSD correlation energies can be predicted by learning small molecules in small datasets. The data efficiency and
transferable learnability are validated across alkanes, organic molecules, biomolecular interactions, and water clusters
of various sizes and morphologies.

TABLE 5 Error comparison of low-lying excitation energies (jΔω j) between dCI and reference DMRG-CI (M¼ 4000) results with

respect to the numbers of complete (NFull), model (NP) and outer (NQ) determinants for organic and transition metal compounds.

Molecules Characters
Active
space NFull

NP

(�1000)
NQ

(�1000)
DMRG-
CI (eV)

dCI
(eV)

jΔω j
(eV)

6–31g

NH3 ! F2 Charge
transfer

(30o, 22e) 3:0�1015 0.91 400 9.26 9.31 0.05

N2 ! CH2 Charge
transfer

(28o, 16e) 9:7�1012 0.67 250 15.32 15.36 0.04

cc-pVTZ

C2H4 11Ag ! 21Ag (114o, 12e) 7:1�1018 1.22 550 13.07 13.02 0.05

C2 X1Σþ
g !B1Δg (60o, 12e) 3:4�1015 0.30 64 2.18 2.22 0.04

C3 11Σþ
g ! 11Δg (87o, 12e) 2:6�1017 0.95 450 5.22 5.18 0.05

HNO 11A0 ! 21A0 (72o, 12e) 2:4�1016 0.82 350 4.33 4.37 0.04

H2S S0 ! S1 (61o, 16e) 8:7�1018 1.14 500 6.95 6.91 0.04

HCHO S0 ! S1 (86o, 12e) 2:2�1017 0.98 450 4.15 4.21 0.05

def2-TZVP

[CuN6C20H18]
+ S0 ! S1 (30o, 30e) 2:4�1016 1.62 440 6.28 6.32 0.04

S0 ! S2 1.73 470 6.77 6.81 0.04

[CuN7C22H21]
2+ D0 !D1 (30o, 29e) 2:3�1016 1.45 440 5.19 5.24 0.05

D0 !D2 1.75 460 4.31 4.35 0.04

[CuN7C22H21]
3+ S0 ! S1 (30o, 30e) 2:4�1016 1.64 480 4.38 4.43 0.05

S0 ! S2 1.84 470 5.24 5.29 0.05

Note: All valence electrons are correlated in organic molecules. For [Cu(NHC)2(pyridine)2]
+ (x = 1, 2, 3) complexes of different Cu oxidation state, the active

space contains 30 molecular orbitals for 30 or 29 valence electrons for valency x¼ 1,3 and x¼ 2, respectively, with predominant atomic orbitals of Cu/3d, C/2p

and N/2p. The dCI energy is converged with 10�4 au with Pipek–Mezey localized orbitals. The source data is available in Ref. [97].
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There are several areas that need continued efforts to make improvements of these theoretical models. One impor-
tant issue is to make implementation progress on many graphical processing units (GPU) in light of the low-
dimensional data objects needed in low-rank post-HF computations are very suitable for efficient instruction on GPU
threads. Another pressing theme is to develop low-rank post-HF methods for evaluating the electronic and geometric
structures of periodic solids. The intersection of period low-rank correlated methods and transferable electronic ML
models is promising to offer new opportunities for analyzing the energy thermodynamic limit and tackling a range of
condensed matter phenomena with predictive power. One valuable observation is that practical low-rank correlation
computations show superiority in run-time efficiency to generic Hartree-Fock for medium and large molecules, the lat-
ter of which forms the next hurdle to remove. We expect that an efficient combination of the tunable low-rank correla-
tion method for more expressive feature extraction, better transferable low-data quantum ML model and the hybrid
CPU/GPU platform will be developed in the near future for simulating macromolecules and complex processes.
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173. Pavoševi'c F, Peng C, Pinski P, Riplinger C, Neese F, Valeev EF. SparseMaps—A systematic infrastructure for reduced scaling electronic
structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. J Chem Phys. 2017;146(17):
174108.

174. Saitow M, Becker U, Riplinger C, Valeev EF, Neese F. First UHF implementation of the incremental scheme for open-shell systems.
J Chem Phys. 2017;146(16):164105.

175. Helmich B, Hättig C. Local pair natural orbitals for excited states. J Chem Phys. 2011;135(21):214106.
176. Helmich B, Hättig C. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies. J Chem Phys.

2013;139(8):084114.
177. Frank MS, Hättig C. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response

theory. J Chem Phys. 2018;148(13):134102.
178. Peng C, Clement MC, Valeev EF. State-averaged pair natural orbitals for excited states: a route toward efficient equation of motion

coupled-cluster. J Chem Theory Comput. 2018;14(11):5597–607.
179. Demel O, Pittner J, Neese F. A local pair natural orbital-based multireference mukherjee's coupled cluster method. J Chem Theory

Comput. 2015;11(7):3104–14.
180. Brabec J, Lang J, Saitow M, Pittner J, Neese F, Demel O. Domain-based local pair natural orbital version of Mukherjee's state-specific

coupled cluster method. J Chem Theory Comput. 2018;14(3):1370–82.
181. Lang J, Brabec J, Saitow M, Pittner J, Neese F, Demel O. Perturbative triples correction to domain-based local pair natural orbital vari-

ants of Mukherjee's state specific coupled cluster method. Phys Chem Chem Phys. 2019;21:5022–38.
182. Guo Y, Sivalingam K, Valeev EF, Neese F. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods.

III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J Chem Phys. 2016;144(9):
094111.
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