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Topological classification for intersection
singularities of exceptional surfaces in pseudo-
Hermitian systems
Hongwei Jia 1,2,5✉, Ruo-Yang Zhang1,5, Jing Hu1, Yixin Xiao1, Shuang Zhang 3, Yifei Zhu 4✉ &

C. T. Chan 1✉

Non-Hermitian systems are known for their intriguing topological properties, which underpin

various exotic physical phenomena. Exceptional points, in particular, play a pivotal role in

fine-tuning these systems for optimal device functionality and material characteristics. These

points can give rise to exceptional surfaces with embedded lower-dimensional non-isolated

singularities. Here we introduce a topological classification for non-defective intersection

lines of exceptional surfaces, where exceptional surfaces intersect transversally. We achieve

this classification by constructing a quotient space of an order-parameter space under

equivalence relations of eigenstates. We unveil that the fundamental group of these gapless

structures is a non-Abelian group on three generators. This classification not only reveals a

unique form of non-Hermitian gapless phases featuring a chain of non-defective intersection

lines but also predicts the unexpected existence of topological edge states in one-

dimensional lattice models protected by the intersection singularities. Our classification

opens avenues for realizing robust topological phases.
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S ingularities are ubiquitous and play significant roles in
various physical systems in the real world, often accom-
panied by exotic physical phenomena1–13. For example, in

topological materials, a Weyl point in a Hermitian system acts as
a sink or source of the Berry curvature, and two Weyl points with
opposite chiralities are connected by a Fermi-arc surface
state1,2,9,11. The existence and stability of singularities can be
better understood via topology, and a singularity can be char-
acterized by a topological invariant, such as the Chern number.
This invariant is usually encoded in the adiabatic evolution of
eigenstates over closed loops or surfaces that enclose the singu-
larity point5–9,11. Recently, the topology of non-Hermitian sys-
tems has attracted growing attention14–25. As unique features of
non-Hermiticity, exceptional points are singular points on the
complex energy plane where both the eigenenergies and the
eigenstates coalesce14–19. They differ from the usual degeneracies
of Hermitian systems, such as Weyl points, Dirac points, and
nodal lines, in that they may carry fractional topological
invariants16,18,19,24,26 and can induce stable bulk Fermi-arcs22,24

and braiding of eigenvalues26. The non-Hermitian skin effect,
manifested by sensitivity of the eigen-spectrum to boundary
conditions, is associated with the point gaps in bulk
topology15–18,21,23,25. Recent discoveries of lines, rings, and sur-
faces of exceptional points have further enriched the classes of
topological degeneracies27–31. In particular, high-order excep-
tional degeneracies, which frequently appear as the cusps of
exceptional lines or surfaces, carry a hybrid type of topological
invariants in a high-dimensional parameter space32.

In the meantime, significant efforts have been devoted to clas-
sifying these exceptional points and related energy band structures.
Topological classifications are of particular importance, as they
enable predictions of degeneracies in the parameter space whenever
the type of energy gaps and the Altland–Zirnbauer symmetry class
of a system are known14,19,20,33–35. This provides a theoretical
framework for predicting non-Hermitian topological phases of
matter and for guiding their experimental realizations. In parti-
cular, exceptional points can assemble into hypersurfaces in a 3D
parameter space, called exceptional surfaces (ESs), which separate
exact and broken phases20. ESs are commonly observed in non-
Hermitian systems with parity–time inversion (PT) symmetry or
chiral symmetry20,27–29 and have broad applications in the design
of sensing and absorption devices31,36. As a subspace of the para-
meter space, ESs may possess embedded lower-dimensional sin-
gularities, which have remarkable properties differentiating them
from other points on the ESs. These so-called hypersurface sin-
gularities include intersections37, cusps38–40, and swallowtail
catastrophes41. They are symmetry protected and stable against
symmetry-preserving perturbations31,37–41. However, despite var-
ious important physical phenomena and potential applications,
these hypersurface singularities on ESs have never been topologi-
cally classified.

In this work, we provide a topological classification for a typical
hypersurface singularity in two-band models where exceptional
surfaces intersect transversally. We call it a non-defective inter-
section line (NIL) of the ESs. An NIL commonly appears in
generic non-Hermitian systems with PT-symmetry and an addi-
tional pseudo-Hermitian symmetry41. The band structures of
such systems feature a gapless configuration of ESs connected at
an embedded NIL. We analyze equivalence relations of eigen-
states, and discover that the quotient space of the order-
parameter space is homotopy equivalent to a bouquet of three
circles M ¼ S1 _ S1 _ S1. The topology of this NIL is thus char-
acterized by the fundamental group of M, which is a non-Abelian
free group on three generators. Essentially, we introduce inter-
section homotopy theory to classify such non-isolated singula-
rities, which is very different from the usual homotopy theory

addressing isolated singularities6,26,32–35,40. Our classification
systematically explains exotic physical effects arising from the
nontrivial topology of NILs, such as the formation and evolution
of a chain of NILs. In addition, our topological description pre-
dicts the stable edge states in one-dimensional lattice models
protected by a topological NIL, even though they are counter-
intuitive for gapless phases and go beyond conventional expla-
nations by Zak phase theory.

Results
Classification with fundamental group. The prototypical
Hamiltonian is a two-level system H that is PT-symmetric and
preserves an additional η-pseudo-Hermitian symmetry41–43:

H; PT½ � ¼ 0; ηHη�1 ¼ H ð1Þ
Here, the operator PT can be regarded as complex conjugation

with a suitable choice of basis in parameter space, and thus the
Hamiltonian can always be gauged to be real. The metric operator
η here takes the Minkowski metric η ¼ diagð�1; 1Þ13,41,44,45.
More details on pseudo-Hermiticity are provided in Supplemen-
tary Note 1. These symmetries imply that the k-space
Hamiltonian can be written in the form

H kð Þ ¼ f 2 kð Þiσ2 þ f 3 kð Þσ3 ð2Þ
where f2,3 are real-valued functions of three-dimensional (3D) k-
space, and σ2,3 are Pauli matrices. There is no term multiplied by
σ1 due to the above pseudo-Hermitian symmetry. Without loss of
generality, we may assume that the term multiplied by the
identity matrix vanishes as well, because it does not affect the
gapless structure. Such Hamiltonians correspond to physical
systems with nonreciprocal hopping of orbitals41,46–48.

In analogy with the Hermitian case6, the 2D f2,3-plane serves as
the order-parameter space of all Hamiltonians that preserve the
symmetries specified in Eq. (1). In particular, as f2,3 are real
functions on k-space, any exceptional surfaces (ESs) in the 3D k-
space correspond to exceptional lines (ELs) at f 2 ¼ ± f 3 on the
2D f2,3-plane. The ESs intersect transversally in lines (i.e. the
NILs) in the k-space, which in turn correspond to the intersecting
point (called a non-defective intersection point, or NIP) of the
ELs at the origin f 2 ¼ f 3 ¼ 0. Moreover, a path traced in the 3D
k-space maps to a path on the 2D f2,3-plane, and if the path loops
around an NIL in the k-space, the corresponding path in the f2,3-
plane encircles the NIP. Figure 1a shows the gapless structure of
the order-parameter space, with red and green lines representing
the ELs satisfying f 2 ¼ �f 3, respectively. Regions I and III
(satisfying jf 2j<jf 3j) support Hamiltonians with real eigenener-
gies and are referred to as PT-exact phases. On the other hand,
regions II and IV (jf 2j>jf 3j) are PT-broken phases, where the
eigenvalues come in complex-conjugate pairs. The paths α, α‘, β
and β‘ begin and terminate at the ELs, and they are located in
different regions (Fig. 1a). We aim to classify the NIP at the
origin, which is excluded from the plane20,49. First, the plane
punctured at the origin deformation retracts to a circle S1

(Fig. 1b). Such a mathematical process can be interpreted as a
quotient map, which identifies all points along each ray starting
from the origin (excluding the origin). This identification is based
on the equivalence relation that all points on the ray, namely the
Hamiltonians, have the same eigenstates ordered by eigenvalues.
Consequently, the upper and lower halves of EL1 shrink to
antipodal points A and A’, respectively, while those of EL2 to B
and B’. Moreover, there are two equivalence relations on the S1.
At point A, the two eigenstates coalesce, which coincides with the
coalesced eigenstates at point A’. Therefore, A and A’ should be
identified, and one can glue A’ to A via a quotient map. The same
procedure applies to B and B’. It is important to note that
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antipodal points located in the regions where eigenenergies are
gapped cannot be identified, because their eigenstates are reversely
ordered by the eigenenergies. Such a refined topological discrimi-
nation of the strata of the origin, the intersecting lines f 2 ¼ �f 3
and the plane is a distinguished feature of intersection homotopy
methods50–52. The intersection homotopy method, which is a
mathematical technique used to address hypersurface singularities,
differs significantly from the conventional homotopy method that
focuses on the topology of isolated singularities. In the conven-
tional homotopic loops, the intention is to avoid intersecting
singularities6,49, which inherently makes it incapable of dealing
with singularities that are entirely located on ESs (or ELs in 2D),
just like our case. When dealing with non-isolated singularities, the
parameter space becomes stratified (as described in Supplementary
Note 2), and the singular hypersurfaces ESs (or ELs in 2D) that
satisfy f 2 ¼ �f 3 form a subspace within the parameter space,
known as a stratum. Unlike conventional homotopic loops, the
intersection homotopic loops do not need to avoid intersecting this
stratum [although intersecting NIL (or NIP in 2D) should be
avoided because it is our classification target]. In this context, we
can define equivalence relations on ESs (or ELs in 2D). This follows
and adapts the mathematical notions originated from Goresky and
MacPherson’s work and further developed by Gajer50–52. Using the
above procedures, we obtain the quotient space of the S1 in Fig. 1b,
which is a bouquet of three circles (see Fig. 1c)

M ¼ S1 _ S1 _ S1 ð3Þ

The notion of quotient space has been widely applied in physics,
and the basic technique is gluing identified points within the
parameter space under well-defined equivalence relations. A
prominent example is the first Brillouin zone, which serves as a
quotient space. We know that the band dispersions are repetitive with
respect to Brillouin zones. Parameters with interspaces being
multiples of reciprocal lattice vectors can thus be identified.Moreover,
the first Brillouin zone can be further reduced to a quotient space,
such as a circle S1 (in 1D) or a torus S1×S1 (in 2D), by gluing together
points on the Brillouin zone boundary that share the same eigenvalues
and eigenstates. Furthermore, the concept of quotient space has been
utilized to classify isolated singularities6. More detailed mathematical
discussions on quotient spaces can be found in Supplementary
Note 2. The fundamental group of M can be calculated as

π1 ðMÞ ¼ Z*Z*Z ð4Þ
which is a free non-Abelian group on three generators. As shown in
Fig. 1c, the three generators Z1, Z2 and Z3 of the group can be given by

the concatenations of paths αβ, αα‘–1 and α‘β‘, respectively. These
topological invariants associate with the frame deformations of
eigenstates along these paths, which are explained in detail in
Supplementary Note 3.

To better understand how this group encodes physical
information, we now introduce loops (or concatenated paths)
in the order-parameter space that carry nontrivial or trivial
topological invariants. The concatenated paths characterizing the
generators Z1, Z2 and Z3 are shown in Fig. 2a–c, respectively,
where the dashed lines with arrow denote quotient maps that glue
identified points. We note that the gluing process does not mean
the loop passes through the NIP. Each of the concatenated paths
corresponds to an S1 in Fig. 1c, which are loops in the quotient
space M generating its fundamental group. In Fig. 2d, a loop in
the plane encircling the NIP is also a concatenation of paths
αβα‘β‘, which carries the topological invariant Z1Z3, an element in
the group [Eq. (4)]. Some other nontrivial loops are discussed in
Supplementary Note 4. Typical loops carrying the trivial
topological invariant are shown in Fig. 2e–g. The loop l does
not cut through any EL and is thus confined in a single region,
which is always trivial because it cannot enclose any singularity
(i.e. the excluded point, NIP). As we transport l upwards past one
of the ELs, the loop decomposes into two paths l1 and l2 (Fig. 2f).
As the endpoints of l1 (or l2) can be identified, l1 (or l2) becomes a
loop in the quotient space M. It is a trivial loop that can shrink to
a point without encountering the NIP. Therefore, the concatena-
tion l1l2 is also trivial. By further expanding l downwards to cut
through the other EL (see Fig. 2g), the loop becomes a product
l1l3l4l5. Since both l1 and l4 correspond to trivial loops in the
quotient space M, this product is equivalent to the concatenation
l3l5. In addition, paths l3 and l5 are along opposite directions and
are homotopic to α–1 and α, respectively. It is thus not difficult to
find out that the product l1l3l4l5 remains trivial. From the above
analysis, we conclude that continuous deformations of a loop (or
a path), even encountering ELs (or ESs for 3D), will not change
the topology. In contrast, encountering NIPs (or NILs for 3D) will
change the topology. Similar conclusions have also been drawn in
ref. 41. Importantly, as can be indicated from the above analysis, a
path joining ELs (or ESs) can provide a lot of information on the
NIP (see Supplementary Note 4 for adiabatic evolution of
eigenstates) even though it appears open in the parameter space,
which is substantially different from the situation with isolated
singularities. Therefore, if a loop is partitioned into several
segments by ELs (or ESs), it is necessary to investigate the
evolution of eigenstates along each path before discussing their
combined consequence.

Fig. 1 Construction of a quotient space under equivalence relations. a The gapless structure of the order-parameter space (i.e. f2,3 plane), where EL1 and
EL2 are exceptional lines satisfying f2 ¼ �f3, respectively. The nondefective intersection point (NIP) is at the origin where the ELs intersect, with
f2= f3= 0. Regions I and III are PT-exact phases (PT: parity-time inversion), and Regions II and IV are PT-broken phases. b The 2D plane excluding the NIP
can deformation retract to a circle S1, with the upper and lower parts of EL1 shrinking to A and A’, respectively, and with those of EL2 to B and B’. c Gluing
identified points A with A’, and B with B’, we obtain the quotient space of S1 in panel b as a bouquet of three circles.
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Chain of nondefective intersection lines. Next, based on our
topological descriptions, we aim to understand the formation of
chain-like structures composed of NILs and their evolution as the
Hamiltonian deforms. The chain of singular lines in parameter
space is a nontrivial phenomenon which has previously been
observed for nodal lines in PT-symmetric Hermitian systems6.
Here, we show that such an interesting joining phenomenon of
singular lines can also occur with NILs, for example,

f 2 kð Þ ¼ kxkz; f 3ðkÞ ¼ �k2x þ k2y þ k2z � d ð5Þ

The Hamiltonian exhibits a chain-like structure in k-space as
depicted in Fig. 3a(i): a circular NIL located on the plane kx= 0 is
chained to a pair of hyperbolic NILs located on the plane kz= 0 at
two intersecting points. All the NILs (satisfying the equations
f 2 ¼ f 3 ¼ 0) are contained in ESs, which are represented by the
red (ES1) and green (ES2) surfaces (satisfying f 2 ¼ �f 3,
respectively) corresponding to EL1 and EL2 in Fig. 1, respectively.
We begin by examining the loop l6, which encloses the waists of
the two ESs and their NILs, and which does not cut through any
of the ESs. According to our previous analysis, such a loop,
similar to l (Fig. 2e), is topologically trivial. This may not be
immediately apparent from the figure, as the ESs and NILs seem
to prevent the loop from retracting to a point. However, by
changing d from positive to negative, the waists of the ESs first
gradually retract to a point [Fig. 3a(ii)] and then open up to form
a gap [Fig. 3a(iii)]. The two hyperbolic NILs enclosed by the loop
in Fig. 3a(i) thus annihilate each other, consistent with the
topological triviality of l6. Moreover, the trivial loop l6 enforces
the ESs containing the two NILs to remain smooth as the
Hamiltonian deforms. This can be explained by l06 [Fig. 3a(i)],
which is homotopic to l6, as they enclose the same NILs, but l06
traverses the ESs. On its plane of cross section, as sketched in
Fig. 3b(i), l06 is segmented by the ESs into several paths, where the

red and green lines denote the traces of ES1 and ES2 on that plane.
The topological invariants of the segments along l06 must cancel
each other to form a trivial product, which implies that each path
lt, connecting points of a single ES without cutting through the
other ES, must carry a trivial topological invariant. This agrees
with our previous analysis of l1, l2 and l4 in Fig. 2. As one
continues to deform the Hamiltonian (d < 0), the two ESs
enclosed gradually become disjoint once the two NILs annihilate
[see panels (ii) and (iii) of Fig. 3a–b]. Moving on to the loop l7 in
Fig. 3a(i), we see that it is segmented by the ESs into various
paths, as depicted in Fig. 3c(i). This loop can be represented as a
concatenation of paths (β–1α–1β‘ –1α‘ –1)2, carrying a nontrivial
squared topological invariant (Z1–1Z3–1)2. This invariant prevents
the two encircled circular NILs from annihilating each other as d
varies in the Hamiltonian [Eq. (5)]. The two NILs merge to a
point when d= 0 [Fig. 3a(ii)], dividing the nearby area into eight
regions [see Fig. 3c(ii)]. Since the loop is still the product
(β–1α–1β‘ –1α‘ –1)2, its topological invariant does not change and
remains to be squared (Z1–1Z3–1)2. As d varies further, the point
splits, and the two NILs become separate in opposite directions,
as shown in panel (iii) of Fig. 3a, c. Thus, the squared invariant
(Z1–1Z3–1)2 is conserved throughout the deformation of this
Hamiltonian. The conservation of the squared invariant
(Z1

–1Z3–1)2 on l7 and the trivial invariant on l6 (or l06) is a
necessary condition for the chain of NILs. To observe the chain-
like structure of NILs, we can design 3D periodic systems with
nonreciprocal hopping between orbitals. The nonreciprocal
hopping between orbitals has already been realized in phononic
systems and electric circuits with the employment of active
devices41,52. A design of a 3D face-centered cubic (fcc) lattice
model, as well as the hopping parameters between orbitals,
are shown in Supplementary Note 5. We note that the chain-like
structure of NILs is protected by the mirror symmetries kx ↦ –kx
and kz ↦ –kz, and breaking the symmetries will eliminates such a

Fig. 2 Typical loops carrying nontrivial or trivial topological invariants. a–c Loops carrying nontrivial topological invariants Z1, Z2 and Z3, respectively,
which are the generators of the group [Eq. (4)]. The dashed lines with arrow denote quotient maps, i.e., gluing of identified points. d The loop formed by
the concatenation αβα‘β‘ encloses the NIP (NIP: nondefective intersection point), which carries the topological invariant Z1Z3. Point A’ in panels a–d denotes
the basepoint. e–g Evolution of a loop carrying trivial topological charge. e A loop without touching ELs (EL: exceptional line) is confined within a specific
region and is trivial. fMoving the loop l in panel e upwards along the black arrow direction, we see that it becomes a product of paths l1 and l2. Both l1 and l2
are trivial loops in the quotient spaceM, and thus the loop as their product is also trivial. g Stretching the loop along the black arrow direction in panel f, we
obtain that the loop crosses EL1 and becomes a product l1l3l4l5 of paths. The path l4, similar to l1 and l2, corresponds to a trivial loop in the quotient spaceM.
The paths l5 and l3 are oriented in opposite directions (labeled by the arrows) and are homotopic to α and α−1, respectively (Fig. 1a). The path product
l1l3l4l5 is thus trivial.
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structure. These physical consequences can all be observed based
on the design in Supplementary Note 5. The invariant
conservation shows that two inannihilable NILs cannot be
directly connected by smooth ESs, as one observes in Fig. 3c.

Topologically protected edge states. Finally, we demonstrate
that an NIL (or NIP) can host topologically protected edge states,
which represents a type of bulk–edge correspondence that
appears in a gapless non-Hermitian system. This concept may
seem counterintuitive, as bulk–edge correspondence is typically
discussed in gapped phases8,11. Specifically, let us consider the
following 1D k-space Hamiltonian corresponding to a lattice
model,

HðkÞ ¼ σ3 cos kþ iσ2 sin kþ vσ0 cosðkþ aÞ ð6Þ
where σ0 is the 2×2 identity matrix. The Hamiltonian includes a
term proportional to σ0, which is useful in tuning gaps in pro-
jection bands to identify edge states. As can be commonly
understood, introducing the identity term does not change the
topology of the system and, in particular, the degeneracy features
remain. Comparing Eq. (6) to Eq. (1), with k-space represented
by a 1D momentum k, we obtain the following correspondence:
f3(k)= cos k and f2(k)= sin k. The path traced out by (f2(k), f3(k))
goes around the NIP as shown in Fig. 4a, and we can see that the

1D Brillouin zone of the lattice model carries the topological
invariant Z1Z3 (see Fig. 2d). Such a Hamiltonian can be experi-
mentally realized by the 1D tight-binding lattice as shown in
Fig. 4b. To observe the topological edge states, we need to con-
sider the band structure and topology of the systems with open
boundary condition (OBC) and periodic boundary condition
(PBC), respectively. The schematic sample with finite number of
unit cells under PBC is shown in Fig. 4b(i), in which the terminal
unit cells are connected via the hoppings. The sample under OBC
is shown in Fig. 4b(ii), where the terminal unit cells are dis-
connected. The corresponding real-space Hamiltonian is

Hr ¼
1
2
ðσ3 þ σ2 þ veiaσ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

t1

∑
j
cyj cjþ1

þ 1
2
ðσ3 � σ2 þ ve�iaσ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

t2

∑
j
cyj cj�1

ð7Þ

where j denotes unit cell index. The hopping of orbitals is
described by two 2 × 2 hopping matrices t̂1 and t̂2, whose entries
represent the hopping parameters between lattice sites, as shown
in Fig. 4c. The hopping matrices satisfy the relation t̂

�
1 ¼ t̂2. As

can be seen from Eq. (7), the intercell hoppings between adjacent

Fig. 3 Explaining the formation of the chain of nondefective intersection lines (NILs) in k-space and its evolution against perturbations with the
fundamental group. a Exceptional surfaces (ES: red and green surfaces) and NILs (black lines) plotted from Eq. (5). The blue loops l6 and l06 have trivial
topological invariants. b Cross sections on the plane containing l06. The enclosed pair of NILs can annihilate each other. Each lt is a path with its
endpoints on the same ES without cutting through the other ES. Similar to l1, l2 and l4 in Fig. 2, lt carries a trivial topological invariant (the subscript t
stands for “trivial”). c Cross sections on the plane containing the orange loop l7. The NILs enclosed cannot annihilate each other. Red and green lines:
ESs; Dark blue dots: NILs; Black dots: intersecting points of loops with ESs (in b and c). The panels (i), (ii) and (iii) correspond to d > 0, d= 0 and d < 0
in Eq. (5), respectively.
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unit cells are non-Hermitian and nonreciprocal, meaning that the

two directional hopping matrices t̂1≠t̂
y
2. Rather, they have entries

that are negatively conjugate to each other t121 ¼ �ðt212 Þ� and
t211 ¼ �ðt122 Þ�. Such tight-binding models can potentially be rea-
lized by electric circuits and phononic lattices incorporating
active devices41,53. As the 1D Brillouin zone inevitably cuts
through the ELs four times, the band structure undergoes line-
gap closing four times, as shown in Fig. 4d. Clearly, the con-
ventional Zak phase, which is commonly used for explaining edge
states in gapped 1D systems, cannot be defined in this 1D Bril-
louin zone. Nevertheless, the two eigenstates experience frame
deformation process along each path, evolving from parallel states
to antiparallel states (Supplementary Fig. S3b2 in Supplementary
Information). This process shows that the relative rotation angle
between the two eigenstates is π, which equals an integral

ψ ¼
I

lα

i φj∇kφ
� �

dk ð8Þ

The loop lα of the integration [Eq. (8)] is shown in Fig. 4e and
connects the trajectories of the two eigenvalues along the path α
at the ELs. In this context, the loop lα is in the 3D Re(E)-f2-f3
space. Moreover, Eq. (8) represents the conventional Berry phase,
which is related to the frame deformation along α. Along the path
α‘, the two eigenstates swap in comparison to α, resulting in a
relative rotation angle of –π. This means that the Berry phase
along the loop lα‘ given by Eq. (8) is –π (see Fig. 4d). Additionally,
the identity term in the Hamiltonian [Eq. (6)] creates a real line
gap between the eigenenergies on α and α‘ in the projection band.

As a result, if we truncate the 1D system with open boundaries,
there will be a pair of edge modes residing in this line gap, as
shown in Fig. 4f, where the black and red dots represent the
projection bands under OBC and PBC. In broken phases, the
eigenenergies form point gaps in the projection band, which lead
to the non-Hermitian skin effect as indicated by black dots in the
continuum in Fig. 4f. It is shown that the eigenvalues of the skin
modes form arcs locate inside the loop of the eigenmodes under
PBC on the complex plane. The edge states are separate from any
bulk modes and skin modes in the continuum, making them
easily distinguishable. The field distribution (amplitude |φ|) of
one edge mode is shown in Fig. 4g, where clearly the field is
confined at the left edge of the 1D chain (inset).

Conclusion. We have topologically classified a generic non-
Hermitian two-level system possessing PT-symmetry and an
additional pseudo-Hermitian symmetry which may arise in lattice
systems with nonreciprocal hopping41,46–48. These systems fea-
ture surfaces of exceptional points that host stable embedded
intersection singularities in momentum space. Our study
demonstrates that the topology of this gapless structure can be
understood by examining the quotient space under equivalence
relations of eigenstates, which turns out to be a bouquet of three
circles. The fundamental group of this space is isomorphic to a
free non-Abelian group on three generators. This classification
enables us to predict the formation and evolution of chain-like
structures of NILs as the Hamiltonian deforms, based on the
conservation of topological invariants. Our work further leads to
prediction for the existence of topologically protected edge states
in 1D lattice models, which is a remarkable and counterintuitive

Fig. 4 Topologically protected edge states by the invariant Z1Z3. a A loop circulating the nondefective intersection point (NIP), as the Brillouin zone of
the 1D lattice model in Eq. (6), is partitioned into four paths, with α and α‘ residing in exact phases. b Sample designs of the lattice model under
periodic boundary condition [PBC: panel (i), terminal unit cells are connected with hoppings] and open boundary condition [OBC: panel (ii), terminal
unit cells are disconnected]. Here the black circles denote unit cells and the green bonds denote the hopping matrices connecting adjacent unit cells.
The dashed blocks encircle two unit cells, and the structure inside the block is shown in panel c. c Realization of the lattice model. The dashed block
shows the internal structure of unit cells and the hoppings (labeled in panel b with dashed blocks). The hopping parameters t111;2, t

12
1;2, t

21
1;2 and t221;2 are the

entries of the hopping matrices t̂1 or t̂2 in Eq. (7). d Eigenvalue dispersions (real part) of the model of Eq. (7) in the 1D Brillouin zone. Since the Brillouin
zone cuts through exceptional lines (ELs) four times, the band structure experience gap closing four times. e Joining the trajectories of two bands on
the path α forms a loop in Re(E)-f2-f3 space lα, along which the Berry phase is π. This quantized Berry phase is equal to the relative rotation angle
between the two eigenstates resulting from frame deformation along α. For the path α‘, joining the two bands forms the loop lα‘, along which the Berry
phase is –π. This is because from α to α‘ the two eigenstates swap due to band inversion at NIP. The relative rotation angle between the eigenstates
changes sign. f Plots of projection bands of the 1D lattice model under open boundary condition (OBC, black dots) and periodic boundary condition
(PBC, red dots). There exists a pair of edge modes in the line gap for eigenstates along the loops lα and lα‘ in panel e. g Field distribution of one edge
mode. The lattice model with OBC has 300 periods (600 lattice sites, denoted by Ns). Inset: zoom-in view showing the field distribution near the
left edge.
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phenomenon for such gapless phases, going beyond the con-
ventional Zak phase understanding. The methods of quotient
space topology and intersection homotopy theory might poten-
tially be extended to systematically classify other hypersurface
singularities in non-Hermitian systems, such as high-order
exceptional points as cusps32,40 and more complicated swallow-
tail catastrophes41. Our work also proposed a kind of non-
Hermitian gapless topological phase of matter, providing
pathways for designing systems to realize robust topological non-
defective degeneracies in non-Hermitian systems.

Data availability
All data in the main text and supplementary information are available upon reasonable
request from the corresponding authors.
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