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A B S T R A C T   

Predicting infrequent and extreme wind speeds in a built environment is essential for ensuring comfortable and 
safe pedestrian spaces. Recent studies have employed statistical methods that assume a distribution function for 
wind speeds at pedestrian levels. Fundamental studies on the relationship between canopy flow and statistics are 
required to further develop statistical models. Therefore, this study aimed to understand the characteristics of 
strong and weak wind events within a simplified urban canopy and to scrutinize the relationship between high- 
order moments and extreme wind events. Particle image velocimetry (PIV) was employed to capture the ve-
locities within a canopy consisting of cubes arranged in a staggered layout with a packing density of 25 %. The 
probability density functions (PDFs) of the velocity components classified by the mean flow patterns revealed 
that the PDF shapes were altered by the reverse and spanwise flows. In addition, strong correlations were verified 
between the gust or peak factor (PF) and high-order moments such as skewness, kurtosis, fifth-order, and sixth- 
order moments. Accordingly, the PF of the velocity components and wind speed were compared with the pre-
dictions by statistical methods based on the Weibull and Gram–Charlier series (GCS). These observations validate 
the previous statistical methods based on Weibull or GCS distributions. Although the physical interpretation of 
these statistics is ambiguous, the present analyses indicate that PF can be predicted by high-order moments, 
especially in particular, by skewness and kurtosis.   

1. Introduction 

An accurate prediction and suitable evaluation of pedestrian-level 
wind have been research targets for safe and comfortable environ-
ments within urban spaces. The rare and strong wind speeds caused by 
high-rise buildings have been the main interest of studies pursuing a safe 
outdoor environment [1]. Meanwhile, weak wind speeds have also been 
studied as a key factor for heat and pollutant accumulation within urban 
areas to evaluate the urban ventilation performance [2,3]. For both the 
research scopes, the urban morphology is the most influential factor for 
pedestrian-level winds because of the complexity of urban geometries, 
which mainly comprise various buildings. 

With regard to the relationship between urban geometries and mean 
wind speeds for an effective and straightforward evaluation of urban 
ventilation performance, studies in recent decades have attained a 
consensus on the effect of urban geometry. That is, pedestrian-level 

wind speeds monotonically decrease with the building density (e.g. 
Refs. [4–7]). However, high-rise buildings can introduce fresh air into 
the pedestrian level, thereby increasing the pedestrian-level wind speeds 
[4,5]. Although further studies refined the concept with regard to how 
precisely various urban geometries can affect the pedestrian-level wind 
[8], how the mean wind speed can be formulated using geometrical 
parameters [7–9], and what physical quantities could be suitable for 
evaluating urban ventilation [10], the fundamental aspects of the 
geometrical effect on the mean pedestrian-level winds are well 
understood. 

In contrast, the effects of geometry on low-occurrence wind speeds 
have not been understood clearly. Therefore, recent studies emphasized 
the importance of the stochastic characteristic of turbulent flows at the 
pedestrian level using computational fluid dynamics (CFD) based on 
unsteady simulations. For example, Ikegaya et al. [11,12] performed 
large-eddy simulations (LESs) of airflow around an isolated building and 
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block arrays to determine the probability density functions (PDFs) of the 
velocity components and wind speed. They demonstrated that the 
extremely strong wind speeds, represented by percentiles, are approxi-
mately proportional to the mean wind speeds. In addition, the occur-
rence frequencies of extremely low wind speeds monotonically decrease 
with the mean wind speeds and building packing density. Although 
these are qualitatively anticipated results, employing probabilistic in-
formation was introduced as a new approach to evaluating 
pedestrian-level winds. Kawaminami et al. [13] expanded their study to 
correlate the PDFs between wind speeds and scalar concentrations. They 
demonstrated that extreme scalar concentrations decrease with an in-
crease in the mean and strong wind speeds. The results support the 
concept of urban ventilation enhancement by increasing the 
pedestrian-level winds in terms of extreme and mean concentrations. 
Hertwig et al. [14] conducted LESs for realistic buildings in Germany. 
They proposed a numerical validation procedure for turbulent flow 
structures around building arrays by comparing data obtained from 
wind-tunnel experiments (WTEs). Moreover, they validated the use of 
LESs to reproduce PDFs, power spectral densities (PSDs), and extreme 
wind events based on quadrant analysis. In addition, they demonstrated 
that the PDFs in certain measurement locations became more leptokurtic 
in both CFDs and WTEs because of the effects of buildings. 

In addition, WTEs were employed to scrutinize the stochastic char-
acteristic of the turbulent flow around buildings for pedestrian-level 
wind evaluation. For example, Tominaga and Shirzadi [15,16] quanti-
fied the effects of a high-rise building on the pedestrian-level wind in the 
canopy of a generic block array. The studies demonstrated that the PDFs 
were altered by the presence of a high-rise building. It is noteworthy that 
the high-rise building mostly reduced the streamwise velocity compo-
nent, whereas it increased the spanwise velocity component. This 
occurred probably because of the strong downwash flow along the 
high-rise building. In addition, they determined the regression curve of 
the gust factor (GF) as a function of the mean wind speed. H’ng et al. 
[17] also reported the PDFs near the canopy height of realistic buildings 
on an urban campus in Malaysia. They demonstrated that the shapes of 
the PDFs could be classified by the mean wind speed. Accordingly, 
Hirose et al. [18] conducted WTEs using particle image velocimetry 
(PIV) to quantify the instantaneous velocity distribution within the 
canopy layer of a generic block array by developing a laser-camera 
system to insert a laser sheet within the canopy surrounded by blocks. 
This demonstrated that the GFs and peak factors (PFs) have spatial 
distributions within the canopy because of the surrounding buildings. 
Tolias et al. [19] showed that a complex building morphology causes the 
PDFs of the velocity components within a street canyon being a bi-modal 
shapes using WTE and LES. To summarize, these studies emphasized the 
importance of considering the stochastic characteristic of 
pedestrian-level wind s for a better prediction of the wind environment 
within urban areas. 

To incorporate the statistical characteristic of the turbulent flows 
within urban areas, recent studies focused on developing stochastic 
prediction methods for low-occurrence wind speeds. Efthimiou et al. 
[20] proposed a statistical model for predicting extreme values based on 
the beta distribution of datasets from WTE, CFD, and field measure-
ments. The statistical model can predict extreme values using a few 
statistics such as the mean, turbulence intensity, and integral time scale. 
Wang and Okaze [21,22] recently proposed a prediction method for 
percentile wind speeds assuming a Weibull distribution for the wind 
speeds around an isolated block and generic block array. They effec-
tively adopted the mathematical characteristic of the Weibull distribu-
tion, in which the coefficient of variation, skewness sk, GF, and PF are 
determined only by the shape parameter in the Weibull distribution. 
Hence, statistical models were formulated to predict the GF from the 
coefficient of variation, and the PF from sk. The results showed that the 
statistical model using sk could estimate low-occurrence wind speeds of 
the top 0.1 % of occurrence frequency. The deviation from the values 
determined by the LESs was less than 10 %. Accordingly, Wang et al. 

[23] and Seta et al. [24] employed a modified Gaussian distribution to 
describe the PDFs of velocity components and wind speeds around an 
isolated block and block arrays. The modified model was derived based 
on the Gram–Charlier series (GCS) of the Gaussian distribution. It em-
ploys the orthogonal decomposition of the PDFs using the derivatives of 
the Gaussian function as the basis (e.g. Ref. [25]). The coefficients in the 
series expansion are described by the high-order moments of the ve-
locity components or wind speeds. Because the GCS model is expressed 
by a series expansion of an infinite basis, Wang et al. [23] and Seta et al. 
[24] quantified the prediction accuracy of the extreme values of the 
velocity components and wind speeds using second-to sixth-order GCS 
models. Wang et al. [26] expanded their previous study by comparing 
statistical models using the Weibull distribution and GCS models. They 
demonstrated that the statistical model based on the Weibull distribu-
tion can predict the percentiles with the highest accuracy, although 
higher-order GCS models can generally improve the prediction accuracy 
notwithstanding extreme outliers. Zainol et al. [27] extended the 
application of the GCS model to an ideal approaching flow generated by 
a barrier and spires in a wind tunnel to demonstrate that the model can 
describe the characteristic PDFs of a turbulent approaching flow. 
Although these statistical models cannot be applied for bi-modal PDFs, 
which were also observed in complex building canyons as reported by 
Tolias et al. [19], these studies enhance the importance of development 
of the statistical model for the extreme wind speed. 

Although the statistical characteristic of pedestrian-level winds has 
been studied recently, there are still remaining questions to establish 
prediction procedure of the low-occurrence wind speeds at a pedestrian 
height. First, most previous studies have been based on CFD datasets 
because of the limited number of WTE datasets within canopy layers and 
around buildings. Accordingly, statistical models have been developed 
based on these CFD-based analyses. Although the validity of recent high- 
resolution LESs is sufficient, the validation of such unsteady simulations 
is still based on fundamental statistics such as the mean and standard 
deviations of the velocity components. Therefore, it is required to verify 
the relationship between the GF, PF, and other statistics observed in 
previous numerical studies [21–24, 26] to understand the characteristics 
of the infrequent wind within the canopy layer and generalize the val-
idity of the statistical methods. Second, it is required to highlight the 
importance of WTE datasets and introduce a good practice of using 
instantaneous experimental datasets. Recently, Hirose et al. [18] pro-
posed a novel approach to capture the velocity fields within the canopy 
of a simplified block array using PIV by following the similar setups to 
those of Ikegaya et al. [28]. They successfully demonstrated the 
instantaneous characteristics of canopy airflow and the spatial distri-
butions of the GF and PF. Beyond the validations of the CFD using WTE 
datasets, it is demanded how we can employ the temporally and 
spatially high-resolution experimental data for understand the strong 
wind speed phenomena within the canopy layer. 

This study aims to understand the characteristics of strong wind 
events within a canopy layer, clarify how strong wind speeds are 
determined, understand the spatial distribution of statistics, and scru-
tinize the relationship between high-order statistics and infrequent 
strong/weak winds. Based on these analyses, this study contributes to 
the generalization of prediction methods for strong wind speeds and 
substantiates the applicability of previous practical models such as the 
GCS and Weibull models to determine why these models can predict 
strong wind speeds. Section 2 describes the experimental methodology. 
In Sections 3 and 4, the results of various turbulence statistics and their 
relationships are discussed. Finally, Section 5 concludes the study. 

2. Methodology 

2.1. Wind tunnel experiment 

The measurements were conducted in a closed-circuit wind tunnel 
located in the laboratory of the Interdisciplinary Graduate School of 
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Engineering Sciences, Kyushu University, Japan [28,29]. 
The test-section size of the wind tunnel facility has a length, width, 

and height of 5 m, 1.5 m, and 1.0 m, respectively. The velocity com-
ponents along the streamwise x-, spanwise y-, and vertical z-directions 
are denoted as u, v, and w, respectively. Solid cubes with a side length of 
0.1 m (= H) were arranged in 33 and 14 rows with a staggered distri-
bution in the streamwise and spanwise directions, respectively (Fig. 1 (a, 
b)). A 27H fetch length was reserved upstream to develop a sufficient 
turbulence. The packing density of the cubes was 25 %. The target areas 
surrounded by cube as shown in Fig. 1. (c) and (d) were located at the 
center of the spanwise direction and 27H downstream from the edge of 
the upstream fetch area. The target area included three continuous 
horizontal square regions with a side length of 0.1 m at a particular 
elevation. The three zones along the flow direction were denoted as A1, 
A2, and A3. Three elevations, 0.1H, 0.25H, and 0.5H, were selected to 
investigate the flow characteristics within the urban canopy. A particle 
image velocimetry (PIV) system consisting of a high-speed camera and 
laser device was placed under the wind tunnel to measure the wind field 
of the target area. Two trials were performed for each measurement 
area. 

The reference wind speed uref at z= 5H was measured using a static 
pitot tube during the PIV measurements. In 24 trials, the average 
reference wind speed was 5.45 m/s with a variation coefficient of 4 %. 
Consequently, the Reynolds number at the building height (ReH =

uref H/ν) was approximately 3.6 × 104 (ν= 1.5×10− 5 m2/s), and the 
order of the roughness Reynolds number (Re∗ = u∗z0/ν) was 102 (The 
friction velocity is approximately 0.31 [m/s] based on the drag coeffi-
cient in Ikegaya et al. [28], and zo is approximated as 0.1H). This indi-
cated that the wind field was independent of the Reynolds number above 
and within the canopy layer [2,30]. The boundary layer depth based on 
the 99 % thickness is approximately δ= 4H. Fig. 2 shows the vertical 
profiles of the mean wind speed and standard deviation measured by a 
I-type hot-wire anemometer adopted from Hirose et al. [18]. Although 
the boundary layer depth is shallow because the fetch length is only 55H 
to keep the sufficient space for the measurement areas. Since our interest 
is the turbulent features within the canopy layer, the important aspect is 
whether the flow near the canopy elements holds the turbulence 
generated by the cubical roughness. Ikegaya et al. [28] employed the 
similar block arrays with a fetch with a 50H length and reported the 

turbulent statistics measured by a X-type hot wire. According to their 
data, the ratios between the standard deviation for streamwise and 
vertical directions, σu, σw, and the friction velocity, u∗, were σu/u∗ ∼ 1.9, 
σw/u∗ ∼ 1.4, and σu/σw ∼ 1.3. These values are consistent with those of 
the near-canopy height reported in previous studies [31]. 

Owing to the technical difficulties of camera installation and effec-
tive introduction of a laser sheet on the target plane, the conventional 
PIV system is not fully applicable for measuring the flow field within a 
canopy layer in wind tunnel experiments. To address this problem, a 
laser-camera system was designed to capture the velocity field within 
the canopy layer. A detailed scheme of the newly designed laser-camera 
system has been described [18,28]. In the wind tunnel, the PIV system 
was arranged appropriately to obtain the flow fields within the 
urban-like array (Fig. 1 (e)). 

Fig. 1. (a) Schematics of the block array arrangement, (b) photo of the block array, and schematics of (c) the block arrangement, (d) measurement areas, and (e) 
laser-optics and camera system for the canopy flow measurements (Reprinted from Hirose et al. [18]). 

Fig. 2. Vertical profiles of (a) mean wind speed and (b) standard deviation 
measured by a hot-wire anemometer. The vertical axis is normalized by the 
boundary layer height δ= 4H based on the 99 % thickness. The data were 
adopted from Hirose et al. (2022) [18] and modified. 
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2.2. PIV setting and data acquisition 

During the experiment, images with particle reflection were 
captured in each 0.1 × 0.1 m2 target area at a resolution of 1024× 1024 
pixels. This resulted in an image resolution of 0.099 − 0.11 mm/pixel. A 
high-speed camera was used with a frame rate of 2000 fps and an 
exposure period of 500 μs. The acquisition duration for the single trials 
A1, A2, and A3 was 10 s. Two trials for each area were conducted. 
Hence, a total of 20 s period sampling was obtained for each area at each 
elevation. This provided sufficient samples to ensure the accuracy of 
statistics. 

The images were analyzed using commercial software (Koncerto II, 
Seika Digital Image Corp.) based on fast Fourier transform cross- 
correlation. A multigrid interrogation algorithm was adopted to 
analyze the images. The interrogation size ranged from 96× 96 to 32×
32 pixels. The final interrogation size was denoted as M= 32. A Gaussian 
distribution function was used to interpolate the subpixels for velocity 
determination. The output grid resolution was set to 16 pixels (1.6–1.7 
mm) by the final 50%-overlapped interrogation window. The velocity 
data were obtained by calculating the correlations between two images 
captured at intervals of 5.0 × 10− 4 s. Considering that the streamwise 
velocity within the canopy layer at z= 0.5H was approximately 1.25 m/ 
s, the average movement distance of seeding particles within the canopy 
layer was estimated to be 5.9–6.3 pixels. This satisfied the technical 
limitations of PIV data analysis wherein the average movement distance 
of seeding particles n should be less than M/2. 

After obtaining the time-series data with a sampling frequency of 
2000 Hz, the power spectral densities at various locations in the three 
measurement areas were determined. We employed a continuous-wave 
laser. The intervals between images were controlled using a high-speed 
camera. Therefore, the effective sampling frequency is approximately n/
M of the frame rate. In addition, the power spectral density showed that 
the energy increased in the high-frequency regions, which cannot occur 
physically owing to noise. Therefore, a low-pass filter of 250 Hz was 
used to preprocess the data and eliminate high-frequency noise. 

3. Statistics 

3.1. Spatial distributions of turbulent statistics 

To understand the qualitative relationship among the various tur-
bulent statistics within the canopy layer, we determined the spatial 
distributions of various statistics of the horizontal wind speed va defined 
as va =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
. 

The temporal average, deviation, and percentile wind speeds va, v′
a, 

and vaP are defined as follows: 

va =
1
T

∫

T

va(t)dt=
∫∞

− ∞

p(va)vadva (3.1)  

v′
a = va − va (3.2)  

P=

∫vaP

− ∞

p(va)dva (3.3)  

where T is the sampling period of each trial. p and P are the PDF and 
CDF, respectively, of va. The integral time scale τ is defined by the in-
tegrated area of the auto correlation function R(τ) = v′

a(t)v′
a(t + τ)/σ2

va 

between 0 and τ0.1 as 

τ ≅

∫τ0.1

0

R(t)dτ (3.4)  

Here, τ0.1 is the time when R crosses 0.1. The PF and GF are defined as 
follows: 

GPP% =
vaP

va
(3.5)  

PFP% =
vaP − va

σva

(3.6)  

where σva is the standard deviation of va. 
Fig. 3 shows the temporally averaged wind speed va, τ, and gust and 

peak factors GF99.9% and PF99.9% defined by the 99.9th percentile va99.9% 
at z/H= 0.5 for the three units (A1, A2, and A3). These quantities were 
defined based on a dataset during T= 10 s, and the ensemble average of 
the two trials was calculated. The integral timescale was normalized 
using the timescale defined as H/uref , which represents the mean passing 
period over a block. In Fig. 3, the white regions indicate the areas where 
the velocity fields were not determined owing to measurement limita-
tions. Although the distributions of GF and PF were discussed by Hirose 
et al. [18] at the three heights of 0.1H, 0.25H, and 0.5H based on the 
same dataset, we present the reanalyzed data of the GF and PF to explore 
the relationships among the other statistical values, GP, and PF. 

As shown in Fig. 3 (a), the mean wind speed magnitudes and vectors 
show weak wind speed areas in A1 and A3 owing to the wake flow of the 
upstream block and the reverse flow in front of the block. In contrast, the 
flow contraction caused a significant acceleration of the wind in A2. 
These flow patterns are consistent with those reported in previous nu-
merical simulations (e.g. Refs. [6,32–35]). With regard to the GF dis-
tribution, the regions where the GF diminishes corresponds to those 
where va speeds up. Although the trend of PF was less evident than that 
of GF, a similar negative correlation between va and PF was observed. 
The tendency of GF and PF to be negatively correlated with the mean 
wind speed is consistent with previous studies based on CFD [11] and 
WTE [17,18]. 

The spatial distributions of τ have not been discussed, particularly 
that at a height within an urban canopy. Interestingly, Fig. 3 (b) shows 
that τ has clear spatial distributions affected by the surrounding blocks. 
In the areas within the wake (A1) and in front of a block (A3), τ is 
apparently smaller probably because of the weak turbulence. In addi-
tion, τ in the strong wind speed regions in A2 is small. This is a plausible 
trend because a strong advection is likely to cause a rapid reduction in 
autocorrelation with respect to time. However, the trend is less apparent 
because the τ in the strong wind region in A1 (e.g., 0.5 < x/H< 1.0 and 
0 < y/H< 0.3) exhibits the largest values within the canopy. This result 
implies that τ, which is determined by the auto correlation function, is 
affected by both advective wind speed and turbulent eddy scale of the 
flow introduced into the canopy. According to the qualitative observa-
tion of the turbulent statistics, the relationship between τ, GF, and PF is 
ambiguous (the correlation between the peak and the integral time scale 
is quantified in the latter section) in terms of the spatial distributions. 

Further statistics are shown in Fig. 3. The nth-order moment of the 
velocity component ui is defined as 

mn =
u′n

i

σn
ui

(3.7)  

Here, σui is the standard deviation of the velocity component ui. To 
determine the nth-order statistics of the velocity components in different 
directions, the above variables can be substituted with the correspond-
ing components (i.e., v, v’, w, and w’). From the definition, the mean and 
variance of the variables can be derived by the first- and second-order 

statistics. i.e., u′1= 0 and u′2 = σ2. For the wind speed, we replace ui 
with va. By definition, the third- and fourth-order moments are identical 
to the skewness sk and kurtosis kt, respectively. The convergence of the 
statistics during the measurement period of 20s are explained in Ap-
pendix 1. To effectively compare the relationship between the mean 
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velocity distribution and statistics, the vectors of u and v are also shown 
in Fig. 4 (a). In addition, skewness is known as a statistic that shows the 
PDF asymmetrical extent based on the sign (when sk is positive, the PDF 
has a positive long tail, and vice versa). Therefore, a bicolor contour is 
used only for the skewness graph (Fig. 4 (b)). 

As shown in Fig. 4 (a), σva normalized by uref shows a significant 
positive correlation with va. In addition, the small integral time scale for 
A1 and A3 may be attributed to the low turbulence with a low wind 
speed (Fig. 3 (b)). The value of sk clearly show that most regions have 
positive values for A1 and A2, whereas a negative skewness dominates 
for A3. Because we consider the horizontal wind speed defined by 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
, the minimum values of va are restricted to zero. Hence, the 

PDFs in most areas are expected to be positively skewed. However, this 
result implies that the asymmetric shapes of the PDFs of va within a 
canopy layer vary owing to the complex velocity fields. 

In terms of the magnitudes of sk, kt , and m5, the distribution showed 
patterns similar to those of GF and PF, particularly in A2. That is, small 
values were observed in the strong wind speed area of A2. Moreover, the 
GF and PF appeared to be large when these moments became large. This 
implies that strong wind-speed events are highly influenced by the high- 
order moments sk, kt, and m5. Although we further discuss the rela-
tionship between the moments and strong wind speed in a subsequent 

Fig. 3. Spatial distributions of statistical values related to wind speed va at z/H= 0.5. (a) Mean wind speed va, (b) integral time scale τ. 99.9th percentile wind speed 
va99.9% expressed by the (c) gust factor GF and (d) peak factor PF. uref : reference wind speed, H: block height, σva : standard deviation of va. The white areas indicate 
areas that were not measured owing to laser reflection and obstruction by the surrounding blocks. 
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section, these qualitative discussions indicate the importance of inves-
tigating the spatial distributions of high-order moments to clarify why 
low-occurrence strong wind speed events occur within the canopy. 

3.2. PDF and PSD classification by flow patterns 

According to recent studies (e.g. Refs. [11,17,21–24,26]), the PDFs 

at the pedestrian level of a simplified canopy are modeled based on 
specific distribution functions such as Gaussian or Weibull to express the 
long-tail shape of the PDFs for wind speeds. The different shapes of the 
PDFs at each location within a canopy imply that the statistical char-
acteristics of the turbulent flow are altered owing to the presence of 
blocks in the canopy. In addition, based on previous studies [11,17], the 
PDFs approach Gaussian distributions when the mean wind speed 

Fig. 4. Spatial distributions of high-order statistics of wind speed va at z/H= 0.5. (a) Standard deviation σva , (b) skewness sk, (c) kurtosis kt , and (d) fifth-order 
moment m5. 
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increases. These results indicate that there may be mean flow patterns 
affecting the shapes of the PDFs of the wind speed and velocity com-
ponents at the pedestrian level. To understand the influential flow pat-
terns within the canopy on the PDFs and turbulent flow, we evaluated 
the relationship between the PDFs and PSDs based on the flow pattern 
classification. 

Fig. 5 shows the PDFs and PSDs for u, v, and va at every five grid 
points (approximately every 0.05H) in the x- and y-directions in the 
three unit areas (A1, A2, and A3) at z/H= 0.1. The PSDs at several points 
within the same canopy were previously reported by Herpin et al. [36]. 
Before we apply the classifications of the PDFs and PSDs, we confirmed 
that the PSDs mostly follows the Karman spectrum and are consistent 
with those in the previous study at (x /H,y /H,z /H) = (1.5,0.5, 0.5) and 
(2.5,0.5, 0.5) (the centers of A2 and A2, respectively). The PDFs and 
PSDs were classified based on whether the mean streamwise velocity 
component was positive (positive-flow regions) or negative (reverse--
flow regions). The PSDs of turbulent flow are commonly expressed by 
the von Karman PSD for the streamwise and spanwise velocity compo-
nents, Su and Sv as follows [37–39]: 

Suf
σ2

u
=

4f̃
(
1 + 71f̃ 2)5/6 (3.8)  

Svf
σ2

v
=

2f̃
(
1 + 188f̃ 2)

(
1 + 71f̃ 2)11/6 (3.9)  

where f̃ = fτ is the normalized frequency. Hence, two lines are also 
shown as references defined in the graphs for the PSDs. 

The PDFs and PSDs of u are shown in Fig. 5 (a). Although there are 
numerous sampling points, the PDFs in the positive flow regions (u> 0) 
is evidently negatively skewed whereas these are the opposite in the 
reverse flow regions (u ≤ 0). The average sk in each category is − 0.42 
and 0.43, respectively. This implies that weak or strong streamwise 
winds occur infrequently when u is positive or negative. Previous studies 
[40–43] demonstrated that the sweep motion (u′> 0 and w′< 0) domi-
nates within the urban-like canopy of a staggered layout, whereas the 
ejection motion (u′< 0 and w′> 0) becomes significant near the smooth 
wall or the urban-like canopy in a square layout. Finnigan et al. [42] 
compared the vertical profiles of the ratio between sweep and ejection 
for different types of canopies. They demonstrated that most regions 

Fig. 5. The relationship between probability density functions, PDFs, and power spectral densities, PSDs, Sui , by two-class classification of the streamwise (u> 0) and 
reverse (u ≤ 0) flow regions at z/H= 0.1. (a) Streamwise velocity component u, (b) spanwise velocity component v, and (c) wind speed va. 
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within a canopy are dominated by sweep events. In contrast, near the 
bottom surface of the canopy (approximately z/H< 0.2), the ejection is 
marginally superior to or comparable with sweep events. The percent-
age of each classification of u> 0 and u ≤ 0 is approximately 46 % and 
54 %, respectively. This indicates that the skewed distributions of the 
streamwise velocity cancel each other out. This is likely to result in a 
comparable contribution of the sweep and ejection events at this height. 
When we characterize the statistical features within a canopy layer, such 
as sweep and ejection events, the horizontally averaged values are 
commonly discussed (as observed in the aforementioned previous 
studies). However, the present analyses demonstrate that the stream-
wise direction is an important factor in characterizing the PDF shapes. 

The differences in the PSDs between the positive and negative flow 
regions are unclear. Both follow the von Karman spectrum according to 
Eq. (3.8) with respect to the peaked frequency and slopes in 10− 3 < f̃ <
100. This is notwithstanding that the measurement height of 0.1H was 
close to the bottom surface. Good agreement between the PSDs within 
the canopy and the von Karman spectrum around the peak value has also 
been reported in previous studies based on field measurements [40]. 

Fig. 5 (b) and (c) shows the PDFs and PSDs for v and va with an 
identical classification. Unlike u, the differences in PDF and PSD 

between the positive- and reverse-flow regions are marginal. For the 
PDFs of v, the distributions are almost symmetrical regardless of the 
values of u because of the geometric symmetry of the flow distribution 
around the block array. In contrast, the PDFs of va are marginally 
positively skewed compared with the Gaussian distribution. However, 
the difference in the PDFs based on the classification of u is highly 
marginal. Similarly, the differences in the PSDs for both v and va are 
hardly visible, that mostly follow the von Karman spectrum similar to 
those of u. 

Fig. 6 shows the PDFs and PSDs classified according to whether 
|v /u|> 1 or not. Because the freestream velocity is expressed as (u, v) =
(uref ,0) above the boundary layer height, this classification indicates 
that the canopy flow is altered in the spanwise direction owing to the 
flow separation by front face of the block or wake of the block. The 
threshold of |v /u| > 1 indicates that the spanwise flow dominates the 
wind direction, i.e., Tan− 1

⃒
⃒v/u|> 45 ◦. In this classification, the mea-

surement points that satisfy the condition |v /u|> 1 account for 
approximately 33 %. This indicates that the streamwise velocity 
component dominated the flow fields even at z/H= 0.1. 

In Fig. 6 (a), the PDFs of u for both |v /u|> 1 and |v /u|≤ 1 resemble 
the Gaussian distribution. However, the PDFs for |v /u|> 1 is marginally 

Fig. 6. The relationship between probability density functions, PDFs, and power spectral densities, PSDs, Sui , by two-class categorization of the spanwise-dominated 
(v/u> 1) and streamwise-dominated (v/u ≤ 1) flow regions for (a) the streamwise velocity component u, (b) spanwise velocity component v, and (c) wind speed va. 
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positively skewed. The skewness is 0.11. In contrast, the shape of the 
PDFs for |v /u|≤ 1 is sharper than that of the Gaussian distribution. To 
support this aspect, the kurtosis of this classification is kt= 3.4 (note that 
the kt = 3 for the Gaussian distribution). In Fig. 6 (b), the PDFs of v for 
both |v /u|> 1 and |v /u|≤ 1 show similar trends. However, the shape of 
the PDFs for |v /u|> 1 is sharper than that of the Gaussian distribution, 
with kt = 3.4. Unlike the differences in PDFs, the PSDs follow the von 
Karman spectrum. Fig. 6 (c) shows the PDFs and PSDs of va. The PDFs 
agree well with the Gaussian distribution regardless of the |v /u| values. 
In addition, the PSDs are well-expressed in the von Karman spectrum. 

According to these results, for the velocity components, the PDFs 
appear to become sharper when the wind within the canopy is unidi-
rectional. However, a similar alteration of PDFs owing to canopy flow is 
marginal. In addition, the variation in the PSDs is imperceptible. This is 
probably because the large-scale turbulence with the integral time scale, 
namely, the peaked value of the PSDs, dominates the entire turbulence 
kinetic energy and overall PSD shapes. Consequently, the PSDs followed 
the von Karman spectrum. In addition, the present datasets were low- 
passed-filtered by 250 Hz to remove the experimental noise. 

With regard to the marginal variation in PSDs, further investigation 
is required to clarify whether the canopy elements significantly affect 
the PSDs because we employed filtering at 250 Hz to remove the mea-
surement noise in the experiments (the effect can be observed in the 
rapid reduction of the PSDs when f̃ > 100). In previous studies, the ef-
fects of canopy elements on PSDs were explained theoretically or 
experimentally. For example, Finnigan et al. [44] explained that the 
wake energy production by canopy elements generates canopy-scale 
turbulence. This, in turn, alters the slope of the PSDs in the 

high-frequency range. We could not identify a similar alternation in the 
PSDs probably because of the sampling frequencies in the PIV. Herpin 
et al. [36] also reported the PSDs within the same cubical canopy using 
laser doppler anemometry; however, their measurements were also in a 
low frequency and unclear increase of the PSDs in high-frequency 
ranges. Meanwhile, Michioka et al. [45] experimentally speculated 
that the canopy elements in a square layout generate a low-frequency 
turbulence in a transient situation with a limited number of canopy el-
ements. Both the studies indicated that canopy elements may alter the 
PSDs from the typical von Karman spectrum, which is not visible in our 
datasets. Because we employed a fetch longer than that applied by 
Michioka et al. [45] with different block layouts, the turbulence gen-
eration in the low-frequency mode may not have been apparent. Because 
of these marginal variations in the PSDs, we could not identify either a 
clear relationship between the shapes of the PDFs and PSDs or an 
apparanet alternation of PDFs. Because the standard deviation is 

expressed as σ2
u =

∫∞

− ∞

u′2p(u′)du′ =
∫∞

− ∞

Su(f)df using a PDF and PSD, we 

need to further investigation to clarify the relationship between them in 
the future study. 

4. Relationship between statistics and strong wind 

4.1. Statistical correlation among statistics, GF and PF 

To quantify the statistics that dominantly affect the GF and PF, we 
investigated the relationship between the high-order statistics of, kt, m5 

Fig. 7. Relationship between the GF and moments of the wind speed va at z/H= 0.5. (a) Skewness, (b) fifth-order moment, (c) kurtosis, and (d) sixth-order moment. 
The maximum (99.9th and 99th) percentiles represent strong wind speeds, whereas the minimum (0.1st and 1st) percentiles indicate the weak-wind-speed events. 
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and m6, with GP or PF. To define GF and PF, we selected the maximum 
(99.9th and 99.0th) percentile values for strong wind speeds and mini-
mum (0.1st and 1.0th) percentile values for weak wind speeds. 

Fig. 7 shows the correlation between the higher-order moment 
(horizontal axis) and GF (vertical axis) at z/H= 0.5 in three unit areas 
(A1, A2, and A3). Regardless of the order of the moments, the GF of 
weak wind speeds had a negligible correlation with the moments. In 
contrast, the GF of strong wind speeds were positively correlated with 
the moments. In addition, the correlation between the GF and odd-order 
moments (i.e., sk and m5) appeared to be more apparent than that be-
tween the GF and even-order moments. Moreover, the relationships 
between the GF and moments were attenuated when the order of mo-
ments increased. Although we expected that sk to m6 may vary by 10 % 
(Please refer to Appendix 1), the clear difference in the tendency be-
tween the GF and even- or odd-order moments can be hold with such 
expected variations. 

Fig. 8 shows the relationships between the PF and moments at z/
H= 0.5 in the three unit areas (A1, A2, and A3). In the case of the PF, the 
trend shown in the relationship between the GF and moments was 
apparent for strong wind speeds. That is, the odd-order moments 
(namely, sk, and m5) were positively and linearly correlated with the PF, 
and the sk displayed steeper slopes in the relationship between the PF 
and moments than m5. In addition, the PF of weak wind speeds showed a 
positive correlation with the odd-order moments. In contrast, the cor-
relation between the PF and even-order moments was obscure, partic-
ularly for m6. 

The positive correlation of the PF of the strong wind speeds with the 

odd-order moments indicates that rare and extreme winds cause the 
PDFs to have a long-tail shape on the positive side because positive odd- 
order moments imply that the PDFs are positively skewed. Simulta-
neously, it shortens the other edges of the PDFs. As a result, the PF of 
strong wind speeds increased, whereas that of weak wind speeds 
decreased when the odd-order moments were large. In contrast, the 
positive or negative correlations between the even-order moments and 
PF of the strong or weak wind speeds imply that an increase in the 
sharpness of the PDF shapes reduced the frequencies of the extreme 
values but expanded the PDFs to a wider range. This caused an increase 
in the magnitude of the extreme values. 

To quantify the relationships between the GF, PF, and statistical 
properties of the velocity fields at three heights of the three units (0.1H,

0.25H, and 0.5H of A1, A2, and A3), Figs. 9 and 10 show the correlation 
coefficients between the GF or PF (values of y axis in Figs. 7 and 8) and 
the statistics (the values of x axis in Figs. 7 and 8). In addition to the 
high-order moments shown in Figs. 7 and 8, va, σva , and τ are included in 
the figure. The correlation coefficient C of the datasets of xi and yi (i= 1 
to N, where N is the data number.) is defined as C =

Σixiyi/(Σix2
i Σiy2

i )
0.5

). 
Fig. 9 (a) shows the correlations between the GF of weak or strong 

wind speeds and the statistics. Overall, the correlation between the GF of 
weak wind speeds and moments was smaller than that between the GF of 
strong wind speeds and moments. This indicates that the magnitude of 
wind speeds in the lower tail range of the PDFs may be determined 
irrespective of these statistical values. Because the magnitude of va is 
limited to zero by the definition va =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
, the lower values of va 

Fig. 8. Relationship between the peak factor and higher-order statistics of the streamwise velocity component u at z/H= 0.5. (a) Skewness, (b) fifth-order moment, 
(c) kurtosis, and (d) sixth-order moment. The maximum (99.9th and 99th) percentiles represent strong wind speed events, whereas the minimum (0.1st and 1st) 
percentiles indicate the weak-wind-speed events. 
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may be determined to be nearly zero irrespective of the magnitude of the 
moments. In contrast, the correlation between the GF of strong wind 
speeds and moments was significantly stronger. In addition, the corre-
lations decreased gradually with an increase in the order of moments. 
This is plausible because the lower-order moments are more influential 
on the shape of the PDFs based on a previous study employing the 
orthogonal decomposition of the PDFs by Gram–Charlier series expan-
sion (e.g. Ref. [23]). This results in a large influence of the lower-order 
moments on the GF for strong wind speeds. 

Another noteworthy aspect is that va and σva have relatively loose 
correlations with the GF. The GF is defined using the mean (Eq. (3.5)). 
This implies that the GF is assumed to be independent from va. This 
assumption is mostly reasonable. However, the weak correlation be-
tween the GF and va indicates that the spatial variation in GF is partially 
owing to the spatial variation in va as well. Moreover, the correlation 
between the GF and τ is highly marginal. From our qualitative discussion 
of the spatial distribution of the GF and τ (Fig. 2), we anticipated that the 
GF and τ may be correlated because τ is a time scale to represent the peak 
of the PSDs. This is demonstrated by the good agreement between the 
PSDs and von Karman spectrum (the normalized frequency of ̃f = fτ is 
employed in the graphs). However, the statistical analyses addressing 
the entire canopy area at the three heights showed that the correlation is 
significantly small. This indicates the existence of locations where τ do 
not affect GF. 

Fig. 9 (b) shows the correlation between the PF and statistics. 

Although the PF with weak wind speeds showed a tighter correlation 
than the GF, the other trends were highly similar to those of the GF. That 
is, the correlations decreased gradually with the order of the moments. 
va and σva showed relatively small correlations, and τ was negligibly 
correlated with the PF. Because the PF is defined using va and σva (Eq. 
(3.6)), the correlation of the PF with va and σva is assumed to be insig-
nificant. Although the small correlation indicates that the PF is almost 
independent of σva , the marginal correlation with va of − 0.4 is consistent 
with the spatial variation in PF corresponding to va (Fig. 3 (a, d)). The 
significant positive relationship of the PF with the moments (sk, kt , m5, 
and m6) over 0.8 also indicates that considering sk and kt is essential to 
model the PF according to the considerable spatial distributions (Fig. 4 
(c, d)). In addition, taking into account m5–m6 is ideally desirable for the 
modeling the PF if the sk and kt distributions are not sufficient to predict 
low-occurrence wind speeds. In contrast, higher-order moments are not 
necessary for predicting the PF. 

As shown by the relationship between the GF and τ, the correlation 
between the PF and τ is marginal. In Fig. 3, the spatial distribution of the 
PF and τ in the high speed regions in A2 could be observed. However, 
regions where a clear correlation between the PF and τ cannot be veri-
fied also exists. Eventually, the correlation between the PF and τ within 
the entire horizontal unit of the canopy at the three heights revealed that 
the correlation is significantly small. 

Fig. 10 shows the correlation coefficients between the PF and the 
statistics of u and v. It is noteworthy that the odd-order moments have a 

Fig. 9. Correlation coefficient between statistics of va and (a) the gust factor GF or (b) peak factor PF in three units (A1, A2, and A3) at three heights (0.1H， 0.25H, 
and 0.5H). The maximum (99.9th and 99th) percentiles represent the strong wind speed events, whereas the minimum (0.1st and 1st) percentiles indicate the weak 
wind speed events. The selected statistics are the mean ui, standard deviation σui , skewness sk, kurtosis kt , higher-order moments, m5,m6, and τ. 

Fig. 10. Correlation coefficient between the peak factor PF and statistics for (a) the streamwise and (b) spanwise velocity components in three units (A1, A2, and A3) 
at three heights (0.1H, 0.25H, and 0.5H). The maximum (99.9th and 99th) percentiles represent the strong wind speed events, whereas the minimum (0.1st and 1st) 
percentiles indicate the weak wind speed events. The selected statistics are the mean ui, standard deviation σui , skewness sk, kurtosis kt , higher-order moments, m5,

m6, and τ. 
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stronger correlation with the PF than the even-order movements. In 
addition, the PF of the strong wind speeds clearly displays larger values 
than those of the weak wind speeds for both u and v. Moreover, the 
correlations between the PF and the mean, standard deviation, and in-
tegral time scale are relatively small. These results imply that the peak 
velocity components are affected by sk,m5, and m7 rather than by kt, m6. 

These results clearly show that both GF and PF are influenced by the 
moments of the wind speed or velocity components. In a previous study, 
Zainol et al. [27] determined the correlation coefficient between the 
velocity component deviation from the mean and moments of an 
approaching flow in a wind tunnel generated by spires and roughness. 
They demonstrated a significantly strong correlation between the mo-
ments and deviations. These results indicate that the peak wind speeds 
and velocity components can be determined using these statistical 
values. If we can determine the GF or PF using statistics, it is advanta-
geous because statistical quantities, such as moments, are more conve-
nient to obtain than directly calculating the peak values. In addition, 
recent studies by Wang et al. [23,26] and Seta et al. [24] employed the 
GCS from the second-to sixth-order models (i.e. the second-to sixth--
order moments were implemented to predict the PDFs; please refer to 
the GCS model in Ref. [23]). They demonstrated that the third- and 
fourth-order models accurately predicted the percentiles of the wind 
speed and velocity components. This is also plausible because the pre-
sent statistical analysis showed that sk and kt affect the GF and PF. 

A concern regarding the present observations is that the correlation 
between the PF and τ was invisible. Although we quantitatively 
acknowledge the consistency in the spatial distribution of the PF and τ in 
Fig. 3, the overall correlation at the three unit areas and three heights 
was significantly small. The correlation between the peak value and τ 
has been reported earlier. For example, Efthimiou et al. [20] demon-
strated that the PF of the maximum velocity is proportional to (τ/T)1/3, 
where T is the total sampling time. This indicated that the PF is posi-
tively correlated with τ. Although we employed percentiles to define the 
PF to address both strong and weak wind speeds as well as the maximum 
values, the correlations of the maximum and minimum wind speeds with 
the PF are rather marginal. We also verified from the scatter distribution 
that the PF is almost a plateau with respect to τ. A likely factor causing 
this discrepancy is the relatively small variation in τ within the canopy. 
Therefore, the correlation the PF is unclear. However, with regard to the 
impact of τ on the strong and weak wind speeds, we need to investigate 
further based on different types of turbulent flow at pedestrian levels. 

4.2. Theoretical relationship among PF, sk, and kt 

According to the previous analyses in Section 3.2, the relationship 
between the PDFs and PSDs is ambiguous in the present dataset. 
Meanwhile, the high-order statistics, particularly sk and kt , display sig-
nificant positive correlations with the PF in Section 4.1. This implies that 
the PF can be predicted by incorporating these statistics. In addition, 
recent studies predicted peak wind speeds using stochastic methods 
based on theoretical distribution functions by employing high-order 
statistics [21–24,26]. Therefore, in this section, we investigate the 
relationship between these theoretical predictions and experimental 
data in terms of the PF. 

The Weibull distribution is commonly adopted to fit wind speeds and 
analyzing the PDF in practical applications to sufficiently understand 
the wind field. Wang and Okaze [21,22] employed a two-parameter 
Weibull distribution to describe the instantaneous wind speed: 

p(x) =
(

β
α

)(x
α

)β− 1
exp
(

−
(x

α

)β
)

(4.1)  

Here, x is the random variable. α> 0 and β> 0 are the scale parameter 
and shape parameter, respectively. Wang and Okaze [21,22] applied the 
Weibull distribution for wind speed (i.e., x =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2 + w2

√
). However, 

we applied the function for the velocity components u, v and the 

horizontal wind speed va. If the wind speed and velocity components 
follow the distribution function, the PF (defined by the percentile value) 
is determined by 

PF =
xP − x

σx
=

[− ln(P)]1/β

[Γ(1 + 2/β) − Γ2(1 + 1/β)]1/2 (4.2)  

where xP is the percentile value; x and σx are the mean and standard 
deviation, respectively; P is the cumulative density in percentage; and 
Γ(ξ) =

∫∞
0 xξ− 1e− xdx represents the Gamma function. In Eq. (4.2), the PF 

of a random variable following the Weibull distribution is determined 
only by the Weibull parameter β and exceedance probability P. 

In addition, as Wang and Okaze [21,22] explained, sk is expressed by 
an implicit function of the Weibull parameter β as [46] 

sk =

Γ
(

1 + 3
β

)

− 3Γ
(

1 + 2
β

)

Γ
(

1 + 1
β

)

+2Γ
(

1 + 1
β

)3

(

Γ
(

1 + 2
β

)
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1 + 1
β

)2
)3/2 (4.3) 

These relationships indicate that the PF can be expressed as a func-
tion of sk. Similarly, the kurtosis kt is expressed by an implicit function of 
the Weibull parameter β as [46] 

kt=

(
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β

)
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(
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)
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(4.4) 

indicating that the PF is also expressed as a function of kt. 
These relationships are also interpreted as kt ≡ kt(β(sk)) = kt(sk). 

That is, the distribution function determines the relationship between sk 
and kt for the Weibull distribution. 

Another approach was proposed by Seta et al. [24] and Wang et al. 
[23,26] based on a modified Gaussian distribution using the GCS 
expansion. The GCS is a series expansion of the Gaussian distribution 
function with the higher-order statistics that directly uses higher-order 
moments as parameters to describe the PDFs [25]. Thus, 
low-occurrence wind speeds can be predicted from higher-order statis-
tics using the GCS method. This method was validated by Wang et al. 
[23,26] and applied successfully to describe the approaching flow by 
Zainol et al. [27]. Using the fourth-order GCS model, the distribution 
function can be expressed as 

p(ζ)=
(

1+
sk

6
ζ
(
ζ2− 3

)
+

kt − 3
24

(
ζ4− 6ζ2+3

)
)

e− 0.5ζ2

̅̅̅̅̅
2π

√ (4.5)  

Here, ζ = (x − x) /σx is the standardized random variable of x. When 
sk= 0 and kt = 3, p(ζ) is identical to a Gaussian distribution. Because the 
percentile value is defined by Eq. (3.6), the PF is expressed as a function 
of sk and kt (i.e., PF≡ PF(sk, kt)) when a random variable follows the 
PDFs based on the GCS. 

Besides, the relationship in the Weibull distribution using kt ≡ kt(sk)

can be incorporated into the GCS model. That is, the GCS + Weibull 
distribution yields the following PDFs: 

p(ζ)=
(

1+
sk

6
ζ
(
ζ2− 3

)
+

kt(sk)− 3
24

(
ζ4− 6ζ2+3

)
)

e− 0.5ζ2

̅̅̅̅̅
2π

√ (4.6) 

This indicates that PF≡ PF(sk). The relationship kt ≡ kt(sk) can be 
solved numerically based on the inverse function of sk(β) using a nu-
merical calculation, e.g., the Newton–Raphson method. Hence, we can 
determine kt ≡ kt(β). 

In the following section, we compare the PF determined from the 
experimental data with those of the Gaussian, Weibull, GCS, and GCS +
Weibull distributions. 
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4.3. Relationship among PF, sk, and kt 

To verify the validity of kt ≡ kt(sk) in the Weibull distribution for 
applying the combination model of the Gaussian and Weibull distribu-
tions, Fig. 11 shows the relationship between sk and kt of u, v, and va at 
the three measurement heights 0.1H, 0.25H, and 0.5H. The dashed line 
indicates the relationship determined by the Weibull distribution by 
solving the implicit functions with respect to β in Eqs. (4.3) and (4).4): 
For the components u and v, the relationship between sk and kt basically 
follows the theoretical line using a Weibull distribution. Although the 
variations appear larger when sk ∼ 0 and kt = 3, these gradually 
approach the theoretical line when sk increases. In addition, the agree-
ment with the line for va is more prominent. Although the deviation from 
the line indicates that the random variable does not stringently follow 
the Weibull distribution, the overall tendency between sk and kt shows 
that kt can be approximated by sk by assuming a general tendency of the 
Weibull distribution. 

Fig. 12 shows a comparison of the PF with sk and kt for the velocity 
components u and v. The four lines for each percentile value indicate the 
PF derived theoretically from the Gaussian, Weibull, GCS, and GCS +
Weibull distributions. The line for the GCS assumes that kt= 3 to reduce 
it to a third-order model (Eq. (4.5)). Before investigating the relationship 
between the experimental data and these lines, it is worthwhile to 
discuss the differences among the four theoretical lines. Because the 
Gaussian distribution is not a function of sk or kt , it provides constant 
values of PF depending on the exceedance percentage P. When sk < 0.5, 
the difference in the four theoretical lines is marginal for the 99.9th and 
99th percentile values. These display an increasing tendency with the 
PF. In contrast, the PF obtained by the Weibull distribution is larger than 
those obtained by GCS and GCS + Weibull in the range of sk> 0.5. With 
regard to the PF by the weak wind speeds of the 1st and 0.1st percentile 
values, the discrepancies between the theoretical lines are marginal 
when − 0.5 < sk< 0.5. However, these increase gradually when the 
magnitude of sk increases. The larger difference among the theoretical 
lines for the large values of skewness indicates that a marginal difference 
in the employed model may cause a significant difference in the low- 
occurrence frequency and magnitude when a distribution function is 
skewed significantly. With regard to Fig. 12 (b, d), the theoretical lines 
of the Gaussian, Weibull, and GCS distributions are shown for the 
percentile values of 0.1, 1, 99, and 99.9 % exceedance probabilities. 
Because the GCS + Weibull model is a third-order model assuming that 
kt ≡ kt(sk), it has been excluded from Fig. 12 (b, d). The theoretical lines 
of the GCS display a monotonic increase with kt for the 99th and 99.9th 
percentiles, whereas those of the 0.1st and 1st percentiles decreases with 
kt. In contrast, those using the Weibull distribution show a peaked kt 
with respect to the PF. This indicates that the PF is a multivalue function 

of kt . 
In Fig. 12 (a) and (c), the experimental data show a significantly 

good agreement with the lines of the Weibull and GCS + Weibull dis-
tributions for the 99th and 99.9th percentiles. The value obtained using 
the GCS agree well with the experimental data. However, the deviation 
in the large sk is significant. The improvement in the GCS using the 
Weibull distribution indicates that kt also increases with increasing sk (as 
shown in Fig. 10) for the distributions of the velocity components. In 
contrast, the GCS with kt = 3, which is a third-order model, cannot 
effectively represent a similar relationship. However, the GCS is ad-
vantageous because the model can change using the different values of 
kt. This may improve PF prediction. The weak wind speeds of the 0.1st 
and 1.0th percentile values also show good agreement with the GCS +
Weibull distribution. The prediction using only the Weibull distribution 
marginally overestimated the values compared with the those by GCS +
Weibull distribution. It is worth mentioning that the prediction by these 
theoretical models is applicable regardless of the velocity component, as 
shown in Fig. 12 (a) and (c). However, it should be noted that the 
general tendency can be predicted using these models. Meanwhile, the 
deviation from the line to the experimental data is of the order of 1.0 for 
PF, particularly for 99.9 % with a large skewness and 0.1 % with a small 
skewness. Hence, for a precise prediction, we need to consider a more 
sophisticated model than Weibull or GCS. Nonetheless, these analyses 
clearly demonstrated that skewness is an influential parameter for PF. 
Wang and Okaze [21,22] also demonstrated that the PF can be predicted 
by sk using a Weibull distribution based on the wind speed determined 
by CFD at the pedestrian level around an isolated block array in a square 
layout. The data presented in Fig. 11 were determined based on the 
experiments. These are also consistent with their analyses based on CFD 
in terms of low-occurrence strong wind speeds. 

Fig. 12 (b) and (d) shows the relationship between PF and kt . It is 
noteworthy that the experimental data show a multivalue distribution 
with respect to kt. The peak value of kt with respect to PF is approxi-
mately kt = 1.9. Similar multivalue characteristics were predicted 
effectively by the Weibull distribution although the lines deviated from 
the experimental data. The predictions of the 99.9th and 99th percen-
tiles by the Weibull distribution showed relatively good agreement with 
the experimental data, particularly when kt > three. In contrast, the 
lines predicted by the Weibull distribution showed smaller values for the 
magnitude of the PF for the 0.1st and 1st percentiles. The prediction by 
the GCS cannot show multivalue functions. It increases or decreases 
monotonically for a strong or weak velocity with increasing kurtosis. 
With regard to the prediction of weak velocity, the monotonic decrease 
in the PF by the GCS was more favorable than that by the Weibull dis-
tribution. Similar tendencies were also observed for the velocity 
component v. 

Fig. 11. Relationship between skewness sk and kurtosis kt of (a) the streamwise velocity component u, (b) spanwise velocity component v, and (c) wind speed va. The 
dashed line indicates the relationship kt ≡ kt(sk) of a random variable following the Weibull distribution. The error bars indicate ±15% expected variations of the 
statistics (Please refer to Appendix 1). 
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Fig. 13 compares the theoretical predictions and experimental data 
as a function of sk or kt for the horizontal wind speed va at the three 
heights 0.1H, 0.25H, and 0.5H. The relationship between PF and sk are 
shown. The experimental data agree significantly with the predictions 
by Weibull and GCS + Weibull for the 99th, 99.9th, and 1st percentiles 
regardless of the measurement heights. Only for the PF defined by 0.1 %, 
both Weibull and GCS + Weibull distributions overestimate the 
magnitude of the weak wind speed. Fig. 13 (d)–(f) compares the pre-
diction among the Weibull, GCS + Weibull models, and the experiment 
as a function of kt. Similarly, the predictions of the 99th, 99.9th, and 1st 
percentiles are reasonable. The good agreement with the predicted 
values is attributed to the small variation in the PF of the velocity 
components, as shown in Fig. 11. 

Owing to the limitation of the kt of a random variable following the 
Weibull distribution, the theoretical line by the Weibull distribution 
cannot adopt a kt less than 2.8. Meanwhile, the GCS model can expand 
the lines below the threshold. Because the experimental data also adopts 
values of kt between two and three, the prediction by GCS is advanta-
geous in terms of the wider coverage of kt . 

5. Conclusions 

We analyzed the velocity datasets within an urban canopy consisting 
of cubes with H= 0.1 m arranged in a staggered layout with a packing 
density of 25 %. The measurements were performed at the three heights 
0.1H, 0.25H, and 0.5H by PIV [18]. The purpose of this study was to 
understand the relationship between low-occurrence velocities and 
other turbulent statistics to validate previously reported statistical 
methods [21–24,26] in which extreme wind speeds were predicted using 
high-order statistics. Accordingly, we investigated how the urban can-
opy elements affect the probability density function (PDF) and power 
spectral density (PSD) to understand the physical interpretation of 
extreme wind speeds. The extreme velocity components and horizontal 
wind speeds were evaluated based on the gust factor (GF) and peak 
factor (PF). The observations of this study are summarized below: 

The spatial distributions of the GF and PF within the canopy were 
compared qualitatively using various statistics, namely, the mean wind 
speed, integral time scale, standard deviation, skewness (third-order 
moment), kurtosis (fourth-order moment), and fifth-order moment. Both 
GF and PF in the contraction regions of the flow by two blocks became 

Fig. 12. Relationship between the peak factor PF, and (a,c) skewness sk and (b,d) kurtosis kt for (a,b) the streamwise velocity component u and (c,d) spanwise 
velocity component v at z/H= 0.1. The lines represent the relationship determined by the Gaussian, Weibull, and Gram–Charlier series (GCS) distributions. GCS +
Weibull indicates the relationship obtained by GCS when kt is modeled by sk based on the Weibull distribution in Fig. 10. The selected infrequent wind events are the 
maximum (99.9th, 99th, 1st, and 0.1st percentiles) and minimum. 

F. Li et al.                                                                                                                                                                                                                                        



Building and Environment 247 (2024) 111050

15

smaller than those of the surroundings. In addition, these regions 
exhibited smaller values of the high-order moment and integral time 
scale. These qualitative correlations between the rare wind speed and 
statistics indicate the importance of considering the spatial variations in 
PF and GF within the urban canopy area. 

Accordingly, to understand the effect of the flow patterns within the 
canopy on the PDFs and PSDs, these were classified based on i) whether 
the streamwise flow was favorable or reverse and ii) whether the 
spanwise velocity component was dominant or not. This revealed that 
the PDFs of u were skewed marginally in the positive-flow regions, 
whereas those of v were sharpened when v dominated the flow direction. 
Unlike the variation in the PDFs based on the mean flow patterns, the 
differences in the PSD are unapparent in the present datasets. 

To quantify the relationship between the statistics and PF or GF, the 
correlation coefficients between PF or GF and the various statistics 
(namely, the mean, standard deviation, third-to six-order moments, and 
integral time scale) were determined. Strong correlations were verified 
between GF and sk, kt., PF and sk for wind speed PF and skewness. They 
were larger than 0.6. In contrast, the correlations between the PF and 
integral time scale τ were relatively weak and less than 0.4 probably 
because we considered the overall correlations in the three unit planes at 
the three heights. Therefore, further investigations based on different 
types of turbulent flow at the pedestrian level are required for the cor-
relations between PF and τ. 

Based on the observations of the strong correlations between PF, sk, 
and kt, the relationship between sk or kt and PF was compared with the 
prediction by statistical methods based on three distribution functions: 
Gaussian, Weibull, and GCS. Both strong and weak velocity components 
and the wind speed showed clusters around the prediction using sta-
tistical methods. The agreement between the data and theoretical line 
was significant, particularly for the wind speed va, justifying that the 
probability density of the canopy wind speed can be modeled by the 
statistical models. 

These observations clearly validate the previous statistical methods 
of Wang and Okaze [21,22], Wang et al. [23], and Seta et al. [24]. 
Therein, the extreme values were predicted using sk ([21,22]), kt, and 
higher-order moments ([23,24]). In addition, the present results signify 
that the influential factors on the PF or low-occurrence wind speeds are 
accumulated in these statistics. This also indicates that collecting 
high-order moments (or the nth-powered accumulation of a random 
variable) is consequential for predicting the PF, although the physical 
significance of these statistics is ambiguous. Notwithstanding the 
ambiguous physical interpretations of high-order moments, it would be 
useful to establish an inductive prediction model, such as a deep 
learning model. Another contribution to the research field is that we 
provide effective datasets of canopy flow owing to the development of 
the canopy measurement system by Hirose et al. [18]. The PIV datasets 
addressing the entire plane of the canopy enabled us to perform these 
statistical analyses. 

It should be noted that only one array was used. It is well known that, 
as geometrical impact on the wind speed within the canopy, other 
geometrical conditions such as the height variation, packing density, 
street path length are required to verify whether these parameters can 
dramatically alter the PDFs and percentiles. Furthermore, the relation-
ship between moments, GF, and PF should be accumulated to validate 
the statistical methods for various types of building cases and flow 
patterns. These aspects should also be considered in future studies. 
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Appendix 1. Convergence of statistics 

It is well known that the higher order moments defined by Eq. (3.7) require a longer period for the convergence. In preliminary experiments, we 
have conducted three trials of the PIV following the procedures in Section 2.2 for the A1 at z/H= 0.5. Hence, the total data acquisition period is 30s. 
Figs. 14 and 15 show the variation ratio R and coefficient of variation CV of the wind speed va with respect to the sampling period T. R was defined the 
ratio between the statistics during T to those of T= 30 s. CV was calculated by the ratio between the standard deviation to mean values of the statistics 
defined by the randomly resampled 100 set of data during T. 

Fig. 14 clearly shows that all the moments rapidly converge after approximately T= 5 s. At T= 20 s, which is the data acquisition period of this 
study, the values of R for va and σva are less than 5 %. Those of sk, kt, m5, and m6 are less than 10 %. As for m7 and m8, the values of R becomes larger 
than 10 %, and the data of m9 and m10 are not included because they vary more than 100 %, indicating these higher order statistics are not converged 
in T= 20 s. In addition to the convergence of statistics, Fig. 15 shows the expected variations of the statistics in a sampling period T. The values of CV at 
T= 20 s of va and σva are less than 0.5 %, those of sk and kt are less than 4 %, and those of m5 and m6 are less approximately 5 %. CV of m7 is larger, and 
m8 reach to 0.35 even at T= 20 s. 

According to these data, we reached following conclusions. The bias errors due to the data acquisition period for the mean and standard deviation 
were 5 %, those of sk to m6 were 10 %, and those of other higher-order statistics were larger. The variations of the determined values in each trial were 
approximately 0.5 % for the mean and standard deviation, and 5 % for sk to m6.

Fig. 14. The convergence of the statistic during a sampling period T [s] at x/H = y/H = z/H= 0.5 for the wind speed va. R indicates the ratio of the statistics 
determined in T and that of T= 30 s. The suffix T indicates the statistics dertermined in T. (a) Odd-order moments, and (b) even-order moments defined by Eq. (3.7). 

Fig. 15. The coefficient of varition, CV, of the statistics for a period T [s] for the wind speed va at x/H = y/H = z/H= 0.5. A dataset during T was randomly sampled 
from the whole data and a hundred datasets were used determine CV. (a) Odd-order moments, and (b) even-order moments defined by Eq. (3.7). 
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