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Abstract—Domain generalization aims to learn knowledge
invariant across different distributions while semantically mean-
ingful for downstream tasks from multiple source domains, to
improve the model’s generalization ability on unseen target do-
mains. The fundamental objective is to understand the underlying
”invariance” behind these observational distributions and such
invariance has been shown to have a close connection to causality.
While many existing approaches make use of the property that
causal features are invariant across domains, we consider the
invariance of the average causal effect of the features to the
labels. This invariance regularizes our training approach in which
interventions are performed on features to enforce stability of
the causal prediction by the classifier across domains. Our work
thus sheds some light on the domain generalization problem
by introducing invariance of the mechanisms into the learning
process. Experiments on several benchmark datasets demonstrate
the performance of the proposed method against SOTAs. The
codes are available at: https://github.com/lithostark/Contrastive-
ACE.

Index Terms—Causal inference, domain generalization, deep
learning.

I. INTRODUCTION

The past decades have witnessed the remarkable success of
machine learning, especially deep learning models in solving
different problems in various fields. However, the performance
guarantee of models is under the assumption that the training
and testing data are independent and identically distributed,
which can be easily violated in real-world applications since
the data-generating processes are usually affected by time,
environment, and experimental conditions, etc. As a result,
models that work well on training data may perform poorly on
new data unseen in the model training stage, and thus restrain
their deployment for further applications. It is of great interest
to learn a domain-robust model that can be generalized to the
domains beyond source data. To this end, researchers proposed
the domain generalization (DG) problem [1], which aims at
improving the robustness of models on unseen data (i.e., target
domain) by learning from several training datasets (i.e., source
domains).
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The most straightforward domain generalization approach
is the leave-one-out strategy, which defines one as the target
domain for testing and the rest as source domains for training.
To tackle the challenging problem that no data from the target
domain is available in training, efforts have been made to
extract ”invariance” from source domains. A natural idea is
to frame the network to extract stable features which yield
invariant predictions across domains [2], [3], [4], [5], [6], [7].
Methods under this branch either enforce consistency of the
distributions of latent features across source domains [3], [5],
or minimize the gradients of the classification loss with respect
to latent features [6].

The underlying assumption behind these approaches is the
postulate that causal features are to certain degree stable.
However, recent studies show that the causal mechanism,
rather than the distribution of features, is stable across domains
[8]. If we only rely on enforcing feature invariance by a
regularizer, it may end up with spurious causal features as
they can vary across domains, thus leading to unstable trained
models that fail to generalize [9]. Besides, by incorporating
cross-domain mechanism invariance, one is able to recover
the causal mechanism as well as causal features, with good
interpretability of the contributions of individual features on
the task at hand. This also benefits tasks like troubleshooting
and identification of important features.

To this end, we tackle the problem of domain generalization
from a causal perspective by treating machine learning models
as Structural Causal Models (SCM). Instead of aligning the
distributions of latent features across domains, we propose a
novel constraint based on the causal attributions in networks
measured by Average Causal Effect (ACE) [10]. By viewing
samples of the same class across domains as positive pairs and
those of different classes as negative pairs, a contrastive-ACE
loss is introduced to regularize the learning procedure and
encourage domain-independent causal attributions of extracted
features. Furthermore, by leveraging the contrastive-ACE loss,
domain labels are no longer necessary for learning a domain-
robust model, which makes our proposed approach applicable
to a wider range of scenarios no matter domain labels are
available or not. Even without the assistance of the domain
labels, experimental results show that the proposed method
achieves better performance compared to those with extra
domain label information.

Definitely, information from domain labels can help im-
prove performance even further. So we also construct a
domain-predictor to perform a domain classification task based
on the causal mechanisms. The domain-predictor is trained
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in an adversarial manner to the featurizer and classifier. This
encourages the emergence of domain-invariant causal mecha-
nisms during optimization and complements contrastive-ACE
from the perspective of domain labels. The proposed method
achieves significant improvement than other SOTA methods
on VLCS, Office-Home, and miniDomainNet. In particular,
an increase of 1.9% in accuracy is achieved by contrastive-
ACE compared with CDANN on VLCS, an increase of 0.8%
on Office-Home, and an increase of 4.3% on miniDomain-
Net. The superior experimental results on several benchmark
datasets demonstrate the effectiveness of the proposed ap-
proach in model generalization compared with several baseline
methods and thus show the importance of involving causal
attributions in the training of the models.

The contributions of this paper are listed as follows.

1) We propose to quantify the causality of features (we
refer to as the causal mechanism) by ACE, and align
such causality across domains to obtain causal features.
A key point is that ACE does not directly give causal
feature, but aligning them would.

2) We design a novel objective function, termed as
contrastive-ACE loss, to evaluate the difference between
the ACE values of the input feature on output across
domains.

3) We also introduce a domain adversarial loss to further
utilize domain information through adversarial training
and enforce the network to be less dependent on domain-
specific features when performing classification task.

4) We carry out extensive experiments on benchmark
datasets. The overall performance demonstrates the su-
periority of the proposed approach in solving DG prob-
lems no matter domain labels are available or not.

The rest of the paper is organized as follows. Section II
reviews algorithms on domain generalization as well as related
works in causal neural network attribution. Section III illus-
trates the alignment of causal mechanisms and introduces the
proposed two novel loss functions. Section IV demonstrates
the experimental results. Finally, the paper is concluded in
Section V.

II. RELATED WORK

A. Domain Generalization

Domain generalization remains a challenging yet important
problem that has been investigated by many studies in the
literature. The classic way of learning models with good
generalization ability is to train feature extractors that can
generate invariant representations across different source do-
mains. Various methods have been proposed including naive
approaches where a single network is trained by directly
aggregating all data from source domains together [11], with
a designed structure for more robust performance on data
of multi-domain distributions [12], or modified optimization
algorithms which minimize dissimilarity of features between
different domains [13]. Specifically, domain invariant com-
ponent analysis has been proposed to train models under
distribution variations resulted from domain shift [3]. In [14],

they leverage the maximum mean discrepancy as the mea-
surement to guide training on multi-task auto-encoders, under
the principle of aligning source data across domains. Some
other works [13], [15], [16] have introduced meta-learning
with adaptive regularizers to improve generalization ability. By
employing Model-Agnostic Meta-Learning or similar strate-
gies in domain generalization, domain-specific gradients have
been normalized [13], [16] and models are encouraged to
extract features respecting inter-class relationships [15]. Data
augmentation, as utilized in various applications, has also been
demonstrated to be effective in domain generalization [17],
[18], [19]. Several attempts have been made to enlarge the
support of the distributions in training data such as mixing up
or blending data points from different domains [17], [20], [21].
Moreover, adversarial data augmentation, as well as several
alternatives based on GANs, have also been investigated and
show improvements in addressing domain generalization [22],
[23], [24]. Recently, a special case of domain generalization,
namely single-domain generalization, has received attention,
where the training dataset only contains samples from a
single domain. In this problem, domain augmentation, i.e., the
creation of augmented domains with a different distribution
from the source domain, becomes important. Typical works
include [25], which introduces adversarial domain augmenta-
tion to organize the training of fictitious domains, [26], which
uses domain expansion subnetworks to incrementally generate
simulated domains, and [27], which proposes an adaptive
normalization to learn training samples that are generated by
adversarial domain augmentation.

To better interpret domain generalization, literature aiming
at capturing invariant relations under the structure of causality
has emerged. It is argued that causal features with respect
to the task, such as shape for classifying objects, are stable
and invariant features one wants to learn. However, simply
enforcing invariance to train feature extractors without causal
considerations, one may obtain only correlated but non-causal
features, that are spurious invariant representations for the task.
Consider the image classification as an example. A dataset
contains a lot of cows on the grass. Feeding them to a model,
the grass may also be learned as “invariant” representation,
but it is not the causal feature for identifying the cow [28].
To avoid this, the Invariant Causal Prediction (ICP) is first
proposed in [29]. It tries to exploit the invariant property of
feature set in causality, in the sense that a structural causal
model, as well as the invariant distribution of features, are
considered. Several latter studies then made improvements by
adding intervention on the target variable and attempt to learn
invariant predictors or classifiers [30], [31]. By reformulat-
ing the optimization problems, Arjovsky et al. [6] introduce
invariant risk minimization to distinguish between spurious
correlations and the causal ones, which is then extended to
nonlinear settings by [32].

B. Causal Neural Network Attribution

Causal neural network attribution refers to the causal effect
of a specific input feature on output prediction in neural
networks, which aims to quantify inherent causal influences
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in machine learning [33]. Most attribution-based studies [33],
[34], [35] have focused on applying overall functional values
to define the contribution of input features, while some other
methods leverage the gradients or perturbations with occlusion
maps to identify the effect of different features [36]. However,
these types of methods are prone to artifacts, which are
unlikely to be measured accurately due to non-identifiability
of the errors. Specifically, they can be treated as approaches
for estimating individual causal effect, which fail to consider
the complicated interactions among neurons and thus result in
a biased measurement of the importance of the input feature.

In a recent work [10], a new unbiased attribution method,
called Average Causal Effect (ACE), has been proposed to
calculate causal attribution. This metric is derived based on the
first principles of causality [37]. Specifically, structural causal
models are leveraged by interpreting the original networks
as acyclic graphs where higher layers are generated through
a hierarchy of interactions on nodes from lower layers and
the operator do(·), known as do-calculus, is also used [38].
Do-calculus or intervention in causality literature refers to
the artificial perturbation on some variables of the system,
expecting to measure their causal influences on others. When
one applies an intervention to a variable, it is set to the
fixed value. Tracking the system under this condition, the
distributions of other variables belonging to the system then
are called interventional distributions. The causal effect of the
intervened variable on others is defined mathematically based
on the interventional distributions [37]. In a similar way, ACE
is defined as the subtraction between the expectation of the
output when a particular input feature is under intervention,
and a baseline output when the same feature is uniformly
perturbed in a fixed interval of values.

III. METHODS

A domain is defined as a joint distribution over space X×Y ,
where X and Y denote the input and label space, respectively.
The input consists of images {xi} and the label consists of
one-hot vectors {yi}. The training data D in domain gener-
alization consists of several datasets, each of which contains
independent and identically distributed instances sampled from
one domain. A naı̈ve way to tackle the distribution shift
across domains is to aggregate instances from all domains and
conduct model training. Suppose there are S instances in total
after combining all source data, written as D = {(xi,yi)}Si=1.
The corresponding Empirical Risk Minimization (ERM) loss
is

L(D; θ, ϕ) =

S∑
i=1

ℓ (gϕ (fθ(xi)) ,yi) (1)

where ℓ is an appropriate loss function, fθ : X → Z denotes
an encoding model parameterized by θ that maps the raw input
(image) to a latent feature vector, and gϕ : Z → Y denotes a
model parameterized by ϕ that maps the latent feature vector
to the output label. Z is the space of latent features and

zi = fθ(xi), (2)

is the encoding of the observation xi.

To avoid over-fit to the training domains, several different
regularizers have been used in addition to the loss as penalty
for reducing domain gaps in the space of latent features [3],
[5]. Unlike minimizing the cross-domain distance directly in
the space of latent features, we provide a novel perspective
from causality and impose the invariance on the mechanism
for all environments. The basic idea is that the true underlying
causal mechanisms that map features to labels are cross-
domain invariant. It only depends on class but does not depend
on the domain index. For samples in the same class, the true
causal mechanism from features to label is similar. However,
when the sample is with another class, the mechanism shifts.
We design a quantification of the mechanism and use a
contrastive loss to enforce this principle in structure learning.
Our framework does not rely on domain labels, similar to ERM
that collects samples from multiple domains and aggregates
them together as the training data. This is an advantage over
most of the domain generalization methods, where the domain
indexes are essential for representation learning.

Fig. 1. Computation of the ACE vector. Given the features of a sample
zi = fθ(xi), the ACE quantification of the classifier gϕ with K input
neurons {zk}Kk=1 is a vector ci, which is generated by treating the k-th
neuron intervened as do(zk = zki ).

Fig. 2. Triplet generation: for one observational image xi with label yi, its
positive set Pi consists of images that are in the same class as yi, and its
negative set Ni consists of images that are with a class different from yi.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. The framework of our method. For each observational image xi, it first generates the features by the featurizer (or encoder), implemented by residual
neural nets as zi = fθ(xi). gϕ takes the features to generate the label. The ACE vector ci can be computed given the model gϕ, and the contrastive-ACE
loss for xi is obtained from the distance between its ACE vector ci, and the one (cq(Pi)

or cq(Ni)
) computed using random samples from its positive and

negative sets.

Some theoretical ties are linking the neural networks and
the causal models [10]. By viewing the domain generalization
problem from the causal perspective, one deems all datasets
as generated from a typical causal framework, known as
Structural Causal Model (SCM). Denote N(l1, l2, . . . , lT ) by
a network of l-layers and lt ∈ L = {l1, l2, . . . , lT } be the set
of neurons in the t-th layer. For neuron L, the set of functions
defining causal mechanisms is represented by γ, and the set of
exogenous random variables often considered as unobserved
common causes is represented by U . The corresponding
SCM thus can be expressed as function fSCM(L,U, γ, PU )
with PU referring to the probability distribution of exoge-
nous random variables in set U . By interpreting the network
N(l1, l2, . . . , lT ) as directed acyclic graphs, SCM constructs
a hierarchical model which generates outputs of interactions
between nodes from lower layers [10]. The flexibility of neural
networks also raises confidence in the success of the task of
using the neural model to capture the causal mechanism from
observational data.

A. Average Causal Effect

To identify the causal mechanisms of the task, it is necessary
to quantify the causal effect of each input feature to the output.
Correspondingly, we use gϕ as the causal quantification model
with K input neurons denoted as {zk}Kk=1, and an output
predicted label y ∈ RN , where N is the number of classes.
The causal attribution of the neuron zk on the output y is

defined as the average causal effect cy
do(zk=α)

with value α. It
can be calculated by subtracting the baseline of zk from the
interventional expectation of y when zk = α [10], i.e.,

cy
do(zk=α)

= E
[
y|do(zk = α)

]
−Ez′

[
E
[
y|do(zk = z′)

]]
.

(3)
The interventional value α can be set to any value in the input
domain of zk as

[lowk, highk]. (4)

When not intervened, the input neuron zk is assumed to be
uniformly distributed between lowk and highk. Specifically,
the term E[y|do(zk = α)], known as the interventional
expectation of output label y conditioning on the intervention
operation do(zk = α), is defined as

E[y|do(zk = α)] =

∫
y

y · p(y|do(zk = α))dy. (5)

The average interventional expectation of y with respect to
zk, Ez′ [E[y|do(zk = z′)]] is used as the baseline value of y,
i.e.

Ez′ [E[y|do(zk = z′)]] =∫ highk

lowk

p(z′) ·
∫
y

y · p(y|do(zk = z′))dydzk, (6)

which has been demonstrated to be unbiased [10]. Hence, the
causal attribution of a feature neuron zk to an output label y
can be quantified by ACE cy

do(zk=α)
.
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We introduce the ACE vector as a quantification of the
causal influences of all features on the label of the i-th sample.
The feature of the i-th sample is a K-dimensional vector as

zi = fθ(xi) = [z1i , z
2
i , ..., z

K
i ]T . (7)

The ACE of its k-th feature on the label y is defined as

cki = cy
do(zk=zk

i )
. (8)

Going through all dimensions, we get an ACE vector of the
i-th sample ci ∈ RQ

ci =
[
(c1i )

T , (c2i )
T , ..., (cKi )T

]T
, (9)

where Q = NK.
An illustration of ACE vector computation is in Fig. 1. A

simple example is also given in Appendix A.

B. Contrastive-ACE

Inspired by the contrastive representation learning [39], we
propose a new objective function named contrastive-ACE loss,
to evaluate the difference between the ACE values of the input
feature on output y across domains. To match the ACE of an
input to an output for all instances of the same class across
domains, the contrastive-ACE loss is optimized by minimizing
the distance between inputs of the same class and maximizing
those from different classes. We treat the inputs of the same
class as the positive matches of i-th sample, and the ones of
different classes as negative samples. The positive sets and
negative sets for the i-th sample are

Pi = {s|yi = ys,∀s ̸= i}, (10)
Ni = {s|yi ̸= ys,∀s ̸= i}, (11)

respectively. An intuitive example is also depicted in Fig. 2,
taking Rotated MNIST dataset as an example.

A direct way to measure the overall pairwise distance
between ACE vectors is to calculate a distance averaged over
all samples in the whole set, which is under extremely heavy
computational workloads when the number of samples is large.
Thus, we use an efficient random sampling technique. Denote
q(Pi) an index sampled uniformly at random from the set Pi,
and q(Ni) an index sampled uniformly at random from the
set Ni. The contrastive-ACE loss Aθ,ϕ(xi,xq(Pi),xq(Ni)) is
then defined as
Aθ,ϕ(xi,xq(Pi),xq(Ni)) =

max
{
dist(ci, cq(Pi))− dist(ci, cq(Ni)) + δ, 0

}
,

(12)

where δ > 0 is a small margin variable [40]. The loss
Aθ,ϕ(xi,xq(Pi),xq(Ni)) becomes large when dist(ci, cq(Pi))
is large, or dist(ci, cq(Ni)) is very small. Thus, it penalizes the
intra-class dissimilarity and inter-class similarity. The margin
variable here is used to reduce the non-robustness brought by
the max operation, avoiding cases that the dist(ci, cq(Pi)) −
dist(ci, cq(Ni)) is always below 0 and never penalized. The
distance we use is the Manhattan Distance between the pair
of vectors as

dist(ci, cs) = |ci − cs|M =

K∑
k=1

|cki − cks |. (13)

Algorithm 1: Contrastive-ACE without domain label
(CACE-ND)

Input: Data D = {(xi,yi)}Si=1, parameter ρ and δ.
Output: Optimal Network.

1 Initialize fθ , gϕ;
2 for i = 1 to S do
3 Construct Pi and Ni

Pi = {s|yi = ys, ∀s ̸= i},
Ni = {s|yi ̸= ys, ∀s ̸= i},

4 while Not converged do
5 Compute the loss

LA(D; θ, ϕ) =

S∑
i=1

ℓ(gϕ(fθ(xi)),yi)

+ ρ

S∑
i=1

Aθ,ϕ(xi,xq(Pi),xq(Ni)).

Update θ and ϕ by gradient descent;

6 return fθ , gϕ;

Combined with the ERM original loss in Eq. 1, the loss with
weighting parameter ρ can be written as

LA(D; θ, ϕ) =

S∑
i=1

ℓ(gϕ(fθ(xi)),yi)

+ ρ

S∑
i=1

Aθ,ϕ(xi,xq(Pi),xq(Ni)).

(14)

The whole training framework is shown in Fig. 3, and the
pseudo-code of the method is presented in Algorithm 1, which
does not make use of domain labels. Intuitively, our structural
loss originates from the principle that the causal mechanism
or structural causal model from features to labels is class-
dependent, but domain-independent, or cross-domain stable.
Given an observation, the ACE vector is a quantification of its
features’ influence on its labels. For samples that are within the
same class, we minimize the gap between their quantification
vectors; but for samples that are with different classes, a larger
gap is preferred. The loss that explicitly addresses the principle
is designed in a contrastive way that positive and negative
pairs are used. Incorporating this in the training procedure, we
expect our model to recover the true invariant causal structure,
which can achieve stable performance in the presence of
domain shifts.

The overall objective of the DG problem is ensuring
networks to focus on the classification task without be-
ing distracted by domain-induced differences. Under circum-
stances where domain labels are not available, the proposed
contrastive-ACE is able to generalize to novel domains by only
leveraging the class information. To be specific, it enhances
the similarity between intra-class samples by enforcing same
causal mechanism of the features, while enlarging variance
between inter-class samples via enforcing different causal
mechanisms of the features.
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Algorithm 2: Contrastive-ACE with domain label
(CACE-D)

Input: Data D =
{
{(xi,yi,di)}Sm

i=1

}M

m=1
, parameter ρ, δ

and λ.
Output: Optimal Network.

1 Initialize fθ , gϕ, hξ;
2 for i = 1 to S do
3 Construct Pi and Ni

Pi = {s|yi = ys,∀s ̸= i},
Ni = {s|yi ̸= ys,∀s ̸= i}.

4 while Not converged do
5 Compute the loss

LA(D; θ, ϕ) =

S∑
i=1

ℓ(gϕ(fθ(xi)),yi)

+ ρ

S∑
i=1

Aθ,ϕ(xi,xq(Pi),xq(Ni)).

Compute the domain classification loss

Dθ,ξ(x) =

M∑
m=1

(
1

Sm

Sm∑
i=1

ℓ (hξ(ci),di)

)
.

Obtain the overall loss by

min
θ,ϕ

max
ξ

L(D; θ, ϕ, ξ) = LA(D; θ, ϕ)− λDθ,ξ(x)

Update ξ by gradient ascent;
6 Update θ and ϕ by gradient descent;

7 return fθ , gϕ, hξ;

For scenarios where informative domain labels are available,
the generalization capability of our approach can be further
improved by adopting a pincer attack strategy to handle DG
problem. In other words, besides encouraging the network to
rely on features that best representing class information when
making decisions, we can also utilize domain information
through adversarial training to make sure the network to be
less dependent on domain-specific features when performing
classification task.

Remark 1. The baseline is not necessary when calculating
the triplet loss because the baseline is the same for all
samples and this term will be eliminated when calculating
the difference between the causal vectors of the two samples.
However, the purpose of keeping this term is to ensure the
conceptual integrity of the causal vectors. When applying a
different contrastive loss, such as NT-Xent loss or Margin loss,
where the similarity between the two causal vectors is used
instead of their difference, the causal vectors defined in Eq. 3
can still be applied without further modification.

C. Incorporating Domain-adversarial Loss

In scenarios where domain labels are available, the general-
ization performance of our proposed approach can be further
improved. Inspired by the domain-adversarial training intro-
duced in [42], we add an additional module hξ named domain-
predictor that transforms ACE vectors {ci} into domain labels

{di}. Suppose M is the number of training domains and Sm

is the number of samples in the m-th training domain. The
domain classification loss can be expressed as

Dθ,ξ(x) =

M∑
m=1

(
1

Sm

Sm∑
i=1

ℓ (hξ(ci),di)

)
. (15)

Different from the ACE loss Aθ,ϕ, the calculation of domain
classification loss Dθ,ξ only involves ACE vectors from anchor
samples {xi}. The overall objective function is designed in an
adversarial manner, i.e.,

min
θ,ϕ

max
ξ

L(D; θ, ϕ, ξ) = LA(D; θ, ϕ)− λDθ,ξ(x), (16)

where λ is a weighting parameter of the domain classification
loss. The whole training framework and the pseudo-code of
the method when the domain labels are available is illustrated
in Algorithm 2. The parameter ξ of domain-predictor hξ is
optimized to minimize the domain classification loss Dθ,ξ(x)
to leverage the domain information in the ACE vectors c
across different domains. On the other hand, the parameters
θ, ϕ of featurizer fθ and classifier gϕ are optimized to mini-
mize the classification loss and ACE regularizer LA(D; θ, ϕ),
while maximizing the domain classification loss Dθ,ξ(x). In
this way, the domain labels d are used to reduce domain infor-
mation during training, thereby improving the generalization
performance on unseen domains.

IV. EXPERIMENTS

In this section, we perform experiments to test the per-
formance of our method on several benchmark datasets, in-
cluding simulated dataset (Rotated MNIST [14]) and real-
world datasets (PACS [11], VLCS [50], Office-Home [51],
miniDomainNet [52]). We compare our method with a set
of domain generalization approaches. Out of them, ERM is
without using the domain indexes, and all other methods take
use of the domain indexes. Accuracy is the main metric being
compared.

A. Experimental Settings

We mostly follow the model set up in the paper [53]. The
models are trained on source domains that are generated from
training dataset and evaluated on the target domain which
is generated from testing dataset. Source and target domains
are generated by the leave-one-out strategy, that one domain
is the test and others are as training domains. When image
data is the input, the domain generalization models contain
the encoder fθ and the classifier gϕ. For fair comparisons,
all models are with the same fθ and gϕ as the DomainBed
[53]. When we perform experiments on Rotated MNIST, the
featurizer fθ of all the compared algorithms is implemented
by the architecture called ”MNIST ConvNet”[53] , while on
other dataset (VLCS, PACS, Office-Home, miniDomainNet),
the featurizer is implemented by Resnet-50 pretrained on
ImageNet for all the compared algorithms. The classifier gϕ
consists of 3 linear layers, each followed by a rectified linear
unit (ReLU) activation function. For model selection, we
use the test-domain-validation-set, where a validation set that
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TABLE I
Accuracy of Rotated MNIST dataset on target domains from 0◦ to 75◦. *This result is obtained from normalized Rotated MNIST dataset.

Method 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ Avg Domain Label
IRM [6] 94.9± 0.6 98.7± 0.2 98.6± 0.1 98.6± 0.2 98.7± 0.1 95.2± 0.3 97.45

required

Mixup [7] 95.8± 0.3 98.7± 0.0 99.0± 0.1 98.8± 0.1 98.8± 0.1 96.6± 0.2 97.95
MLDG [41] 95.7± 0.2 98.9± 0.1 98.8± 0.1 98.9± 0.1 98.6± 0.1 95.8± 0.4 97.78
CORAL [4] 96.2± 0.2 98.8± 0.1 98.8± 0.1 98.8± 0.1 98.9± 0.1 96.4± 0.2 97.98
MMD [5] 96.1± 0.2 98.9± 0.0 99.0± 0.0 98.8± 0.0 98.9± 0.0 96.4± 0.2 98.02
DANN [42] 95.9± 0.1 98.9± 0.1 98.6± 0.2 98.7± 0.1 98.9± 0.0 96.3± 0.3 97.88
CDANN [43] 95.9± 0.2 98.8± 0.0 98.7± 0.1 98.9± 0.1 98.8± 0.1 96.1± 0.3 97.87
SAND-mask [44] 94.7± 0.2 98.5± 0.2 98.6± 0.1 98.6± 0.1 98.5± 0.1 95.2± 0.1 97.35
MTL [45] 96.1± 0.2 98.9± 0.0 99.0± 0.0 98.7± 0.1 99.0± 0.0 95.8± 0.3 97.92
SagNet [46] 95.9± 0.1 99.0± 0.1 98.9± 0.1 98.6± 0.1 98.8± 0.1 96.3± 0.1 97.92
ARM [47] 95.9± 0.4 99.0± 0.1 98.8± 0.1 98.9± 0.1 99.1± 0.1 96.7± 0.2 98.07
VREx [48] 95.5± 0.2 99.0± 0.0 98.7± 0.2 98.8± 0.1 98.8± 0.0 96.4± 0.0 97.87
RSC [49] 95.4± 0.1 98.6± 0.1 98.6± 0.1 98.9± 0.0 98.8± 0.1 95.4± 0.3 97.62
CACE-D 96.5± 0.3 98.8± 0.1 99.4± 0.1 99.4± 0.1 99.4± 0.1 97.5± 0.1 98.50
ERM [2] 95.3± 0.2 98.7± 0.1 98.9± 0.1 98.7± 0.2 98.9± 0.0 96.2± 0.2 97.78

not requiredCACE-ND 96.4± 0.3 98.7± 0.2 99.4± 0.1 99.4± 0.1 99.4± 0.1 97.4± 0.2 98.45
CACE-ND* 97.4± 0.2 99.5± 0.1 99.6± 0.1 99.6± 0.1 99.5± 0.1 98.0± 0.1 98.93
Contrastive-feature 95.8± 0.2 98.5± 0.2 99.2± 0.1 99.3± 0.1 99.3± 0.1 96.8± 0.1 98.15

Fig. 4. Performance on target domain. The orange curve records the historical
model accuracy when the training algorithm is ERM, and the blue curve
records our results.

follows the distribution of the test domain is used to select
the best model. The training epoch is fixed to be 100 with
batch size 32. Adam optimizer is used without weight decay,
with a learning rate to be 0.001. The hyperparameters of our
method, namely the weight of the ACE regularizer and the
margin variable, are ρ = 1 and δ = 0.05. The experiments are
run 2 times for each dataset, and the average performance, as
well as its statistical variation, are reported.

In order to illustrate the difference between aligning fea-
ture vectors and aligning ACE vectors, we also conduct an
experiment on all the datasets to investigate the effect of
both alignment strategies on different benchmark datasets.
For comparison, all the experiments conducted on different
benchmark datasets use exactly the same architecture as we
proposed, except that the ACE vectors ci are replaced by
the feature vectors zi. This compared approach is denoted
as Contrastive-feature.

B. Experiments on Rotated MNIST

This dataset is an artificial dataset constructed from the
popular MNIST handwritten digit sets. It contains grayscale
MNIST handwritten digits with different rotations, with a
degree from 0◦ to 75◦, with 15◦ as one step interval. The
images that are with the same degree of rotation thus naturally
form one domain, so that each domain is indexed by the
rotation angle.

As reported in Table I, we obtain an average accuracy of
98.50% when the domain labels are available and 98.45%
when the domain labels are not available, which is the best
among all other approaches. An interesting observation is
that the proposed method without the assist from domain
information achieves better performance than other approaches
with extra domain information. It can also be observed that, by
applying contrastive loss on the feature vectors, Contrastive-
feature presents noticeably inferior performance in average
accuracy compared with our proposed method. This indicates
the superiority of aligning causal mechanisms rather than
aligning features. When the domain of 0◦ and 75◦ rotation
is used as the testing domains, methods, in general, perform
slightly worse than other settings. Recently, debating about
the role of normalization emerges [54] and we also explore its
effect on the performance of our approaches. With a simple
mean-std normalization of the data, we find that our ACE-
based approach achieves a higher accuracy of 98.93%. This
is possibly because that the normalized data is with a more
stable range, which is less sensitive to additive noises and thus
with a ground for making better ACE estimation and recovery
of the causal mechanism.

To make an in-depth analysis of the training procedure, we
plot the accuracy on testing domains of the models trained by
ERM and CACE-ND in Fig. 4. We observe that in the first 10
training epochs, ERM performs much similar to ours, with no
obvious difference in-between. Our model clearly outperforms
ERM as the training proceeds. This is because that in the initial
exploration stage, the structure of neural networks are unstable,
and the causal mechanism and features are not recovered to a
satisfactory degree. However, when it approaches a relatively
mature stage, CACE-ND takes its effect to help guide the
model to discover causal features so that stable performance
is achieved.

C. Experiments on VLCS

As one of the classic benchmark datasets for domain gen-
eralization, VLCS collects natural images from four datasets,
i.e. PASCAL VOC2007 (V), LabelMe (L), Caltech (C), and
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Fig. 5. Visualizations on the receptive fields of features learned by CACE-ND and ERM for samples from the testing dataset of VLCS.

TABLE II
Model accuracy on target domains of VLCS dataset.

Method C L S V Avg Domain Label
IRM [6] 97.3± 0.2 66.7± 0.1 71.0± 2.3 72.8± 0.4 76.9

required

Mixup [7] 97.8± 0.4 67.2± 0.4 71.5± 0.2 75.7± 0.6 78.1
MLDG [41] 97.1± 0.5 66.6± 0.5 71.5± 0.1 75.0± 0.9 77.5
CORAL[4] 97.3± 0.2 67.5± 0.6 71.6± 0.6 74.5± 0.0 77.7
MMD [5] 98.8± 0.0 66.4± 0.4 70.8± 0.5 75.6± 0.4 77.9
DANN [42] 99.0± 0.2 66.3± 1.2 73.4± 1.4 80.1± 0.5 79.7
CDANN [43] 98.2± 0.1 68.8± 0.5 74.3± 0.6 78.1± 0.5 79.9
SAND-mask [44] 97.6± 0.3 64.5± 0.6 69.7± 0.6 73.0± 1.2 76.2
MTL [45] 97.9± 0.7 66.1± 0.7 72.0± 0.4 74.9± 1.1 77.7
SagNet [46] 97.4± 0.3 66.4± 0.4 71.6± 0.1 75.0± 0.8 77.6
ARM [47] 97.6± 0.6 66.5± 0.3 72.7± 0.6 74.4± 0.7 77.8
VREx [48] 98.4± 0.2 66.4± 0.7 72.8± 0.1 75.0± 1.4 78.1
RSC [49] 98.0± 0.4 67.2± 0.3 70.3± 1.3 75.6± 0.4 77.8
CACE-D 99.4± 0.2 70.2± 0.1 76.8± 0.3 80.9± 0.2 81.8
ERM [2] 97.6± 0.3 67.9± 0.7 70.9± 0.2 74.0± 0.6 77.6

not requiredCACE-ND 99.2± 0.4 69.5± 0.3 75.4± 1.0 79.3± 0.7 80.9
Contrastive-feature 98.9± 0.3 65.1± 0.2 72.5± 0.5 80.1± 0.3 79.2

SUN09 (S), and contains a total of five classes for recognition
task (bird, car, chair, dog and person). The images in VLCS
are all collected from the real world and have larger intra-class
variance and significantly higher domain shift compared to the
simulated dataset such as Rotated MNIST. The task of domain
generalization thus becomes much more challenging.

As reported in Table II, we achieve an average accuracy of
81.8% when the domain labels are available and 80.9% when
the domain labels are not available, which is the best among
all other approaches. It is worth noting that, even without the
assistant of the additional information from domain labels,

the proposed method can still achieve competitive or better
results compared to those with extra domain information.
We observe a huge difference in the performance across
different domains (from 99.2% to 69.5%), which indicates the
large distribution shift across domains. As opposed to Rotated
MNIST, the approaches that require domain labels perform
generally better than those do not in the VLCS dataset. It is
in accordance with natural intuition that domain information
brought by labels makes much more critical impact when
handling datasets of larger distribution shifts. Compared with
the increase in accuracy of ERM (+0.67%) in Rotated MNIST,
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Fig. 6. Visualizations on the receptive fields of features learned by CACE-ND and ERM for samples from the testing dataset of PACS.

TABLE III
Model accuracy on target domains of PACS dataset.

Method A C P S Avg Domain Label
IRM[6] 84.2± 0.9 79.7± 1.5 95.9± 0.4 78.3± 2.1 84.5

required

Mixup [7] 87.5± 0.4 81.6± 0.7 97.4± 0.2 80.8± 0.9 86.8
MLDG [41] 87.0± 1.2 82.5± 0.9 96.7± 0.3 81.2± 0.6 86.8
CORAL [4] 86.6± 0.8 81.8± 0.9 97.1± 0.5 82.7± 0.6 87.1
MMD [5] 88.1± 0.8 82.6± 0.7 97.1± 0.5 81.2± 1.2 87.2
DANN [42] 87.0± 0.4 80.3± 0.6 96.8± 0.3 76.9± 1.1 85.2
CDANN [43] 87.7± 0.6 80.7± 1.2 97.3± 0.4 77.6± 1.5 85.8
SAND-mask [44] 86.1± 0.6 80.3± 1.0 97.1± 0.3 80.0± 1.3 85.9
MTL [45] 87.0± 0.2 82.7± 0.8 96.5± 0.7 80.5± 0.8 86.7
SagNet [46] 87.4± 0.5 81.2± 1.2 96.3± 0.8 80.7± 1.1 86.4
ARM [47] 85.0± 1.2 81.4± 0.2 95.9± 0.3 80.9± 0.5 85.8
VREx [48] 87.8± 1.2 81.8± 0.7 97.4± 0.2 82.1± 0.7 87.2
RSC [49] 86.0± 0.7 81.8± 0.9 96.8± 0.7 80.4± 0.5 86.2
CACE-D 89.2± 0.5 82.1± 0.4 98.0± 0.3 80.5± 0.4 87.5
ERM [2] 86.5± 1.0 81.3± 0.6 96.2± 0.3 82.7± 1.1 86.7

not requiredCACE-ND 88.8± 1.3 81.9± 1.2 97.7± 0.2 80.6± 0.3 87.3
Contrastive-feature 88.2± 0.6 78.3± 0.7 97.9± 0.3 76.5± 0.4 85.2

the improvement of aligning causal mechanism in VLCS
is diminished. As complex real-world images contain more
complicated and diverse features than simulated images, it is
more difficult to infer the causal relationship between features
and predictions, despite the presence of the contrastive-ACE
penalty.

As demonstrated in Fig. 5, ERM fails to capture the correct
object while CACE-ND can still recognize the object correctly.
Moreover, it is worth noting that the receptive field of features
learned by ERM tends to cover features that do not belong

to the object. As shown in Fig. 5, the ERM focuses on the
buildings and double amber lines instead of the cars. Further-
more, for sample input Bird, ERM focuses on the sky and
trees rather than the birds. On the contrary, the receptive field
of features learned by CACE-ND is concentrated precisely on
the object. The reasons for the failure of ERM are probably
lie in the biased training dataset, since a large percent of car
images are either taken in urban areas or on the road, with
backgrounds of buildings and double amber lines. Therefore,
the high occurrence rate of these “non-car” objects or scenes
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TABLE IV
Model accuracy on target domains of Office-Home dataset.

Method A C P R Avg Domain Label
IRM[6] 56.4± 3.2 51.2± 2.3 71.7± 2.7 72.7± 2.7 63.0

required

Mixup[7] 63.5± 0.2 54.6± 0.4 76.0± 0.3 78.0± 0.7 68.0
MLDG[41] 60.5± 0.7 54.2± 0.5 75.0± 0.2 76.7± 0.5 66.6
CORAL[4] 64.8± 0.8 54.1± 0.9 76.5± 0.4 78.2± 0.4 68.4
MMD[5] 60.4± 1.0 53.4± 0.5 74.9± 0.1 76.1± 0.7 66.2
DANN[42] 60.6± 1.4 51.8± 0.7 73.4± 0.5 75.5± 0.9 65.3
CDANN[43] 57.9± 0.2 52.1± 1.2 74.9± 0.7 76.2± 0.2 65.3
SAND-mask [44] 59.9± 0.7 53.6± 0.8 74.3± 0.4 75.8± 0.5 65.9
MTL [45] 60.7± 0.8 53.5± 1.3 75.2± 0.6 76.6± 0.6 66.5
SagNet [46] 62.7± 0.5 53.6± 0.5 76.0± 0.3 77.8± 0.1 67.5
ARM [47] 58.8± 0.5 51.8± 0.7 74.0± 0.1 74.4± 0.2 64.8
VREx [48] 59.6± 1.0 53.3± 0.3 73.2± 0.5 76.6± 0.4 65.7
RSC [49] 61.7± 0.8 53.0± 0.9 74.8± 0.8 76.3± 0.5 66.5
CACE-D 64.9± 0.4 54.6± 0.3 77.8± 0.3 79.4± 0.2 69.2
ERM[2] 61.7± 0.7 53.4± 0.3 74.1± 0.4 76.2± 0.6 66.4

not requiredCACE-ND 64.1± 0.3 54.4± 0.4 77.3± 0.3 79.3± 0.3 68.8
Contrastive-feature 66.7± 0.8 52.3± 0.3 74.8± 0.4 76.5± 0.7 67.6

Fig. 7. Results from ANOVA test on the ACE scores of the features.

leads to a high correlation between these features and the class
label. It is the same case for the images of birds since birds are
more likely to be in the sky or trees when being captured by
cameras. Hence, the features representing the sky or trees are
highly correlated to the label (i.e., bird). Consequently, ERM
is prone to rely on these bias features rather than the ones
indicating the target objects when performing classification
tasks. As opposed to ERM, by aligning the causal mechanisms,
CACE-ND leverages the small number of samples where the
cars are not in urban areas and the birds are not in the sky or
tree. CACE-ND focuses on the causal features that represent
the object itself, and thus improves the overall performance.

D. Experiments on PACS

PACS dataset recently emerges as a widely adopted bench-
mark dataset for domain generalization, which is even more
challenging than VLCS. A total of 7 classes of images (dog,
elephant, giraffe, guitar, house, horse, and person) from 4
different domains (art painting, cartoon, photo, and sketch) are
included. PACS is considered to have a significantly higher do-
main shift than VLCS, which attributes to the large difference

in style. The objects in PACS dataset are better positioned
compared to those in the VLCS dataset. In particular, they
take up a large portion of the image occupied and are well
centralized.

As reported in Table III, we achieve an average classification
accuracy of 87.5% when the domain labels are available and
87.3% when the domain labels are not available, which is the
best among all other approaches. An interesting observation
is that, even though Contrastive-feature shows slightly better
performance on the ”Photo” (P) domain, it exhibits lower
accuracy on all other domains, especially on the ”Cartoon” (C)
and ”Sketch” (S) domains where its accuracy degrades signif-
icantly. Hence the overall inferior performance of Contrastive-
feature indicates the lack of generalization ability when con-
trastive loss is directly applied on the feature vectors.

Interestingly, we observe that, despite the larger inter-source
domain divergence in the PACS dataset than in the VLCS
dataset [55], [56], the improvement made by the proposed
model is relatively smaller on PACS than on VLCS. Because
of the better-positioned objects of interest, the representations
extracted by the featurizer already contain more information
related to the object (casual-related) rather than from the back-
ground. Thus, the benefits from aligning causal mechanisms
are less significant.

When using domain P for testing and others for training,
the performance is superior to that under other settings,
owing to the featurizer realized by the backbone of ResNet-
50 pretrained on ImageNet, which contains real-world photos
from domain P. The bias brought by the featurizer (the pre-
trained backbone) still influences the generalization capability
of the domain models. Although reduced, this bias cannot be
completely removed even using ACE contrastive learning. It
remains a challenging problem that hasn’t been well addressed
in the existing literature.

Methods that impose cross-domain invariant representations
aim at extracting features that contain domain-independent
information while eliminating domain-specific information
like styles. However, simply enforcing invariance, one may
obtain ”over-fixed” patterns without cross-domain flexibility,
which is beneficial for classification. It leads to inferior
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Fig. 8. Visualizations on the receptive fields of features learned by CACE-ND and ERM for samples from the testing dataset of Office-Home.

classification accuracies of their methods. Instead of enforcing
learning domain-invariant features, the proposed contrastive-
ACE aligns the causal mechanism quantified by the ACE of
latent representations to predictions, with room for reasonable
variations among patterns. It might be the reason that we get
better features for the task at hand.

Fig. 6 presents the receptive fields of features learned by
CACE-ND and ERM for selected images from the testing
dataset of PACS. We find that ACE is better in capturing causal
features of the objects compared with ERM for most cases.
It can be observed that the objects in PACS are all clearly
presented in the central area of the images, as opposed to
VLCS. The domain shift in PACS is mainly due to the style
change. Thus, both methods are able to correctly locate the
object. However, we can still notice a clear difference. For
example, CACE-ND tends to focus on the most distinguishable
features of the target, such as the nose of the elephant
and the head of the dog, while ERM often emphasizes less
representative parts such as the eyes of the elephant or the
body of the dog.

We assume that the average causal effect of the features
to the labels is invariant. It means that the causal mechanism
between features and labels should be of higher intra-class
similarity and lower inter-class similarity during the inference
and classification process. We then apply ANOVA to analyze
the ACE scores of the features for demonstration.

Let the null hypothesis be H0 : µk
1 = µk

2 = ... =
µk
N , k = 1, ...,K, where N represents the number of groups,

K represents the number of features and µk
1 to µk

N are the
means of ACE scores of the k-th feature for class 1 to N .
It indicates no statistical relationship between the ACE scores
of each feature and the classes. Here, we use ANOVA for
statistics analysis. Under the assumption of the null hypothesis
H0, the F-score should be around 1. The higher the F-score
is, the lower probability for H0 to be true. To reject H0 with
statistical significance, one relies on the p-value, i.e., the score
that represents the probability for the obtained F-score to be
the least value expected under H0. Commonly, if p ≤ 0.05,
then the null hypothesis H0 can be rejected. It can be observed
in Fig. 7 that the F-score arises rapidly above 1 and the p-score
of most features drops below 0.05 as the training continues.
Hence, we demonstrate that the causal mechanisms of the
features to the labels are significantly correlated to the classes.

E. Experiments on Office-Home

Office-Home dataset contains 15, 500 images of 65 classes
over 4 different domains (artistic images, clip art, product im-
ages, and real-world images). It is far more complex compared
to PACS and VLCS datasets as it covers much more classes.
The office-home has a larger intra-domain variance than PACS
and VLCS. For example, the single domain of artistic images
includes artistic depictions, sketches, and paintings, which are
considered as three separate domains in PACS.

As reported in Table IV, we achieve an average clas-
sification accuracy of 69.2% when the domain labels are
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Fig. 9. Visualizations on the receptive fields of features learned by CACE-ND and ERM for samples from the testing dataset of miniDomainNet.

TABLE V
Model accuracy on target domains of miniDomainNet dataset.

Method Clipart Painting Real Sketch Avg Domain Label
DANN[42] 52.8± 0.2 50.8± 0.5 63.2± 0.2 52.6± 0.2 54.9

requiredCORAL[4] 64.2± 0.4 60.0± 0.2 73.2± 0.4 59.6± 0.1 64.3
Mixup[7] 62.9± 0.2 61.8± 0.4 71.7± 0.3 61.1± 0.2 64.4
CACE-D 70.2± 0.3 65.2± 0.5 75.8± 0.6 63.6± 0.3 68.7
ERM[2] 64.1± 0.8 62.4± 0.9 73.2± 0.2 61.1± 0.5 65.2

not requiredCACE-ND 69.3± 0.3 64.8± 0.5 75.1± 0.4 63.4± 0.4 68.2
Contrastive-feature 67.9± 0.3 63.1± 0.6 74.8± 0.3 62.3± 0.3 67.0

available and 68.8% when the domain labels are not avail-
able, which is the best among all other approaches. Notice
that contrastive-ACE consistently generates superior accuracy
on all four datasets, while some SOTA algorithms perform
differently on these datasets. Specifically, Mixup and CORAL
achieve better performance in Office-Home than in PACS and
VLCS, while DANN and C-DANN perform better in VLCS
rather than in PACS and Office-Home. The reasons could
be that the underlying mechanisms of these approaches are
not universal to datasets with different characteristics. For
example, the Mixup approach produces samples by linearly
interpolating examples between pairs of instances and between
their labels, where a larger intra-domain variance could bring
more diverse samples. As for CORAL, it matches the mean
and variance of the feature distributions, which helps the
algorithm focus on stable features across different domains.
As a result, both algorithms could benefit from the larger
intra-domain variance. For the two approaches that leverage

adversarial samples, DANN and C-DANN, the decline in
performance on Office-Home and PACS could be due to the
greater difficulty in generating adversarial samples for datasets
with larger shift across different domains. In comparison, as
our proposed contrastive-ACE relies on a universal assumption
that the causal mechanism between features and classes should
be stable for samples within the same class, aligning such
mechanism brings consistently superior performance on all
these datasets.

As presented in Fig. 8, the difference between CACE-ND
and ERM in the receptive field of the features they learned is
much more noticeable. Particularly, CACE-ND shows better
capability of accurately locating the target object from the
complicated background. For example, it can precisely sep-
arate the bike from the person, the push pin from the memo,
lamp from other stuff on the desk.
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F. Experiments on miniDomainNet

The newly emerged large-scale multi-source benchmark
dataset, DomainNet, consists of 0.6M images under a total
of 345 classes from 6 domains. It is extremely costly in
computing resources when training the full dataset, which
imposes stringent requirements on its deployment. To en-
able wider deployment, a smaller dataset miniDomainNet is
constructed following the idea of mini-ImageNet, a popular
dataset in the few-shot learning community. miniDomainNet
contains a subset of images with the reduced image size of
96×96 from 4 domains of the original DomainNet, i.e., 18, 703
images from Clipart, 31, 202 images from Painting, 65, 609
images from Real, and 24, 492 images from Sketch. Overall,
miniDomainNet is an excellent choice for fast prototyping and
experimentation, as it largely alleviates the high demand in
computation resources for full dataset but still maintains data
variety and complexity.

As reported in Table V, we achieve an average classification
accuracy of 68.7% when the domain labels are available
and 68.2% when the domain labels are not available, which
is the best among all other approaches. Specifically, our
proposed Contrastive-ACE exceeds the SOTAs that require
domain labels up to around 4.3% in the accuracy with domain
labels, and also outperforms ERM, when domain labels are not
involved, with an improvement of 3%.

The receptive fields of features learned by both ACE and
ERM for testing samples from miniDomainNet are visual-
ized and compared in Fig. 9. It is noticeable that ACE can
accurately locate the target of interest among all presented
examples, even with backgrounds of high complexity, while
ERM encounters difficulty in distinguishing the target object
from other non-target distractions. For instance, the results
of ERM are distracted by the chicken (column 1), the child
(column 6), or the spoon (column 8) in the given images,
when trying to locating different targets (duck/elephant/fork).
Moreover, as opposed to ERM, ACE is capable of identifying
the most representative part of the target object for correct
classification, such as the visual presentations in column 3 and
5 of Fig. 9, when recognizing the cell phone and the ceiling
fan.

G. Ablation Study of lowk and highk Choices

When calculating the interventional expectation and base-
line in Equation 3, the values of [lowk, highk] for feature zk

is determined as lowk = E[z] − 0.5, highk = E[z] + 0.5 for
k = 1, · · · ,K, where K is the dimension of feature vector.
The only hyperparameter is the value 0.5, which is decided
empirically. To investigate the effect of different [low, high]
choices, we have conducted several experiments on different
benchmark datasets. The results are shown in Table VI. It can
be observed that the performance of the proposed method is
robust to different values of the [low, high] interval.

V. CONCLUSION

In this paper, we provide a novel perspective on domain
generalization by making use of the causal invariance between
the average causal effect of the latent representations to the

labels. By assuming the mechanism to be label-dependent but
domain-independent, we align causal quantification vectors
of samples. A novel contrastive-ACE loss is introduced into
the training to enforce cross-domain stability in predictions.
Without using domain labels, our method still achieves good
performance on benchmark datasets compared to SOTAs. The
feasibility and effectiveness are demonstrated by extensive
experiments. When domain labels are available, we introduce
a domain adversarial loss to reduce domain information in the
causal mechanism to further improve generalization ability.
To the best of our knowledge, this work presents the first
investigation on aligning causal mechanisms across domains
in the learning process to address domain generalization. We
expect that it can motivate researchers to explore this direction.

APPENDIX A
A SIMPLE EXAMPLE OF CALCULATING ACE VECTOR

Given the feature vector z = fθ(x), the ACE value can be
calculated as

cy
do(zk=α)

= E
[
y|do(zk = α)

]
−Ez′

[
E
[
y|do(zk = z′)

]]
.

(17)
The first term is the interventional expectation, which is
computed by

E
[
y|do(zk = α)

]
=

∫
y

y · p(y|do(zk = α))dy

=

∫ high1

low1

· · ·
∫ highk−1

lowk−1

∫ highk+1

lowk+1

· · ·
∫ highK

lowK

y · p(y|do(zk = α))dz1 · · · dzk−1dzk+1 · · · dzK ,

(18)

where y = gϕ(z), and z = [z1, z2, · · · , zK ]. In practice, this
expectation is approximated using the sampling approach. It is
computed by averaging the output y when sampling all other
features {zj}j ̸=k from the interval [lowj , highj] while keeping
zk = α fixed.

The second term is the baseline and is computed by

Ez′
[
E
[
y|do(zk = z′)

]]
=

∫ highk

lowk

p(z′) ·
∫
y

y · p(y|do(zk = z′))dydzk

=

∫ high1

low1

· · ·
∫ highK

lowK

y · p(y|z)dz1 · · · dzK .

(19)

Similar the the first term, it is computed by averaging the
output values y when sampling all the features {zk} from the
empirical distribution U [lowk, highk].

For better understanding, we illustrate the detailed proce-
dure with a simplified example. Suppose the training dataset
consists of two samples x1,x2 whose feature vectors are
z1 = [0.5, 1], z2 = [0.7, 9] respectively, and the classifier gϕ
is implemented by a linear layer followed by a ReLU function

y = ReLU (Wz + b) , (20)
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TABLE VI
Model accuracy with different values of [low high] on benchmark datasets.

Dataset [low, high]
[E[z]− 0.5,E[z] + 0.5] [E[z]− 2.5,E[z] + 2.5] [E[z]− 5,E[z] + 5] [E[z]− 10,E[z] + 10] [E[z]− 25,E[z] + 25]

VLCS 80.9 81.1 80.6 80.8 81.2
PACS 87.3 87.5 87.3 87.6 87.6

Office-Home 68.8 68.9 68.6 68.7 68.9

where W and b are defined as

W =

[
0.5 0.1
2 −9

]
(21)

b =

[
0.3
−0.2

]
. (22)

To compute the interventional expectation, we first derive
the expectation of the feature vector z, which is calculated as

E[z] =
[
E[z1]
E[z2]

]
=

1

2

[
0.5 + 0.7
1 + 9

]
=

[
0.6
5

]
(23)

Next, the values of [low, high] for each feature dimension
are determined as[

low1

low2

]
=

[
E[z1]
E[z2]

]
− 0.5 =

[
0.1
4.5

]
[

high1

high2

]
=

[
E[z1]
E[z2]

]
+ 0.5 =

[
1.1
5.5

]
.

(24)

Accordingly, the features follow uniform distributions z1 ∼
U(0.1, 1.1), z2 ∼ U(4.5, 5.5).

We now explain the detailed steps in computing the inter-
ventional expectation and baseline for the first sample x1. The
interventional expectations can be calculated as

E
[
y|do(z1 = 0.5)

]
=

∫ high2

low2

y · p(y|do(z1 = 0.5))dz2 (25)

and the baseline can be calculated as

Ez1

[
E
[
y|do(z1 = 0.5)

]]
=

∫ high1

low1

∫ high2

low2

y · p(y|do(z1 = 0.5))dz1dz2.
(26)

In practice, both expectations are approximated using the
sampling approach.
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