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Abstract. Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards,
which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990)
by associating the edges with success probabilities. This new feature captures the pay-per-click
model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the
online primal dual framework using the Configuration Linear Program (LP), and got the best
known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the
more expressive Configuration LP is more suitable for this problem than the Matching LP.

This paper advances the theory of Configuration LP in two directions. Our technical contri-
bution includes a characterization of the joint matching outcome of an offline vertex and all
its neighbors. This characterization may be of independent interest, and is aligned with the
spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only
one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic
benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic
Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP
we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success
probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.

1 Introduction

Suppose that Alice is planning an upcoming trip to Hawaii and she just types “Hawaii resort” in
a search engine. Once she presses the return key, the search engine will provide a list of related
websites, among which several websites have a small “Ad” tag next to them to indicate that they
are sponsored results. We will refer to such websites as advertisers. If Alice clicks on a sponsored
result, the advertiser would pay the search engine, where the amount depends on its bid for the
keywords among other factors. This is one of many scenarios of online advertising, which contributes
hundreds of billions of US dollars to the annual revenue of major IT companies.

Online advertising presents many unique challenges, each of which has led to a long line of
research. For example, the search engine must decide which advertiser shall be returned to a search
query without knowing what search queries may come next. The essence of this online decision-
making problem is captured by Online Bipartite Matching, which amazingly was introduced by
Karp, Vazirani, and Vazirani [22] well before online advertising even existed. To see the connection,
consider the advertisers and search queries as vertices on the two sides of a bipartite graph. The
advertisers are known from the beginning and we call them offline vertices. The search queries
come one by one and we call them online vertices. The algorithm needs to decide how to match
each online vertex on its arrival, with the goal of maximizing the matching size. We measure an
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algorithm by the worst-case ratio of its expected matching size to the size of the optimal matching
in hindsight, a.k.a., the competitive ratio.

Readers may notice a disparity, however, if they compare our example scenario of online adver-
tising with the Online Bipartite Matching problem. In online advertising, the search engine cannot
control whether a user clicks on the ad or not. The best that a search engine could do is to estimate
how likely the user will click, based on the keywords and the information it gathers about the user.
To this end, an attempt to match an online vertex to an offline neighbor only succeeds with some
probability, rather than with certainty like in Online Bipartite Matching. Because of this disparity,
Mehta and Panigrahi [25] proposed Online Matching with Stochastic Rewards, extending Online
Bipartite Matching by associating the edges with success probabilities.

Much progress has been made in Online Matching with Stochastic Rewards in the last decade.
Most related to this paper is the work of Huang and Zhang [17], who successfully applied the online
primal-dual framework to this problem. Their analysis of the Stochastic Balance algorithm, which
matches each online vertex to a neighbor that has been matched the least number of times so far,
yielded the best competitive ratios to date. Conceptually, they found that the Matching Linear
Program (LP) is not expressive enough for an online primal-dual analysis of this problem, and
instead one could consider the Configuration LP.

There are still unanswered questions, however, that cast some doubt on the usefulness of the
Configuration LP. For instance, Mehta and Panigrahi [25] showed that the Ranking algorithm,
which randomly ranks the offline vertices at the beginning and matches each online vertex to
the neighbor with the highest rank, is another competitive algorithm for Online Matching with
Stochastic Rewards. However, Huang and Zhang [17] failed to offer any non-trivial competitive
analysis for the Ranking algorithm using the online primal-dual analysis with Configuration LP.
Moreover, Goyal and Udwani [13] introduced an alternative benchmark, which we will refer to as
the stochastic benchmark (see Section 2 for details). They proved that the competitive ratios of
both Stochastic Balance and Ranking would be strictly larger if they were compared against the
stochastic benchmark. To do so, they designed a Path-based LP which is completely different than
the Configuration LP. Can we reproduce or even improve these results by further developing the
theory of online primal-dual with Configuration LP?

1.1 Our Results

Our first contribution is an online primal-dual analysis of Ranking based on the Configuration
LP, improving the competitive ratio of Ranking from 0.534 to 0.572. To present the technical
novelty that enables this analysis, we need to first explain the intuition behind the usefulness of
the Configuration LP in an online primal-dual analysis compared to the simple Matching LP. The
essence of an online primal-dual analysis is to design an appropriate gain-splitting rule. When the
algorithm matches an online vertex v to an offline neighbor u and increases the expected objective
accordingly by success probability puv, imagine that we further split the gain of puv between its
two vertices u and v. We need the gain splitting rule to satisfy some LP-dependent conditions
which essentially say that the total expected gain of neighboring vertices are sufficiently large.
More precisely, if we use the Matching LP, the condition is:

puv ·E
[
gain of u

]
+E

[
gain of v

]
≥ Γ · puv , (1)

where Γ is the competitive ratio that we seek to prove for the algorithm.

By contrast, if we use the Configuration LP, the critical condition no longer considers just a
single edge (u, v). Instead, it examines an offline vertex u and a subset of neighbors S whose success
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probabilities sum to about 1, and requires that:

E
[
gain of u

]
+
∑
v∈S

E
[
gain of v

]
≥ Γ . (2)

In other words, the configuration LP only needs an amortized version of Eqn. (1), which sums
over v ∈ S. Even if Eqn. (1) fails in the worst-case scenario with respect to (w.r.t.) an offline
vertex u and a single neighbor v, Eqn. (2) may still hold if such worst-case cannot happen to all
v ∈ S at the same time. Note that, however, to use the power of the weaker condition, we need to
characterize the joint matching outcome of u and a subset of neighbors S, rather than doing so for
each v ∈ S separately. Huang and Zhang [17] gave such a characterization for Stochastic Balance.

This paper finds that even the joint matching outcome of u and S is insufficient for getting a
useful characterization of the worst-case scenario of Eqn. (2) w.r.t. Ranking. Instead, we consider
the joint outcome of u and all its neighbors, including those outside S. Characterizing the entire
neighborhood’s matching outcome may seem counter-intuitive a priori, which may be why Huang
and Zhang [17] failed to get a non-trivial competitive ratio for Ranking. The characterization and
the new approach in general may be useful for other online matching problems whose offline vertices
can be matched more than once, e.g., the AdWords problem [26].

Our second contribution is a new Stochastic Configuration LP, which we design to bound the
stochastic benchmark of Goyal and Udwani [13]. The stochastic benchmark refers to the best
objective achievable by an algorithm which knows the graph and the edges’ success probabilities
but not the realization of edge successes and failures, and which still needs to match online vertices
by their arrival order. It is natural to consider LPs whose decision variables depend on the observed
edge successes and failures to capture the stochastic benchmark. This is the approach of Goyal and
Udwani [13], who referred to the observed edge successes and failures as a sample path and gave a
Path-based LP. Their LP is huge, however, because the number of sample paths is exponential in
the number of edges by definition. Further, compared to the Matching and Configuration LPs, the
Path-based LP has an extra set of consistency constraints: if a sample path is a sub-path of another
sample path, then the relevant matching outcome must be consistent. These constraints lead to new
dual variables that are outside the scope of existing gain-splitting methods. Goyal and Udwani [13]
still found a canonical gain-splitting rule and sufficient conditions for proving competitive ratios
for Ranking and Stochastic Balance, but their conditions do not correspond to the constraints of
Path-based LP’s dual. Therefore, it is unclear how to apply their approach to other problems.

We use a different strategy to design Stochastic Configuration LP for the stochastic benchmark.
Instead of using variables xuS for the probability an offline vertex u is matched to a subset of online
vertices S as in the Configuration LP, we consider variables yuS that represents the probability an
offline vertex u would be matched to subset S if all matches to u failed. The size of the Stochastic
Configuration LP is therefore exponential only in the number of vertices, like the original Config-
uration LP. Further, these variables implicitly capture the consistency requirements and therefore
no additional consistency constraints are needed. As a result, the online primal dual analysis can
directly work with the (approximate) dual constraints. Compared to condition (2) given by the
Configuration LP, the condition w.r.t. the stochastic variant scales the gains of online vertices and
the competitive ratio on the right-hand-side by some multipliers smaller than 1, with the multiplier
of competitive ratio being smaller. Hence, the resulting condition is indeed easier to satisfy.

Using the Stochastic Configuration LP, we improved the competitive ratios of Stochastic Balance
w.r.t. the stochastic benchmark from 0.596 to 0.611 when the success probabilities are infinitesimal,
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Table 1: Summary of Results. The non-stochastic and stochastic benchmarks are denoted as OPT
and S-OPT respectively. The results for Stochastic Balance apply to infinitesimal success probabil-
ities. We round the competitive ratios down to the third digit after the decimal point.

OPT S-OPT

Ranking (Equal Prob.) 0.534 [25] → 0.572 1− 1
e ≈ 0.632 [13]

Stochastic Balance (Equal Prob.) 0.576 [17] 0.596 [13] → 0.613
Stochastic Balance (General) 0.572 [17] 0.596 [13] → 0.611

and to 0.613 if the success probabilities are further equal.45 We also reproduce the optimal 1 − 1
e

competitive ratio of Ranking w.r.t. the stochastic benchmark.

1.2 Related Works

Our analyses follow the (randomized) online primal dual framework by Devanur, Jain, and Klein-
berg [7], who were inspired by Birnbaum and Mathieu [2] and Goel and Mehta [12].

An online advertising platform’s objective is rarely as simple as maximizing the matching size.
For instance, advertisers usually have different values for different keywords. Hence, the literature
has subsequently introduced many variants of the original Online Bipartite Matching problem by
Karp et al. [22]. Aggarwal et al. [1] generalized Ranking and the optimal 1− 1

e competitive ratio to
the (offline) vertex-weighted problem. Feldman et al. [9] considered the edge-weighted problem with
free disposal, and gave a 1− 1

e competitive algorithm assuming large capacities of offline vertices;
see also Devanur et al. [5] for an online primal dual version of this result. Their algorithm may be
viewed as a generalization of the Balance algorithm for unweighted matching by Kalyanasundaram
and Pruh [20], which also inspired the Stochastic Balance algorithm by Mehta and Panigrahi [25]
for Online Matching with Stochastic Rewards. Recently, Fahrbach et al .[8] gave the first algorithm
that is strictly better than 1

2 -competitive for the edge-weighted problem without large-capacity
assumption. The ratio was later improved independently to 0.509 by Shin and An [27], to 0.519 by
Gao et al. [11], and to 0.536 by Blanc and Charikar [3]. Another important variant is the AdWords
problem by Mehta et al. [26], where each offline vertex may be matched multiple times and has a
budget-additive valuation. Under a small bid assumption, Mehta et al. [26] gave an optimal 1− 1

e
competitive algorithm. See also Buchbinder, Jain, and Naor [4] for an online primal dual analysis of
this algorithm, and Devanur and Jain [6] for a generalization called Online Matching with Concave
Returns. Huang, Zhang, and Zhang [18] recently broke the 1

2 barrier for AdWords with general
bids and gave a 0.501-competitive algorithm, using an approach similar to Fahrbach et al. [8]. A
recent line of results [23,29,30] studied budget-oblivious algorithms for AdWords, whose allocation
policies do not depend on the budgets of offline vertices.

Besides the stochastic edge successes and failures in Online Matching with Stochastic Rewards,
the literature has also studied other stochastic models of online matching problems. Mahdian and
Yan [24] and Karande, Mehta, and Tripathi [21] independently showed that Ranking is strictly
better than 1 − 1

e competitive if online vertices arrive by random order. Huang et al. [16] ex-
tended this result to the vertex-weighted problem, which was further improved upon by Jin and
Williamson [19]. The problem with stochastically generated graphs was first studied by Feldman et

4 We remark that the competitive ratio of Goyal and Udwani [13] holds for the optimal value of the Path-based LP,
which may be strictly larger than the optimal value of our Stochastic Configuration LP in some cases. Nevertheless,
both LPs’ optimal values upper bound the stochastic benchmark.

5 We thank an anonymous reviewer for pointing out that a preliminary arXiv version (v5) of [13] claims a competitive
ratio of 0.605 for the general infinitesimal case without proof. Nevertheless, our bound is also larger than that.
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al. [10], who named it Online Stochastic Matching. We also refer readers to the most recent works
on this problem by Huang and Shu [14], Huang, Shu, and Yan [15], and Tang, Wu, and Wu [28].

1.3 Paper Outline

Section 2 presents a formal definition of online matching with stochastic rewards, the benchmarks
we will compare against, and existing linear programs and algorithms. Section 3 introduces our new
stochastic Configuration LPs, and their properties. Section 4 shows the online primal-dual analyses
of Ranking. Finally, our results for Stochastic Balance are presented in Appendix A because of page
limitation and the fact that the improvements mainly come from a combination of the structural
lemmas by Huang and Zhang [17] and the new stochastic Configuration LP proposed in this paper.

2 Preliminaries

We write x+ for function max {x, 0}. For any vector x and any index i, we write x−i for the vector
with the i-th entry removed, and (xi, x−i) for a vector whose i-th entry is xi, and whose other
entries are x−i.

2.1 Model

Consider a bipartite graph G = (U, V,E). Vertices in U are referred to as offline vertices because
they are known to the algorithm from the beginning. Vertices in V arrive one by one, and are
referred to as online vertices. We will write v ≺ v′ to denote that v arrives before v′. Each edge
(u, v) is associated with a success probability 0 ≤ puv ≤ 1; further define puS =

∑
v∈S puv for any

u ∈ U and any S ⊆ V . When an online vertex v ∈ V arrives, the algorithm sees v’s incident edges
and the corresponding success probabilities. Then, the algorithm makes an irrevocable matching
decision about v. Should the algorithm choose to match v to an offline vertex u, the match would
succeed with probability puv. If a match is unsuccessful, the offline vertex u can still be matched to
future online vertices, but the online vertex v will not get a second chance. An offline vertex u ∈ U
is successful if there is an edge that is matched to u and is successful; u is unsuccessful otherwise.
We want to maximize the number of successful offline vertices.

We remark that the results in this paper generalize to the vertex-weighted problem, where offline
vertices have positive weights and we want to maximize the total weight of successful offline vertices.
Readers familiar with the online matching literature shall not find this surprising since almost all
known results for unweighted online matching problems generalize to the vertex-weighted problems.
This version of the paper only presents the unweighted case to keep the exposition simple.

By allowing puv = 0, we may assume without loss of generality that E = U × V which will
simplify the exposition in some parts of this paper. We say that u and v are neighbors if puv > 0.
We say that the success probabilities are equal if puv is either 0 and p for some 0 ≤ p ≤ 1.

Stochastic Budgets. Mehta and Panigrahi [25] showed that when the success probabilities are
infinitesimal, we can consider an equivalent model in which the randomness plays a different role.
At the beginning, each offline vertex u ∈ U independently draws a budget θu from the exponential
distribution with mean 1. When an online vertex v ∈ V arrives, the algorithm may match it to
any offline neighbor and collect a gain that equals the success probability of the edge. However, the
total gain from an offline vertex u is capped by its budget θu, i.e., it is either the sum of success
probabilities of the edges matched to u, denoted as ℓu and referred to as its load, or its budget θu,
whichever is smaller. Further, the budget θu is unknown to the algorithm until the moment when
the load ℓu exceeds the budget, which corresponds to u’s succeeding.
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Benchmarks and Competitive Analysis. The offline (non-stochastic) optimum, denoted as OPT,
refers to the optimal objective achievable by a computationally unlimited offline algorithm that
knows the graph and success probabilities, and when the budgets are non-stochastically equal to
1. The offline optimum upper bounds the objective achievable by any (online or offline) algorithm
in the model with stochastic budgets [25].

The offline stochastic optimum, denoted as S-OPT, refers to the optimal objective achievable
by a computationally unlimited offline algorithm that knows the graph and success probabilities,
but can only match the online vertices one by one by their arrival order, and can only observe the
stochastic budget of an offline vertex when its load exceeds the budget like online algorithms.

An online algorithm is Γ -competitive w.r.t. one of these benchmarks if for any instance of Online
Matching with Stochastic Rewards, the expected objective given by the algorithm is at least a Γ
fraction of the benchmark. Here 0 ≤ Γ ≤ 1 is called the competitive ratio.

2.2 Existing Linear Programs

Consider 0 ≤ xuv ≤ 1 as the probability that u is matched to v (successful or not) for any u ∈ U
and any v ∈ V . The Matching LP is defined as:

max
x≥0

∑
u∈U

∑
v∈V

puvxuv

s.t.
∑
v∈V

puvxuv ≤ 1 ∀u ∈ U∑
u∈U

xuv ≤ 1 ∀v ∈ V

The first constraint states that the expected load of an offline vertex u, which is equal to the
probability that u succeeds, is at most 1. The second constraint says that each online vertex v
can be matched to at most one offline vertex. An offline allocation yields a feasible solution to the
Matching LP by the aforementioned interpretation of xuv. Hence, the optimal objective of Matching
LP upper bounds the offline optimum OPT.

For any offline vertex u ∈ U and any subset of online vertices S ⊆ U , let p̄uS = min{puS , 1},
where recall that puS =

∑
v∈S puv. Consider 0 ≤ xuS ≤ 1 as the probability that S is the sub-

set of online vertices matched to u by the algorithm. Huang and Zhang [17] used the following
Configuration LP and its dual LP:

max
x≥0

∑
u∈U

∑
S⊂V

p̄uSxuS (Primal)

s.t.
∑
S⊆V

xuS ≤ 1 ∀u ∈ U

∑
u∈U

∑
S⊆V :v∈S

xuS ≤ 1 ∀v ∈ V

min
α,β≥0

∑
u∈U

αu +
∑
v∈V

βv (Dual)

s.t. αu +
∑
v∈S

βv ≥ p̄uS ∀u ∈ U,∀S ⊆ V (3)

The optimal objective of Configuration LP also upper bounds the offline optimum OPT. In
fact, it coincides with the optimal objective of Matching LP when the success probabilities are
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infinitesimal (c.f., Huang and Zhang [17]). Nevertheless, its dual structure is better suited for an
online primal dual analysis.

Lemma 1 (c.f., Lemma 3 of Huang and Zhang [17]). Suppose that an algorithm for Online
Matching with Stochastic Rewards can further split puv between αu and βv each time it matches an
edge (u, v), such that the dual constraint (3) holds up to factor Γ in expectation:

E
[
αu +

∑
v∈S

βv

]
≥ Γ · p̄uS .

Then, the algorithm is Γ -competitive w.r.t. OPT.

Finally, Goyal and Udwani [13] introduced the Path-based LP which is tailored for the offline
stochastic optimum S-OPT. A sample path refers to all information of what has happened so
far, including the subset of edges matched by the algorithm, and the realization of whether these
matches are successful. This LP considers variable 0 ≤ xωuv ≤ 1 for any edge (u, v) which represents
the probability that the algorithm matches v to u conditioned on a sample path ω. We omit
the details of Path-based LP because it is not directly related to the LPs in this paper, and its
constraints are too complicated to be covered concisely here. We remark that the number of possible
sample paths and thus the number of variables of Path-based LP are exponential in the number
of edges. By contrast, the number of variables of Configuration LP is exponential in the number of
vertices, which is typically much smaller than the number of edges.

2.3 Existing Algorithms

Ranking. We will consider the Ranking algorithm in the case of equal success probabilities. At
the beginning, draw a rank ρu ∈ [0, 1] uniformly at random for each offline vertex u ∈ U . Then, on
the arrival of each online vertex v ∈ V , match it to the unsuccessful neighbor that has the smallest
rank. We can break ties arbitrarily since they occur with zero probability.

Stochastic Balance (Equal Probability). On the arrival of each online vertex v ∈ V , match
it to the unsuccessful neighbor that has the smallest load, breaking ties arbitrarily, e.g., by the
lexicographical order. Recall that the load of an offline vertex is the sum of success probabilities of
the edges that have been matched to it so far.

Stochastic Balance (General). We first describe a fractional algorithm. On the arrival of each
online vertex v ∈ V , consider a continuous process that matches v fractionally to the unsuccessful
neighbor u ∈ U with the largest puv

(
1− g(ℓu)

)
where g : [0, 1] → [0, 1] is a non-decreasing function

chosen by the algorithm designer. If the success probabilities are infinitesimal, one can further
convert it to an integral algorithm with no loss in the competitive ratio, through a reduction by
Huang and Zhang [17] based on randomized rounding. Hence, it suffices to analyze the fractional
algorithm’s competitive ratio.

3 Stochastic Configuration Linear Programs

3.1 Stochastic Thresholds

Even when the success probabilities are arbitrary, we may still consider an equivalent model that
generalizes the viewpoint of stochastic budgets for infinitesimal success probabilities. We call this
the stochastic thresholds viewpoint. At the beginning, each offline vertex u independently draws a
threshold τu uniformly from [0, 1]. When an online vertex v arrives, the algorithm may match it to



8 Z. Huang et al.

any offline neighbor and collect a gain which equals the success probability of the edge. For each
offline vertex u and any subset of online vertices S, define:

p̃uS = 1−
∏
v∈S

(
1− puv

)
.

An offline vertex u is successful (and can no longer be matched) if the subset of online vertices
S matched to it satisfies p̃uS ≥ τu. Further, the threshold τu is unknown to the algorithm until the
moment that offline vertex u becomes successful.

Observe that when the success probabilities are infinitesimal, we have p̃uS = 1− e−puS , and the
stochastic budget and threshold of an offline vertex u ∈ U satisfy θu = − ln(1− τu).

3.2 Reduced-form Stochastic Configuration Linear Program

Consider 0 ≤ yuS ≤ 1 as the probability that a subset of online vertices S would be matched to
an offline vertex u if it has an infinite stochastic budget θu = ∞ (i.e., when τu = 1 if the success
probabilities are not infinitesimal), over the randomness of the stochastic budgets θ−u of other
offline vertices and the randomness of the algorithm. Further, for any S ⊆ V and v ∈ V , let:

S(v) =
{
v′ ∈ S : v′ ≺ v

}
denote the subset of online vertices in S that arrive before v. We consider the following Reduced-form
Stochastic Configuration LP and its dual:

max
y≥0

∑
u∈U

∑
S⊆V

p̃uS yuS (Primal)

s.t.
∑
S⊆V

yuS ≤ 1 ∀u ∈ U (4)

∑
u∈U

∑
S⊆V :v∈S

(
1− p̃uS(v)

)
yuS ≤ 1 ∀v ∈ V (5)

min
α,β≥0

∑
u∈U

αu +
∑
v

βv (Dual)

s.t. αu +
∑
v∈S

(
1− p̃uS(v)

)
βv ≥ p̃uS ∀u ∈ U,∀S ⊆ V (6)

Theorem 1. The optimal objective of Reduced-form Stochastic Configuration LP is greater than
or equal to S-OPT.

Proof. Consider any computationally unlimited offline algorithm that knows the graph and the
edges’ success probabilities, but must follow the arrival order of online vertices and the stochastic
thresholds of offline vertices. It suffices to show that the corresponding yuS , i.e., the probability that
a subset of online vertices S would be matched to u should u never succeed, is a feasible solution
to the Reduced-form Stochastic Configuration LP.

Constraint (4) corresponds to the fact that there is a uniquely defined subset of online vertices
S that u would be matched to if u never succeed, for any realization of randomness of both the
model and the algorithm.

Next we examine constraint (5). Conditioned on any stochastic thresholds τ−u of vertices other
than u, and the corresponding subset of online vertices S that would be matched to u if u never
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succeed, an online vertex v ∈ S would be matched to u if u’s stochastic threshold τu is large
enough to accommodate all vertices in S that arrive before v, i.e., if τu ≥ p̃uS(v). Since τu is drawn
uniformly between 0 and 1, this happens with probability 1 − p̃uS(v). Hence, the left-hand-side
(LHS) of constraint (5) calculates the probability that v is matched, and is thus at most 1. □

Lemma 2. Suppose that an algorithm for Online Matching with Stochastic Rewards can further
split puv between αu and βv each time it matches an edge (u, v), such that the dual constraint (6)
holds up to factor Γ in expectation, i.e.:

E
[
αu +

∑
v∈S

(
1− p̃uS(v)

)
βv

]
≥ Γ · p̃uS .

Then, the algorithm is Γ -competitive w.r.t. S-OPT.

Proof. The lemma’s assumptions imply that (1) ( 1
Γ Eαu)u∈U and ( 1

Γ Eβv)v∈V form a feasible dual
assignment, and the corresponding dual objective equals 1

Γ times the algorithm’s expected objective.
Further, the dual objective of any feasible dual assignment is greater than or equal to the optimal
dual objective, which by weak duality is greater than or equal to the optimal primal objective.
Putting these together with Theorem 1 completes the proof. □

3.3 Stochastic Configuration Linear Program

Consider 0 ≤ yuS(θ−u) ≤ 1 (respectively, yuS(τ−u) if the success probabilities are not infinitesimal)
as the probability that a subset of online vertices S would be matched to an offline vertex u if it has
an infinite stochastic budget θu = ∞ (respectively, if τu = 1), conditioned on the stochastic budgets
θ−u (respectively, the stochastic thresholds τ−u) of other offline vertices, and over the randomness
of the algorithm. This paper will further consider an even more expressive Stochastic Configuration
LP and its dual in some analyses.

maximize
y≥0

∑
u∈U

∑
S⊆V

Eθ−u

[
p̃uS yuS(θ−u)

]
(Primal)

subject to
∑
S⊆V

yuS(θ−u) ≤ 1 ∀u ∈ U,∀θ−u (7)

∑
u

∑
S⊆V :v∈S,θu≥puS(v)

yuS(θ−u) ≤ 1 ∀v ∈ V,∀θ (8)

minimize
α,β≥0

Eθ

[∑
u

αu(θ−u) +
∑
v∈V

βv(θ)
]

(Dual)

subject to αu(θ−u) +Eθu

[ ∑
v∈S:θu≥puS(v)

βv(θu, θ−u)
]
≥ p̃uS ∀u ∈ U,∀S ⊆ V,∀θ−u (9)

Theorem 2. The optimal objective of Stochastic Configuration LP is at least S-OPT.

Proof. Consider any computationally unlimited offline algorithm that knows the graph and the
edges’ success probabilities, but must follow the arrival order of online vertices and the stochastic
budgets of offline vertices. We next show that the corresponding yuS(θ−u), i.e., the probability that
a subset of online vertices S would be matched to u if the stochastic budgets were (θu = ∞, θ−u),
is a feasible solution to the Stochastic Configuration LP.
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Constraint (7) corresponds to the fact that there is a uniquely defined subset of online vertices
S that u would be matched to if u never succeed, for any realization of randomness of both the
model and the algorithm.

Next we examine constraint (8). Conditioned on any stochastic budgets θ−u of vertices other
than u, and the corresponding subset of online vertices S that would be matched to u if u never
succeed, an online vertex v ∈ S would be matched to u if u’s stochastic budget θu is large enough
to accommodate all vertices S that arrive before v, i.e., if we have θu ≥ puS(v). Hence, the LHS of
constraint (8) calculates the probability that v is matched conditioned on any stochastic budgets
θ, and is thus at most 1. □

Lemma 3. Suppose that an algorithm for Online Matching with Stochastic Rewards can further
split puv between αu and βv each time it matches an edge (u, v). Let αu(θ−u) be the expectation of
αu conditioned on any stochastic budgets θ−u of offline vertices other than u, and let β(θ) be the
expectation of βv conditioned on any stochastic budgets θ of all vertices. If the dual constraint (6)
holds up to factor Γ , i.e.:

αu(θ−u) +Eθu

[ ∑
v∈S:θu≥puS(v)

βv(θu, θ−u)
]

≥ Γ · p̃uS ,

then the algorithm is Γ -competitive w.r.t. S-OPT.

Proof. The lemma’s assumptions imply that (1) 1
Γ αu(θ−u) and 1

Γ βv(θ) are a feasible dual assign-
ment, and the corresponding dual objective equals 1

Γ times the algorithm’s expected objective.
Further, the dual objective of any feasible dual assignment is greater than or equal to the optimal
dual objective, which by weak duality is greater than or equal to the optimal primal objective.
Putting these together with Theorem 2 completes the proof. □

4 Ranking

4.1 Basics

We will assume throughout the section that the ranks of offline vertices are distinct, since that
happens with probability 1. Below we first develop some basic elements that will be used by the
proofs of both results in this section.

Dual Updates. We start by explaining the dual update rule associated with Ranking, which is
identical to the existing one in the literature. The dual variables are initially 0. Let g : [0, 1] → [0, 1]
be a non-decreasing gain splitting function to be determined. We will assume that g(1) = 1 which
will allow us to handle a boundary case of the analysis under a unified framework. Recall that ρu
denotes the rank of u which is uniformly drawn between 0 and 1 at the beginning by the Ranking
algorithm. When the algorithm matches an online vertex v to an offline vertex u, increase αu by
p · g(ρu), and set βv as p ·

(
1− g(ρu)

)
, where recall that p denotes the equal success probability of

matching neighboring vertices.

Characterization of Matching. All analyses in this section will fix an offline vertex u ∈ U and the
ranks ρ−u and stochastic thresholds τ−u of other offline vertices. A canonical analysis of Ranking,
such as those for Online Bipartite Matching (c.f., Devanur et al. [7]), would further fix a neighboring
online vertex v ∈ V and characterize the matching outcome of u and v. For the problem of Online
Matching with Stochastic Rewards and in the spirit of Configuration LPs, however, we need to
characterize the joint matching outcome of u and all its neighbors.
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We first define some notations. Consider an imaginary run of Ranking with vertex u removed,
while keeping the ranks of other offline vertices as ρ−u. Further consider an online vertex v in u’s
neighborhood. If v is matched to an offline vertex u′ in the imaginary run, define the v’s critical
rank as µv = ρu′ . If v is not matched, define its critical rank as µv = 1. Finally, for any 0 ≤ µ ≤ 1,
let Nu(µ) be the set of u’s neighbors whose critical ranks are greater than or equal to µ.

Lemma 4. Suppose that u’s rank is ρu and u’s stochastic threshold is such that u succeeds after i
matches. Then, the subset of online vertices matched to u is the first min

{
i, |Nu(ρu)|

}
vertices in

Nu(ρu) according to the arrival order.

Proof. We will prove a stronger claim consisting of the following three properties, by an induction
on 0 ≤ i ≤ |Nu(ρu)|:

(a) the subset of online vertices matched to u is the first i vertices in Nu(ρu);

(b) u’s remaining neighbors in Nu(ρu) are either matched to offline vertices with ranks greater than
ρu or unmatched; and

(c) u’s neighbors outside Nu(ρu) are matched to offline vertices with ranks smaller than ρu.

The base case when i = 0 corresponds to running Ranking with u removed from the graph.
Thus the above properties follow by the definition of Nu(ρu).

Suppose that the above claim holds for some i ≥ 0. Next we consider the case of i + 1. The
matchings w.r.t. i and i+1 merely differ by an alternating path triggered by the (i+1)-th match to
offline vertex u. Further by the inductive hypothesis, in particular by (b) and (c), this online vertex
is the (i+ 1)-th vertex in Nu(ρu). Hence, we have established property (a) for the case of i+ 1. To
see the other two properties, further observe that the ranks of offline vertices on the alternating
paths are weakly increasing, because every change is triggered by some online vertex’s matching to
a weakly better neighbor. Therefore, the dichotomy of which u’s neighbors are matched to offline
vertices with ranks smaller than ρu stays intact.

Finally, we remark that the claim for i = Nu(ρu) also proves the lemma for i > Nu(ρu). □

Expectation of Dual Variables. The next invariant about dual variable αu follows from the above
gain splitting rule.

Lemma 5. For any offline vertex u ∈ U , any ranks ρ and stochastic thresholds τ of offline vertices,
and the corresponding load ℓu of u, we have:

αu = ℓu · g(ρu) .

As a corollary, we can further bound the expectation of αu conditioned on the ranks ρ−u and
stochastic thresholds τ−u of other offline vertices.

Lemma 6. For any offline vertex u ∈ U , any ranks ρ−u and stochastic thresholds τ−u of offline
vertices other than u, we have:

Eρu,τu

[
αu | ρ−u, τ−u

]
=

∫ 1

0

(
1− (1− p)|Nu(ρu)|

)
g(ρu) dρu .

Proof. Comparing the stated bound with the conclusion of Lemma 5, it remains to prove that:

Eτu

[
ℓu | ρ, τ−u

]
= 1− (1− p)|Nu(ρu)| . (10)

By Lemma 4, the subset of online vertices matched to u would be Nu(ρu) if u never succeeds.
Since the expected load of u equals the probability that it succeeds, which is 1− (1− p)|Nu(ρu)|, we
prove Equation (10) and thus the lemma. □
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Recall that Nu(µ) is the subset of u’s neighbors whose critical ranks are greater than or equal
to µ. Further let Nu(µ, v) be the subset of vertices in Nu(µ) that arrive before v.

Lemma 7. For any offline vertex u ∈ U , any u’s neighbor v, any ranks ρ−u and stochastic thresh-
olds τ−u of offline vertices other than u, we have:

Eρu,τu

[
βv | ρ−u, τ−u

]
≥ p

(
1− g(µv) +

∫ µv

0

(
1− p

)|Nu(ρu,v)|(g(µv)− g(ρu)
)
dρu

)
.

Proof. By the characterization of matching outcome (Lemma 4) and the dual update rule, dual
variable βv is at least p

(
1− g(µv)

)
regardless of what u’s rank ρu and stochastic threshold τu are.

Further, if u’s rank is better than v’s critical rank, i.e., ρu < µv, then v would be matched to u if
u’s stochastic threshold is such that all matches to u before v are unsuccessful. If that happens,
dual variable βv would increase by p

(
1 − g(µv)

)
− p

(
1 − g(ρu)

)
= p

(
g(ρu) − g(µv)

)
accordingly

compared to the aforementioned p
(
1 − g(µv)

)
baseline. By Lemma 4, the online vertices matched

to u before v are those in Nu(ρu, v). Therefore the probability that they all fail is (1− p)|Nu(ρu,v)|.
Putting everything together gives the expression on the right-hand-side (RHS). □

4.2 Non-stochastic Benchmark

Theorem 3. Ranking is at least 0.572-competitive w.r.t. the offline (non-stochastic) benchmark
OPT for any instance with equal success probabilities.

The rest of the subsection is devoted to proving Theorem 3 by an online primal dual analysis
with the Configuration LP. By Lemma 1, it suffices to show that E

[
αu +

∑
v∈S βv

]
≥ Γ · p̄uS for

any offline vertex u ∈ U and any subset of online vertices S ⊆ V , and with the stated competitive
ratio Γ = 0.572. We will prove it further conditioning on any ranks ρ−u and stochastic thresholds
τ−u of other vertices, i.e.:

Eρu,τu

[
αu +

∑
v∈S

βv | ρ−u, τ−u

]
≥ Γ · p̄uS , (11)

First we apply the bounds for dual variables’ expectation from Lemmas 6 and 7 to the LHS of
the inequality:

Eρu,τu

[
αu +

∑
v∈S

βv | ρ−u, τ−u

]
≥

∫ 1

0

(
1− (1− p)|Nu(ρu)|︸ ︷︷ ︸

(a)

)
g(ρu) dρu (12)

+
∑
v∈S

p︸ ︷︷ ︸
(b)

(
1− g(µv) +

∫ µv

0

(
1− p

)|Nu(ρu,v)|

︸ ︷︷ ︸
(c)

(
g(µv)− g(ρu)

)
dρu

)
.

Assumptions. The rest of the analysis will treat the above as a pure inequality problem, where
the arrival order and critical ranks of u’s neighbors may be chosen arbitrarily by an adversary.
In particular, when we characterize the worst-case scenario of the inequality we shall not concern
about how to construct an instance to get the specified critical ranks. With this treatment, we can
make several assumptions that on the one hand are without loss of generality, and on the other
hand simplify the subsequent analysis.
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First recall the assumption that the offline vertices’ ranks are distinct, because the exceptions
happen with zero probability. In other words, we may relax and simplify the RHS assuming distinct
ranks, which for example implies that u’s rank ρu does not equal the critical rank µv of any v.
Although the resulting bound may be violated for some zero measure subset of ranks ρu, the bound
still holds after the integration.

Further, it suffices to consider the above inequality for infinitesimal success probabilities. For
p = 1 it is the online bipartite matching problem by Karp et al. [22], for which Ranking is 1 − 1

e
competitive. For any instance with 0 < p < 1 and any large integer n, we can instead consider a
new instance such that (i) the equal success probabilities is p′ = 1− n

√
1− p, (ii) each online vertex

in the original instance has n copies in the new instance, which arrive consecutively and have the
same critical ranks as the original vertex, and (iii) the subset S′ of concerned in the new instance
contains m = ⌊ p

p′ ⌋ copies of each vertex v ∈ S in the original one. By this construction, the RHS of
Eqn. (11) is the same in the two instances, up to an error from the rounding of m that diminishes
as n tends to infinity. Further, the RHS of Eqn. (12) is smaller in new instance because (i) and (ii)
ensure that part (a) stays the same and part (c) decreases, and (iii) ensures that the changes to
part (b) weakly decreases the expression. Hence, it suffices to establish the inequality in the new
instance which satisfy the assumption of infinitesimal success probability. We may therefore rewrite
the expression as:

Eρu,τu

[
αu +

∑
v∈S

βv | ρ−u, τ−u

]
≥

∫ 1

0

(
1− e−p|Nu(ρu)|)g(ρu) dρu +

∑
v∈S

p
(
1− g(µv)

)
(13)

+
∑
v∈S

∫ µv

0
e−p|Nu(ρu,v)|(1− e−p

)(
g(µv)− g(ρu)

)
dρu .

Finally, it is sufficient to establish the stated approximate dual feasibility condition when the
critical ranks µv are distinct for different v. Otherwise, we may slightly perturb the critical ranks,
e.g., by a random noise drawn from [−ϵ, ϵ] for a sufficiently small ϵ > 0, to get a new instance
satisfying our assumption. The resulting RHS of Eqn. (13) converges to the original one when the
magnitude of perturbations tends to zero.

For any 0 ≤ µ ≤ 1, let:

P (µ) = p ·
∣∣Nu(µ) ∩ S

∣∣ , P̄ (µ) = p ·
∣∣Nu(µ) \ S

∣∣
denote the sums of success probabilities of u’s neighbors with critical ranks greater than or equal
to µ, inside S and outside S respectively.

Characterization of Worst-case. We next present a series of lemmas that characterize the worst-
case of various aspects of the instance, including the arrival order, the size of S, and critical ranks,
etc. We defer the relative long proofs to Appendix B for readability.

Lemma 8 (Worst Arrival Order). We have:

Eρu,τu

[
αu +

∑
v∈S

βv | ρ−u, τ−u

]
≥

∫ 1

0

(
1− e−P̄ (ρu)

)
g(ρu) dρu −

∫ 1

0

(
1− g(µv)

)
dP (µv)

−
∫ 1

0
e−P (ρu)−P̄ (ρu)

∫ 1

ρu

g(µv) de
P (µv) dρu . (14)

The lemma’s inequality would hold with equality if online vertices in S arrive by increasing
order of critical ranks, and vertices outside S arrive before those in S. We remark that the negative
signs in front of the second and third integration come from the fact that P (µ) is non-increasing.
All three parts make positive contribution to the RHS. The proof is in Appendix B.1.



14 Z. Huang et al.

Lemma 9 (Worst Critical Ranks Outside S). Given any non-increasing function P : [0, 1] →
[0,∞), the RHS of Eqn. (14) is minimized when P̄ (µ) is a step function that equals ∞ for µ < µ0

and equals 0 for µ > µ0, for some threshold µ0.

The lemma indicates that letting all online vertices outside S have the same critical rank µ0 is
the worst-case scenario.

Proof. For any 0 ≤ ρu ≤ 1, gather the first and third terms which involve e−P̄ (ρu) on the RHS of
Equation (14). We get:

(
− g(ρu)− e−P (ρu)

∫ 1

ρu

g(µv)de
P (µv)

)
e−P̄ (ρu) =

(
−g(1) +

∫ 1

ρu

eP (µv)dg(µv)︸ ︷︷ ︸
(⋆)

)
e−P (ρu)e−P̄ (ρu) ,

where equality follows from an integration by parts. Since (⋆) is decreasing in ρu, the lemma follows
with µ0 being the supremum of ρu for which (⋆) is non-negative. In the boundary case when (⋆) is
negative for all ρu, the lemma still holds with µ0 = 0. □

Given Lemma 9, and noting that puS = P (0) and thus p̄uS = min
{
P (0), 1

}
, it suffices to find a

gain splitting function g such that for any non-increasing function P : [0, 1] → [0,∞) we have:∫ µ0

0
g(ρu) dρu −

∫ 1

0

(
1− g(µv)

)
dP (µv)−

∫ 1

µ0

e−P (ρu)

∫ 1

ρu

g(µv) de
P (µv) dρu ≥ Γ ·min

{
P (0), 1

}
.

(15)

Lemma 10 (Worst Size of S). If Eqn. (15) holds for all non-increasing function P that satisfies
puS = P (0) = 1, then it also holds for an arbitrary non-increasing function P .

Proof. For this proof, it is more convenient to write the third term on the left as:

−
∫ 1

µ0

∫ 1

ρu

e−P (ρu)+P (µv)g(µv) dP (µv) dρu .

Given any instance whose function P has P (0) > 1, we may consider another instance defined

by P ′(µ) =
(
P (µ)−P (0)+1

)+
, i.e., dropping some neighbors with the smallest critical ranks from

S so that the sum of remaining vertices’ success probabilities equals 1. The inequality’s RHS equals
Γ in both instances. The LHS, however, is smaller in the new instance. To see this, the first term
on the left stays the same. The second term decreases. The third term also decreases because for
any relevant ρu ≤ µv with P ′(ρu) ≥ P ′(µv) > 0 that contribute the integral of the new instance,
we have e−P (ρu)+P (µv) = e−P ′(ρu)+P ′(µv) because the values of P and P ′ differ by the same amount
P (0)− 1 at both ρu and µv.

Next consider any instance whose function P has P (0) < 1. We may consider another instance
defined by P ′(µ) = P (µ)/P (0), i.e., increasing the number of vertices in S with each critical rank by
a 1/P (0) factor so that the sum of success probabilities becomes 1. By definition, the inequality’s
RHS increases by a 1/P (0) factor in the new instance. The LHS, however, increases by less than a
1/P (0) factor. To see this, the first term on the left remains the same. The second term increases
by a 1/P (0) factor. Finally, the third term increases by less than a 1/P (0) factor because we have
e−P ′(ρu)+P ′(µv) < e−P (ρu)+P (µv). □
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Therefore, our task further simplifies to finding a gain splitting function g such that for any
non-increasing function P : [0, 1] → [0, 1] with P (0) = 1 we have:∫ µ0

0
g(ρu) dρu −

∫ 1

0

(
1− g(µv)

)
dP (µv)−

∫ 1

µ0

e−P (ρu)

∫ 1

ρu

g(µv) de
P (µv) dρu ≥ Γ . (16)

This is the moment when we finally specify the gain splitting function g:

g(ρ) =

{
min

{
c

e−(e−1)ρ , 1−
1
e

}
0 ≤ ρ < 1;

1 ρ = 1.
(17)

for a constant c ≈ 1.161 such that
∫ 1
0 g(x) = 1− g(0) > 0.572.

Lemma 11 (Worst Critical Ranks Inside S). For the function g in Eqn. (16) is minimized
when P approaches a step function in the limit, i.e., when for some ρ0 > µ0:

P (ρ) =


1 0 ≤ ρ < ρ0 − ϵ;
ρ0−ρ

ϵ ρ0 − ϵ ≤ ρ ≤ ρ0;

0 ρ0 < ρ ≤ 1.

and let ϵ → 0.

Despite its complex look, the lemma actually gives a simple characterization of the worst-case
critical ranks inside S: all online vertices in S have the same critical rank ρ0 > µ0. We have the
complex form because we write the lower bounds of the LHS of approximate dual feasibility through
a function P , which help simplify the proofs of previous lemmas but is inconvenient when we need
to represent identical critical ranks. The proof of Lemma 11 is in Appendix B.2.

Finally, we apply the above worst-case function P and focus on optimizing the gain splitting
function g w.r.t. the resulting differential inequality.

Lemma 12. For any µ0 < ρ0, and for the function g in Eqn. (17), we have:∫ µ0

0
g(ρu) dρu +

(
1− g(ρ0)

)
+
(
1− 1

e

)(
ρ0 − µ0

)
g(ρ0) ≥ Γ ,

for the stated competitive ratio Γ = 0.572

Proof. Recall that 1− g(0) =
∫ 1
0 g(ρu) dρu > Γ . The derivative of LHS w.r.t. µ0 is:

g(µ0)−
(
1− 1

e

)
g(ρ0)

If ρ0 < 1, we have:

g(µ0)−
(
1− 1

e

)
g(ρ0) ≥ g(0)−

(
1− 1

e

)2
> 0

Therefore taking µ0 = 0 minimizes the LHS, with minimum value:

1− g(ρ0) +
(
1− 1

e

)
· ρ0 · g(ρ0) = 1−

(
1−

(
1− 1

e

)
ρ0

)
g(ρ0)

≥ 1−
(
1−

(
1− 1

e

)
ρ0

) c

e− (e− 1)ρ0
(definition of g)

= 1− c

e
= 1− g(0) > Γ .
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If ρ0 = 1, on the other hand, the LHS is:∫ µ0

0
g(ρu) dρu +

(
1− 1

e

)(
1− µ0

)
.

The derivative w.r.t. µ0 is g(µ0)−
(
1− 1

e

)
≤ 0. Hence, the LHS is minimized when µ0 = 1, with

minimum value
∫ 1
0 g(ρu) dρu > Γ . □

4.3 Stochastic Benchmark

Theorem 4. Ranking is 1 − 1
e -competitive w.r.t. the offline stochastic benchmark S-OPT for any

instance with equal success probabilities.

The rest of the subsection is devoted to proving Theorem 4 by an online primal dual analysis
with the Reduced-form Stochastic Configuration LP. By Lemma 2, it is sufficient to show that
E
[
αu +

∑
v∈S(1− p̃uS(v))βv

]
≥ Γ p̃uS for any offline vertex u ∈ U and any subset of online vertices

S ⊆ V , and with the stated competitive ratio Γ = 1− 1
e . We will prove it further conditioning on

any ranks ρ−u and stochastic thresholds τ−u of other vertices, i.e.:

Eρu,τu

[
αu +

∑
v∈S

(1− p̃uS(v))βv | ρ−u, τ−u

]
≥

(
1− 1

e

)
· p̃uS (18)

Let v1, v2, . . . , vn be the online vertices in S, sorted by their critical ranks, which we denote as
µ1 ≥ µ2 ≥ · · · ≥ µn. We next apply the lower bounds for the dual variables’ expectation to the
LHS of Eqn. (18). First we have:

Eρu,τu

[
αu | ρ−u, τ−u

]
≥

∫ 1

0

(
1− (1− p)|Nu(ρu)|

)
g(ρu) dρu (Lemma 6)

≥
∫ 1

0

(
1− (1− p)|Nu(ρu)∩S|

)
g(ρu) dρu

=

∫ 1

0

|Nu(ρu)∩S|∑
i=1

p(1− p)i−1g(ρu) dρu =
n∑

i=1

p(1− p)i−1

∫ µi

0
g(ρu) dρu .

To bound the expected contribution by βv’s, we apply a weaker version of Lemma 7, dropping
the second part on the RHS of the lemma’s inequality. Suppose that the vertices in S arrive by
order vπ(1) ≺ vπ(1) ≺ . . . ≺ vpi(n). We get that:

Eρu,τu

[ ∑
v∈S

(1− p̃uS(v))βv | ρ−u, τ−u

]
≥

n∑
i=1

p(1− p)i−1
(
1− g(µπ(i))

)
(Lemma 7)

≥
n∑

i=1

p(1− p)i−1
(
1− g(µi)

)
. (rearrangement inequality)

Combining the two bounds, we get that the LHS of Eqn. (18) is at least:

n∑
i=1

p(1− p)i−1
(∫ µi

0
g(ρu) dρu + 1− g(µi)︸ ︷︷ ︸

(⋆)

)
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Next we choose g(x) = ex−1 just like the analysis of Ranking for the original Online Bipartite
Matching problem. This choice ensures that (⋆) equals 1− 1

e . The above bound is therefore:

(
1− 1

e

) n∑
i=1

p(1− p)i−1 =
(
1− 1

e

)(
1− (1− p)n

)
=

(
1− 1

e

)
· p̃uS .
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A Stochastic Balance

A.1 Basics

This section covers the online primal dual analysis of the Stochastic Balance algorithm using the
Stochastic Configuration LP. The success probabilities are infinitesimal throughout this section.
We first develop some basic elements that will be used by the proofs of both results in the section.

Dual Updates. Let g : [0,∞) → [0, 1] be a non-decreasing gain splitting function to be determined.

Further let G(ℓ) =
∫ ℓ
0 g(z) dz be the integral of g. When the algorithm matches u and v by an

xuv amount, the algorithm adds xuvpuv to the objective in expectation. Accordingly, it increases
αu(θ−u) by xuvpuvg(ℓu) and increases βv(θ) by xuvpuv

(
1− g(ℓu)

)
, where θ is the stochastic budgets

of offline vertices. Here recall that ℓu denotes the (current) load of an offline vertex u.

The following invariant follows by how the algorithm updates dual variable αu(θ−u).

Lemma 13. For any offline vertex u ∈ U and conditioned on any stochastic budgets θ−u of vertices
other than u, we have αu(θ−u) = G(ℓu).

Let ℓ∞u denote what u’s final load would be if all matches to it were unsuccessful, i.e., if its
stochastic budget was θu = ∞. A simple calculation shows the following:

Lemma 14. For any offline vertex u ∈ U and conditioned on any stochastic budgets θ−u of vertices
other than u, and for the corresponding ℓ∞u , we have:

Eθu α(θ−u) =

∫ ℓ∞u

0
e−θug(θu) dθu .

Proof. Offline vertex u’s final load is min
{
ℓ∞u , θu

}
. Hence by Lemma 13 we get that:

Eθu α(θ−u) =

∫ ∞

0
e−θuG

(
min

{
ℓ∞u , θu

})
dθu (substitution of variable)

=

∫ ℓ∞u

0
e−θuG(θu) dθu +

∫ ∞

ℓ∞u

e−θuG(ℓ∞u ) dθu

=

∫ ℓ∞u

0
e−θuG(θu) dθu + e−ℓ∞u G (ℓ∞u )

=

∫ ℓ∞u

0
e−θug(θu) dθu . (integration by parts)

□

A.2 Equal Infinitesimal Success Probabilities

Theorem 5. Stochastic Balance is at least 2(1−ln 2) > 0.613-competitive w.r.t. the offline stochas-
tic benchmark S-OPT, when the instance has equal infinitesimal success probabilities.

The rest of the subsection is devoted to proving Theorem 5. By Lemma 3, we need to show
that for any offline vertex u ∈ U and any subset of online vertices S ⊆ V , and conditioned on any
stochastic budgets θ−u of other offline vertices, we have:

Eθu

[
αu(θ−u) +

∑
v∈S:θu≥puS(v)

βv(θu, θ−u)
]
≥ Γ · p̃uS ,
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for the stated competitive ratio Γ = 2(1− ln 2). Note that it is without loss of generality to consider
S that is comprised of u’s neighbors.

We start by bounding the expectation of dual variables while leaving the gain splitting function
g to be determined. The expectation of α(θ−u) is already given by Lemma 14. The next lemma
bounds the expectation of βv(θu, θ−u)’s.

Lemma 15. Conditioned on any θ−u and the corresponding ℓ∞u , we have:

Eθu

[ ∑
v∈S:θu≥puS(v)

βv(θu, θ−u)
]
≥

∫ ∞

0
e−θu

(
min

{
puS , θu

}
− (ℓ∞u − θu)

+
)+

dθu ·
(
1− g(ℓ∞u )

)
.

Proof. If u’s stochastic budget is at least θu ≥ ℓ∞u , then u remains unsuccessful until the end and
therefore any vertex v ∈ S would be matched to an offline vertex with load at most ℓ∞u . Further
note that

∑
v∈S:θu≥puS(v)

puv = min
{
puS , θu

}
. Hence:∑

v∈S:θu≥puS(v)

βv(θu, θ−u) ≥ min
{
puS , θu

}(
1− g(ℓ∞u )

)
Next consider the case when u’s stochastic budget is θu < ℓ∞u . First consider how much the

βv’s would sum to if u’s stochastic budget was ∞ (while using the actual θu to define the range of
summation). By the same argument as above, all vertices in the summation would be matched to
an offline vertex with load at most ℓ∞u . We can therefore lower bound the actual value of βv’s using
the following structural lemma.

Lemma 16 (c.f., Lemma 7 of Huang and Zhang [17]). If we compare the set of online vertices
that are matched to offline vertices with loads at most ℓ∞u when u’s stochastic budget is θu, with the

set of such vertices when u’s stochastic budget is ∞, they differ by at most p−1
(
ℓ∞u − θu

)+
vertices.

We get that: ∑
v∈S:θu≥puS(v)

βv(θu, θ−u) ≥
(
min

{
puS , θu

}
−
(
ℓ∞u − θu

))+(
1− g(ℓ∞u )

)
.

Combining the two cases proves the lemma. □

Next we apply the bounds of dual variables and focus on optimizing the gain splitting function
g. For ease of notations, we will now omit the superscripts and subscripts, replacing ℓ∞u with ℓ, θu
with θ, and puS with q (because p is already devoted to denote the equal success probabilities). To
finish the proof of Theorem 5, it suffices to show the next lemma.

Lemma 17. There is a non-decreasing function g : [0,∞) → [0, 1] such that for any ℓ ≥ 0, q ≥ 0:∫ ℓ

0
e−θg(θ) dθ +

∫ ∞

0
e−θ

(
min{q, θ} − (ℓ− θ)+

)+
dθ ·

(
1− g(ℓ)

)
≥ Γ · (1− e−q) ,

for Γ = 2(1− ln 2) > 0.613.

Proof. First consider the boundary condition when ℓ = 0:∫ ∞

0
e−θ min{q, θ}dθ ·

(
1− g(0)

)
=

(
1− e−q

)(
1− g(0)

)
≥ Γ

(
1− e−q

)
.
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Hence, we let g(0) = 1− Γ .
Next we simplify the differential inequality by characterizing the worst-case value of q for any

given ℓ. Consider increasing q by an infinitesimal amount ϵ. How would this affect the LHS? The
first integral stays the same. In the second integral, the term

(
min{puS , θu}− (ℓ∞−θu)

)+
increases

by at most ϵ for θ > q. Hence, the derivative of LHS w.r.t. q is at most:∫ ∞

q
e−θ dθ ·

(
1− g(ℓ)

)
= e−q

(
1− g(ℓ)

)
.

On the other hand, the derivative of RHS w.r.t. q is e−q Γ . By the monotonicity of g and the
boundary condition that g(0) = 1 − Γ , this is e−q

(
1 − g(0)

)
≥ e−q

(
1 − g(ℓ)

)
. In other words, the

derivative of RHS is greater than or equal to the derivative of LHS.
Therefore, the lemma’s differential inequality holds if and only if it holds for q = ∞. Simplifying

the LHS with basic calculus after plugging in q = ∞, our task simplifies to finding a function g
such that for any ℓ ≥ 0: ∫ ℓ

0
e−θg(θ) dθ +

(
2e−ℓ/2 − e−ℓ

)(
1− g(ℓ)

)
≥ Γ .

To further reduce the problem to solving an ordinary differential equation, we next substitute
variables by letting µ = e−θ and f(µ) = g(− lnµ). The problem then becomes finding a function f
such that for any 0 ≤ λ ≤ 1:∫ 1

λ
f(µ) dµ+

(
2
√
λ− λ

)(
1− f(λ)

)
≥ Γ ,

with boundary conditions f(1) = 1−Γ and f(0) ≤ 1. The lemma’s competitive ratio Γ = 2(1−ln 2)
is achieved when this holds with equality for all 0 ≤ λ ≤ 1, which reduces to an ordinary differential
equation. Solving it gives:

f(µ) =

{
2(2−√

µ)(ln 2−ln(2−√
µ))√

µ − 1 if µ > 0;

1 if µ = 0.

□

A.3 General Infinitesimal Success Probabilities

Theorem 6. Stochastic Balance is at least 0.611-competitive w.r.t. the offline stochastic benchmark
S-OPT, when the instance has (general) infinitesimal success probabilities.

The rest of the subsection is devoted to proving Theorem 6. By Lemma 3, we need to show that
for any offline vertex u ∈ U , any subset of online vertices S ⊆ V , and any stochastic budgets θu of
other offline vertices, we have:

Eθu

[
αu(θ−u) +

∑
v∈S:θu≥puS(v)

βv(τ)
]
≥ Γ · p̃uS ,

for the stated competitive ratio Γ = 0.611.
Once again, we start by bounding the expectation of dual variables while leaving the gain

splitting function g to be determined. Recall that ℓ∞u denotes the load of u if all matches to u fail,
i.e., if its stochastic budget was θu = ∞. The expectation of α(θ−u) is already given by Lemma 14.
The next lemma bounds the expectation of βv(τ)’s.
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Lemma 18. Conditioned on any θ−u and the corresponding ℓ∞u , for any θu, we have:

∑
v∈S:θu≥puS(v)

βv(θu, θ−u) ≥


min

{
puS , θu

}
·
(
1− g(ℓ∞u )

)
if θu ≥ ℓ∞u ;(

min
{
puS , θu

}
·
(
1− g(ℓ∞u )

)
−
∫ ℓ∞u
θu

(
1− g(z)

)
dz

)+
if θu > ℓ∞u .

Proof. If θu ≥ ℓ∞u , the proof is verbatim to the counterpart in Lemma 15. Since u remains unsuc-
cessful until the end, any neighboring online vertex v ∈ S would be matched to an offline vertex
with load at most ℓ∞u . Further note that

∑
v∈S:θu≥puS(v)

puv = min
{
puS , θu

}
. Hence:

∑
v∈S:τu≥p̃uS(v)

βv(τ) ≥ min
{
puS , θu

}(
1− g(ℓ∞u )

)
.

Next consider the case when θu < ℓ∞u . The proof is also similar to the counterpart in Lemma 15,
except that we would need a different structural lemma. First consider how much the βv’s would
sum to if u’s stochastic budget was ∞ (while using the actual θu to define the range of summation).
By the same argument as above, we have that all vertices in the summation would be matched to
an offline vertex with load at most ℓ∞u . In other words:∑

v∈S:θu≥puS(v)

βv(θ
′
u = ∞, θ−u) ≥ min

{
puS , θu

}(
1− g(ℓ∞u )

)
.

We can then lower bound the actual value of βv’s using the following structural lemma.

Lemma 19 (c.f., Lemma 22 of Huang and Zhang [17]). For any subset of online vertices
T ⊆ V , if we compare the value of

∑
v∈T βv when u’s stochastic budget is θu, with the counterpart

when u’s stochastic budget is ∞, they differ by at most
∫ ℓ∞u
θu

(
1− g(z)

)
dz.

On the one hand, by the above argument we get that:

∑
v∈S:θu≥puS(v)

βv(θu, θ−u) ≥ min
{
puS , θu

}(
1− g(ℓ∞u )

)
−
∫ ℓ∞u

θu

(
1− g(z)

)
dz .

On the other hand, the LHS above is nonnegative. The lemma follows. □

Our last task is to apply the bounds of dual variables and focus on optimizing the gain splitting
function g. Once again, we shall now omit the superscripts and subscripts for ease of notations,
replacing ℓ∞u with ℓ, θu with θ, and puS with q (because p is already devoted to denote the equal
success probabilities). It suffices to prove the next lemma.

Lemma 20. There is a non-decreasing function g : [0,∞) → [0, 1] such that for any ℓ ≥ 0, q ≥ 0:

∫ ℓ

0
e−θg(θ)dθ +

∫ ℓ

0
e−θ

(
min{q, θ}

(
1− g(ℓ)

)
−
∫ ℓ

θ

(
1− g(z)

)
dz

)+
dθ

+

∫ ∞

ℓ
e−θ min{q, θ}

(
1− g(ℓ)

)
dθ ≥ Γ · (1− e−q) ,

for Γ = 0.611.
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Proof. First consider the boundary condition when ℓ = 0:∫ ∞

0
e−θ min{q, θ}dθ

(
1− g(0)

)
=

(
1− e−q

)(
1− g(0)

)
≥ Γ

(
1− e−q

)
.

Hence, we let g(0) = 1− Γ .
Next we simplify the differential inequality by characterizing the worst-case value of q for any

given ℓ. First rewrite the relevant terms (the second and the third) on the LHS that involves q as:∫ ∞

0
e−θ

(
min{q, θ}

(
1− g(ℓ)

)
−
∫ ℓ

min{θ,ℓ}

(
1− g(z)

)
dz

)+

︸ ︷︷ ︸
(⋆)

dθ .

Consider increasing q by an infinitesimal amount ϵ. This will increase (⋆) by at most ϵ for θ > q.
Hence, the derivative of LHS w.r.t. q is at most:∫ ∞

q
e−θdθ

(
1− g(ℓ)

)
= e−q

(
1− g(ℓ)

)
.

On the other hand, the derivative of RHS w.r.t. q is e−q Γ . By the monotonicity of g and the
boundary condition that g(0) = 1 − Γ , this is e−q

(
1 − g(0)

)
≥ e−q

(
1 − g(ℓ)

)
. In other words, the

derivative of RHS is greater than or equal to the derivative of LHS.
Therefore, the lemma’s differential inequality holds for any value if and only if it holds for q = ∞.

Simplifying the LHS with basic calculus after plugging in q = ∞, our task simplifies to finding a
function g such that for any ℓ ≥ 0:∫ ℓ

0
e−θg(θ)dθ +

∫ ℓ

0
e−θ

(
θ
(
1− g(ℓ)

)
−
∫ ℓ

θ

(
1− g(z)

)
dz

)+
dθ +

∫ ∞

ℓ
e−θθ

(
1− g(ℓ)

)
dθ ≥ Γ .

We follow the same strategy as Huang and Zhang [17] to get a numerical lower bound of the
best achievable Γ subject to the differential inequality. To guarantee above inequality, it suffices to
find a pair of functions g : [0,∞) → [0, 1] and h : [0,∞) → [0,∞) such that for any ℓ ≥ 0:∫ ℓ

0
e−θg(θ)dθ +

∫ ℓ

h(ℓ)
e−θ

(
θ
(
1− g(ℓ)

)
−
∫ ℓ

θ

(
1− g(z)

)
dz

)
dθ +

∫ ∞

ℓ
e−θθ

(
1− g(ℓ)

)
dθ .

Before we proceed further, let us first simplify the LHS. It is equal to:∫ ℓ

0
e−θg(θ)dθ −

∫ ℓ

h(ℓ)
e−θ

∫ ℓ

θ

(
1− g(z)

)
dzdθ +

∫ ∞

h(ℓ)
e−θθ

(
1− g(ℓ)

)
dθ

=

∫ ℓ

0
e−θg(θ)dθ −

∫ ℓ

h(ℓ)

(
e−h(ℓ) − e−z

)(
1− g(z)

)
dz +

(
1 + h(ℓ)

)
e−h(ℓ)

(
1− g(ℓ)

)
.

Hence, we want to ensure that for any ℓ ≥ 0:∫ ℓ

0
e−θg(θ)dθ −

∫ ℓ

h(ℓ)

(
e−h(ℓ) − e−z

)(
1− g(z)

)
dz +

(
1 + h(ℓ)

)
e−h(ℓ)

(
1− g(ℓ)

)
≥ Γ .

The rest of the proof relies on a computer-aided numerical optimization. Fixing any function h,
we can find an optimal step-function g such that the above inequality holds for the largest possible
Γ by solving a linear program. By choosing a sufficiently small step, the resulting function g and
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the corresponding Γ are approximately optimal. Fixing any function g, on the other hand, finding
the optimal function h to maximize the LHS above is easy. Hence, we start with a trivial function
h(ℓ) = 0 for all ℓ. Then, we alternate between (1) optimizing g given h and (2) choosing h according
to g so that h(ℓ) is the smallest value for which:

h(ℓ)
(
1− g(ℓ)

)
−

∫ ℓ

h(ℓ)

(
1− g(z)

)
dz ≥ 0 .

Since the necessary discretization and the approach of alternating optimization were already de-
tailed by Huang and Zhang [17], we merely provide a link to our code here.6 The stated competitive
ratio is achieved after only three rounds of alternating optimization. □

B Missing Proofs from Section 4

B.1 Proof of Lemma 8

We will prove the lemma by further relaxing and simplifying the right-hand-side of Eqn. (13). By
the definition of P and P̄ , the first two terms on the RHS of Eqn. (13) can be written as:∫ 1

0

(
1− e−P (ρu)−P̄ (ρu)

)
g(ρu) dρu (19)

and:

−
∫ 1

0

(
1− g(µv)

)
dP (µv) . (20)

We next examine the last term of Eqn. (12), changing the order of integration and summation:∫ 1

0

∑
v∈Nu(ρu)∩S

e−p|Nu(ρu,v)|(1− e−p
)(
g(µv)− g(ρu)

)
︸ ︷︷ ︸

(⋆)

dρu . (21)

Next decompose Nu(ρu, v) into two parts to derive an upper bound:∣∣Nu(ρu, v)
∣∣ = ∣∣Nu(ρu, v) ∩ S

∣∣+ ∣∣Nu(ρu, v) \ S
∣∣

≤
∣∣Nu(ρu, v) ∩ S

∣∣+ ∣∣Nu(ρu) \ S
∣∣ ,

where it would hold with equality if u’s neighbors outside S arrive before those in S. Further recall
that P̄ (ρu) = p|Nu(ρu) \ S| We get:

(⋆) ≥ e−P̄ (ρu)
(
1− e−p

) ∑
v∈Nu(ρu)∩S

e−p|Nu(ρu,v)∩S| (g(µv)− g(ρu)
)
.

Observe that |Nu(ρu, v) ∩ S| simply counts the number of vertices in Nu(ρu) ∩ S that arrive
before v. Thus, when v iterates over vertices in Nu(ρu) ∩ S, e−p|Nu(ρu,v)∩S| iterates over e−pi for
0 ≤ i < |Nu(ρu) ∩ S|. By the rearrangement inequality, the RHS above is minimized when vertices
in Nu(ρu) ∩ S arrive by the increasing order of their ranks. Under this arrival order, and recalling
that we have assumed distinct critical ranks, we have:∣∣Nu(ρu, v) ∩ S

∣∣ = ∣∣Nu(ρu) ∩ S
∣∣− ∣∣Nu(µv) ∩ S

∣∣ .
6 https://github.com/dsgsjk/stochastic-balance

https://github.com/dsgsjk/stochastic-balance
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Therefore, by P (µ) = p|Nu(µ) ∩ S| we have:

(⋆) ≥ e−P̄ (ρu)
(
1− e−p

) ∑
v∈Nu(ρu)∩S

e−P (ρu)+P (µv)
(
g(µv)− g(ρu)

)
= e−P̄ (ρu)−P (ρu)

∑
v∈Nu(ρu)∩S

eP (µv)
(
1− e−p

)(
g(µv)− g(ρu)

)
= −e−P̄ (ρu)−P (ρu)

∫ 1

ρu

(
g(µv)− g(ρu)

)
deP (µv) .

Putting this back to Eqn. (21) shows that the third term on the RHS of Eqn. (13) is at least:

−
∫ 1

0
e−P̄ (ρu)−P (ρu)

∫ 1

ρu

(
g(µv)− g(ρu)

)
deP (µv) = −

∫ 1

0
e−P̄ (ρu)−P (ρu)

∫ 1

ρu

g(µv) de
P (µv)dρu

−
∫ 1

0
e−P̄ (ρu)−P (ρu)

(
eP (ρu) − 1

)
g(ρu) dρu .

Combining it with Equations (19) and (20) proves the lemma. Specifically, merging the second
term on the RHS above with Eqn. (19) yields the first term on the RHS of the lemma.

B.2 Proof of Lemma 11

We first rewrite the LHS of Eqn. (16) in a discrete way. Let µ1 ≤ µ2 ≤ · · · ≤ µn be the critical
ranks of vertices in S. Define:

f(µ1, µ2, . . . , µn) =

∫ µ0

0
g(ρu) dρu +

n∑
i=1

p

(
1− g(µi) +

i∑
j=1

(µj − µj−1)e
−p(i−j)g(µi)

)

=

∫ µ0

0
g(ρu) dρu +

n∑
i=1

p
(
1− g(µi)

)
︸ ︷︷ ︸

(a)

+
n∑

j=1

(µj − µj−1)
n∑

i=j

pe−p(i−j)g(µi)︸ ︷︷ ︸
(b)

.

Let µ ≈ 0.513 denote the smallest solution to g(ρ) = 1− 1
e . For any fixed µ0, we show that f is

minimized either µ1 = · · · = µn = µ or µ1 = · · · = µn = 1.

Lemma 21. For any 1 ≤ m < n, any µ1 < µ2 that are between µ0 and µ, and any µ′
m+1 ≤ µ′

m+2 ≤
· · · ≤ µ′

n that are between µ2 and 1, we have:

f
(
µ1, . . . , µ1︸ ︷︷ ︸

m

, µ′
m+1, . . . , µ

′
n

)
≥ f

(
µ2, . . . , µ2︸ ︷︷ ︸

m

, µ′
m+1, . . . , µ

′
n

)
.

Proof. Let z = p · m and recall that n · p = 1. By the definition of f , the difference between the
LHS and RHS equals:

z
(
g(µ2)− g(µ1)

)
︸ ︷︷ ︸

from (a)

+(µ2 − µ1)

n∑
i=m+1

pe−p(i−m−1)g(µ′
i)︸ ︷︷ ︸

from (b) when j = m+ 1

−
(
1− e−z

)(
µ1 − µ0

)(
g(µ2)− g(µ1)

)
︸ ︷︷ ︸

from (b) when j = 1

−
(
µ2 − µ1

)((
1− e−z

)
g(µ2) +

n∑
i=m+1

pe−p(i−1)g(µ′
i)
)

︸ ︷︷ ︸
from (b) when j = m+ 1

.
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Since the coefficients of g(µ′
i) is positive for all m < i ≤ n, and the coefficient of µ0 is positive,

the difference is minimized when µ′
i = µ2 and µ0 = 0. Hence, the difference is at least:

z
(
g(µ2)− g(µ1)

)
+
(
µ2 − µ1

)(
1− e−(1−z)

)
g(µ2)

−
(
1− e−z

)
µ1

(
g(µ2)− g(µ1)

)
−
(
µ2 − µ1

)(
1− e−1

)
g(µ2)

=
(
z − (1− e−z)µ1

)(
g(µ2)− g(µ1)

)
−
(
ez−1 − e−1

)(
µ2 − µ1

)
g(µ2) .

By the definition of g and by that µ1 < µ2 ≤ µ, we have that for µ = µ1 or µ2:

g(µ) =
c

e− (e− 1)µ
.

Hence:

g(µ2)− g(µ1) = (µ2 − µ1) ·
c(e− 1)

(e− (e− 1)µ1)(e− (e− 1)µ2)
.

Putting into the above bound we get that the difference is at least:

c(µ2 − µ1)

e− (e− 1)µ2

( e− 1

e

z − (1− e−z)µ1

1− (1− e−1)µ1
− (ez−1 − e−1)︸ ︷︷ ︸

(⋆)

)
.

It suffices to prove that (⋆) ≥ 0. Since 1−e−z

z is decreasing in z and in particular is at least
1− e−1, we get that (⋆) is decreasing in µ1. Further by that µ1 ≤ µ < 1

e−1 , it suffices to establish

the (⋆) is non-negative when µ1 =
1

e−1 . In that case, it follows by:

z − 1− e−z

e− 1
− (ez−1 − e−1) ≥ 0 ,

with equality achieved at z = 0 and z = 1 □

Lemma 22. For any 0 ≤ m < m′ ≤ n, any µ1 < µ2 that are between (µ, 1), and any µ′
1 ≤ µ′

2 ≤
· · · ≤ µ′

m that are between [0, µ], we have:

f
(
µ′
1, . . . , µ

′
m, µ1, . . . , µ1︸ ︷︷ ︸

m′−m

, 1, . . . , 1︸ ︷︷ ︸
n−m′

)
≤ f

(
µ′
1, . . . , µ

′
m, µ2, . . . , µ2︸ ︷︷ ︸

m′−m

, 1, . . . , 1︸ ︷︷ ︸
n−m′

)
.

Proof. Let z = p · (m′−m), w = p · (n−m′). By the definition of f , the difference between the LHS
and RHS equals (note that g(µ1) = g(µ2) = 1− 1

e ):

− (µ2 − µ1)(1− e−z)g(µ2)− (µ2 − µ1)e
−z(1− e−w)︸ ︷︷ ︸

from (b) when j = m+ 1

+(1− µ1)(1− e−w)− (1− µ2)(1− e−w)︸ ︷︷ ︸
from (b) when j = m′ + 1

=(1− e−w − g(µ2))(µ2 − µ1)(1− e−z)

=(1− e−w − (1− 1

e
))(µ2 − µ1)(1− e−z) ≤ 0

□

Lemma 23. f(µ, . . . , µ︸ ︷︷ ︸
m′

, 1, . . . , 1︸ ︷︷ ︸
n−m′

) is minimized when m′ = 0 or m′ = n for any µ.
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Proof. Let z = p · (n−m′) and define F (z) = f(µ, . . . , µ︸ ︷︷ ︸
m′

, 1, . . . , 1︸ ︷︷ ︸
n−m′

). By the definition of f ,

F (z) =(1− z)(1− g(µ)) + (µ− µ0)((1− ez−1)g(µ) + (ez−1 − e−1))

+(1− µ)(1− e−z) +

∫ µ0

0
g(ρu) dρu

dF

dz
=− (1− g(µ)) + (µ− µ0)e

z−1(1− g(µ)) + e−z(1− µ)

=(µ− µ0)e
z−2 + e−z(1− µ)− e−1

d2F

dz2
=(µ− µ0)e

z−2 − e−z(1− µ)

Since d2F
dz2

is increasing and dF
dz (1) = −µ0

e ≤ 0, F is minimized at either z = 0 or z = 1. □

Proof (Proof of Lemma 11).
For vertices in S, assume µ0 ≤ µ1 ≤ · · · ≤ µm ≤ µ < µm+1 ≤ · · · ≤ µm′ < µm′+1 = · · · = µn = 1.

f(µ1, . . . , µm, µm+1, . . . , µm′ , 1, . . . , 1︸ ︷︷ ︸
n−m′

)

≥f(µ, . . . , µ︸ ︷︷ ︸
m

, µm+1, . . . , µm′ , 1, . . . , 1︸ ︷︷ ︸
n−m′

) (by an induction using Lemma 21)

≥f(µ, . . . , µ︸ ︷︷ ︸
m′

, 1, . . . , 1︸ ︷︷ ︸
n−m′

) (by an induction using Lemma 22)

≥min(f(µ, . . . , µ), f(1, . . . , 1)) (by Lemma 23)

□
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