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Sensitive detection of Mycobacterium tuberculosis (TB) in small percentages in metagenomic 
samples is essential for microbial classification and drug resistance prediction. However, traditional 
methods, such as bacterial culture and microscopy, are time‑consuming and sometimes have limited 
TB detection sensitivity. Oxford nanopore technologies (ONT) MinION sequencing allows rapid and 
simple sample preparation for sequencing. Its recently developed adaptive sequencing selects reads 
from targets while allowing real‑time base‑calling to achieve sequence enrichment or depletion during 
sequencing. Another common enrichment method is PCR amplification of the target TB genes. In this 
study, we compared both methods using ONT MinION sequencing for TB detection and variant calling 
in metagenomic samples using both simulation runs and those with synthetic and patient samples. 
We found that both methods effectively enrich TB reads from a high percentage of human (95%) and 
other microbial DNA. Adaptive sequencing with readfish and UNCALLDE achieved a 3.9‑fold and 2.2‑
fold enrichment compared to the control run. We provide a simple automatic analysis framework to 
support the detection of TB for clinical use, openly available at https:// github. com/ HKU‑ BAL/ ONT‑ TB‑ 
NF. Depending on the patient’s medical condition and sample type, we recommend users evaluate and 
optimize their workflow for different clinical specimens to improve the detection limit.

Mycobacterium tuberculosis (TB) infection is deadly and can be difficult to  identify1,2. The sensitivity for differen-
tiation between the closely related Mycobacterium tuberculosis complex (MTBC) members varies with traditional 
laboratory diagnostic methods, such as staining with microscopy or PCR-based  detection3. Phenotypic antimi-
crobial susceptibility testing (AST) is commonly used for antimicrobial resistance detection, but it is time-con-
suming, complicated and can have false-susceptible  results3–5. In 2018, the World Health Organization (WHO) 
provided extensive guidelines for the use of high-throughput sequencing (including next-generation short-read 
sequencing and third-generation long-read sequencing) for TB detection and molecular drug susceptibility 
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testing, with details for both targeted and metagenomic sequencing (identification and characterization of differ-
ent organisms with sequencing from the complex sample)6. Applying these sequencing techniques shortens the 
time for diagnosis, as TB cultures might not be necessary. In addition, multiplexing in most library preparation 
protocols can reduce the detection cost. The constraint for using metagenomic sequencing in the routine clini-
cal diagnostic workflow is, however, a high level of human DNA contamination, as expected in clinical sputum 
specimens, as well as low concentration of TB in metagenomic  samples7–9. Also, a robust and reproducible 
complementary bioinformatics workflow is required for fast and accurate diagnosis.

Studies have tested the use of Oxford Nanopore Technologies (ONT) MinION sequencing for TB sequencing 
owing to its simple sequencing setup and the affordable long-reads generated. However, with limited throughput 
per MinION flowcell, it is advisable to perform TB enrichment, either by bacterial culture or PCR, to increase 
detection sensitivity and variant calling  precision10. Recently, ONT developed a selective sequencing technique to 
enrich or deplete target sequences controlled by software while DNA is stranded through the  nanopores11, where 
the sequencing status of each read is determined dynamically by mapping nanopore current  signals12 or base-
called DNA bases against the target  reference13. In real-time sequencing, read mapping to target references can 
be selected (using the host DNA enrichment mode) or rejected (using the host DNA depletion mode) for further 
sequencing in the ONT device. The status of the DNA is determined in the first few hundred bases, and the off-
target DNA strands are removed from their stranding pore. The ONT selective sequencing is initially tested for 
human exome sequencing and provides options for host DNA depletion in metagenomic sequencing, reducing 
the time required to obtain the minimum coverage per target species with some level of  enrichment14. Previous 
studies demonstrated the application of ONT adaptive sequencing for host depletion in clinical metagenomic 
samples for a > 1.5-fold increase in  coverage15 and an at most five-fold increase in the yield of low-abundance 
species when tested with ZymoBIOMICS mock community  samples16. The efficiency of this software-based 
enrichment, however, is strongly affected by the abundance of targets, the DNA length of the library, and the 
computational resources available.

Compared with NGS Illumina sequencing, ONT MinION sequencing has a shorter preparation procedure 
and does not require large equipment maintenance, while benefiting from long  reads17. The capacity of multiplex-
ing with MinION sequencing is lower and therefore requires less waiting time to acquire the minimum number 
of samples per batch sequence. Long-reads improve alignment accuracy and variant detection sensitivity over 
large repetitive regions. MinION sequencing is suitable for both native DNA and amplicon sequencing, and 
methylated bases can be labeled during native DNA base-calling potential to improve lineage identification and 
enrich AMR  profiling18.

In this study, we explored the efficiency of using ONT selective sequencing and PCR amplification for low-
abundance TB enrichment in metagenomic samples. We tested the protocols with (1) simulation datasets, (2) 
synthetic metagenomic samples, and (3) clinical metagenomic samples using the portable ONT sequencing 
device MinION. Instead of host DNA depletion, we tested the possibility of selecting ultra-low abundance 
TB DNA (i.e., ~ 0.1% in the metagenomic sample) from high levels of host DNA (i.e., > 95% in the sample) for 
enrichment, i.e., host DNA enrichment, using two ONT selective sequencing toolkits (Fig. 1). For ONT selec-
tive sequencing, we tested the performance in the whole TB genome and AMR-associated gene regions. For 
PCR-based enrichment testing, we followed the workflow by Tafess et al.19, which targets 19 AMR-associated 
regions tested on both the Illumina and MinION platforms. We assessed the effectiveness of different strategies 
by the level of TB enrichment, turnaround time, and the comprehensiveness of the downstream analyses. We 
concluded that all the tested enrichment methods are effective in simple metagenomic samples, and that dif-
ferent enrichment strategies might be suitable, depending on sample properties and patient medical condition. 
We provide a simple, user-friendly bioinformatics workflow for TB identification after enrichment and ONT 
MinION sequencing, as well as for standard drug resistance profiling.

Results and discussion
Enrichment in ONT amplicon sequencing and adaptive sequencing. The number of TB reads 
detected in clinical samples can vary from one to thousands, with over 90% human  reads8,9. To simulate a simple 
TB metagenomic sample for enrichment evaluation using MinION amplicon sequencing and adaptive sequenc-
ing, we prepared a synthetic metagenomic sample by mixing 95% HG002 human DNA, 4.9% ZymoBIOM-
ICS Microbial Community Standards (Zymo) DNA, and 0.1% Mycobacterium tuberculosis strain H37Rv DNA 
(Fig. 1). In the control sequencing run, as expected, a similar percentage of reads was recovered (92.17% human, 
7.71% Zymo, and 0.12% TB reads) (Supplementary Table 1).

The enrichment efficiency of ONT adaptive sequencing is highly affected by the computer specifications (it 
is both central processing unit (CPU) and graphics processing unit (GPU) intensive), as it often requires high 
computational power for real-time signal processing. The reference panel size affects the speed of target selec-
tion and the accuracy of rejecting non-target  reads13. Also, with less repetitive and low-complexity reference 
sequences, the signal or read mapping quality and speed  improve13. To confirm the compatibility of the comput-
ing setting with the adaptive sequencing software, we recommend running some simulations of the enrichment 
experiment using the control dataset. We configured all tools to enrich mode. For readfish, as it has different 
enrichment settings for controlling “the action to take when different mapping situations”, we tested the TB 
enrichment efficiency when readfish at different settings (i.e., no_seq, and no_map settings, Supplementary 
Table 2). We also tested the choice of reference sequences and repeated masking in the reference panel using 
simulation before the actual runs, and we found that there was not much difference in the number of enriched 
TB read when using repeated masking in the reference.

The aim of all the tested protocols is to enrich TB DNA instead of depleting human DNA. Implementa-
tion of detection workflow is more cost-effective, especially in developing countries, if effective enrichment for 
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identification and AMR variant calling can be achieved using one MinION flowcell. In addition to on-target 
coverage, the level of enrichment is associated with the sequencing yield. Since selective sequencing repetitively 
unblocks stranding DNA from the nanopores and might distort the structure of the pores, this reduces the total 
throughput of the flowcells. We found that the number of active pores decreased faster when adaptive sequencing 
was applied compared with no adaptive sequencing in our testing. It took around 25 and 28 min for readfish and 
UNCALLED to decrease 400 active pores; for the control run, it took around 46 min with the same decrease of 
active pores (Supplementary Fig. 1). In addition, as a large proportion of the input DNA is non-target in adap-
tive sequencing, the recommended amount of DNA per ONT MinION flowcell at traditional sequencing might 
be insufficient for an unknown TB percentage sample. Therefore, one possible way to improve sequencing yield 
during adaptive sequencing is to include more DNA. However, since limited DNA was available in most clinical 
samples, we restricted the use of input DNA in the benchmarking runs to the minimum required (i.e., ~ 500 ng) 
(Table 1). The total throughput of the control sequencing, UNCALLED adaptive sequencing, Readfish adaptive 
sequencing, and amplicon sequencing using a single flowcell was 13.75 Gbp, 8.17 Gbp, 4.55 Gbp, and 12.39 Gbp, 
respectively (Table 1). After scaling with the number of available pores at the beginning of the sequencing, the 
adaptive sequencing runs showed an approximately 46% (readfish) and 74% (UNCALLED) reduction in total 
yield compared with that of the control run. Except for amplicon sequencing, the sequencing experiments were 
terminated only after the number of available pores dropped below 50 active pores for stranding, and therefore 
sequencing with base-calling alone took approximately two days. For amplicon sequencing, since the panel covers 
only 19 AMR-associated regions, which target mainly 267 mutations that confer resistance to 12 anti-TB  drugs19, 
it can achieve sufficient coverage per sample for variant calling within the first hour of sequencing (with average 
coverage of 16,255 for the target regions). Barcoding and multiplexing in a batch could improve the utilization 
of flowcells, but this could slow down the turnaround time because of the need to wait for sample collection.

Although the quality of flowcells vary from batch to batch, ranging from 800 to 1600 available pores, the per-
centage of TB bases sequenced increased significantly by ~ 3.07-fold in readfish and ~ 1.98-fold in UNCALLED 
adaptive sequencing compared with the control run after normalization against the number of pores (Table 1 
and Supplementary Table 1). In the control run, only 1974 reads (0.1% bases of total throughput) were aligned to 

Figure 1.  Illustration of data synthesis and data analysis. Two adaptive sequencing runs with (a) readfish, (b) 
UNCALLED, and (c) one control run were conducted on the synthetic metagenomic sample with 95% human 
DNA, 4.9% Zymo DNA, and 0.1% TB DNA. Adaptive sequencing can adaptively select or reject a sequencing 
read on each flowcell. (d) An Amplicon run was conducted on a selected TB gene region. All generated reads 
underwent benchmarking to compare different methods of enrichment of TB reads.
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the TB reference. The selection performance of readfish (10,834 reads; 1.15% bases of the total throughput) was 
better than that for UNCALLED (5447 reads; 0.34% bases of the total throughput) with such a low abundance 
target (Supplementary Table 1). readfish enrichment allows, on average, 9.3 × coverage across the TB reference 
genome and 9.8 × coverage among the 18 AMR-associated genes (ranging from the highest coverage of 16.2 × in 
rpoB to the lowest coverage of 4.7 × in rplC) (Supplementary Table 3). UNCALLED enrichment allows, on aver-
age, 5.2 × coverage across the TB reference genome. Compared with the average coverage of 2.4 × for the whole 
TB genome in the control sample, readfish achieved enrichment coverage of 3.9-fold and UNCALLED achieved 
enrichment coverage of 2.2-fold. The higher coverage is especially important for variant calling, variant phas-
ing, and consensus generation for AMR detection. In the amplicon sequencing, over 99.9% of the reads were 
assigned to TB, with only 0.03% of reads belonging to human DNA, indicating a low level of contamination 
(Supplementary Table 1). In the amplicon sequencing, there was an average of 543,097 × coverage in the target 
regions (Supplementary Table 4).

Based on our testing results, selective sequencing slightly affects the read length of targeted TB. The mean and 
median length of the TB read decreased from 5404.6 and 3642.5 bp, respectively, in the control run to 3876.5 bp 
and 1595 bp, respectively, in the readfish run, and 4306.8 bp and 2474 bp in the UNCALLED run (Supplementary 
Table 1). The N50 length remained ~ 9000 bp in both the control and adaptive sequencing runs. One possible 
explanation might be an inaccurate assignment of TB reads as non-targets, resulting in early rejection during 
stranding. Therefore, we evaluated the short TB reads (i.e., below 500 bp) in adaptive sequencing runs and con-
firmed that the short reads did not concentrate on any particular genomic regions, suggesting that this might be 
due to random fragmentation during sequencing. In amplicon sequencing, the read length was constrained by 
the designed amplification region in the panel. The mean and N50 read length were 865 bp and 952 bp, respec-
tively, with most of the reads sequenced as a complete amplicon without much fragmentation (Supplementary 
Table 1). Although amplicons were very specific in target enrichment, and less than 0.03% of amplicon reads 
were not primarily mapped to TB due to the shorter read length, 22.54% of the sequenced amplicon reads were 
not mapped uniquely to TB (Table 1).

Removal of non‑target DNA in adaptive sequencing. Since the first few hundred bases of the DNA 
were used to determine its identity and to decide whether the fragment should be carried on for sequencing 
or rejected from the standing pore in adaptive sequencing, a large proportion of the sequencing yield, which 
were the short fragments in our samples, were non-targets (i.e., human and Zymo reads). There were 99.76% 
(readfish) to 40.57% (UNCALLED) of short reads below 1000 bp in the adaptive sequencing runs, but only 
14.74% of reads below 1000 bp in the control run (Fig. 2). On the other hand, our results showed that readfish 
can filter noise read faster than UNCALLED. Readfish’s 99% noise read had a length of less than 500 bp, while in 
UNCALLED, 99% of the noise reads had a length of less than 2900 bp (Fig. 2).

Most of these non-target short reads (98.85% in readfish and 99.66% in UNCALLED) were human reads, 
while the non-target reads from the ZymoBIOMICS HMW DNA Standard species were similar in abundance, 
except for Saccharomyces cerevisiae for both readfish and UNCALLED runs. The abundance of ZymoBIOMICS 
HMW DNA Standard species from adaptive sequencing matched the theoretical percentage composition by 
genome copy of the standard sample (Supplementary Table 1). Previous studies using ONT adaptive sequencing 
on the Zymo community sample revealed that removing non-targets improves with higher molecular weight 
libraries, especially for high-abundance species in the  sample14. The read length distribution was relatively 
optimal in our synthetic metagenomic sample for adaptive sequencing (i.e., 6230 bp mean and 10,166 bp N50) 
(Supplementary Table 1). However, this could be a limitation for certain clinical specimens, such as sputum, 
which have been observed to often result in short DNA nts. Our experimental results also suggest that the average 
read length and N50 of the non-target reads are significantly shorter (one-tailed t-test p-value: 3.2e-9 for read 

Table 1.  Sequencing statistics.

General summary Control readfish UNCALLED Amplicon MG_TB23178

Mean read length 6212 397 1395 905 438

Mean read quality 13 13 13 13 10

Median read length 4878 381 1163 841 432

Median read quality 13 13 13 13 10

Number of reads 2,213,087 11,460,014 5,859,263 13,688,610 9,208,422

Read length N50 10,288 404 1842 976 464

STDEV read length 5329 429 803 439 129

Total bases 13,746,798,479 4,551,882,404 8,170,637,866 12,389,957,129 4,033,992,524

Total bases scaled by pores 12,154,552 3,134,905 6,505,285 10,290,662 3,714,542

# of primary aligned reads to TB 1974 10,834 5447 10,602,938 32

# of bases (Mb) aligned to TB 10.7 42.0 23.5 9172.3 0.03

# of pores when used 1131 1452 1256 1204 1086

DNA input for sequencing (ng) 521 556 574 66 586

Sequencing duration 2d 18 h 21 m 1d 19 h 13 m 1d 18 h 12 m 1d 2 h 46 m 2d 18 h 55 m
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length, 1.2e-8 for N50) when using readfish compared with UNCALLED, which also suggests more effective 
identification and removal of non-targets during sequencing (Fig. 2).

Variant calling with amplicon sequencing and ONT adaptive sequencing data. Various antimi-
crobial resistance mechanisms, including alteration of the expression level of drug targets, production of drug 
inactivation enzymes, and modification of cellular structures for drug efflux, can be detected from TB gene 
 mutations20. According to the guidelines released by the WHO regarding the treatment of resistance TB and 
other related  studies2,21, Single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs), 
indel mutations, and structural variants (SV) in at least 33 genes are known to be associated with resistance to 
30 commonly applied TB treatment drugs, 17 of which were included in the tested amplicon sequencing panel.

We aligned the strand of H37Rv TB reads sequenced from the synthetic metagenomic samples to a new 
TB genome, NC_016804.1, to assess variant-calling performance, especially among the drug-resistance genes. 
The quality of variant calling was affected by the effective coverage, the per-base accuracy of the reads, and the 
alignment accuracy, which, in turn, were affected by the enrichment methods, the bias introduced by different 
sequencing platforms, and metagenomic  complexity22. The variant calling results for the adaptive sequencing 
are shown in Fig. 3. Both the readfish and UNCALLED achieved a higher F1-score in genome-wide SNP and 
INDEL calling compared with the control dataset. The overall F1-score for SNP + INDEL in the control run, 
readfish, and UNCALLED are 60.98%, 81.50%, and 75.42%, respectively. The precision and sensitivity in SNP 
calling with readfish data achieved the best results at 82.85% and 91.07%, respectively. INDEL calling, however, 
remained suboptimal, possibly due to insufficient coverage in addition to the sequencing bias of ONT. The higher 
accuracy results matched the expectation described in Clair3’s paper, where variant calling accuracy is highly 
affected by the data  coverage23. The variant-calling results for the amplicon sample are shown in Table 2, where 
we compare the variant-calling results in the amplified regions. Among the 19 drug resistance-associated gene 
regions, all and only true variants were detected in both amplicon sequencing and adaptive-sequencing data, 
while the control data set shows a low level of false positives (FP) and false negatives (FN). The results suggest 
that both enrichment methods could improve variant calling in TB.

Figure 2.  Read length distributions among different samples. The read cumulative percentage over different 
read lengths (bp) from different species at samples generated via adaptive sequencing of (a) a readfish run, (b) 
UNCALLED run, (c) Control run, and (d) Amplicon run. Compared with the control run, in which different 
species reads had similar read length distribution, the readfish and UNCALLED runs had a distinct pattern; the 
target species, TB, had a much longer read length, while the non-target reads, human and Zymo, had a limited 
read length (99% of human and Zymo reads < 500 bp in readfish and < 2900 bp in UNCALLED).
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Application of adaptive sequencing in real TB metagenomic samples. Whether using adaptive 
sequencing is advantageous for detecting the presence of TB or for subclonal determination depends a lot on 
the sample collection method, since the efficiency of adaptive sequencing is heavily affected by DNA fragment 
size and DNA quality. We tested the readfish protocol on a sputum sample known to have fragmented DNA 
(which may have resulted from sample  degradation24) based on a control Ligation sequencing kit (MG_TB23178 
library) run (Table 1). Our results suggest a low level of enrichment, but it was not as promising as that in the 
synthetic sample. As a low level of enrichment leaves too many uncovered genomic positions, the sensitivity of 
variant calling drops drastically. This might result in a high rate of false negatives in AMR detection (i.e., 17 AMR 
genes do not have sufficient coverage for variant calling after readfish). In this case, amplicon sequencing, which 
is less sensitive to DNA fragmentation, should be considered to ensure the detection sensitivity of the test and to 
reduce the sequencing cost per sample.

ONT amplicon sequencing: pros and cons. Amplicon sequencing works best when DNA template con-
centration is low and fragmented, and all variants covered within the amplicon regions are called at high con-
fidence. This method is also commonly applied to diagnose various infectious  diseases25. In addition, since the 
throughput of a single MinION flowcell generates enough coverage data for up to 12  samples19, PCR products of 
multiple samples can be barcoded and sequenced in batches to reduce cost and processing time. Since the target 
panel size is relatively small, and the performance is predictable, there is a lower chance that the test has to be 
repeated owing to sequencing failure when working with low-quality samples. However, limited information 
is obtained from the amplification region, and it often involves tedious work for primer design and testing the 
amplification efficiency to change the amplification panel. Shorter amplicons generated with less specific primers 
from closely related taxa or contaminants can introduce ambiguity in the alignment and variant calling. While 
not all parts of the genome were covered, as in WGS, in this case, over 99.6% of genomic positions were not cov-
ered by the tested amplicon panel. Taxonomic classification with the amplicon data can be challenging even with 
longer  amplicons26, which is especially useful for lineage  tracing27. In addition, amplification efficiency among 
different amplicon regions might vary significantly, depending on the sequence complexity length of the ampli-
con and GC  content28. In our study, among the 19 targeted regions, Rv0678 showed the highest amplification effi-
ciency (with 891,075 coverage), while rspA showed the lowest (with 166,522 coverage) (Supplementary Table 4).

Figure 3.  Performance of variant calling at different samples. Precision, recall and F1-score for SNP, INDEL 
and SNP + INDEL variants called via the Clair3v0.1-r12 guppy5 model at samples of the Control run, and 
adaptive sequencing run of readfish and UNCALLED.

Table 2.  Variant-calling results in TB gene regions. The variant-calling performance of different samples at the 
19 gene or locus regions defined by Tafess et al. Variant calling was conducted using the Clair3v0.1-r12 guppy5 
model. TP true positive, FN false negative, FP false positive.

Sample TP FN FP

Control 11 4 3

readfish 15 0 0

UNCALLED 15 0 0

Amplicon 15 0 0
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A user‑friendly and comprehensive bioinformatics workflow to improve turnaround time. We 
developed ONT-TB-NF (Fig. 4), an easy-to-use  Nextflow29 pipeline to assist in processing both adaptive sequenc-
ing and amplicon ONT data for TB antibiotic-resistance detection. The pipeline has four major steps: (1) quality 
control with  FastQC30, read quality filters, and trimming with  Nanofilt31; (2) alignment with  Minimap232 (with 
map-ont mode) against the H37Rv genome; (3) genome-wide or targeted variant calling with  Clair323 with the 
haploid calling mode; and (4) TB-specific antimicrobial resistance prediction using  TBProfiler33 against the TB 
Profiler database. Users can start the analysis workflow directly from FAST5 files, which includes high-accuracy 
base-calling with Guppy 5 or FASTQ files to reduce the processing time. For amplicon date, users need to pro-
vide an additional BED file to analyze the amplicon sequencing data to specify the target regions.

The pipeline requires a minimal computational resource of fewer than 7 GB of RAM and 36 threads. It takes 
approximately three minutes to process a gigabase of bases if base-calling is not needed. The turnaround time of 
the workflow is about 30 min per flowcell (estimated with 10G bases), making the workflow highly efficient for 
analyzing TB data. The workflow is publicly available at https:// github. com/ HKU- BAL/ ONT- TB- NF.

Conclusions
Target enrichment assists with accurately detecting low abundance Mycobacterium tuberculosis (TB) in metagen-
omic samples, allowing sufficient (around 9x) coverage for variant calling and antimicrobial resistance profil-
ing. Although the benchmarking experiments are not sufficiently replicated and are limited mostly to synthetic 
metagenomic samples, we aimed to show a comparison between different TB enrichment methods using ONT 
MinION sequencing. In this study, we demonstrated that both ONT adaptive sequencing and amplicon sequenc-
ing could effectively enrich the low abundance TB DNA in metagenomic samples. We recommend using only 
one sample with one MinION flowcell, as our experimental results have shown that one MinION flowcell can 
enrich the TB genome with an ~ 9 × coverage, which provides sufficient coverage to perform variant calling. 
While amplicon sequencing is more suitable for low-quality fragmented DNA, selective sequencing allows even 
whole genome enrichment and higher resolution of taxonomic classification. A different selection of enrich-
ment methods should be considered based on the quality of specimens and the level of enrichment required. In 
addition, we do not expect the use of adaptive sequencing to be an effective rule-out test, especially when the 
bacterial load in the sample is extremely low. This is because the sensitivity of the test is significantly compro-
mised when the sequencing coverage is too low (i.e. the enrichment level of using adaptive sequencing is not 
as good as using amplicon sequencing). A study shows that for second-generation sequencing, Illumina can 
achieve a > 20 × depth and > 90% of the genome covered of TB enrichment for approximately $350 per  sample34. 
We found that with ONT adaptive sequencing, we can achieve around 9 × coverage and > 99.9% (Supplementary 

Figure 4.  Workflow of the TB analysis pipeline.

https://github.com/HKU-BAL/ONT-TB-NF
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Table 3) of the genome covered of TB enrichment for around $1000 per sample, which makes ONT adaptive 
sequencing valuable for TB detection. We also provide a user-friendly workflow, ONT-TB-NF, for ONT adaptive 
sequencing, WGS, and amplicon data processing, to facilitate TB-specific antimicrobial resistance detection with 
limited computational requirements.

Methods
In this study, we performed a total of five ONT sequencing runs: (1) a control sequencing run with a synthetic 
metagenomic sample, (2) a readfish adaptive sequencing run with a synthetic metagenomic sample, (3) an 
UNCALLED adaptive sequencing run with a synthetic metagenomic sample, (4) an amplicon sequencing run 
with a synthetic metagenomic sample, and (5) a readfish adaptive sequencing run with a clinical specimen 
(IS6110, CP = 7.0).

Preparation of the synthetic TB metagenomic sample. The synthetic metagenomic sample com-
prised 95% pure HG002 (Coriell Cell repositories, USA), 4.9% ZymoBIOMICS HMW DNA Standard (Zymo 
Research, USA), and 0.1% high molecular weight TB (NC_000962.3) DNA. According to the manufacturer’s 
specifications, the ZymoBIOMICS HMW DNA Standard includes Pseudomonas Aeruginosa (14%), Escherichia 
Coli (14%), Salmonella Enterica (14%), Enterococcus Faecalis (14%), Staphylococcus Aureus (14%), Listeria Mono-
cytogenes (14%), Bacillus Subtilis (14%), and Saccharomyces Cerevisiae (2%). The Qubit 4.0 fluorometer (Life 
Technologies, USA) was used to quantify individual DNA samples before the preparation of the master mix of 
synthetic metagenomic samples. The synthetic metagenomic samples were stored at − 20 °C after library prepa-
ration.

Library preparation of the control and adaptive ONT sequencing runs. For each sequencing 
library, an input of 1 ug of DNA was quantified and fragmented to approximately 17 kb using g-TUBE (Covaris, 
USA) at 3500 rpm on Centrifuge 5425 (Eppendorf, Germany). The DNA was then purified and size-selected using 
0.6X AMPure XP beads (Beckman Coulter, USA). The subsequent library preparation steps were performed fol-
lowing the ONT SQK-LSK110 Genomic DNA by ligation protocol (GDE_9108_v110_revL_10Nov2020) with 
the following modifications. To improve the DNA yield after end-prep, the incubation time was increased from 
five minutes each at 20 °C and 65 °C to 10 min each during the DNA repair and end-prep steps. To maximize 
the amount of HMW DNA recovered after each washing step, the incubation time with AMPure XP beads in all 
the cleaning steps and elution steps was increased from, about two to 10–20 min. After adapter ligation, approxi-
mately 50 fmol of the library was loaded into the R9.4.1 flowcell (ONT, GB) and sequenced using MinION until 
there were less than 50 active pores in the flowcell. The duration of each library preparation was 3–4.5 h, and of 
each sequencing run was up to 96 h.

Library preparation of the amplicon sample. The library preparation was performed following the 
ONT SQK-LSK110 Amplicons by Ligation protocol (ACDE_9110_v110_revM_10Nov2020) using 1 ug of 
approximately 1000 bp amplicons. The incubation conditions applied were the same as that used for the genomic 
DNA. The amplicons were purified using 1X AMPure XP beads in all the cleaning steps instead. At the end of 
the library preparation, approximately 100 fmol of amplicon DNA was loaded and sequenced by MinION until 
sufficient estimated coverage was obtained. We follow the primers and cycle conditions settings  at19. The target 
regions were gyrB, gyrA, rpoB, Rv0678, rpsL, rplC, atpE, rrs, rrl, mabA-inhA, rpsA, tlyA, katG, FurA-KatG, pncA, 
eis, whiB7, embB, and ubiA.

Nanopore sequencing with adaptive sampling. Adaptive sequencing with readfish (0.0.6dev2) 
and UNCALLED (v2.2) on MinKNOW software (distribution version of 21.06.13) was used with synthetic 
metagenomic samples and base-called with the Guppy (v5.0.16) GPU version on a computer with two 8-core 
Intel i9-11900F processors and a NVIDIA GeForce RTX 2080 Ti GPU. UNCALLED was configured in "real-
time" enrich mode. The TB strain of H37Rv, NC_000962.3, was used as the reference for target selection for 
UNCALLED. readfish was run in the targeted sequencing mode, with the mapping condition of “multi_on” and 
“single_on” set to “stop receiving”, and “multi_on”, “single_off ”, “no_map” and “no_seq” set to “unblock”. We 
combined the GRCh38 human genome and the genome of the H37Rv strain, NC_000962.3, as the reference, and 
set the sequencing targets as “NC_000962.3” for readfish. To evaluate the performance of the fragmented clinical 
samples, a sputum specimen (MG_TB23178 library) was also used for readfish enrichment analysis.

Bioinformatic analysis on the TB‑enriched ONT data. To analyze the sequenced data, we first per-
formed a quality check of the generated datasets with  NanoPack31 and then mapped all reads with  minimap232 
(2.15-r905) to a merged reference containing human (GRCh38), TB (NC_000962.3), and the eight species listed 
in l ZymoBIOMICS to check the read distribution for each composed species. The alignments were filtered to 
remove those with an alignment score (AS) < 1.2 to avoid potential mapping errors. For testing gene cover-
age at the amplicon sample, we gathered the 19 gene or locus regions defined by Tafess et al.19. For the control 
and adaptive sequencing samples, we tested coverage across the whole TB genome and 18 selected whole gene 
regions that confer resistance to anti-TB drugs: gyrB, gyrA, rpoB, Rv0678, rpsL, rplC, atpE, rrs, rrl, inhA, rpsA, 
tlyA, katG, pncA, eis, whiB7, embB, and ubiA. The coverage of each TB gene was computed using  Mosdepth35, 
with the target bed file provided.
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Benchmarking of variant calling on Clair3. To test variant-calling performance using different TB 
enrichment data, we first mapped reads from the sequencing data to another Mycobacterium tuberculosis strain 
reference sequence, NC_016804.1. The truth variants set of our synthetic sample (from NC_000962.3) was 
obtained by (1) mapping the original sequence of NC_000962.3 to the sequence of NC_016804.1 with “nucmer” 
from  MUMer336, and (2) further variant calling with “show-snps” from  MUMer336. The truth variant set con-
tained 2362 SNPs and 327 INDELs, so it was suitable for testing variant-calling performance.

We performed  Clair323 (v0.1-r12, Guppy5 model) with the “haploid_precise” mode on all samples for variant 
calling. The variant-calling performance was evaluated with hap.py37, and three metrics—precision, recall, and 
F1-score—were generated for both SNP and Indel.

Data availability
The original sequencing outputs, fast5 files, from MinION, including the Control run, readfish run, UNCALLED 
run, Amplicon run, and all analysis outputs are publicly available http:// www. bio8. cs. hku. hk/ ont_ tb. The bioin-
formatics workflow, ONT-TB-NF, is open-source software (BSD 3-Clause license), hosted by GitHub at https:// 
github. com/ HKU- BAL/ ONT- TB- NF.
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