Title: THE ROLE OF MAT1A MUTATION IN BILIARY ATRESIA DISEASE INITIATION AND PROGRESSION: AN IPSC STUDY

Jiachen Zheng¹, Man Ting So¹, Tang Clara Sze Man^{1,2}, Patrick Ho Yu Chung^{1,3}, Paul Kwong Hang Tam^{1,4}, Kenneth Kak Yuen Wong^{1,3}, Vincent Chi Hang Lui^{1,2}

¹Department of Surgery, School of Clinical Medicine, the University of Hong Kong, Hong Kong.

²Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong
³The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
⁴Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.

Abstract:

The pathobiological mechanisms underlying disease initiation and progression in biliary atresia (BA) remain unclear. Limited studies have addressed whether liver deterioration despite surgical treatment represent a primary event affecting hepatocytes or reactive changes secondary to bile duct injuries.

A heterozygous de novo G to A mutation in the exon 8 of the MAT1A gene in a BA patient's peripheral blood DNA was identified. This patient has a poor response to Kasai portoenterostomy, requiring liver transplantation shortly after surgery. This G>A mutation created a new splice acceptor site within the exon 8. The aberrant splicing from exon 7 to this new acceptor site within exon 8 generated a mutant transcript with part of the exon 8 deletion, a frameshift leading to a new stretch of 14 amino acids and a stop codon. MATIA encodes two liver-specific methionine adenosyltransferase isozymes (MATI/III), and the mutant enzymes retained only 14.4% of the wild type enzyme activity. iPSC (BA638C) was generated from this patient's blood and was differentiated into hepatocytes. Morphological/flow cytometric/RT-qPCR analysis was performed to address if MAT1A deficiency impaired hepatocyte development/functioning. Control iPSC (HKUPS-001) derived from a normal person was included for comparison. At iPSC stage, BA638C's proliferation rate was much lower than that of HKUPS-001. After hepatocyte induction, both HKUPS-001 and BA638C iPSCs developed into hepatocyte-like cells showing typical hepatocyte morphology on day 20, expressing high level of hepatic markers. However, by day 22, BA638C-derived hepatocytes gradually lost the hepatocyte features, developed into flat and spindle-shape fibroblast-like cells. Furthermore, BA638C-derived cells expressed not only low level of hepatic makers, but also elevated levels of the epithelialmesenchymal-transition (EMT) related markers (SMA and FSP1).

In conclusion, MAT1A mutation resulted in decreased activity of MATI/III. The disrupted methionine metabolism could lead to reduced iPSC proliferation, a premature loss of differentiated hepatocyte morphology and function, and abnormal mesenchymal transformation, contributing respectively to disease initiation and progression of BA.

Session Topics: (MDD) Modeling Development and Disease: examining advances using stem cells in vivo and in vitro to model development and disease with applications for drug discovery and therapeutics

Key words: Biliary atresia, MAT1A, aberrant splicing, methionine metabolism Funding Source: Theme-based Research Scheme (T12-712/21-R) RGC Hong Kong SAR Government, Hong Kong SAR, China.

Experimental Treatments to Human Subjects: N/A