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A B S T R A C T   

In road safety research, bus crashes are particularly noteworthy because of the large number of bus passengers 
involved and the challenge that it puts to the road network (with the closure of multiple lanes or entire roads for 
hours) and the public health care system (with multiple injuries that need to be dispatched to public hospitals 
within a short time). The significance of improving bus safety is high in cities heavily relying on buses as a major 
means of public transport. The recent paradigm shifts of road design from primarily vehicle-oriented to people- 
oriented urge us to examine street and pedestrian behavioural factors more closely. Notably, the street envi-
ronment is highly dynamic, corresponding to different times of the day. To fill this research gap, this study le-
verages a rich dataset - video data from bus dashcam footage - to identify some high-risk factors for estimating 
the frequency of bus crashes. This research applies deep learning models and computer vision techniques and 
constructs a series of behavioural and street factors: pedestrian exposure factors, pedestrian jaywalking, bus stop 
crowding, sidewalk railing, and sharp turning locations. Important risk factors are identified, and future planning 
interventions are suggested. In particular, road safety administrations need to devote more efforts to improve bus 
safety along streets with a high volume of pedestrians, recognise the importance of protection railing in pro-
tecting pedestrians during serious bus crashes, and take measures to ease bus stop crowding to prevent slight bus 
injuries.   

1. Introduction 

Road safety is a dire problem. Every year, about 1.3 million people 
died on the road; road traffic injuries are the eighth leading cause of 
death in the world in 2022 (WHO, 2022). Also, between 20 and 50 
million more people suffered from non-fatal injuries, with many leading 
to disability (WHO, 2022). More worryingly, road traffic has been the 
leading cause of death among children (5–14 years old) and adolescents 
(15–29 years old) (WHO, 2022). The social costs of traffic fatalities and 
casualties are tremendous. 

Hong Kong road safety records have improved over the last thirty 
years, with road deaths per 10,000 people dropping from 0.60 in 1983 to 
0.14 in 2019 (Transport Department, 1983–2019). The corresponding 
figures per road km are 0.26 and 0.05, respectively (Transport Depart-
ment, 1983–2019). Nonetheless, there have been major bus crashes in 
recent years (Road Safety Council, 2017–2021). In particular, crashes 
involving franchised buses need more focused research because of the 
large number of bus passengers involved and the challenge that it puts to 

the road network (with the closure of multiple lanes or entire roads for 
hours) and the public health care system (with multiple injuries that 
need to be dispatched to public hospitals within a short time). However, 
traditional methods of hazardous road locations focus primarily on road 
junctions; hence, the densest areas with dense road junctions have been 
identified as black spots (Transport Department, 2019). Moreover, 
research based on actual road crash frequency is biased towards urban 
areas with higher annual average daily traffic (AADT), when the expo-
sure factor has not been considered (Kim et al., 2022; Yao et al., 2015). 

A closer examination of fatal bus crashes in Hong Kong over the years 
shows that they generally did not happen at traffic black spots. Some 
notably serious bus crashes happened on highways and suburban roads 
in the last five years (Road Safety Council, 2017–2021). Moreover, 
studies of improving bus safety have focused mainly on the bus drivers, 
for example, whether they have sufficient rest, driving experience, 
driving attitudes, and even interactions with bus passengers (RSC, 
2021). All these factors are indeed relevant. However, a whole series of 
factors related to bus safety is related to the dynamic road environment 
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and behaviour of other road users. These factors need to be considered 
specifically for bus safety, especially in Hong Kong, where buses are a 
major mode of transport; franchised buses alone carry around 4.4 
million passengers per day (Transport Department, 2020). 

Focusing on analysing bus crash frequency, this study proposes an 
approach to examine five risk factors that are rarely captured in previous 
studies: 1) pedestrian exposure; 2) pedestrian crowding at bus stops; 3) 
jaywalking; 4) railing protection; and 5) streets with sharp turns. These 
variables have long been considered important in dense urban areas 
while lacking empirical tests at high resolution and large geographical 
scale. To do so, this study leverages a unique data source, dashcam 
videos from buses in Hong Kong, to gather pedestrian behaviour data 
and railing along the bus road network. Then, three models are applied 
to estimate the relationships between the five risk factors and historical 
bus crash frequency by level of severity. 

The remainder of this paper is structured as follows. The second 
section reviews the literature on bus crash studies. The third part ex-
plains detailed methods to derive risk factors and our model calibration 
process. Finally, the results are explained and discussed before a 
conclusion is made. 

2. Literature review 

This section reviews the related literature from three major aspects. 
The first subsection reviews studies on bus crash risk from the per-
spectives of crash severity, frequency, and exposure. Then, focusing on 
crash frequency analysis, three research gaps are identified. The second 
subsection summarises recent research progress on using computer 
vision to gather data for road safety analysis. The last part of the review 
summarises the statistical models and machine learning models 
frequently used to predict road crash frequency and to identify risk 
factors. The rationale of model selection in this study is also explained. 

2.1. Bus crash risk factors 

An event of road crash is generally viewed as a result of an interac-
tion between the environment, vehicles, and drivers (Barabino et al., 
2021; Goh et al., 2014). In the context of bus-related crashes, previous 
research has explored the effects of factors regarding the frequency and 
severity of road crashes and risk exposure. Regarding bus crash severity, 
drivers’ profiles are most frequently studied. For instance, Kaplan and 
Prato (2012) found that bus crash severity increased with the presence 
of bus drivers under the age of 25 or older than 65. Other studies found 
that female, fatigued, and inexperienced bus drivers (Evans & Courtney, 
1985; Huting et al., 2016; Samerei et al., 2021a) and those with a history 
of traffic violations are more likely to be involved in bus crash (Feng 
et al., 2016). Recent literature in bus crash severity prediction also 
included environmental variables in the models. These variables mostly 
focused on describing the road network, such as road intersection 
location (Samerei et al., 2021a), road types, speed limits, surface ma-
terials, etc. (Iranitalab & Khattak, 2017). 

Another thread of studies focuses more on the analysis of bus crash 
frequency. Again, road environmental factors such as traffic volume, 
number and width of the lane(s), and type of road are widely recognised. 
Wider lanes and medians were found to reduce bus crashes, while more 
lanes with higher traffic volume increased bus-related crash occurrence 
(Chimba et al., 2010). High-speed zones are likely to be associated with 
higher bus crash rate (Samerei et al., 2021a). Curbside parking and 
loading are also positively correlated with more bus crashes (Barabino 
et al., 2021; Cheung et al., 2008). 

The third thread of bus crash studies have put more attention to risk 
exposure, especially in dense urban areas. One of the biggest challenges 
this group of researchers faces is collecting pedestrian-related data. To 
overcome this challenge, some have relied on detailed bus crash records 
that directly describe pedestrian involvement in related bus crashes 
(Almasi et al., 2021; Samerei et al., 2021a; Samerei et al., 2021b). Others 

have tried to quantify pedestrian crash risk exposure by estimating 
pedestrian volume from household travel characteristics surveys (TCS), 
land uses, and points of interests (Almasi et al., 2021; Su & Sze, 2022; 
Yao et al., 2015). 

There are three research gaps to be addressed in analysing bus crash 
frequency. First, a large body of studies has focused on driver-related 
risk factors. In contrast, pedestrian-related and environmental factors 
deserve closer examination with the availability of big data and 
advanced computing techniques. On the one hand, pedestrian activities 
recorded in police crash records only capture pedestrians involved in 
traffic crashes but not other pedestrians or the street scene in general. On 
the other hand, using TCS data to estimate pedestrian exposure is limited 
to the collection year. They are usually not up to date and have a limited 
sample size. 

Second, in analysing bus crashes, bus drivers are generally familiar 
with the routes they typically drive along. Hence, they will get into a 
driving habit based on the usual road conditions. As a result, they will be 
more vulnerable to sudden events, such as jaywalking pedestrians. Such 
unexpected events are rarely captured in previous studies. 

Lastly, environmental factors used in previous studies have rarely 
considered road safety-related installations. Features such as protection 
railings, safety islands, and extended sidewalks deserve further study to 
evaluate their effectiveness as buses are heavy vehicles, and people on 
unprotected walkways (including passengers waiting for buses at bus 
stops and pedestrians on the street) are particularly vulnerable to serious 
injury and fatalities. 

Addressing these research gaps requires further data gathering and 
robust analysis. The following section first reviews the potential 
methods to gather data via video analysis in road safety studies. 

2.2. Video analytics and its application in road safety analysis 

One promising way of capturing street behaviours in cities is through 
video analytics. Researchers have used fixed cameras in cities to analyse 
pedestrian crossing behaviour (Avinash et al., 2019; Gitelman et al., 
2019; Zhang et al., 2020), vehicle–pedestrian interaction (Beitel et al., 
2018; Fu et al., 2019; Liang et al., 2021), and pedestrian gap acceptance 
(Gorrini et al., 2018; Sheykhfard & Haghighi, 2020). In parallel, recent 
developments in deep learning-based computer vision algorithms 
further enhance the capacity to leverage video data to capture pedes-
trian behaviour. Object detection models such as Fast R-CNN (Girshick, 
2015) and Mask R-CNN (He et al., 2017), empowered with tracking 
algorithms such as Deep Sort (Wojke et al., 2017) can detect pedestrians, 
predict pedestrian behaviour, and identify pedestrian movement. 
However, these techniques have not yet been fully integrated into bus 
safety analysis. 

2.3. Machine learning methods in road crash prediction 

While a significant body of safety research has been dedicated to 
predicting road crash severity and frequency, here, the focus is on 
reviewing the methods used to conduct crash frequency prediction and 
risk factor analysis. A common approach in these studies is using a 
statistical modelling tool with crash frequency as the dependent variable 
and characteristics of the driver, roadway, time, etc., as independent 
variables. Developed from the regression approach, Negative Binomial 
(NB) (Hilbe, 2011) has been widely employed to overcome the problem 
of over-dispersion in the crash data (Abdulhafedh, 2016; Lord & Man-
nering, 2010; Mousavi et al., 2021). As such, NB models have a limita-
tion when dealing with under-dispersion data (the mean of crash 
frequency is higher than the variance), leading to biased parameter es-
timates. Moreover, considering that crash events are rare, researchers 
also use zero-inflated negative binomial models and zero-inflated Pois-
son models to deal with this over-dispersion problem (Abdulhafedh, 
2017). Still, with findings that the many underlying relationships be-
tween crash frequency and risk factors are non-linear, recent researchers 
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have explored more non-linear approaches to predict the crash fre-
quency. Machine learning models such as Artificial Neural Networks 
(ANN), Support Vector Machine (SVM), Random Forest (RF), and 
Extreme Gradient Boosting (XGBoost) are applied as predictive tools in 
behavior-based risk analysis (Atumo et al., 2022; Chakraborty et al., 
2019; Dong et al., 2015; Gu et al., 2023; Yang et al., 2022). Among these 
models, ANN and SVM, although strong in prediction, are less infor-
mative in explaining the importance of input variables. Neural Network 
models are generally still considered as a black box with feature trans-
formation and dropout included in the process. Similarly, SVM conducts 
a kernel transformation of the original space depending on the kernel 
used. On the contrary, RF and XGBoost, although using different 
ensembled methods, are tree-based models that are easy to interpret. 
Recently RF models have been extended to discover causal effects 
(Wager & Athey, 2018). XGBoost has been used to examine the leading 
causes of traffic crashes (Yang et al., 2022). 

3. Method 

In view of the three research gaps, this study will focus on five bus 
crash risk factors that are rarely addressed in previous literature (Fig. 1). 
The following section will explain how these factors can be extracted via 
a unique dataset – bus dashcam video records. Then the importance of 
these factors is validated via three models selected per previous road 
crash frequency analysis literature. 

3.1. Study area and data 

The study area includes 244.36 km of street segments in Hong Kong, 
covered by 33 bus routes from morning to night. The road segment 
network was downloaded from the TomTom dataset. The dataset con-
tains the road travel direction, name, and type (notably expressway, 
tunnel, etc.). Previous road crash studies have used both street in-
tersections and street segments as the basic unit of analysis. Following 
previous work on pedestrian crash hot zones, this study converted the 
road network to Basic Spatial Unit (BSU) for detailed analysis (Yao & 
Loo, 2012). The length of BSUs included in this study ranges from 15 m 
to 100 m. Street segments that are expressways only (where pedestrians 
are not present) were removed from the sample collection. 

The bus dashcam videos were collected from July 2021 to March 
2022. All video data (Fig. 1 a) were first processed with an anonymiser 
algorithm1 to blur individual faces for privacy protection. Ethical 
approval was obtained from the authors’ university. All videos obtained 
are also accompanied by a GPS file. The GPS file contains the latitude, 
longitude, timestamp, bus ID, and route ID so that each video frame can 
be associated with a GPS point. Although GPS records give the estimated 
location of a bus, there are often missing data points or reported loca-
tions that deviate from the true location of the bus (Barabino et al., 2017; 
McLeod, 2007). To deal with this problem, all bus routes were manually 
matched to associated street segments via ArcGIS. Then applying a Map 
Matching algorithm (Lou et al., 2009), the GPS points were associated to 
those street segments of that particular bus route (known in advance). In 
addition, the video data are dropped for bus GPS records with known 
data gaps (missing location data identified by abnormal bus speed) to 
ensure accuracy and reliability. In this way, a video frame-GPS-street 
segment association is constructed for further analysis. 

3.2. Risk factors 

3.2.1. Pedestrian exposure factor 
The pedestrian exposure factor is defined as the pedestrian volume at 

a BSU k through any given time period T (T is usually one hour) (Yao 
et al., 2015). Using video from the buses dashcam to obtain the PkT 

involves two steps. The first step is to assign a unique ID for all pedes-
trians who appeared in the video during a bus trip. To do so, this study 
leverages a pedestrian tracking algorithm (Wang et al., 2020) that 
combines the Fast R-CNN (Girshick, 2015) and Deepsort (Wojke et al., 
2017) to detect the unique number of visitors that appeared in video 
during any given time ΔT (Fig. 2a). The second step is to use the 
observed number of pedestrians Pjk to estimate the PkT. This estimation 
adopts a commonly pedestrian average speed (disregarding direction) at 
vp = 1.203 m/s (Chandra & Bharti, 2013). Then for any pedestrian, it 
takes t = Lk

vp 
to pass through a BSU with length Lk. For a bus j passing 

through a BSU k during time period Δt, its speed is captured as vbk. Given 
that vp≪vb , bus j could observe all pedestrians at BSU k during time T: 

PjkT =
Pjk × vp

Lk
× T × AF (1)  

AF =

⎧
⎪⎨

⎪⎩

1, if vbk ≥ vb/2
vbk

vb

, otherwise (2) 

where AF is an adjustment factor considering the variation of the bus 
speed through different videos. When the bus speed is much lower than 
the average speed, it will capture more pedestrians. PjkT is adjusted 
downward by the ratio of vbk and vb. The detailed process resembles a 
previous study (Lian et al, 2022). Since there are more than one videos 
taken by different buses for each BSU, the final pedestrian exposure PkT 

is measured as the mean of the PjkT for all n videos taken: 

PkT =
1
n
∑n

j=1
PjkT (3)  

3.2.2. Pedestrian jaywalking index 
The process of generating the jaywalking index involves two steps. 

The first step trains a Mask R-CNN model using 200 manually labelled 
images and applies the model to all videos (He et al., 2017). These 
labelled samples were sufficient to train the model and achieved rela-
tively good results compared to the original Mask R-CNN coco dataset’s 
mask mAP. Details of the model can be found in Fan & Loo (2021). The 
manual labelling process identifies a pedestrian’s location, shape, and if 
they are jaywalking or not. Then this model is applied to all bus videos, 
and the detection results are aggregated to road segments to derive the 
jaywalking index. 

The pedestrian jaywalking index is defined as the likelihood of 
observing a jaywalking person at a road segment s through any given 
time period t. Given that a person could be jaywalking at a point in time 
but not during another time, this jaywalking measure avoids the abso-
lute count of the number of people jaywalked and applied the following 
equation to calculate the jaywalking index for a BSU k. 

Jk =

∑Mk

m=1
nm

Mk

(4) 

where the nm is the total number of jaywalking people detected in 
any given video frame m, and M is the total number of video frames that 
have covered the BSU k in the study sample. Distribution of captured 
jaywalking is shown in Fig. 2b. 

3.2.3. Pedestrian crowding at bus stops 
Pedestrian crowding Ck measures the average pedestrian area oc-

cupancy (APAO) within a 10-meter buffer of a given bus stop (Fig. 2c). In 
order to calculate APAO, the sidewalk width information at the bus stop 
locations is needed to estimate the amount of space available for pe-
destrians and waiting bus passengers. In this study, the sidewalk width is 
estimated based on the surrounding land use of the road network, as the 
minimum width of the sidewalk has been specified for different types of 
land use in the Hong Kong Planning Standards and Guidelines (Planning 
Department, 2022). The spatial join function in ArcMap was used to find 1 https://github.com/animikhaich/Real-Time-Face-Anonymizer. 
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the nearest land use information for each BSU. A distance threshold of 
30 m is applied to ensure the accuracy of matching. This threshold was 
selected based on the maximum distance from any given street center-
line to its adjacent defined land use block. Then, the corresponding 
sidewalk width wk of BSU k is determined based on the identified nearest 
land use. For BSUs that have no land use value found, their sidewalk 
width is considered to be the same as the nearest street segments with 
the same street names. The number of pedestrians Pk near bus stops is 
derived by counting the number of pedestrians (with unique IDs) within 
10 m buffers from each bus stop. Finally, Ck is calculated using equation 
(5): 

Ck =
Pk

wk × 10
(5) 

where 10 m is the buffer length used in the measure. Fig. 3c illus-
trates the results captured in each video frame and the aggregated dis-
tribution of Ck through all observed BSUs. The distribution of pedestrian 
crowding at bus stops are visualized in Fig. 2c. 

3.2.4. Sidewalk railings 
The sidewalk railings are detected from the bus video frames using 

an image segmentation model, which was trained based on the ADE20K 
dataset (Zhou et al., 2017). Night videos (videos covering time after 
18:00 pm), except for the case where alternative daytime videos cannot 
cover the same BSUs, are excluded from the analysis to ensure the ac-
curacy of segmentation. Based on the image segmentation result, the 
percentage of railing pixels on each bus video frame can be calculated. 
Mathematically, the railing index Rk is defined as: 

Rk =

⎧
⎪⎨

⎪⎩

Prailing,k

bound
, if Prailing ≤ bound;

1 otherwise
(6) 

where PRailing,k is the average percentage of railing pixels on a BSU 
derived by calculating the mean value of the percentage of railing pixels 
of all bus video frames on the same BSU. Given other needs like 
pedestrian crossings and drop-off areas, a BSU is considered to be fully 
protected by railings if PRailing>=bound (Fig. 3 right). Here the bound is 
a threshold to classify the BSU with railings. To identify the threshold, 
100 images with railing detected were randomly selected. Then the 
images were labelled by three classes: 1) no railing; 2) some railing, but 
the BSU has opening; 3) continuous railing – the BSU has no opening 
between the sidewalk and the vehicle road. The bound is determined as 
0.06, which is the median value of PRailing of all images with continuous 
railing detected. 

3.2.5. Sharp-turn locations 
Sharp turns can be a risk factor for buses, especially in Hong Kong, 

where most of them are double-deckers and over 12 m long. Based on 
the road network structure, a dummy variable Sk is used here to describe 
if a BSU k is associated with a sharp turn of fewer than 90 degrees or not, 
where 1 indicates that the street segment is associated with at least one 
sharp turn, whereas 0 indicates no sharp turn. 

3.3. Road crash data 

To systematically estimate these five risk factors, this study collected 

Fig. 1. The research structure. On the left, (a), (b), and (c) show the major data sources. Via methods in (d), four out of five risk factors are extracted. e) The five risk 
factors include 1) pedestrian volume, 2) pedestrian crowding, 3) jaywalking, 4) missing railing, 5) sharp turn. f) Final models are developed to estimate the bus crash 
frequency by each street segment. 
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road crash data from 2015 to 2019 and aggregated them to the BSU 
level. The procedure of combining traffic crashes in five years is to 
recognise that bus crashes are rare events. The randomness of traffic 
crashes needs to be properly taken into account when identifying sys-
tematic bus crash risk factors. The original data was provided by the 
Transport Department of Hong Kong. The data contains the fields of 
location coordinates of crashes, the street address of crashes, the type of 
vehicle involved and the severity of crashes (slight, serious, and fatal), 
among others. With these parameters, the crash data were further 
aggregated into three groups: 1) bus-related serious crashes, which 
include both serious and fatal crashes; 2) bus-related slight crashes; and 

3) non-bus-related crashes. From 2015 to 2019, a total of 77,060 crashes 
happened in Hong Kong. This study used 12,679 crashes that were bus- 
related. Among all bus crashes, 1,408 were fatal or severe, and 11,189 
were slight crashes. 

Table 1 shows the summary statistics of all continuous variables. It is 
observed that most of the features are not normally distributed. Hence, 
the transformation of the variables was conducted with least changes to 
the dataset to improve the model performance while maintaining the 
interpretability of the parameters. Fig. 4 plots the correlation among 
transformed risk factors and that there is no multi-collinearity among 
the features. 

Fig. 2. Three behavioural risk factors constructed from the dashcam video. A) Pedestrian exposure. B) Pedestrian Jaywalking. C) Pedestrian crowding at bus stops. 
Maps of distribution are plotted accordingly at different times of a day. 

Fig. 3. Levels of railing presence at BSUs.  
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3.4. Risk feature importance 

This section uses multiple models to evaluate the importance of each 
risk factor in predicting road crashes. As discussed in the literature re-
view, NB is one of the widely used statistical models to analyse crash 
frequency. However, tree-based machine learning models are found 
with better model fit in comparison to statistical models and more 
explainable than other high-dimensional machine learning models such 
as ANN or SVM. Still, this study admits the fact that all these models 
could still have their own limitations. Therefore, it applies three 
different models and compares their results to verify the effects of the 
five selected risk factors. The three models are 1) NB, 2) RF (Breiman, 
2001), and 3) XGBoost (Chen & Guestrin, 2016). Here, NB is used as a 
baseline to compare with the performance of the other two models. RF 
and XGBoost are both tree-based ensemble models. The former trains 
separate decision trees and output the mean of the prediction from all 
trees. The latter trains decision trees sequentially. Recent literature has 
demonstrated both models have out-of-sample prediction capability and 
can identify non-linear relationships between the features and target/ 
dependent variables. Without previous knowledge of which one would 
outperform the other, the experiments were conducted with both 
models, and their performance is obtained. The following sub-section 
first explains the hyperparameter tuning process for the RF and XGB 
models. Then, the model performance and feature importance are 
compared. 

3.4.1. Hyperparameter tuning for Random Forest regression 
To select the appropriate hyperparameters for the RF model, the data 

were split into training and test datasets (70%: 30%). Then using a 5-fold 
cross validation (CV) from the training dataset, the following hyper-
parameters are selected:  

1. n_estimator: number of trees in the forest  
2. max_features: maximum number of features considered  

3. max_depth: maximum number of levels in each decision tree  
4. min_samples_split: minimum number of data points placed in a node 

before the node is split  
5. min_sample_leaf: minimum number of data points allowed in a leaf 

node. 

This experiment first used the randomised CV search method to 
narrow down the number of combinations of all parameters. Then the 
Grid Search method was used to evaluate all combinations defined. The 
evaluation process uses the Mean Absolute Error (MAE) given that many 
street segments do not have bus crashes recorded. Table 2 summarises 
the hyperparameters selected for the RF model. 

3.4.2. Hyperparameter tuning for Extreme Gradient Boosting (XGBoost) 
regression 

Similarly, the following experiment adopted a 5-fold cross-validation 
process with the training dataset and fine-tuned with the following pa-
rameters for the XGBoost model:  

1. max_depth: maximum number of levels in each decision tree  
2. colsample_bytree: the fraction of columns to be randomly sampled 

from each tree  
3. subsample: the fraction of observations to be sampled for each tree.  
4. learning rate: Step size shrinkage used in the update to prevent 

overfitting.  
5. min_child_weight: Minimum sum of instance weight (hessian) 

needed in a child. 

Table 3 summarizes the parameter selected for each objective. 

3.4.3. Feature importance 
Feature importance is one of the key criteria to explain machine 

learning models. There are many feature-importance calculation 
methods that capture different aspects of the model. Instead of the 

Table 1 
Summary statistics of key parameters.   

count mean std min max 

Log(Pedestrian Exposure) 3548  7.162  0.847  2.916  9.92 
Log(Jaywalking) 3548  0.077  0.094  0.0000  0.964 
Log(Pedestrian Crowding @ Bus 

Stop) 
3548  0.645  1.645  0.0000  6.185 

Railing Index 3548  0.212  0.2630  0.0000  1.000 
Log(Segment Length) 3548  3.824  0.662  1.800  4.615  

Fig. 4. Permutation Importance (based on negative MSE score predicting the log-transformed dependent variable) from three models predicting serious bus crashes, 
slight bus crashes, and non-bus crashes. 

Table 2 
Hyperparameters for the RF model.  

Parameters Serious Bus Crashes Slight Bus Crashes Non-Bus Crashes 

max_depth 4 7 6 
max_features sqrt sqrt sqrt 
min_samples_leaf 5 5 3 
min_samples_split 10 5 3 
n_estimator 100 180 130  
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popular mean decrease in impurity (Gini importance) mechanism that is 
provided through the default scikit-learn function in python, this study 
adopted the permutation importance given that it is model agnostic and 
produces reliable results (Strobl et al., 2007). Impurity-based feature 
importance for trees is strongly biased, which can give high importance 
to features not predictive of unseen data when the model is overfitting. 
On the contrary, the permutation importance does not have such bias. In 
addition, the permutation importance was fit on the test dataset rather 
than the training dataset. In this way, one can further emphasise the 
feature importance in out-of-sample prediction. For each feature fj, its 
permutation importance pj is computed as: 

pj = s −
1
K
∑K

k=
sk,j (7) 

where s is the total score (negative MAE and negative MSE) of the 
models. The calculation was repeated for K = 5 times. Each time, column 
j of dataset D was shuffled to generate a corrupted version of the data 
D̂k,j ; then, the score sk,j of the model on the corrupted data D̂k,j is 
computed. 

4. Results 

4.1. Prediction results 

Using the fine-tuned models, final prediction results as shown in 
Table 4. Both training results and testing results are listed in the table to 
show the models’ out-of-sample prediction capability. One can observe 
that both RF and XGBoost outperform the NB model when estimating 
bus-related crashes, especially for the test dataset. Regarding the non- 
bus crash model, the RF model performs slightly better than the NB 
and XGBoost. 

4.2. Feature importance 

Fig. 4 plots the permutation importance based on MSE produced 
from NB, RF and XGBoost for all three target crash variables. It is 
observed that all three sets of models produce similar results in feature 
importance ranking. Moreover, the results produced with MAE is similar 
and shown in the appendix. 

For all three models, the Pedestrian Exposure Factor is constantly the 

most important in estimating vehicle–pedestrian crash frequency. 
Nonetheless, Bus Stop Crowding ranks higher for slight bus crashes, 
while least important for serious bus crashes. Where bus stops are 
crowded, waiting bus pedestrians and passengers are more likely to 
overflow to roads and give rise to various slight injury bus crashes. The 
railing index is of much higher importance in predicting serious bus 
crashes. It suggests that the functions of railings in protecting pedes-
trians are especially important in case of serious and fatal bus crashes. 
Jaywalking, while often ignored in road safety analysis, is important in 
accounting for non-bus-related crashes. Last but not least, it is also 
observed that other than the Pedestrian Exposure Factor and Jaywalk-
ing, these other factors play minor roles in predicting non-bus crashes. 
The results highlight the value of differentiating crash analysis by 
transport modes. 

4.3. Feature relationship 

After evaluating the feature importance, a partial dependence plot 
from all three models visualises the specific relationship between bus 
crashes and the four risk factors found to be significant in the two bus 
crash models – Pedestrian Exposure, Jaywalking, Bus Stop Crowding 
and railing index (Fig. 5). Four main observations can be made. 

First, it is evident that all crashes are positively correlated with 
Pedestrian Exposure Factors. However, It is realised that street segments 
with very few people have slightly higher chances of getting bus crashes 
(revealed by the RF and XGBoosting models). This result is not yet 
captured in previous studies on pedestrian exposure, given the lack of 
high-resolution data (Almasi et al., 2021; Lee & Abdel-Aty, 2005). It is 
likely that as the potential of overlook when buses travel through streets 
normally with fewer pedestrians. 

Second, the increase in the railing index is correlated with a sharp 
drop in serious bus crashes. Some initiatives for increasing walkability 
have advocated for the removal of pedestrian railings. This finding 
suggests that the decision must be evaluated very carefully, especially if 
the relevant road segments are still having vehicular traffic with heavy 
vehicles such as buses. Other traffic calming measures, such as reducing 
traffic speed and bus route re-routing, should be implemented before the 
pedestrian railings are removed. Along corridors where buses traverse, 
these protection railings can save life. 

Third, pedestrian crowding at bus stops shows a positive correlation 
with bus-related crashes, especially for slight bus crashes. This result 
resonates with previous literature on bus stop accident analysis (Truong 
& Somenahalli, 2011). In addition, detailed descriptions of bus crashes 
in the TRADS database also show that many slight accidents happening 
around bus stops were related to pedestrians falling on the ground as 
buses approached and/or - pulled off from bus stops. 

Lastly, the pedestrian jaywalking indicator shows a similar non- 
linear relationship for all three sets of models. When jaywalking hap-
pens occasionally, it is likely to see an increase in bus crashes. In real life, 
drivers are more cautious on street segments where a lot of jaywalking 
happens. Similar to the permutation plot above, it is observed that the 
contribution of crowding at the bus stop and railing index is insignificant 
for non-bus crashes. 

5. Discussion 

In comparison to many global cities in the world, Hong Kong has 
many narrow and/or crowded pedestrian sidewalks, especially in 
downtown areas like Central and Wanchai. Although pedestrian railing 
hinders the vibrancy of some streets, results here suggest that it is still 
necessary to adopt railing as a protection against serious bus crashes. 
Also, results in this study demonstrate that pedestrian exposure is an 
important factor in predicting all types of crashes. The results are highly 
consistent with the existing literature and suggest that the pedestrian 
exposure factor needs to be included in scientific road safety models 
(Kim et al., 2022; Lam et al., 2014; Yao et al., 2015). As bus crashes in 

Table 3 
Hyperparameter for the XGBoost model.  

Parameters Serious Bus Crashes Slight Bus Crashes Non-bus Crashes 

max_depth 2 3 2 
min_child_weight 4 7 7 
Learning Rate 0.3 0.3 0.3 
subsample 0.9 1 1 
colsample_bytree 0.8 1 0.9  

Table 4 
Model results on train and test datasets.    

Negative 
Binomial (NB) 

Random Forest 
(RF) 

XGBoost   

(1) (2) (3) 
Y Data 

Set 
MAE MSE MAE MSE MAE MSE 

Log(Slight Bus 
Crashes) 

train  0.565  0.441  0.465  0.320  0.389  0.238  

test  0.556  0.418  0.500  0.359  0.499  0.386 
Log(Serious 

Bus Crashes) 
train  0.133  0.055  0.130  0.051  0.103  0.031  

test  0.162  0.055  0.135  0.053  0.137  0.054 
Log(Non-bus 

Crashes) 
train  0.713  0.735  0.618  0.556  0.575  0.489  

test  0.686  0.699  0.641  0.596  0.676  0.659  
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Hong Kong are already relatively rare events, it should be further tar-
geted at reducing the number of severe crash events when individual 
mistakes, either caused by drivers or pedestrians, are largely 
unpredictable. 

The results on five risk factors also help suggest several key points to 
be considered for future planning interventions. First, locations with 
pedestrian railing have seen fewer serious bus crashes. Although many 
walkability initiatives support removing pedestrian railings, this 
approach should be reconsidered in dense urban areas where other 
traffic calming interventions are not feasible to install. Second, bus stops 
tend to see more slight crashes. This result suggests better design con-
siderations at bus stops are needed so that bus passengers can have a 
safer environment to wait for buses on the one hand, and to get on and 
off buses in an orderly manner on the other hand. 

This study also shows the difference between bus crashes and other 
road crashes. Pedestrian crowding at bus stops and railing index is more 
critical in predicting bus crashes than other crashes. General crash 
models reveal underlying explanatory factors but are not enough to 
pinpoint safety measures for achieving road safety targets (Wong et al., 
2006; Allsop et al., 2011). Particular groups of traffic crashes, such as 
those involving buses and heavy vehicles, need to be modelled sepa-
rately to identify effective road safety measures. This study highlights 
the fact that transport planning can target different vehicle categories to 
better manage road safety. Multi-pronged action plans targeting specific 
crash types should be considered in a holistic road safety strategy (Loo 

et al., 2005; Petrov and Evtyukov, 2020). 

6. Conclusion 

This paper leverages a rich dataset - bus dashcam videos to capture 
specific risk factors for bus-pedestrian crashes: pedestrian exposure 
factor, pedestrian jaywalking, pedestrian crowding at the bus stops, and 
railings. Then, these factors are used to construct three sets of models 
estimating the 1) bus-related serious crashes, 2) bus-related slight 
crashes, and 3) non-bus related crashes. Both XGBoosting and RF models 
generated similar results on feature importance for three sets of models, 
implying the relative importance of these factors for bus-related crashes. 
The partial dependency plots show non-linear relationships of many risk 
factors with bus crashes. This research reveals that data collected by 
public transport companies primarily for operation reasons, such as bus 
dashcam videos, contains rich and valuable information for in-depth 
research and can help transport planning and urban management. Fac-
tors such as pedestrian exposure, pedestrian jaywalking, pedestrian 
crowding, and railings are operationalised factors in a dense urban 
environment that urban planners could manage through many 
pathways. 

This study still has limitations. First of all, the videos were collected 
more recently than the crash data. The study was conducted with the 
assumption that the pedestrian use of streets and streets environment 
features are relatively stable. During the time when the videos were 

Fig. 5. Partial Dependence Plot for RF and XGBoost model results. NB model uses count as the dependent variable thus is presented separately in the ***S2. All 
features are standardized to improve model performance. 

B.P.Y. Loo et al.                                                                                                                                                                                                                                 



Accident Analysis and Prevention 185 (2023) 107017

9

collected, Hong Kong was still under inbound travel restrictions. 
Therefore, there would not be as many tourists as before along the street 
sidewalk. Second, derived from the segmentation model, the railing 
index still hides information such as where the railing might need to be 
renovated or renewed. Lastly, as an index, the pedestrian jaywalking 
does not reveal the exact number of people jaywalked. These limitations 
mostly hinge upon the precision of the deep learning model, and 
tremendous improvements are foreseeable in the near future (Fan & Loo, 
2021). 
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