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An Efficient Iterative Least Square Method for Indoor
Visible Light Positioning Under Shot Noise

Xiaona Liu , Difan Zou, Nuo Huang , and Yang Wang

Abstract—In this paper, we develop a set of effective algorithms
for performing efficient and accurate visible light positioning (VLP)
in the presence of shot noise, which is an important component in
the received optical signal yet has been largely neglected in prior
works. In particular, we formulate the positioning problem as a
maximum log-likelihood optimization problem, which is noncon-
vex so that the standard numerical algorithm such as gradient
descent (GD) and stochastic gradient descent (SGD) may not be
able to find the global solution. To address this, we propose a novel
least-square (LS) solver that can find a sub-optimal solution to
the aforementioned non-convex optimization problem. Based on
the LS solver, a set of more effective algorithms can be developed
to further enhance the optimality of the solution. Specifically, we
consider (1) combining the LS solver with GD, giving rise to the
GD-LS algorithm; and (2) applying the LS solver in an iterative
manner, giving rise to the iterative LS algorithm, which is a novel
and efficient positioning algorithm. Moreover, we also provide a
closed-form lower bound on the positioning error based on the
Cramér-Rao lower bounds (CRLB). Numerical simulation shows
that the proposed GD-LS and iterative LS algorithms cannot only
achieve high positioning accuracy, but also enjoy low computation
complexity: the average positioning accuracy of LS-GD is 0.009 m
using computation time 0.046 s, and the iterative LS algorithm can
achieve average positioning accuracy 0.023 m with 1.94 × 10−4s
computation time, which outperform GD and SGD method.

Index Terms—Visible light positioning, gradient descent, least
square, CRLB.

I. INTRODUCTION

NOWADAYS, indoor positioning system (IPS) is becoming
increasingly critical in daily life. In shopping malls, hospi-

tals, airports, parking lots, and other indoor venues, navigation
and other location-based services (LBS) are indispensable in
many aspects of daily life, businesses, and industry. As the
present mainstream in positioning systems, Global Positioning
System (GPS) has been widely adopted in aircraft, vehicles,
and portable devices in order to provide real-time positioning
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and navigation [1]. Each GPS receiver knows the position of
each satellite when the signal was transmitted. Meanwhile, it
also measures the time differences of arrival (TDOA) of signals
from each transmitter. Accordingly, the distance between the
receiver to each transmitter can be estimated and the user’s
current position can be further obtained by using trilateration [2].
However, due to blockage and discontinuous signals, GPS is
inaccurate in indoor scenarios. In particular, indoor positioning
system (IPS) can be built using indoor wireless signals (e.g.,
WiFi [3], [4], Bluetooth [5], [6], radio frequency identification
(RFID) [7], [8], and ZigBee [9]. Apart from the aforementioned
indoor positioning techniques, visible light positioning (VLP)
has attracted extensive attention from researchers due to its
superior practical performance in recent years. VLP stems from
visible light communication (VLC), where LEDs in the ceil-
ing can both illuminate and transmit signals. Besides, VLC is
able to adopt cost-effective, license-free, and electromagnetic
interference-free optical spectrum, which can potentially offer
significantly larger transmission rates compared with the RF
spectrum. The commonly used transmission source of VLC is
the ubiquitous light-emitting diode (LED), which is gaining
popularity due to its low cost, low power consumption, wide
modulation bandwidth, and long lifetime. LEDs efficiently serve
the dual purposes of lighting and communication. In this context,
wireless networking using VLC, which is referred to as Light
Fidelity (LiFi), was introduced in 2011 [10] and has further
been included in the IEEE standards [11]. In the VLP system,
each LED has its unique ID and transmits distinct signals to
the receiver. It has been observed in many works that VLP
can provide accurate positioning services with 0.1− 0.35 m
positioning error compared with WiFi (1− 7 m), Bluetooth
(2− 5 m), and other technologies [12], [13], [14].

At the receiver side, the PD-based VLP system and camera-
based system are the two most popular choices and have been
widely studied and applied in practice. Most camera-based sys-
tems estimate the position using properties of the rolling shutters,
which are found in the cameras of typical mobile phones. Some
camera-based systems can achieve positioning accuracy by 3.2
cm [15]. Compared with camera-based systems, PDs have been
shown to perform better in terms of stability, precision, and
response time. A variety of systems are based on received signal
strength (RSS), which are performed under the assumption
that the receiver knows the transmitted power and radiation
pattern of the luminaire. In [16], [17], the 3-D indoor VLP
systems techniques using RSS are proposed and experimentally
demonstrated based on the deep learning methods. Besides, A
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passive indoor VLP system using deep learning is applied to
the Internet of Things (IoT) scenario [18]. For more complex
and non-Lambertian sources that traditional geometrical models
are unsuited to determine the positions, the Gaussian Processes
(GPs) are introduced in the context of RSS-based VLP [19],
which are shown to work well when using small, noisy datasets
for different applications.

Aside from the practical deployment of PD-based VLP sys-
tem, a bunch of studies have theoretically characterized the
accuracy limit based on Cramér-Rao lower bound (CRLB) [20],
[21], [22], [23], [24], [25]. However, most of them concern
the setting with only thermal noise, while ignoring the fact
that in a real VLP system, there are multiple types of noises
having non-negligible effects to the positioning accuracy. The
most important one among them is the signal-dependent shot
noise, which is shown to have a significant effect to the visible
light communication system [26], especially in a “light-off”
condition. In our previous work [27], we showed that the shot
noise will drastically worsen the positioning accuracy of the VLP
system, especially in the low signal-noise-ratio (SNR) regime.
In our system.

In a variety of indoor positioning works, the GD algorithm
has been utilized to solve for the optimal position based on the
classical received signal strength (RSS) based trilateration [28].
However, when taking the shot noise into consideration, the
training objective function (e.g., log-likelihood function) will
become non-convex, preventing GD from finding the globally
optimal solution. Motivated by this challenge, we first propose a
novel least-square (LS) solver to obtain a sub-optimal solution,
which will be further combined with GD or performed in an
iterative manner to improve the optimality of the solution. To the
best of our knowledge, this paper is the first attempt to discuss
VLP under signal-dependent shot noise. We highlight the major
contributions of this paper as follows:
� Most work neglect shot noise in VLP system, which may be

the dominant opponent in optical communication systems.
In our paper, the shot noise is considered in VLP system
for a more practical and general case. Under this premise,
we formulate the log-likelihood maximization problem for
VLP and point out the drawbacks of the standard gradient
descent algorithm.

� Based on the developed log-likelihood maximization prob-
lem, we develop a set of efficient and effective algorithms
for finding the optimal positions. In particular, we propose
a novel least-square (LS) solver that gives a sub-optimal
solution. Accordingly, we further propose two algorithms:
LS-GD, and iterative LS to further improve the position-
ing accuracy. Simulation results demonstrate the superior
performance of the proposed algorithms: the LS-GD and
iterative LS can not only achieve small positioning errors
but also save the positioning running time costs.

� In addition to developing the positioning algorithms, we
also derive a close-form lower bound on the positioning
accuracy based on the Cramér-Rao lower bound, which
provides a limit of the accuracy that can be achieved by
any algorithm. Our simulation shows that the accuracy
achieved by the proposed LS-GD algorithm has been quite

Fig. 1. The layout and diagram of the VLP system, where we display the case
M = 4.

close to the lower bound, which again verifies the effec-
tiveness of the proposed positioning algorithms.

The remainder of this paper is organized as follows. We
analyze the VLP system under thermal and shot noise in Sec-
tion II. In Section III, we formulate the positioning task as a log-
likelihood maximization problem and point out the drawbacks
of the standard GD algorithm. In Section IV, we propose the LS
solver for the log-likelihood maximization problem and develop
the LS-GD and iterative LS algorithms accordingly. Meanwhile,
we derive a closed-form lower bound of the positioning accuracy
of the VLP system in Section V. Numerical simulations are
presented in Section VI. Finally, Section VII concludes this
paper.

II. VISIBLE LIGHT INDOOR POSITIONING SYSTEM

In this paper, we consider a VLP system with M (M ≥ 3)
transmitters (LEDs) and one single receiver (PD). At the trans-
mitter’s side, the LEDs are uniformly distributed in the ceiling.
For example, when considering the case ofM = 4, the layout of
LED distributions is displayed in Fig. 1(b). Besides, we assume
that the different LEDs transmit signals at different time slots
so that in each time slot the receiver can only detect the signal
from one LED.

At the receiver’s side, a receiver (PD) detects the optical signal
and outputs the RSS of all LEDs (this can be done since the
signals from different LEDs are transmitted at different time
slots). Moreover, we assume no cross-talk between the signals
from different LEDs, implying that the received signals and
the output RSS for different LEDs are statistically independent.
Besides, we also assume that the positions of LEDs are known to
the receiver. The goal of the VLP system is to accurately estimate
the position of the receiver based on the received signals and
positions of all LEDs.

The system diagram is displayed in Fig. 1(a). We assume
all LEDs are pointing downwards and the receiver plane
is pointing upwards. For the i-th LED, we denote its hor-
izontal location by {Xi = [xi, yi]

T }, and the unknown re-
ceiver location by L = [x, y]T . Let h be the height of the
room.

Moreover, following the convention [29], we assume that the
LED follows the Lambertian radiation pattern. Then the channel
gain from the ith LED to the PD, denoted byhi, can be described
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by (1),

hi =

{
Ar(m+1)

2πd2
i

cosm(φi) cos(ψi)g(ψi), 0 ≤ ψi ≤ Ψ,

0, otherwise.
(1)

where Ar is the area of PD; ψi is the angle of incidence of PD;
φi is the irradiation angle; Φ is the field of view of PD and m is
the mode of Lambertian emission related to the LED semi-angle
at half-power Φ1/2, which takes the form

m = − log 2

log cosΦ1/2
. (2)

Additionally, the function g(ψ) denotes the optical gain of an
ideal non-imaging concentrator with internal refractive index n
[30],

g(ψ) =

{
n2

sin2 Ψc
, 0 ≤ ψ ≤ Ψc,

0, otherwise,
(3)

where Ψc ≤ π
2 is the field-of-view (FOV) [30].

Let si(t) be the signal transmitted from the i-th LED at time
t and r(t) be the received signal at time t, we have

r(t) =

M∑
i=1

γisi(t) + n(t), (4)

where n(t) denotes the noise and γi is the channel gain of the
transmission link from the i-th LED to the receiver, which can
be described as follows,

γi = Rp
Ar(m+ 1)

2πd2i
g(ψi) cos

m(φi) cos(ψi)G, (5)

where di is the distance between the ith LED and the receiver.
In our work, we only consider the synchronous system. Rp

is the responsivity of PD. G is the optical amplifier gain. To
simplify the expression, we denote γi as the attenuation of the
ith link from ith LED to PD. Moreover, transmitted signals from
different LEDs are orthogonal.

We further consider the case that in each time slot the receiver
can only detect the signal from one LED. Therefore, we can
divide the entire time period into M intervals, within which the
received signal takes the form

ri = γisi + ni

where without loss of generality we use ri to denote the received
signal at the time slot that attributes to the i-th LED, and ni
denotes the noise at that time slot. Following existing works
on the signal model in VLP or VLC system [12], we consider
two types of noise: shot noise (which is signal dependent) and
thermal noise (independent of the signal). Generally speaking,
these two types of noise are typically assumed to be statistically
independent, and thus we have

ni = nth
i + nsh

i , (6)

nth
i ∼ N (0, σ2), (7)

nsh
i ∼ N (0, ζ2γisi) (8)

TABLE I
VALUES OF PARAMETERS USED IN THIS PAPER

Fig. 2. RSS distribution of a VLP system with 4 LEDs.

where ni, nth
i and nsh

i denote the total noise, thermal noise and
shot noise at the time slot that attributes to the i-th LED, respec-
tively. Moreover, following the convention, we assume that the
thermal noise and shot noise satisfy Gaussian distributions. For
the thermal and shot noises, we can calculate the quantities σ2

and ζ2 as follows [31], [32]

σ2 =
8πKTe
G0

ηArI2B
2 +

16π2KTeΓ

gm
η2A2

rI3B
3, (9)

ζ2 = 2qRpPrecB. (10)

where K, TK is Boltzmann’s constant; TK is the absolute
temperature; G0, η, I2, I3, and Prec are the device param-
eters of the PD. The exact definitions and values of these
parameters are presented in Table I. We observe in (8) that
the variance of the shot noise is proportional to the received
signal strength. To better illustrate the signal model, we vi-
sualize the RSS distribution for a 4-LED VLP system in
Fig. 2.
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III. PROBLEM FORMULATION AND GRADIENT DESCENT

APPROACH

In this section, we will formulate the positioning problem as
an optimization problem and briefly explain the gradient descent
approach, which has been widely implemented in practice, for
solving this problem. We will also include the gradient method
as a baseline algorithm that will be compared to the proposed
algorithms in Section VI.

A. Problem Formulation

Let L = [x, y]T be the position of the receiver and {Xi =
[xi, yi]

T } be the position of the ith LED. Then let di be the
distance between them, which satisfies

d2i = (xi − x)2 + (yi − y)2 + h2. (11)

Recall that we assume that the receiver can detect the signals
from all LEDs. Let R = (r1, r2, . . ., rM ) be the collection of
the received RSS of all LEDs,1 then the posterior probability of
L given R is defined as:

p(L|R) =
p(R|L)p(L)

p(R)
. (12)

Further assume that L has a uniform prior (i.e., p(L) is a
constant) and p(R) is invariant to all possible L. Hence, maxi-
mizing the posterior probability is equivalent to maximizing the
likelihood p(R|L), i.e.,

max p(L|R) = max p(R|L). (13)

Since in each time slot the receiver only detects the signal from
one single LED, we have r1, . . . , rM are statistically indepen-
dent. Therefore, it holds that

p(R|L) = p(r1, r2, . . . , rM |L)

=

M∏
i=1

p(ri|L). (14)

According to characteristics of channel gain (see (5)) and
noises (see (9) and (8)), the PDF function p(ri|L) and the log-
likelihood functionΛ(p(ri|L)) can be directly calculated, which
we present in (15) and (16) respectively.

p(ri|L) = 1√
2π(σ2 + ζ2γisi)

exp

{
− 1

2(σ2 + ζ2γisi)
(ri

− γisi)
2

}
, (15)

Λ(p(ri|L) = − (ri − γisi)
2

2(σ2 + ζ2γisi)
− 1

2
log(2π(σ2 + ζ2γisi),

= −

(
ri − RpAR(m+1)hm+1

2πdm+3
i

si

)2
2
(
σ2 + ζ2

RpAR(m+1)hm+1

2πdm+3
i

si

)
− 1

2
log

(
2π

(
σ2 + ζ2

RpAR(m+ 1)hm+1

2πdm+3
i

si

)
.

(16)

1In this paper we only consider using M RSS to estimate the receiver’s
position. In practice, we can utilize multiple rounds of RSS (i.e., the receiver
collects kM signals if using k rounds) to further improve the positioning
accuracy.

Then the goal is to find the optimal position parameter (x∗, y∗)
to achieve maximum log-likelihood:

(x∗, y∗) = argmax
x,y

M∑
i=1

Λ(p(ri|L)). (17)

or,

(x∗, y∗) = argmin
x,y

−
M∑
i=1

Λ(p(ri|L)). (18)

where M denotes the number of LEDs.

B. Gradient Descent Algorithm

Let f(x, y) define the negative likelihood function

f(L) = −
M∑
i=1

Λ(p(ri|L)), (19)

where L = [x, y]� is a collection of all location parameters. the
next goal is to develop some efficient numerical algorithm to
find the minimizer of f(L). One standard and commonly used
approach is gradient descent, which makes use of the gradient
information to update the position parameter L = [x, y]� in an
iterative manner. In particular, we first write down the formula
of the gradient as follows,

∇f(L) =
[
∂f
∂x

∂f
∂y

]
. (20)

and then the GD algorithm applies the following update rule,

L(t+1) = L(t) − α∇f(L(t)), (21)

where α is the learning rate.
However, the major drawback of applying GD in the position-

ing system is that the negative log-likelihood function f(L) is
nonconvex with respect to the location parameter L (since the
variance of shot noise also depends on L), which implies that
GD could be easily trapped into some bad local minima or even
saddle points, making the positioning results inaccurate. In order
to alleviate this issue, we consider using the nearest neighbors
(NN) strategy as initialization in [33], i.e., setting the initial
locationL as the position of the LED with the strongest received
signal. Intuitively, NN can give a better positioning prediction
(but the error is not tolerable), since that the NN initialization
is closer to the optimum compared to the random guess. As a
result, GD is more likely to converge to the global optimum since
the loss function around the optimum is typically more convex.
The numerical results will be reported in Section VI.

IV. ITERATIVE LEAST SQUARE POSITIONING

In this section, we propose a novel and more powerful ap-
proach for VLC positioning. We will show that the proposed
approach is not only efficient but also can be effectively adapted
to the GD algorithm to improve positioning accuracy further.

Recall that the received signal from the i-th LED takes the
form

ri = γisi + ni. (22)
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where γi is the link gain, si is the transmitted signal, and ni is a
signal-dependent noise. Note that we have

cos(φi) = cos(ψi) =
h

di
, (23)

which implies that the link gain γi can be reformulated by

γi =
RpAR(m+ 1)

2πh2
cosm+3(φi). (24)

Since the parameters Rp, AR, m, and h are invariant to the
positions of the receiver and LEDs, we further define Γ =
RpAR(m+ 1)/(2πh2), and thus,

ri = Γcosm+3(φi)si + ni. (25)

Assuming sufficiently high SNR, i.e., the variance of the noiseni
is significantly smaller than the magnitude of Γ cosm+3(φi)si,
applying first-order Taylor expansion we obtain

(
ri
Γsi

)− 2
m+3

=
1

cos2(φi)
− 2ni

Γ(m+ 3) cosm+5(φi)si

+ o

(
ni
Γsi

)
. (26)

Note that the above equality holds for all i ∈ [M ], and our goal
is to leverage those M qualities to solve for the position of
the receiver (x, y). In order to achieve this, we will follow the
similar idea in [34] by linearizing the target parameter (x, y).
Specifically, note that the elevation angle φi satisfies

cos2(φi) =
h2

d2i
=

h2

(x− xi)2 + (y − yi)2 + h2

=
h2

x2 + y2 − 2xix− 2yiy + x2i + y2i + h2
.

(27)

We define θ = (x2 + y2, x, y)� and zi = (1,−2xi,−2yi).
Then we have cos2(φi) = h2/(θ�zi + x2i + y2i + h2).

Therefore, the subsequent goal is to learn the vectorθ based on
(26) for all i ∈ [M ]. Note that ni follows Gaussian distribution
with zero mean and variance σ2 + ζ2γisi. Ignoring the high-
order term o

(
ni

Γsi

)
, given si and ri, the likelihood function of θ

is given by (28),

p(θ|si, ri) = 1√
2πσ̂2

i

exp

(
−[θ

�zi+x2i +y
2
i +h

2−h2(ri/Γsi)−2/(m+3))]2

2σ̂2
i

)
,

(28)

where the variance σ̂2
i is defined by

σ̂2
i =

4(σ2 + ζ2γisi)

Γ2(m+ 3)2 cos2(m+5)(φi)s2i
. (29)

Then the maximum likelihood solution θ∗ can be obtained by
solving the following optimization problem

θ∗ = argmax
θ

M∑
i=1

log p(θ|si, ri), (30)

which is reformulated in detail in (31).

θ∗ = argmax
θ

M∑
i=1([

θ�zi+x2i +y
2
i +h

2−h2(ri/si)−2/(m+3)
]2

2σ̂2
i

+log(̂σi)

)
.

(31)

Consider the case of high SNR, log(σ̂i) is typically much
smaller than the first one, therefore we aim to solve the following
approximate optimization problem

θ∗ ≈ argmax
θ

M∑
i=1

1

2σ̂2
i

·
[
θ�zi + x2i + y2i + h2

− h2(ri/si)
−2/(m+3)

]2
(32)

However, the variance σ̂2
i also depends on the target parameter

θ since φi is unknown and depends on (x, y), making the above
optimization problem nonconvex and thus standard gradient
descent may be intractable to find the optimal solution. In order
to effectively solve the above problem, it requires an accurate
estimation of σ̂2

i , or equivalently, a good estimation of (x, y).

A. The Least-Square Solver

In order to get a good estimation of σ̂2
i , we can first assume

that σ̂i is invariant for all LEDs, which translates (32) into a LS
problem. In particular, we apply the method in [34] and aim to
solve

min
θ

‖Mθ − b‖2F ,

Mi = zi,

bi = h2(ri/si)
−2/(m+3) − (x2i + y2i + h2).

The solution of this least square can be simply attained θ̂ =
(M�M)−1M�b, which serves as a sub-optimal solution of (32).

B. Iterative LS Algorithm

Note that the LS solver ignores the difference between σi’s
for different i’s, thus may not be able to provide sufficient
accuracy. To tackle this problem, we can leverage the above
LS solution θ̂ to estimate the variance σ̂2

i . In the next step,
we will further solve (32) with fixed σ̂2

i in (29), which forms
a new LS problem with updated Mi’s and bi’s: Mi = σ̂−2

i zi
and bi = σ̂−2

i [h2(ri/si)
−2/(m+3) − (x2i + y2i + h2)]. Then the

optimal solution obtained in the second step can be similarly
solved using the closed-form solution θ̂ = (M�M)−1M�b.

Beyond the two-step solver, we can further extend this to
multiple steps. In the initialization, we will set the same variance
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Algorithm 1: Iterative LS Algorithm.

input: Received signals {ri}i=1,...,M , transmitted signals
{si}i=1,...,M , positions of LEDs {(xi, yi)}i=1,...,M ,
height of the room h, number of iterations K.

initialization: Set σ̂i = 1 for all i ∈ [M ].
for k = 0, 1, . . . ,K do
Construct the matrix M and vector b such that

Mi = σ̂−2
i zi and

bi = σ̂−2
i [h2(ri/si)

−2/(m+3) − (x2i + y2i + h2)]
Compute the solution of the LS problem
θ(k) = (M�M)−1M�b
Update the variances σ̂i based on θ(k) and (29).

end for
output: θ(K)

Algorithm 2: LS-GD Algorithm.

input: Received signals {ri}i=1,...,M , transmitted signals
{si}i=1,...,M , positions of LEDs {(xi, yi)}i=1,...,M ,
height of the room h, learning rate α, stopping parameter
ε.

LS Initialization: zi = (1,−2xi,−2yi), Mi = zi,
bi = h2(ri/si)

−2/(m+3) − (x2i + y2i + h2), then LS
solution: θ̂ = (M�M)−1M�b and L(0).

GD Process:
while |f(L(t))− f(L(t−1))| ≤ ε do

t = t+ 1
Update L(t) L(t) = L(t−1) + α�f(L(t−1)).

end while
output: L̂

parameter σ̂i for all LEDs. In each iteration, we will first compute
the variance parameter using the learned θ̂ in the previous step,
and then form the matrix M and vector b accordingly. Then
using the closed-form solution of the LS problem to update θ̂. We
summarize the entire procedures in Algorithm 1. Then, we can
update the σ̂2

i with the updated θ̂ and reformulate the problem
iteratively until the solution converges.

C. LS-GD Algorithm

Recall that GD may be trapped by some bad local minima
due to the non-convexity of the objective (32). Instead, one may
need a quite good initial guess of the receiver’s position to make
it work effectively. Therefore, a natural idea is to combine the
LS algorithm with the GD approach by using the solution found
by the LS algorithm as the initialization of GD. This gives rise
to the LS-GD algorithm, which is summarized in Algorithm 2.

V. CRAMÉR-RAO LOWER BOUNDS

Previous work [27] has studied the CRLB of distance esti-
mation error, and theoretically revealed that shot noise affects
positioning accuracy. In this section, we compute the CRLB of
positioning error for VLP under thermal noise and shot noise.

Thus, we can compare the positioning accuracy of the proposed
algorithms with the theoretical lower bound.

Note that we aim to derive the CRLB of the position estimate
L = (x̂, ŷ)�, by (16), the log-likelihood function of L = (x̂, ŷ)
is given by

Λ(L) = −
M∑
i=1

Λ(p(ri|L))

= −
M∑
i=0

(ri − γisi)
2

2(σ2 + ζ2γisi)
− 1

2
log(2π(σ2 + ζ2γisi)

(33)

where γi = RpAR(m+ 1)/(2πh2) cosm+3(φi) and φi =
arccos(h/di) denotes the elevation angle of the path from the
i-th LED to the receiver. The CRLB is based on the inverse of
the Fisher Information Matrix (FIM) for L̂, which states that the
covariance of the predictions is lower bounded by the reciprocal
of the Fisher information, i.e.,

E
[
(L̂− L)(L̂− L)�

]
� E[(∇Λ(L))(∇Λ(L))�]−1. (34)

Let J (L) be the Fisher information and note that L is a 2-
dimensional vector, thus it follows that

J (L) =

[
E[(∇xΛ(L))

2] E[(∇xΛ(L))(∇yΛ(L))]

E[(∇xΛ(L))(∇yΛ(L))] E[(∇yΛ(L))
2]

]

(35)

Then using chain rule, let vi = γisi andΛi = Λ(p(ri|L)), we
have

∇xΛ(L) = −
M∑
i=1

∂Λi

∂vi

∂vi
∂x

. (36)

Note that given ∂vi does not rely on the random observation
ri, thus when calculating the fisher information we only need
to take expectation over the randomness in ∂Λi/∂vi. Moreover,
since ri and ri′ are independent if i = i′, it is easy to verify that
E[(∂Λi/∂vi)(∂Λi′/∂vi′)] = 0. Then we have (37).

E
[
(∇xΛ(L))

2
]
= E

⎡
⎣
(

M∑
i=1

∂Λi

∂vi

∂vi
∂x

)2
⎤
⎦

=

M∑
i=1

E

[(
∂Λi

∂vi

)2
](

∂vi
∂x

)2

. (37)

Note that ri follows Gaussian distribution with mean γisi and
variance σ2 + ζ2γisi, it can be derived that

E

[(
∂Λi

∂vi

)2]
=
ζ4 + 2(σ2 + ζ2γisi)

2(σ2 + ζ2γisi)2
. (38)

Moreover, recall that di =
√

(x− xi)2 + (y − yi)2 + h2, we
further calculate (39).

∂vi
∂x

= − RpAR(m+ 1)(m+ 3) cosm+3(φi)(x− xi)

2πh2d2i
si

=
(m+ 3)γisi(x− xi)

d2i
. (39)



LIU et al.: EFFICIENT ITERATIVE LEAST SQUARE METHOD FOR INDOOR VISIBLE LIGHT POSITIONING UNDER SHOT NOISE 7300910

Fig. 3. Visualization of the positioning accuracy of different positioning algorithms, including GD, LS, LS-GD, iterative GD, in 8 m × 8 m room.

Therefore, combining the above results we can obtain (40),
(41), and (42).

E
[
(∇xΛ(L))

2
]
=

M∑
i=1

ζ4 + 2(σ2 + ζ2γisi)

2(σ2 + ζ2γisi)2(
(m+ 3)γisi

d2i

)2

(x− xi)
2,

(40)

E
[
(∇yΛ(L))

2
]
=

M∑
i=1

ζ4 + 2(σ2 + ζ2γisi)

2(σ2 + ζ2γisi)2(
(m+ 3)γisi

d2i

)2

(y − yi)
2,

(41)

E [(∇xΛ(L))(∇yΛ(L))] =

M∑
i=1

ζ4 + 2(σ2 + ζ2γisi)

2(σ2 + ζ2γisi)2(
(m+ 3)γisi

d2i

)2

(x−xi)(y − yi).

(42)

At last, from FIM in (35), we can derive the lower bound of the
expected estimation error E[(x̂− x)2 + (ŷ − y)2] as following,

E
[
(x̂− x)2 + (ŷ − y)2

]
= Tr

(
E
[
(L̂− L)(L̂− L)�

])
≥ Tr

(J (L)−1
)
. (43)

Accordingly, we can derive a close-form lower bound on the
estimation error using (40), (41), (42) and (35).

VI. NUMERICAL RESULTS

In this section, we simulate GD, LS, LS-GD, and iterative LS
positioning. Based on the derivation of CRLB in Section V, we
also show the CRLB of VLP under thermal and shot noise. In
our simulation, we assume an indoor place of 8 m × 8 m with
LEDs uniformly distributed in the ceiling. The vertical distance
between the ceiling and receiver is 2 m. The LED semi-angle
at half-power is Φ1/2 = 70◦ [30] and the transmitted power is
5 W. The amplification factor on the receiver side is 100. Other
relevant parameters are given in the following table. We divide

Fig. 4. Optimization trajectory of GD, SGD, and SGDM, suggesting that these
three algorithms can be stuck at some spurious local minima.

the room into 100× 100 grids and calculate the positioning
accuracy of each node of the room.

A. Positioning Accuracy of Each Algorithm

In Fig. 3, we present the performance of four positioning
algorithms, respectively. In Fig. 3(a), we simulate the positioning
accuracy by the GD algorithm. The learning rate of the GD
algorithm is set to 10−4 to guarantee stable convergence. The
average positioning accuracy of the room and its variance are
0.131 m and 0.180 m 2 respectively. The average time cost is
0.157 s for each node. In the center of the room, it is the most
overlapped area by four LEDs coverage. Thus the positioning
performance is worst in the center due to the local minima issue
of the GD algorithm. In Fig. 3(b), the positioning performance of
the LS algorithm in the room is presented. The average position-
ing accuracy and variance are 0.046 m and 0.003 m2 in the room
and the computation time of each node is 2.98× 10−5 s. The
time cost is dramatically improved. But in four corners of the
room, the positioning accuracy is the worst, because we ignore
the high-order term which is more dominant in the corners.
Furthermore, we simulate the LS-GD algorithm for positioning
in Fig. 3(c). The average positioning accuracy is improved by
0.009 m, the variance is also improved to 1.86× 10−5m 2,
and it costs 0.046 s to locate each node. By implementing LS
to initialize the GD algorithm, the time cost is improved and
the average positioning accuracy is dramatically meliorated.
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Fig. 5. Different positioning accuracy from different dimensions of the room.

TABLE II
COMPUTATION TIME AND AVERAGE POSITIONING ACCURACY OF DIFFERENT POSITIONING ALGORITHMS

In Fig. 3(d), we show the simulation result of iterative LS
positioning. The average positioning accuracy is 0.023 m, the
variance is 6.05× 10−4 m2, and the time cost is 1.94× 10−4s. It
can be seen that the iterative LS achieves the top-2 performance
in terms of both time cost and positioning accuracy.

In addition to GD, we further consider its stochastic version,
i.e. SGD as the baseline algorithm, which has been widely
applied in many machine learning and optimization applications
to achieve better performance. In particular, we consider two
variants of the SGD algorithms: (1) SGD, which adds noise to the
exact gradient and makes updates, and (2) SGD with momentum
(SGDM), which incorporates the historical stochastic gradients
into the calculation of current updates. Besides, we consider
multiple choices of the learning rate (LR ∈ {0.0001, 0.0004})
for all gradient based optimization algorithms (i.e., GD, SGD,
SGDM).

The detailed time costs and positioning accuracy of all algo-
rithms are summarized in Table II. To sum up, the sub-optimal
solution found by LS algorithm achieves the smallest time cost
as it is only operated in one single step, but at the price of a
relatively large positioning error. The GD algorithm has much
worse positioning accuracy and computation time due to its
slow convergence and inability to find the global optimum.
Besides, using stochastic gradient, including SGD and SGM,
and tuning learning rate cannot significantly improve the posi-
tioning accuracy achieved by GD, the best result among these
stochastic gradient based algorithms (SGM with LR = 0.0004)
can only achieve 0.113 m accuracy, which is still far from the
positioning accuracy achieved by LS based algorithms. In fact,
the reason of the worse positioning performance of GD, SGD,
and SGDM lies in the fact that they are stuck at the spurious local
minima of the training objective function. To show this, we pick
a receiver position (3.12, 4.88) (which is close to the middle
of the room) that both GD, SGD, and SGDM fail to find the
global minimum and lead to large positioning errors (while the
LS based algorithms perform quite well, see Fig. 3(b)–(d)), and

visualize the optimization trajectories of these three algorithms.
The results are reported in Fig. 4. In particular, these three algo-
rithms will converge to the point with training loss (i.e., negative
log-likelihood) around 104. However, the optimal training loss,
achieved around the true position (3.12, 4.88), is −13.7, which
is far smaller. This demonstrates that the point found by GD,
SGD, and SGDM is indeed a spurious local minimum, which
backups our previous reasoning.

Then remarkably, the GD algorithm can be dramatically
improved in terms of both convergence and the optimality of
the found solution by leveraging the LS solution as the ini-
tialization: the LS-GD method gives the best positioning error
with much smaller running time. Moreover, the iterative LS
algorithm makes a trade-off between time cost and positioning
accuracy and gives the top-2 results in terms of both of these two
criteria. Lastly, we also performed the positioning algorithms
when ignoring the shot noise. It can be seen that the perfor-
mance has been significantly downgraded. This demonstrates
the importance and necessary of considering the shot noise in
the VLP system.

B. Impact of Shot Noise

In this section, we also compared the simulation results of GD
and LS-GD under only thermal noise, in which the impact of shot
noise can be indicated. In Fig. 5(a), (b), and (c), the positioning
accuracy of each algorithm in the columns of y-axis=0 m, y-axis
= 2 m, and y-axis= 4 m are presented, respectively. In Fig. 5(a),
the positioning accuracy in the room edge (y-axis = 0 m) is
shown. It can be seen the LS algorithm and LS-GD algorithm
are worse than other algorithms, due to the signals being weaker
in the room edge and some opponents being approximated and
abandoned in LS and LS-GD algorithms. Fig. 5(b) presents the
positioning accuracy of y-axis = 2 m. Recall that the room
size is 8 m × 8 m and the 2D-coordinates of four LEDs are
(2, 2), (2, 6), (6, 6), and (6, 2). It is noted that there are four
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Fig. 6. Positioning accuracy comparison between different algorithms. Here
we display the CDF of the positioning accuracy collected at the 100× 100 grids.

peaks of GD and LS-GD algorithms under only thermal noise
where it shows worse positioning accuracy of GD under only
thermal noise and LS-GD under only thermal noise. The four
peaks represent the areas where shot noise can affect positioning
accuracy dramatically. The positioning accuracy of y-axis = 4
m in Fig. 5(c) is presented. It can be observed that in the center
of the room the positioning performance of the GD algorithm
and GD under only thermal noise is particularly inaccurate. It is
because the RSS from each LED is comparatively close which
can easily drag the GD algorithm into the local minima problem.

In Fig. 6, we show the cumulative distribution function (CDF)
of the four algorithms above. From the perspective of positioning
accuracy, the LS-GD algorithm outperforms other algorithms.
Considering the trade-off between positioning accuracy and
computation time, the iterative-LS algorithm is recommended
for considerable average positioning accuracy and computation
time.

VII. CONCLUSION

In this paper, we analyze the VLP system under shot noise and
thermal noise. The simulation result reveals the conventional
GD algorithm is expensive-time-cost and inaccurate. By tuning
parameters like the learning rate, the performance is improved to
a limited level by GD, SGD, and SGDM. To improve positioning
performance, we propose the LS-GD algorithm. The first step
is to utilize the LS algorithm to locate the initial position and
then the GD algorithm proceeds. Thus by LS initializing, the
GD process can shrink dramatically which saves positioning
time to a large extent. By simulation, the average positioning
accuracy of the LS-GD algorithm can achieve 0.009 m with
a computation time of 0.046 s. In addition, based on the LS
algorithm, we introduce an iterative LS algorithm that is both
accurate and time-saving. The simulation results indicate that the
iterative LS algorithm can achieve an average positioning accu-
racy of 0.023 m with 1.94× 10−4s computation time. Among
the algorithms above, the local minimum can take place and
result in poor positioning by the GD algorithm. According to
the assumed VLP settings, we calculate the CRLB under the

thermal and signal-dependent shot noise. The numerical results
are provided to validate our proposed algorithms.

APPENDIX

PROOF OF THE LEARNING STEP

By chain rule, the derivation of ∂Λ(p(ri|L))
∂x can be divided into

three opponents as follows,

∂Λ(p(ri|L))
∂x

=
∂Λ(p(ri|L))

∂υi

∂υi
∂di

∂di
∂x

. (44)

∂Λ(p(ri|L))
∂υi

=
ζ2si(ri − γisi)

2

2(σ2 + ζ2γisi)2
+
si(ri − γisi)

σ2 + ζ2γisi

− ζ2si
2(σ2 + ζ2γisi)

, (45)

∂υi
∂di

= − (m+ 3)(m+ 1)RpARh
m+1

2πd
(m+4)
i

, (46)

∂di
∂x

=
x− xi√

(xi − x)2 + (yi − y)2 + h2
(47)

∂di
∂y

=
y − yi√

(xi − x)2 + (yi − y)2 + h2
. (48)
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