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Abstract—The impasse surface is an important concept in the
differential-algebraic equation (DAE) model of power systems,
which is associated with short-term voltage collapse. This paper
establishes a necessary condition for a system trajectory hitting
the impasse surface. The condition is in terms of admittance
matrices regarding the power network, generators and loads,
which specifies the pattern of interaction between those system
components that can induce voltage collapse. It applies to generic
DAE models featuring high-order synchronous generators, static
loads, induction motor loads and lossy power networks. We also
identify a class of static load parameters that prevent power
systems from hitting the impasse surface; this proves a conjecture
made by Hiskens that has been unsolved for decades. Moreover,
the obtained results lead to an early indicator of voltage collapse
and a novel viewpoint that inductive compensation to the power
network has a positive effect on preventing short-term voltage
collapse, which are verified via numerical simulations.

Index Terms—admittance matrix, differential-algebraic equa-
tion, impasse surface, power systems, voltage collapse

I. INTRODUCTION

The dynamical behaviors of electric power systems, es-
pecially those considering short-term voltage dynamics, are
commonly described by a group of differential-algebraic
equations (DAEs). In the DAE model, the differential equations
refer to the dynamics of synchronous generators and induction
motors, while the algebraic equations refer to the power flow
equations describing the balance between power transfer and
load consumption [1]. Short-term voltage stability is a major
concern in the study of power systems described by DAE
models. Its timescale is in the order of several seconds involving
the dynamics of fast acting load components [2]. It is reported
that restorative loads (e.g., induction motors) are a driving
factor for short-term voltage collapse [3] that may cause severe
damage to power systems.

Apart from the load-side viewpoint, short-term voltage
collapse is closely connected to a system-wide property of
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DAE models, namely the impasse surface. An impasse surface
refers to the hypersurface where the algebraic Jacobian (i.e.,
the Jacobian matrix of the algebraic equations with respect to
algebraic variables) becomes singular. The post-fault system
trajectory hitting the impasse surface is regarded as one of the
main causes for voltage collapse [4–6]. Hence, the nature of an
impasse surface is of importance to revealing the mechanism
of voltage collapse.

Characterizing the impasse surface is a hard problem. The
existing results are mainly derived from simplified systems and
only focus on the role of static loads. For instance, the power
system studied in [7] is assumed to have one ZIP load and all
the other loads are of constant-impedance type. Those constant-
impedance loads have no contribution to the impasse surface
and are absorbed in the power network as shunt components,
and the impact of the parameters of the single ZIP load on
impasse surface is elaborated. Hiskens and Hill [4] studied a
four-bus system containing a single static load and proved that
this specific system can avoid the impasse surface if the active
power load is of constant-impedance type and the exponent
of reactive power load is not less than one. This also relates
to [8] that confirms the solvability of power system algebraic
equation when active and reactive power load exponents are
all greater than one. In [9], Hiskens extended the condition
in [4] to a system containing two interconnected static loads
and further conjectured that the result should also be valid
for generic systems. If true, this conjecture will provide an
important class of load parameters that avoids the impasse
surface; however, it remains unproved for decades.

To deepen the understanding of voltage collapse, the analysis
of impasse surface needs to be extended to power systems
with both static and dynamical loads. In addition, a general
power network structure should be considered as the network
structure is also crucial to system dynamics [10], which fails
to be captured by simplified system models. A major obstacle
in extending the existing methods is that they adopt certain as-
sumptions or simplifications to obtain low-dimensional problem
descriptions (e.g., scalar quadratic equations [4, 7] or equations
of up to 4×4 matrices [9]) and derive explicit expressions
for the spectrum or determinant of the algebraic Jacobian.
However, these tools are not applicable to generic cases with
high-dimensional matrices, where the explicit solutions are
unavailable.

In this paper, we develop an admittance matrix-based
characterization for the impasse surface of DAE models of
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generic power systems by more advanced matrix analysis
specific to the features of the algebraic Jacobian. The following
three aspects of contributions are made.

1) A necessary condition for a system trajectory hitting the
impasse surface is established (see Theorem 1). It applies to a
generic power system with multiple synchronous generators,
static loads, induction motor loads, and a lossy power network.
This condition is in terms of admittance matrices regarding
the effects of power network, generators and loads. It carries
clear network structural information and elaborates how the
interactions between generators, loads and power network
induce or prevent voltage collapse. It also motivates an early
indicator of voltage collapse to trigger corrective control.

2) Based on Theorem 1, we manage to identify a class of
static load parameters that make the system avoid the impasse
surface (see Theorem 2). This result proves the conjecture in
[9] and has an even wider applicability.

3) We further show by eigen-analysis that inductive com-
pensation to the power network has a positive effect on
preventing voltage collapse, while capacitive compensation
does the opposite, which is confirmed by simulation.

The remainder of the paper is organized as follows. The
DAE model of power systems is formulated in Section II. A
new characterization of the impasse surface is given in Section
III. The obtained results are illustrated by simulation in Section
IV. Section V makes a conclusion and future prospect.

Notations: The set of real numbers and complex numbers are
denoted by R and C, respectively. The notation x = [xi] ∈ Cp
denotes a vector, x = diag{xi} ∈ Cp×p denotes a diagonal
matrix, and Ip ∈ Rp×p denotes an identity matrix. In variation
of the usual notation, the italic j denotes a numbering index,
while the upright j denotes the square root of -1.

II. POWER SYSTEM DIFFERENTIAL-ALGEBRAIC MODEL

Consider a power system with n buses coupled via a
connected power network. Suppose g ≤ n of the buses
connect synchronous generators, and these buses are called
the generator terminal buses. Note that a generator can be
modeled as an internal voltage source linking the corresponding
terminal bus in the power network via a subtransient impedance
(see Section II-A for the details). The power network is then
augmented with g buses and g lines that represent the generator
internal voltages and subtransient impedances. Thus, there are
totally n+ g buses with the addition of these “virtual” buses.
Let VG be the set of generator internal buses, VL be the set
of remaining buses, Vt ⊆ VL be the set of buses connecting
generator terminals and possibly loads, and VL\Vt be the set of
buses connecting loads only. In the following we will formulate
the system dynamical model by combining the models of
generators, loads and network.

A. Synchronous generator model

We adopt a general high-order model for synchronous
generators that includes the subtransient dynamics along
d-axis and q-axis and possibly an excitation system (e.g.,
automatic voltage regulator). There are several representative
generator models considering subtransient dynamics, such

as the Sauer-Pai’s model, Marconato’s model and Anderson-
Fouad’s model [11]. We do not concern much about the details
of generator differential equations since the impasse surface
is only concerned with the algebraic equations and algebraic
variables. In the following, we will present the generator model
in a compact form for simplicity.

Let θi, Vi denote the phase angle and voltage magnitude
of bus i ∈ VL. For the generator connecting to terminal
bus i ∈ Vt ⊆ VL, its state variables consist of the rotor
angle δi, rotor speed ωi, transient d-axis and q-axis voltages
E′di, E

′
qi, subtransient d-axis and q-axis voltages E′′di, E

′′
qi,

and possibly excitation system variable xfi. The algebraic
variables associated with this generator are θi, Vi. In general,
the generator dynamics can be described by

ẋgi = fgi(xgi, θi, Vi) (1)

where xgi =
[
δi ωi E′di E′qi E′′di E′′qi xTfi

]T
collects

the state variables. Note that (1) is also dependent on some
important parameters including the armature resistance rai,
synchronous reactances xdi, xqi, transient reactances x′di, x

′
qi

and subtransient reactances x′′di, x
′′
qi. But these parameters are

constant coefficients in the model so that we do not explicitly
express them in (1).

In addition, we adopt the assumption below for the syn-
chronous generators.

Assumption 1: For each generator, the d-axis subtransient
reactance x′′di is equal to the q-axis subtransient reactance x′′qi.

The difference between x′′di and x′′qi is called subtransient
saliency. For a generator with a damper winding in both the d-
axis and the q-axis, the screening effect in both axes is similar
and subtransient saliency is negligible [12]. So Assumption 1 is
reasonable and has been commonly used to simplify generator
modeling [13]. With this assumption, we can obtain a neat
equivalent circuit for the generator as shown in Fig. 1(a) with
two features. First, the impedance linking the generator internal
bus and terminal bus is the subtransient impedance rai + jx′′di.
Second, the phase angle and voltage magnitude of the generator
internal bus, say ηi and Ei, are functions of the state variables
only, i.e., ηi = ηi(xgi) and Ei = Ei(xgi). The expressions of
these two functions vary with the generator model (e.g., see
[11, 14]). For instance, we have the following equation when
adopting the Sauer-Pai’s model [11]

0 = raiiqi + x′′diidi + Vqi − γdiE′qi − (1− γdi)E′′qi
0 = raiidi − x′′qiiqi + Vdi − γqiE′di − (1− γqi)E′′di

(2)

where Vi∠θi = Vdi + jVqi, idi + jiqi denotes the generator
current and γdi, γqi are determined by x′di, x

′
qi, x

′′
di, x

′′
qi. If

x′′di = x′′qi, then we can set Ei∠ηi = γqiE
′
di + (1− γqi)E′′di +

jγdiE′qi+ j(1−γdi)E′′qi as a function of state variables only and
obtain from (2) that Ei∠ηi = Vi∠θi + (rai + jx′′di)(idi + jiqi),
which is consistent with Fig. 1(a). Since ηi and Ei are
independent of algebraic variables, they can be treated as
constants in the differentiation with respect to algebraic
variables, which will bring convenience to the analysis of
impasse surface in Section III.
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(a) Synchronous generator (b) Induction motor

Figure 1. The equivalent circuit for a generator and an induction motor.

B. Load model
We adopt the composite load model consisting of static

components and induction motor components, which is a
common model for stability analysis concerning voltage
dynamics [15, 16]. The static load component at bus i ∈ VL
is described by the exponential terms

Psi(Vi) = P 0
siV

αi
i

Qsi(Vi) = Q0
siV

βi

i

(3)

where αi, βi denote the active and reactive power load exponent,
and P 0

si, Q
0
si denote the rated active and reactive power load.

Next, we model the induction motors. Different from the
synchronous generators whose rotors run exactly at the system
frequency at an equilibrium point, the steady-state rotor
frequency of an induction motor is lower than the system
frequency and its power consumption depends on the motor
slip. In this paper, we adopt the third-order model [11] to
capture both electromechanical and electromagnetic dynamics
of induction motors. The equivalent circuit for the third-order
induction motor model is depicted in Fig. 1(b), where ςi
denotes the slip, rSi, xSi denotes the motor stator resistance
and reactance, rRi, xRi denotes the cage rotor resistance and
reactance, and xMi denotes the magnetization reactance. Then,
the equivalent admittance of the motor circuit is

Y eq
mi(ςi) =

(
rSi + jxSi +

jxMi(rRi/ςi + jxRi)
rRi/ςi + j(xRi + xMi)

)−1
(4)

and hence the motor load consumption at bus i is

Pmi(ςi, Vi) = Geq
mi(ςi)V

2
i

Qmi(ςi, Vi) = −Beq
mi(ςi)V

2
i

(5)

where Geq
mi and Beq

mi respectively denote the real part and
imaginary part of Y eq

mi.
In addition, we have the following differential equations that

describe the motion and internal voltage of an induction motor

ẋmi = fmi(xmi, θi, Vi) (6)

where xmi =
[
ςi e′di e′qi

]T
with e′di, e

′
qi being the d-axis

and q-axis voltage behind the the stator resistance rSi. Since
we will focus on the algebraic equation, again we omit the
explicit form of (6) and refer to [11] for the details.

C. Power network model & power flow equation
Without loss of generality, Vt, VL and VG are numbered as

Vt = {1, ..., g}, VL = {1, ..., n} and VG = {n+ 1, ..., n+ g}.
Let Ybus = [Yij ] ∈ Cn×n be the power network admittance
matrix among VL, which is defined by

Yij =

{
yi0 +

∑n
j=1,j 6=i yij , i = j ∈ VL

−yij , i 6= j, i, j ∈ VL
(7)

where yij ∈ C denotes the admittance of line (i, j), yij = 0
if bus i and bus j are not directly connected; yi0 ∈ C
denotes the shunt component at bus i such as the line charging
capacitance. The matrix Ybus is commonly used in power
system steady-state analysis where the generator internals VG
are not considered [13]. For studying the DAE model, we also
need to introduce the augmented admittance matrix including
VG, say Ỹ = [Ỹij ] ∈ C(n+g)×(n+g), which takes the form

Ỹ =

[
Ybus + Ygen YLG
Y T
LG YGG

]
(8)

where YGG = diag{ygsi } ∈ Cg×g with ygsi = (rsi + jx′′di)
−1,

∀i ∈ Vt; Ygen = diag{Ygi} ∈ Cn×n with Ygi = ygsi if
i ∈ Vt and Ygi = 0 if i ∈ VL\Vt; YLG ∈ Cn×g is defined
such that [YLG]ij = −ygsi if bus i ∈ Vt and bus n + j is
the corresponding generator internal bus, and [YLG]ij = 0

otherwise. We will use G̃ij , Gij , Ggi (or B̃ij , Bij , Bgi) denote
the real (or imaginary) parts of Ỹij , Yij , Ygi, respectively.

To obtain a neat expression for the power flow equation, we
henceforth use θi, Vi to denote the phase angle and voltage
magnitude for any bus i ∈ VL ∪ VG. For notation consistency,
for each generator internal bus j ∈ VG and its associated
terminal bus i ∈ Vt, we set

Vj = Ei(xgi), θj = ηi(xgi). (9)

Then, the power balance at each bus i ∈ VL can be described
by the power flow equation1

0 = gpi =V 2
i G̃ii +

∑n+g

j=1,j 6=i
ViVj |Ỹij | sin(θij − ϕij)

+ Psi(Vi) + Pmi(ςi, Vi)

0 = gqi =− V 2
i B̃ii −

∑n+g

j=1,j 6=i
ViVj |Ỹij | cos(θij − ϕij)

+Qsi(Vi) +Qmi(ςi, Vi)
(10)

where θij is defined as θij = θi − θj ; and ϕij =

− tan−1(G̃ij/B̃ij) is the phase shift caused by line loss (we
set ϕij = 0 if Ỹij = 0). In fact, the power network does have
electromagnetic dynamics; however, these dynamics decay
much faster than generator electromechanical swings and load
behaviors. Hence, it is reasonable to describe the power network
by (10), which is common in power system communities [1].
Moreover, the right hand side of (10), which is the core of
following analysis, is indeed the coupling terms in general
Kuramoto oscillators with heterogeneous edge weights and
phase shifts [17]. The obtained results will also be useful to
the study of Kuramoto oscillator dynamics.

To sum up, let x,y be the vectors of state variables and
algebraic variables, respectively, where x collects xgi, ∀i ∈ Vt
and xmi, ∀i ∈ VL, and y collects θ = [θi] ∈ Rn,V = [Vi] ∈
Rn, ∀i ∈ VL. Then, power system dynamics can be described
by the following DAE model in the compact form

ẋ = f(x,y) (11a)

1The generator internal buses VG only achieve power balance at an
equilibrium. In that case, (1) degenerates to an algebraic equation regarding
power balance. So there is no specific power flow equation for bus i ∈ VG.
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0 = g(x,y) (11b)

where the differential equations (11a) consist of (1) and (6),
and the algebraic equations (11b) consist of (10). Note that
the algebraic variables do not include θj , Vj , ∀j ∈ VG as they
can be substituted by the associated state variables using (9).

III. CHARACTERIZING IMPASSE SURFACE

A. Impasse surface & voltage collapse

Let us first introduce a matrix closely linked to the im-
passe surface, namely the algebraic Jacobian Jalg(x,y) =
∂g(x,y)/∂y, which by (10) can be further expanded by

Jalg(x,y) =

[
∂gp
∂θ

∂gp
∂V

∂gq
∂θ

∂gq
∂V

]
∈ R2n×2n. (12)

The entries of ∂gp
∂θ ,

∂gp
∂V ,

∂gq
∂θ ,

∂gq
∂V ∈ Rn×n, respectively de-

noted by ∂gpi
∂θj

,
∂gpi
∂Vj

,
∂gqi
∂θj

,
∂gqi
∂Vj

, i, j = 1, ..., n, take values as

∂gpi
∂θj

=

{ ∑n+g
j=1,j 6=i ViVj |Ỹij | cos(θij − ϕij), i = j

−ViVj |Ỹij | cos(θij − ϕij), i 6= j.

∂gpi
∂Vj

=


∑n+g
j=1,j 6=i Vj |Ỹij | sin(θij − ϕij)
+2Vi(G̃ii +Geq

mi) + αiP
0
siV

αi−1
i , i = j

Vi|Ỹij | sin(θij − ϕij), i 6= j.

∂gqi
∂θj

=

{ ∑n+g
j=1,j 6=i ViVj |Ỹij | sin(θij − ϕij), i = j

−ViVj |Ỹij | sin(θij − ϕij), i 6= j.

∂gqi
∂Vj

=


−
∑n+g
j=1,j 6=i Vj |Ỹij | cos(θij − ϕij)

−2Vi(B̃ii +Beq
mi) + βiQ

0
siV

βi−1
i , i = j

−Vi|Ỹij | cos(θij − ϕij), i 6= j.

(13)

When we are differentiating the algebraic equations with respect
to algebraic variables to obtain Jalg, the terms θj , Vj , j ∈ VG
are regarded as constants as they are functions of the state
variables by (9) and independent of the algebraic variables.
Nevertheless, the entries of Jalg depend on both the state
variables and algebraic variables as the terms θj , Vj , j ∈ VG,
which are functions of the state variables, still appear in (13).

Then, the impasse surface is defined in terms of Jalg below.
Definition 1 ([4]): The impasse surface of system (11) con-

sists of the set of points IS = {(x,y)| det{Jalg(x,y)} = 0}.
As mentioned before, the DAE model (11) ignores those

fast dynamics of a power system such as the network electro-
magnetic dynamics. Nevertheless, the impasse surface of the
DAE model can be used to interpret some physical behaviours
for the power system. Let (x(t),y(t)) be a trajectory of
(11). When the trajectory hits the impasse surface, the DAE
model losses causality since the algebraic variable y can no
longer be predicted by state variable x from the relation
∂g
∂x∆x+ Jalg∆y = 0 with a singular Jalg. The time-domain
simulation of the DAE model fails to continue afterwards. On
the other hand, a more detailed model of the power system is in
the form of pure differential equations (DEs), which is obtained
by replacing the algebraic equations (11b) by DEs with very
small time constants to capture those ignored fast dynamics [18].
This DE model never fails to continue at any point, but it will

have undesirable behaviors when its associated DAE model hits
the impasse surface. It is widely observed that the states (e.g.,
bus voltages) of the DE model have a rapid movement when
its associated DAE model hits the impasse surface [19, 20],
which corresponds to short-term voltage collapse.

Moreover, the analytical study of impasse surfaces commonly
takes the following assumption.

Assumption 2: The voltage magnitudes of all buses are non-
zero along the system trajectory (x(t),y(t)).

By (13), the algebraic Jacobian has its i-th column being
zero and hence is singular if the voltage of bus i becomes
zero along the trajectory. Note that zero voltages occur only
when the system undergoes a purely metallic short-circuit fault
(i.e., the fault impedance is strictly zero), which is rare in
practice. Also the zero voltages in this case already give a
clear indication of collapse. So we focus on the nontrivial case
that voltage collapse occurs when bus voltages are still away
from zero, which is harder to detect and of more interest.

In case that all loads are purely static (i.e., Y eq
mi = 0, ∀i ∈

VL), Hiskens proposed the following conjecture for an impasse
surface in [9].

Conjecture 1 ([9]): Suppose Assumption 1 and Assumption 2
hold. Consider a DAE system (11) with all loads being purely
static. The system trajectories never encounter the impasse
surface if the following conditions are all satisfied:

1) Generator circuit: Ggi = 0, Bgi < 0, ∀i ∈ Vt;
2) Power network: Gij = 0, Bij > 0, Bii =
−
∑n
j=1,j 6=iBij , ∀i, j ∈ VL;

3) Active power load: P 0
si ≥ 0, αi = 2, ∀i ∈ VL;

4) Reactive power load: Q0
si ≥ 0, βi ≥ 1, ∀i ∈ VL.

This conjecture can provide a class of load parameters that
prevent system trajectories from hitting the impasse surface
once it is confirmed true. In the following, we will link the
impasse surface to admittance matrices with new insights into
voltage collapse. Further, our analysis proves Conjecture 1.

B. Theoretical results and physical interpretations

We begin the analysis by defining the equivalent conduc-
tances and susceptances of static loads as follows.

Definition 2: For each bus i ∈ VL, define

Geq
si(t) = Psi(t)/V

2
i (t)

Beq
si(t) = −Qsi(t)/V 2

i (t)
(14)

as the equivalent conductance and equivalent susceptance of
the static load at bus i at time t, respectively.

This definition has straightforward physical meanings. At
any time t, if we replace the static load at bus i by the shunt
admittance Geq

si(t) + jBeq
si(t), then its power consumption is

exactly Psi(t)+jQsi(t). In the following, we will substitute the
equivalent conductances and susceptances of induction motors
and static loads Geq

mi, B
eq
mi, G

eq
si, B

eq
si into the algebraic Jacobian

entries and derive a novel condition on the impasse surface.
For the convenience of presenting our results, we introduce

the following admittance matrices regarding the induction
motors and static loads Y eq

mot(t) = diag{Y eq
mi(ςi(t))},G

eq
stat(t) =

diag{Geq
si(t)},B

eq
stat(t) = diag{Beq

si(t)},α = diag{αi},β =



SONG et al.: IMPASSE SURFACE OF DIFFERENTIAL-ALGEBRAIC POWER SYSTEM MODELS 5

diag{βi} ∈ Rn×n. Then, we are ready to state the following
theorem (the proof is given in Appendix).

Theorem 1: Suppose Assumption 1 and Assumption 2 hold.
The trajectory of DAE system (11) encounters the impasse
surface at time t only if

σmin(Y1(t)) ≤ max
i∈VL

∣∣(1− αi
2

)Geq
si(t) + j(1− βi

2
)Beq

si(t)
∣∣

(15)

where σmin denotes the minimum singular value and

Y1(t) = Ybus + Ygen + Y eq
mot +

1

2
αGeq

stat + j
1

2
βBeq

stat. (16)

Theorem 1 establishes a necessary condition for a system
trajectory hitting the impasse surface by the admittance matrices
of the power network, generator equivalent circuits, static loads
and induction motors. This result has wide applicability as it
allows a generic modeling for generators, loads and power
network, which sheds new light on the role of these system
components in inducing voltage collapse. It generalizes the
results in [7] which focuses on the parameters of a single load
with the other loads being constant impedances.

Observing the admittance terms in (15), Ybus refers to the
coupling among buses VL, Ygen refers to the coupling between
generator internals and terminals, Y eq

mot can be regarded as the
coupling between the power network and induction motors,
and Geq

stat,B
eq
stat represents the effect of static loads. When the

static loads are of constant power type (i.e., α = β = 0),
the terms with respect to static loads vanish in the left-hand-
side of (15). In this case, Theorem 1 leads to an intuitive
interpretation of short-term voltage stability, i.e., the system
trajectory avoids hitting the impasse surface if the coupling
between power network, generators and motors is sufficiently
strong to “prevail over” the effect of static loads. Further, in
generic cases with non-zero load exponents, the effect of static
loads contributes to both sides of inequality (15).

Theorem 1 also coincides with the intuition that a low voltage
level must occur during collapse. At a “healthy” state where
Vi '1.0 p.u., Ybus and Ygen are much greater than the other
terms relating to equivalent load admittances so that inequality
(15) is not satisfied. On the other hand, a severe voltage decline
caused by a disturbance (e.g., short-circuit fault) significantly
increases the equivalent load admittances, which makes it
possible to satisfy (15) and eventually induces voltage collapse.

Further, in visualizing the process of voltage collapse, it is
convenient to define the index Ivs(t) as the ratio of the left-
hand-side to right-hand-side of (15). According to Theorem 1,
Ivs(t) being less than one is a necessary condition for hitting
the impasse surface, which means the actual time when system
trajectory hits the impasse surface must be later than the time
when Ivs(t) is below one. Hence, the index Ivs(t) is a dynamic
indicator that can provide an early warning of voltage collapse
for triggering corrective control, an example of which will
be shown in the case study. By comparison, a necessary and
sufficient condition for hitting the impasse surface will not
leave any time for corrective control. It shows that Theorem 1,
which inevitably has conservativeness as a necessary condition,
does have some merits in control application.

Next, we move to the special case where all loads are purely
static (i.e., Y eq

mi(t) = 0, ∀i ∈ VL), which is commonly studied
in the literature [4, 7, 8]. In this case we have the following
theorem regarding the impact of load exponents (the proof is
given in Appendix).

Theorem 2: Suppose Assumption 1 and Assumption 2 hold.
Consider a DAE system (11) with all loads being purely static.
The system trajectories never encounter the impasse surface if
the following conditions are all satisfied:

1) Generator circuit: Ggi ≥ 0, Bgi < 0, ∀i ∈ Vt;
2) Power network: Gij = 0, Bij > 0, Bii =
−
∑n
j=1,j 6=iBij , ∀i, j ∈ VL;

3) Active power load: P 0
si = 0 or αi = 2, ∀i ∈ VL;

4) Reactive power load: Q0
si ≥ 0, βi ≥ 1, ∀i ∈ VL.

We further interpret the conditions in Theorem 2. The
generator circuit condition is general and trivial. The power
network condition is a reasonable approximation for the
situation in high-voltage transmission systems, where the lines
are inductive (i.e., Bij > 0) with negligible conductance
(i.e., Gij = 0) and the charging capacitance is negligible
compared to line susceptance (i.e., Bii = −

∑n
j=1,j 6=iBij).

The load condition approximates such an operating scenario
that the active power loads are very small or behave like
constant impedances. It indicates that active power loads have
no contribution to the right-hand-side of (15), or in other words,
the reactive power loads are the dominant factor. This also
corresponds to a typical scenario for the voltage stability issues
in transmission systems where the voltages are more strongly
coupled with reactive powers than active powers.

In general, Theorem 2 implies that the system is much less
likely to suffer voltage collapse when the active power loads
are constant impedances and reactive power load exponents are
no less than one. Particularly, it proves Conjecture 1 with even
more relaxed conditions. Unlike Conjecture 1, Theorem 2 still
holds if: 1) Ggi > 0 which corresponds to a lossy generator
circuit; and 2) P 0

si < 0 and αi = 2 which corresponds to a
“negative load” case that could be the result of demand-side
management or high penetration of renewable energy.

Theorem 2 also relates to some existing findings on the
impact of load exponents. For instance, it is observed in [7]
that it is highly difficult to find an event of hitting the impasse
surface in case of constant-current loads (i.e., αi = βi = 1),
which only occurs at an unrealistically heavy load level. It
is proved in [8] that the algebraic equation (11b) exhibits
at least one solution if αi > 1 and βi > 1, ∀i ∈ VL. The
solution existence of algebraic equation almost indicates the
non-singularity of algebraic Jacobian, except when the algebraic
equation has a unique solution in some critical situations.
Theorem 2 is consistent with these results with new insights.

C. Impact of shunt capacitor/inductor

Shunt capacitors and shunt inductors are common devices for
reactive power compensation and voltage regulation. Based on
the obtained theorems, this subsection carries out a qualitative
analysis for the role of shunt capacitors and shunt inductors in
voltage collapse.
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The shunt devices can be regarded as a part of the power
network. If bus i installs a shunt capacitor/inductor, then it
adds a term jbi0 to the (i, i)-entry of Ybus, where bi0 > 0
implies capacitive compensation and bi0 < 0 implies inductive
compensation. By Theorem 1, the impact of jbi0 on prevent-
ing/causing voltage collapse can be reflected by how it affects
the matrix Y1 defined in (16). If σmin(Y1) is increased (or
decreased) after adding jbi0, then it implies that the system
trajectory is less (or more) likely to hit the impasse surface,
and hence a lower (or higher) risk of voltage collapse.

Before proceeding further, we make an approximation that
the real part of Y1 is negligible compared to its imaginary
part. This can be justified by the usual case where the line
conductances and equivalent load conductances are much
smaller than line susceptances. Then, we have Y1 = jB1

where B1 = Bbus + Bgen + Beq
mot + 1

2βB
eq
stat ∈ Rn×n with

Bbus,Bgen,B
eq
mot being the imaginary part of Ybus,Ygen,Y

eq
mot,

respectively. If Bij > 0 for i 6= j, Bii = −
∑n
j=1,j 6=iBij < 0,

Bgi < 0 and Q0
si ≥ 0, which commonly holds in transmission

systems, then −B1 is positive definite as it can be regarded
as a graph Laplacian matrix with positive weighted lines
and positive self-loops [21]. It follows that σmin(Y1) =
λmin(−B1), where λmin denotes the minimum eigenvalue.
Then, when adding a shunt inductor jbi0 with bi0 < 0 (or
a capacitor jbi0 with bi0 > 0) to bus i, it decreases (or
increases) Bii and hence increases (or decreases) the i-th main
diagonal of −B1. Thus, by eigenvalue sensitivity analysis
[22], σmin(Y1) = λmin(−B1) is increased (or decreased) after
adding a shunt inductor (or capacitor) to bus i. This result
indicates that inductive compensation has a positive effect on
preventing voltage collapse while capacitive compensation does
the opposite. An example will be given in the case study.

IV. CASE STUDY

Take the IEEE 9-bus system to illustrate the obtained results.
The system diagram is given in Fig. 2, where the generator
internal buses are not displayed for simplicity. In brief, bus
1, bus 2 and bus 3 are generator terminals and bus 5, bus 6
and bus 8 connect loads. The load at bus 5 is purely static
with α5 = 0.1, β5 = 0.6. The loads at bus 6 and bus 8 consist
of induction motors and static components with α6 = 1.0,
β6 = 1.0 and α8 = 0.4, β8 = 0.4. The generators at bus 1 and
bus 2 install the simplified IEEE Type DC1 excitor [13], and
the generator at bus 3 has no excitation system and keeps a
constant field voltage. We refer to [23] for the detailed model
built in PSAT [24] format.

We set the following three scenarios to verify the role of
shunt capacitor/inductor in voltage collapse:
Scenario 1 The system parameters are as in [23];
Scenario 2 A 0.30 p.u. shunt inductor is added to bus 8;
Scenario 3 A 0.30 p.u. shunt capacitor is added to bus 8.
For each of the scenarios, suppose the system initially operates
at the stable equilibrium point and a three-phase short-circuit
fault occurs at 1.0 s such that bus 8 is grounded via a 0.05 p.u.
reactance, which is cleared at 1.1 s. The system response
with respect to bus 8 and minimum modulus eigenvalue of
the algebraic Jacobian are depicted in Fig. 3(a) and Fig. 3(b),

respectively. Voltage collapse occurs in scenario 1 and scenario
3 at 9.12 s and 2.37 s, respectively, where the corresponding
algebraic Jacobian becomes singular (see the blue and red
curves in Fig. 3(b)). Contrarily, the post-fault system is stable
in scenario 2. It implies that the additional shunt inductor helps
to prevent voltage collapse, while the additional shunt capacitor
makes voltage collapse occur even earlier. This observation
coincides with the analysis in Section III-C.

Now turn to the trajectories of the index Ivs(t) in Fig. 4
to illustrate inequality (15) in Theorem 1. For scenario 1 and
scenario 3 that are unstable, Ivs(t) becomes greater than one
for a short period due to temporary voltage recovery, but drops
below one before voltage collapse (see Fig. 4(a)). For scenario
2 that is post-fault stable, Ivs(t) is less than one for a short
period right after the fault is cleared, and converges to a steady-
state value that is greater than one (see Fig. 4(b)). All these
observations coincide with Theorem 1.

Moreover, we preliminarily show the potential of utilizing
the index Ivs(t) in corrective control of voltage collapse. As
inferred from Theorem 1, “Ivs(t) dropping below one” serves
as an early indicator of the system being closer to the impasse
surface, which can be used to trigger control actions (e.g.,
load shedding) for preventing voltage collapse. For instance, if
the induction motor at bus 8 is cut when Ivs(t) drops to one,
which respectively refers to 8.08 s and 1.33 s in scenario 1 and
scenario 3 (the action time of cutting the motor is ignored for
simplicity), then the corresponding post-fault system becomes
stable (see Fig. 5(a) and Fig. 5(b)), which provides a new
viewpoint for short-term voltage stability enhancement. On the
other hand, due to the conservativeness of Theorem 1, “Ivs(t)
dropping below one” alone may not be an adequate criterion by
itself in practice. For instance, the stable trajectory in scenario
2 also experiences a very short period of time where Ivs(t)
is below one (see the sharp sag around 1.0 s in Fig. 4(b)). It
implies that some other logics, such as the duration of Ivs(t)
being below one, need to be supplemented to achieve a better
decision making on control actions. A more systematic and
practical framework on this issue will be further explored in
the future.

2

56

78

4

1

93

Static loadStatic load

+Motor

Static load

+Motor

Figure 2. Diagram of the IEEE 9-bus system.

V. CONCLUSION

A new characterization of the impasse surface of power
system DAE model has been presented. Admittance matrix-
based necessary conditions for system trajectory hitting the
impasse surface have been established, which reveal how the
interactions between power network, generators and loads
induce or prevent short-term voltage collapse. The obtained
theorems allow generic models for power network, generators
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Figure 4. Trajectories of Ivs(t) in three scenarios.
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Figure 5. Voltage trajectories with load shedding.

and loads, which extend some existing results developed on
simplified system models. In particular, our results prove
the conjecture in [9] that had been pending for decades.
Moreover, the obtained theorems lead to an early indicator
of voltage collapse and a novel viewpoint that inductive
compensation has a positive effect on preventing short-term
voltage collapse, which have been verified via numerical
simulation on the IEEE 9-bus system. Future works include a
more comprehensive corrective control method based on these
theorems and coordinating the reactive power compensation
requirements for achieving both short-term and long-term
voltage stability. In addition, another conjecture in [9] says that
the impasse surface is avoided if P 0

si ≥ 0, αi ≥ 1, Q0
si ≥ 0,

βi = 2, ∀i ∈ VL, which remains open and needs more studies.

APPENDIX

We first present the lemma below which serves as a basis
for the proofs of Theorem 1 and Theorem 2.

Lemma 1: The algebraic Jacobian Jalg is singular if and only
if the following matrix is singular

Y ′ =

[
Y1 Y2T
Y2T Y1

]
∈ R2n×2n (17)

where T = diag{ej2θi} ∈ Rn×n, ∀i ∈ VL; Y1 is defined in
(16); Y1 denotes the entry-wise complex conjugate of Y1; and

Y2(t) = (In −
1

2
α)Geq

stat + j(In −
1

2
β)Beq

stat. (18)

Proof: First, it is trivial that the singularity of Jalg is
equivalent to that of the following matrix

J ′alg =

[
∂gp
∂θ

∂gp
∂V V̂

∂gq
∂θ

∂gq
∂V V̂

]
,

[
E F
M N

]
(19)

where V̂ = diag{Vi} ∈ Rn×n, ∀i ∈ VL.
Let us further look into J ′alg. Observing (3), (10), (13) and

(14), the entries of submatrices E,F ,M ,N in (19) can be
re-expressed in terms of Geq

mi, B
eq
mi, G

eq
si, B

eq
si as follows

Eij =

{
−V 2

i (B̃ii +Beq
mi +Beq

si), i = j

−ViVj |Ỹij | cos(θij − ϕij), i 6= j

Fij =

{
V 2
i (G̃ii +Geq

mi + (αi − 1)Geq
si), i = j

ViVj |Ỹij | sin(θij − ϕij), i 6= j

Mij =

{
−V 2

i (G̃ii +Geq
mi +Geq

si), i = j

−ViVj |Ỹij | sin(θij − ϕij), i 6= j

Nij =

{
−V 2

i (B̃ii +Beq
mi + (βi − 1)Beq

si), i = j

−ViVj |Ỹij | cos(θij − ϕij), i 6= j.

(20)

We label the rows and columns of J ′alg by the index set I0 =
{1, 2, ..., n, 1′, 2′, ..., n′}. Let Er ∈ R2n×2n be the elementary
matrix that changes the row order from I0 to a new one,
say I1 = {1, 1′, 2, 2′, ..., n, n′}. Then we obtain J ′′alg by the
following elementary transform

J ′′alg = ErJ
′
algE

−1
r . (21)

By (20), J ′′alg can be expanded as

J ′′alg =


J ′′
11 J ′′

12 · · · J ′′
1n

J ′′
21 J ′′

22 · · · J ′′
2n

...
...

. . .
...

J ′′
n1 J ′′

n2 · · · J ′′
nn

 (22)

where J ′′ii, i = 1, 2, ..., n takes value as

J ′′ii =

[
(J ′alg)ii (J ′alg)ii′

(J ′alg)i′i (J ′alg)i′i′

]
=

[
Eii Fii
Mii Nii

]
(23)

and J ′′ij , i, j = 1, 2, ..., n, i 6= j, takes value as

J ′′ij =

[
(J ′alg)ij (J ′alg)ij′

(J ′alg)i′j (J ′alg)i′j′

]
=

[
Eij Fij
Mij Nij

]
. (24)

Let U =
√
2
2

[
1 1
−j j

]
, we have

U−1J ′′iiU = j
[
−(Y 1)iiV

2
i −(Y2)iiV

2
i

(Y2)iiV
2
i (Y1)iiV

2
i

]
U−1J ′′ijU = j

[
−(Y 1)ijViVje

jθij 0
0 (Y1)ijViVje

−jθij

]
.

(25)

By (22) and (25), J ′′alg can be re-expressed as

J ′′alg = (In ⊗U)K(In ⊗U)−1 (26)
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where ⊗ denotes the Kronecker product and

K =

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

 (27)

with Kij = U−1J ′′ijU , ∀i, j ∈ VL. We label the rows and
columns of K by the index set I1. Rearranging the rows and
columns of K into the order I0 gives the matrix E−1r KEr.
Observing (17), (25) and (27), E−1r KEr takes the form below

E−1r KEr =

[
−In 0
0 In

] [
V̂ c 0

0 V̂ c

]
Y ′

[
V̂ c 0

0 V̂ c

]
(28)

where V̂ c = diag{Viejθi} ∈ Cn×n, ∀i ∈ VL. From (19), (21),
(26) and (28) we conclude that Jalg is singular if and only if
Y ′ is singular.

Now we come to the proofs of the two theorems.
Proof of Theorem 1: Suppose (15) is violated, then we have

σmin(Y1) > σmax(Y2T ) (29)

since the right-hand-side of (15) equals to σmax(Y2T ). By (29),
Y1 is non-singular, and hence (29) is equivalent to ‖Y −11 ‖

−1
2 >

‖Y2T ‖2, where ‖ · ‖ denotes the 2-norm of a matrix. It implies
that Y ′ is block strictly diagonally dominant [25] for the two-
by-two block partition given in (17). Thus, it follows from
[25, Theorem 1] that Y ′ is nonsingular. By Lemma 1, Jalg is
also nonsingular so that the system trajectory will not hit the
impasse surface. �

Proof of Theorem 2: First we point out that Y2 = j(In −
1
2β)Beq

stat under the given conditions. In addition, by the given
conditions we have

|jBii +Ggi + jBgi +
1

2
αiG

eq
si + j

1

2
βiB

eq
si |

≥ |Bii|+ |Bgi|+ |
1

2
βiB

eq
si |

>

n∑
j=1,j 6=i

|Bij |+ |(1−
1

2
βi)B

eq
si |, ∀i ∈ Vt

(30)

which implies the rows of Y ′ (defined in (17)) with respect
to Vt are strictly diagonally dominant. We also have

|jBii +
1

2
αiG

eq
si + j

1

2
βiB

eq
si | ≥ |Bii|+ |

1

2
βiB

eq
si |

≥
n∑

j=1,j 6=i

|Bij |+ |(1−
1

2
βi)B

eq
si |, ∀i ∈ VL\Vt

(31)

which implies the rows of Y ′ with respect to VL\Vt are
diagonally dominant.

Further, we define a directed graph associated with Y ′ as
follows. The set of nodes of the graph is given by {1, 2, ..., 2n}
and there is an edge orienting from node i to j if and only
if Y ′ij 6= 0. This directed graph is strongly connected as the
physical power network (interpreted by Y1) is connected. Thus,
for any node i ∈ VL\Vt, there exists a path from node i to
j in this directed graph such that j ∈ Vt. From the above
discussion, Y ′ satisfies the conditions to be weakly chained
diagonally dominant (WCDD), and hence it is nonsingular
[26]. Then, by Lemma 1, any system trajectory will not hit
the impasse surface. �
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