
1

Robust Representation Learning for Power System
Short-Term Voltage Stability Assessment under

Diverse Data Loss Conditions
Lipeng Zhu, Member, IEEE, Weijia Wen, Yinpeng Qu, Feifan Shen, Jiayong Li, Member, IEEE, Yue Song,

Member, IEEE, and Tao Liu, Member, IEEE

Abstract—With the help of neural network-based representa-
tion learning, significant progress has been recently made in data-
driven online dynamic stability assessment (DSA) of complex
electric power systems. However, without sufficient attention to
diverse data loss conditions in practice, the existing data-driven
DSA solutions’ performance could be largely degraded due to
practical defective input data. To address this problem, this work
develops a robust representation learning approach to enhance
DSA performance against multiple input data loss conditions in
practice. Specifically, focusing on the short-term voltage stability
(SVS) issue, an ensemble representation learning scheme (ERLS)
is carefully designed to achieve data loss-tolerant online SVS
assessment: 1) based on an efficient data masking technique,
various missing data conditions are handled and augmented
in a unified manner for lossy learning dataset preparation;
2) the emerging spatial-temporal graph convolutional network
(STGCN) is leveraged to derive multiple diversified base learners
with strong capability in SVS feature learning and representa-
tion; 3) with massive SVS scenarios deeply grouped into a number
of clusters, these STGCN-enabled base learners are distinctly
assembled for each cluster via multi-linear regression to realize
ensemble SVS assessment. Such a divide-and-conquer ensemble
strategy results in highly robust SVS assessment performance
when faced with various severe data loss conditions. Numerical
tests on the benchmark Nordic test system illustrate the efficacy
of the proposed approach.

Index Terms—Deep representation learning, dynamic stability
assessment, graph convolution, ensemble learning, missing data,
short-term voltage stability.
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NOMENCLATURE

ARMA Autoregressive moving average.
CNN Convolutional neural network.
CSG China Southern Power Grid.
CT Current transformer.
DAE Deep auto-encoder.
DL Deep learning.
DSA Dynamic stability assessment.
DT Decision tree.
ELM Extreme learning machine.
ERLS Ensemble representation learning scheme.
FC Fully connected.
GAN Generative adversarial network.
GCN Graph convolutional network.
IM Induction motor.
KLD Kullback-Leibler divergence.
kNN k nearest neighbor.
LSTM Long short-term memory.
ML Machine learning.
MLR Multi-linear regression.
1-D One-dimensional.
OTW Observation time window.
PMU Phasor measurement unit.
PT Potential transformer.
RF Random forest.
RNN Recurrent neural network.
RVFL Random vector functional link.
SA Situation awareness.
SGC Spatial graph convolution.
STGC Spatial-temporal graph convolution.
STGCN Spatial-temporal graph convolutional network.
SVM Support vector machine.
SVS Short-term voltage stability.
TD Time-domain.
TGC Temporal gated convolution.
TS Time series.
t-SNE t-distributed stochastic neighbor embedding.
WAMS Wide-area measurement system.

I. INTRODUCTION

A. Research Background

AS the most complex man-made nonlinear systems on the
earth, electric power systems act as critical infrastructure

in human society [1], [2]. Despite the remarkable development
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of modern power systems in recent decades, how to maintain
stable and secure operations [3], [4] to prevent system collapse
and even blackouts for such highly complex systems still re-
mains a significant challenge. In this context, it is imperative to
enhance a specific power system’s capability in risky situation
awareness (SA), so as to take prompt countermeasures to
stabilize the system and prevent the occurrence of catastrophic
failures. To this end, one of the most crucial tasks is to
implement timely dynamic stability assessment (DSA) during
system online monitoring. By doing so, proper control actions
can be quickly taken to credibly save the system from potential
instability.

B. Literature Review

In terms of power system online DSA, many research efforts
have been made in the research community. In particular, with
the wide deployment of substantial smart sensing and com-
munication devices in today’s power grids, e.g., synchronized
phasor measurement units (PMUs) recording wide-area system
dynamics with a high resolution [5], a new paradigm called
data-driven DSA has been successfully developed for power
system real-time SA. With the inherent relationships between
initial system dynamics and eventual stability status intelli-
gently inferred offline based on data analytics and machine
learning (ML) techniques, data-driven DSA can be reliably
performed at a fast speed during online application. For
instance, as for short-term voltage stability (SVS) assessment,
one of the most challenging DSA problems in practical power
systems, some promising ML-based data-driven solutions have
been recently reported in the literature [6]–[12]. Since SVS
is generally driven by various fast-acting dynamic loads like
induction motors (IMs) and power electronically controlled
devices [13], [14], it often presents complicated stability pat-
terns and characteristics in practical complex power systems.
Faced with this issue, the existing studies have leveraged
various well-designed ML approaches, e.g., shapelet-assisted
decision trees (DTs) [6], [7], random forests (RFs) [8], sup-
port vector machines (SVMs) [9], extreme learning machines
(ELMs) [15], and random vector functional link (RVFL)-based
neural networks [11], [12], to derive data-driven online SVS
assessment models.

More recently, the emerging neural network-based deep
learning (DL) methods [16]–[21] with overwhelming advan-
tages in representation learning have been introduced to data-
driven SVS assessment. By incorporating well-characterized
networked spatial correlations into the recurrent neural net-
work (RNN) algorithm that specializes in temporal represen-
tation learning, a spatial-temporal feature learning approach to
online SVS assessment is developed in [16]. Similarly, with
the combination of graph convolutional network (GCN) and
RNN, an SVS assessment scheme comprehensively learning
spatial and temporal features from SVS dynamics is proposed
in [17]. In [18], a more efficient DL network called spatial-
temporal GCN (STGCN) that replaces the RNN module
with the parallel-enabled one-dimensional (1-D) convolutional
neural network (CNN) is employed to perform online SVS
assessment. With the introduction of the attention mechanism,

a gated recurrent graph attention network is utilized in [19]
to perform spatial-temporal correlation learning, which results
in adaptive SVS assessment against topological changes. In
[20], generative adversarial network (GAN)-based data aug-
mentation is carried out to realize data-driven SVS assess-
ment with a small SVS dataset. Considering possible cyber
attacks to data-driven solutions, a comprehensive analysis,
verification, and mitigation strategy is presented in [21] to
address SVS assessment-oriented adversarial samples. This
strategy can help enhance the robustness of existing ML-
based SVS assessment solutions to potentially insecure cyber
environments. Compared to conventional ML-based schemes
with shallow learning structures [6]–[12], these DL-enabled
alternatives [16]–[21] with much stronger capability in auto-
matic feature learning and representation have great potential
to further improve the reliability and efficiency of online SVS
assessment.

Despite the progress described above, there exists a non-
trivial research gap in the existing studies on data-driven SVS
assessment. Concretely, the majority of them [6], [8]–[10],
[12], [17], [18] simply assume that the PMU data consti-
tuting SVS assessment models’ inputs are fully available in
online monitoring contexts, without consideration of potential
PMU data loss conditions. In fact, as device malfunctions
and failures are always inevitable in PMU-enabled wide-area
measurement systems (WAMS), PMU data losses are widely
witnessed in practical power grids. Although a few studies
[7], [16] have discussed the impacts of PMU data losses
on the performance of online SVS assessment in numerical
tests, they do not propose effective solutions to enhance their
tolerance to such defective conditions. In [11], an active
missing data-tolerant SVS assessment scheme is proposed
by maximizing power network observability. Yet this scheme
is mainly designed to address dimensional data losses, i.e.,
consecutive PMU measurements of certain channels are totally
missing. When faced with other conditions, e.g., temporary
data losses where only partial data points in certain PMU
channels are lost, it cannot sufficiently exploit the valuable
information hidden behind the remaining normal data points.
This could affect the reliability of online SVS assessment.

In fact, in the broader field of data-driven DSA, some
similar attempts [22], [23] have also been made to tackle the
missing data issue. However, with the same focus on network
observability, they cannot efficiently handle temporary data
loss conditions as well. Different from these efforts, a data
imputation-assisted DSA scheme that can uniformly correct
pre-fault missing data with a GAN is introduced in [24].
Nonetheless, as the GAN merely produces single snapshots
of system states before fault occurrence, it is difficult for
this scheme to address system transient data with much more
complicated spatial-temporal dynamics. Actually, similar to
GAN, some classical data imputation techniques, e.g., the au-
toregressive moving average (ARMA) algorithm, the k nearest
neighbor (kNN) method, and collaborative filtering [25], may
also be used to correct missing values, based upon which the
existing data-driven solutions [6], [8]–[10], [12], [17], [18] can
compatibly work for online DSA. However, when faced with
severe conditions involving high proportions of data losses
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in practice, it is difficult for these imputation techniques to
reliably fix missing data. Consequently, the wrongly imputed
values could misguide subsequent representation learning,
thereby degrading online DSA performance. Overall, how to
effectively cope with diverse severe PMU data loss conditions
to achieve reliable online DSA remains a challenging task in
the research community.

C. Motivation and Contribution

Given the above research gap, this paper develops a robust
representation learning approach for online SVS assessment
under various complicated PMU data loss conditions. Unlike
the existing studies relying on network observability opti-
mization or data imputation [11], [22]–[24], this approach
designs an SVS assessment-oriented ensemble representation
learning scheme (ERLS) by robustly implementing represen-
tation learning with lossy PMU data. First, an efficient data
masking technique is introduced to handle various missing
data conditions and augment the diversity of SVS cases.
Taking the promising STGCN as the basic representation
learning tool [18], [26], multiple diversified base learners
are trained for ensemble decision-making. Then, an array of
ensemble SVS assessment models are built in a divide-and-
conquer fashion: 1) grouping all the given SVS cases into a
number of typical clusters via a deep auto-encoder (DAE);
2) constructing an ensemble SVS assessment model for each
cluster by assembling the STGCN-enabled base learners with
multi-linear regression (MLR). By doing so, the obtained
ensemble models are able to achieve reliable SVS assessment
performance under various PMU data loss conditions during
online application. The major contributions and merits of this
paper are three-fold:
1) This work develops a robust representation learning ap-

proach to power system online SVS assessment that can
extensively tackle multiple PMU data loss conditions in a
unified manner. With no limitation on missing data types,
it is more applicable than existing alternatives in practical
contexts with various complicated data loss scenarios.

2) By systematically integrating some advanced DL tech-
niques, the approach is realized with a well-designed ERLS
which robustly handles diverse missing data conditions in a
divide-and-conquer fashion via ensemble decision-making.

3) Extensive tests reveal that the proposed approach achieves
superior online performance in diverse defective PMU mea-
surement conditions. Hopefully, it would help enhance the
applicability of the data-driven DSA paradigm in practice.

The remainder of the paper is structured as follows. The
missing data problem related to online SVS assessment is
described in Section II. Section III details the proposed ERLS
for data loss-tolerant online SVS assessment. In Section IV,
numerical case studies are carried out on the benchmark
Nordic test system for performance verification. Finally, con-
cluding remarks are summarized in Section V.

II. PROBLEM DESCRIPTION

Given a regional receiving-end power grid where m major
buses are configured with PMUs for online SVS monitoring,
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Fig. 1. Illustration of PMU measurements in a real-world power grid.

an observation time window (OTW) with time span Twin is
employed to acquire consecutive PMU measurements from
individual buses. Specifically, assuming the starting point of
the OTW is set to the time instant of transient fault occurrence,
it collects fault-on and early post-fault system responsive data
via PMUs. To sufficiently capture system dynamics, multiplex
PMU data, including bus voltage magnitude, injected active
power, and injected reactive power, i.e., {V, P,Q}, are se-
quentially collected from the m buses. Note that, here P and
Q are derived data that are estimated with raw voltage and
current phasors initially measured by potential transformers
(PTs) and current transformers (CTs) in individual PMUs. All
of these data are integrated as a three-channel data matrix
X = {V ,P ,Q}. Taking the voltage channel for instance, it
is described as

V =


V1

V2

...
Vm

 =


V11 V12 · · · V1n

V21 V22 · · · V2n

...
...

...
...

Vm1 Vm2 · · · Vmn

 (1)

where Vi = [Vi1, Vi2, ..., Vin] is the voltage time series (TS)
acquired from bus i (1 ≤ i ≤ m), n = Twin/∆T is the number
of data points within the OTW, and ∆T is the time interval of
PMU data acquisition. With X fed into a well-designed DL
model for representation learning, critical SVS features can
be sufficiently captured to help quickly predict whether the
system can maintain SVS after transient fault clearance.

However, due to the inevitability of defective PMU data ac-
quisition and transfer conditions in practice, e.g., PMU/WAMS
malfunctions and even failures, practical PMU data matrices
have a high risk of undergoing diverse data losses. Taking
field voltage measurements acquired from seven substations
in a practical power grid for example, the obtained 7 × 100
voltage measurement matrix (for Twin = 4 s and ∆T = 40 ms)
with multiple missing data points is depicted in Fig. 1. Note
that all the missing data points are filled with zero values by
default.

As shown in Fig. 1, all the missing data can be generally
grouped into two categories, i.e., dimensional data loss and
temporary data loss. The first category implies that all the
data points of a certain row (bus) in V are missing, which may
result from the breakdown of the corresponding PT or other
related devices in the PMU. For the second category, it may
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Fig. 2. Overall framework of the proposed ERLS.

be caused by temporary measuring malfunctions during data
acquisition or occasional data dropout during data transfer.
If not carefully tackled, such undesirable data losses inducing
incomplete PMU data matrices could undermine the reliability
of follow-up data-driven SVS assessment schemes.

To address the above problem, this paper will develop a
data-driven ERLS that can be leveraged to implement reli-
able online SVS assessment under various PMU data loss
conditions in a unified fashion. As will be illustrated below,
instead of trying to fix missing data, this scheme derives DL-
based SVS assessment models against diverse missing data
scenarios by directly performing robust representation learning
with lossy PMU measurements.

III. PROPOSED LEARNING SCHEME

As depicted in Fig. 2, the realization of the proposed ERLS
includes three phases: 1) offline lossy database preparation; 2)
diversified base learner derivation; 3) hierarchical ensemble
model construction.

A. Offline Lossy Database Preparation

For a specific receiving-end system, considering various
representative operating conditions and SVS-related transient
events, a raw SVS case repository is first produced via batch
time-domain (TD) simulations. In each case, by collecting
fault-on and early post-fault {V, P,Q} TS trajectories from
the m buses deployed with PMUs, a three-channel PMU
data matrix X ∈ Rm×n×3 is acquired. PMU data losses
are simulated by randomly choosing r1% of data points from
X and setting their values to NaN. In particular, taking the
voltage measurements in X (i.e., V ) for instance, the data
matrix V with size m × n is first reshaped as an mn × 1

vector denoted by v. Then, [mn ∗ r1%] elements ([ ] →
rounding towards +∞) in v are randomly picked out to
generate missing data points, where their sequence numbers in
v follow a specific random distribution. To boost the diversity
of data loss conditions, three types of commonly-used random
distributions are considered here to help generate missing data
points, including uniform, normal, and exponential distribu-
tions. These three distributions are also applied in a random
manner, where each of them is chosen with a probability
of 1/3. With the [mn ∗ r1%] elements chosen from v, their
identical data points in V are set to NaN, which results
in missing values. Similarly, missing values are set for the
other channels of PMU data matrices. For each SVS case, the
above procedure of randomly generating missing data points
in the form of NaN values is executed multiple times with
repeated sampling, so that multiple missing data positions in
the data matrices following different random distributions are
generated. With missing data generation iteratively performed
for all the SVS cases in the case repository, numerous lossy
data matrices are produced to cover diverse missing data
scenarios. As unstable cases are generally scarce compared to
stable ones in practice [27], more data loss scenarios can be
generated for unstable cases to mitigate the imbalance degree
of class distribution in the repository.

Based on the above procedure of random missing data
generation, an augmented SVS dataset involving a wide variety
of data loss scenarios is obtained. To make such lossy data
be compatibly handled by subsequent DL procedures, all the
missing data points marked by NaN are filled with zero values.
Meanwhile, a binary mask matrix M ∈ Rm×n is formed to
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explicitly mark all the missing data points in X [28]:

M =


1 0 · · · 1
1 1 · · · 0
...

...
...

...
0 1 · · · 1

 (2)

where 0 denotes the occurrence of missing values for the
corresponding entries in X , while 1 represents normal values.

As demonstrated in [28], such a binary mask matrix char-
acterizing the positions of missing values in the data matrix
can be taken as an informative channel to guide standard
representation learning approaches to pay special attention to
missing data points. Without limitations on missing data types
or specific assumptions on the characteristics of missing data,
this additional masking channel can help achieve superior per-
formance over conventional data imputation-based solutions
(as will be shown in subsequent case studies). Considering
this potential, here M is used to augment X , which results
in a masked four-channel data matrix X ′ = {V ,P ,Q,M}
(X ′ ∈ Rm×n×4). With all the masked data matrices gathered
together, a masked SVS dataset is formed for SVS assessment
model derivation in the sequel.

B. Diversified Base Learner Derivation

In order to enhance the reliability and robustness of online
SVS assessment, ensemble learning is carried out in this paper
for data-driven decision-making model construction. To this
end, a group of diversified base learners are first derived from
the above masked SVS dataset for SVS feature learning and
representation. Analogous to random subspace-based ensem-
ble learning [29], here a randomized dimensional masking
strategy is taken to generate z different learning datasets for
base learner derivation. For a certain data matrix X ′, r2% of
dimensions (entire rows) in the fourth channel M are masked
with 0, and the corresponding positions in the V /P /Q
channels are set to NaN values to mimic dimensional data
losses; this procedure is repeated z times to produce z different
masked versions of X ′, thereby forming z distinct datasets.
With the help of this strategy, not only the diversity between
the z datasets is augmented, but also multiple dimensional data
loss scenarios are extensively covered.

Further, considering the complicated spatial-temporal cor-
relations between individual load buses during regional SVS
dynamics [7], [16], [18], z base learners are separately built
from the z datasets via in-depth spatial-temporal representation
learning. Considering the graph-like structural couplings be-
tween individual buses, the emerging STGCN that fully learns
both spatial and temporal features from irregular network
dynamics [18], [26] is employed as the primary algorithm
in this paper to build SVS assessment-oriented base learners.
The architecture of the STGCN is shown in Fig. 3, where a
fully convolutional structure is devised to perform SVS feature
learning and representation. As can be seen, the STGCN is
composed of an input layer (with four-channel structural input
data), two spatial-temporal graph convolution (STGC) blocks,
a temporal gated convolution (TGC) layer, two fully connected
(FC) layers, and an output layer. Among the hidden layers, the

two STGC blocks are the major feature learning layers devoted
to comprehensive spatial-temporal representation learning. The
TGC layer is utilized for further temporal feature learning,
while the subsequent two FC layers are leveraged to abstract
the learned features and map them to the eventual output. For
each of the STGC blocks, it consists of two TGC layers and
a spatial graph convolution (SGC) layer, with the three layers
alternatively connected to form the whole block (see Fig. 3).
The key learning mechanisms of the SGC layers, the TGC
layers, and the other layers are detailed below.

1) SGC Layers: The SGC layers are placed in the middle of
the STGC blocks to implement networked spatial representa-
tion learning. Given the m-bus receiving-end system for SVS
monitoring, it is described as a graph with an adjacency matrix
W = [wij ]m×m. Here the element wij in W is computed by

wij =

{
|Yij |, if i ̸= j

0, otherwise
(3)

where |Yij | =
√
R2

ij +X2
ij denotes the magnitude of the

mutual admittance of the transmission line that links bus i
and bus j, with Rij and Xij representing the resistance and
reactance of the transmission line, respectively. On the basis
of W , the graph Laplacian of the system is normalized as

L = Im −D−1/2WD−1/2 (4)

where Im ∈ Rm×m represents the identity matrix; D ∈
Rm×m stands for a diagonal matrix, for Dii =

∑
j wij . Let the

snapshot of the data matrix X ′ at time frame t (1 ≤ t ≤ n)
be denoted as X ′(t), for X ′(t) ∈ Rm×4. Taking the graph
Laplacian-based network description into account, X ′(t) can
be regarded as four-channel structural data acquired from the
power network. If X ′(t) is taken as the input, the SGC
manipulation can be formulated as

X j(t) = Θ ⋆X ′(t) = Θ(L)X ′(t) = UΘ(Λ)UTX ′(t) (5)

where X j(t) is the jth-channel (1 ≤ j ≤ 4) graph convolution
result; Θ ∈ RKs×4×4 stands for the graph convolution kernel
with size Ks; ⋆ denotes the graph convolution operation;
U ∈ Rm×m represents the matrix of eigenvectors of the
graph Laplacian L; Λ ∈ Rm×m corresponds to the diagonal
matrix of eigenvalues of L (for L = UΛUT ); Θ(∗) denotes
the graph convolutional filtering operation (with ∗ concisely
representing L and/or Λ). Due to the need for complicated
eigenvalue decomposition and eigenvector matrix multiplica-
tion, it is computationally expensive to directly implement
SGC via (5). To alleviate the computational burden, the SGC
can be accelerated by approximating the filtering operation in
(5) with the help of Chebyshev polynomials [26], [30], [31]:

X j(t) = Θ⋆X ′(t) ≈
∑4

i=1

∑Ks−1

k=0
θk,i,jTk(L̃)X ′(t) (6)

where θk,i,j ∈ R and Tk(L̃) ∈ Rm×m denote the kth-
order (0 ≤ k < Ks) Chebyshev coefficient and polynomial
for the approximation of graph convolutional filtering; L̃ =
2L/λmax − Im represents the normalized graph Laplacian,
with λmax denoting the maximum eigenvalue of L. Here the
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Chebyshev polynomial Tk(L̃) is calculated in a recursive way:

Tk(L̃) =


1, k = 0

L̃, k = 1

2L̃Tk−1(L̃)− Tk−2(L̃), 2 ≤ k < Ks

(7)

Similar to conventional regular convolution in Euclidean
spaces, the SGC in (6) is Ks-localized for information re-
ception. For example, if Ks = 3, it receives information from
buses with no more than Ks−1 = 2 hops w.r.t. the central bus
for convolution. By stacking multiple SGC layers, the overall
receptive field of graph convolution can be enlarged to perform
deeper feature learning and representation [26]. For each time
frame in X ′, the SGC manipulation is carried out in parallel
with the same graph convolution kernel Θ, and the overall
calculation across all the n frames yields a four-channel matrix
again, which is represented by X = Θ⋆X ′, for X ∈ Rm×n×4.

2) SGC Layers: Taking the learning results of the above
SGC layer as the intermediate inputs, another module called
temporal gated convolution (TGC) is utilized for temporal
representation learning. Although the RNN specializing in
temporal dependency learning [32] can also be employed to
fulfill this task, the complicated gate manipulations and step-
by-step serial computations during RNN training would induce
heavy computational burdens. Comparatively speaking, the
parallel-enabled TGC method [26], [33] can perform much
faster temporal representation learning with high reliability.
Thus, it is taken as the major algorithm to learn temporal
features from X . Let the SGC results at bus i (1 ≤ i ≤ m)
be denoted as X i (X i ∈ Rn×4). The TGC is manipulated as

Γ ∗X i = (Γ1 ∗X i + a)⊙ σ(Γ2 ∗X i + b) (8)

where Γ = [Γ1 Γ2] (Γ1,Γ2 ∈ RKt×4×4) is the regular (Eu-
clidean) convolution kernel with size Kt; ∗ denotes the regular
1-D convolution; a and b represent biases; ⊙ is element-wise
product; σ(ρ) = 1/(1 + e−ρ) represents the sigmoid activation
function; A ⊙ σ(B) is the gate mechanism controlling the
information propagation of A into subsequent neural layers via
the sigmoid gate σ(B). In fact, this mechanism resembles gate
manipulations in conventional RNNs to mitigate the vanishing
gradient issue for deep temporal dependency learning, yet with
a much higher learning efficiency [33]. With the same kernel
Γ, TGC is efficiently performed for all the m buses in the
system, which is compactly denoted by Γ ∗X .

3) Other Layers: As illustrated in Fig. 3, the SGC and
TGC layers described above are taken as the basic modules to
construct two successive STGC blocks. Then, a single TGC
layer and two FC layers are supplemented to relate the learned
features to the eventual output. For the two FC layers, the
first one maps multiple channels of learned features to one
channel, while the second one links the summarized one-
channel features to discrete SVS classification. In particular,
as the main target of SVS assessment is to predict whether
a given SVS case would remain stable or not, the second FC
layer is configured with two neurons. For a specific SVS case,
supposing the outputs of the two neurons are ν0 and ν1, the
probability of predicting the case as stable is estimated as

ỹ = eν1 /(eν0 + eν1) (9)

Based on the probabilistic value ỹ, the eventual stability status
of the case is inferred by

ŷ =

{
1 for ỹ > ε (stable)
0 otherwise (unstable) (10)

where ε is the threshold for binary SVS classification. For the
purpose of unbiased decision-making, ε is specified as ε = 0.5
in this paper. Supposing the actual stability status of the given
case is y (for y ∈ {0, 1}, 0 → unstable, 1 → stable), the per-
instance learning objective of the overall STGCN is formulated
by minimizing the following loss function:

minL1 = min [−y log2 ỹ − (1− y) log2(1− ỹ)] (11)

Note that the actual stability status of a certain SVS case
is determined by the following widely-used criterion: in a
specific power grid, if all the major bus voltages recover to an
acceptable equilibrium (with voltage magnitudes being no less
than 0.9 pu) in the transient time period of 0∼10 s [11], [12],
[34], the corresponding SVS case would be taken as stable
(i.e., y = 1), otherwise unstable (i.e., y = 0).

As z randomly masked datasets are available, z STGCN-
enabled classifiers can be efficiently trained in parallel based
on (6)-(11). These classifiers are taken as base learners for
subsequent ensemble SVS assessment model construction.

C. Hierarchical Ensemble Model Construction

In this paper, an array of ensemble SVS assessment models
are systematically built in a hierarchical manner. First, by
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Fig. 4. DAE-based case clustering.

exploring the intrinsic dissimilarities between different SVS
cases with a DAE, they are automatically grouped into C typ-
ical clusters. Then, a specific ensemble model is constructed
for each cluster by assembling the z base learners with the
help of MLR. Based on such a divide-and-conquer strategy,
distinct SVS cases would be adaptively addressed by different
ensemble models, which is expected to enhance the overall
robustness and reliability of SVS assessment.

1) DAE-Based Scenario Clustering: To simultaneously per-
form feature representation and cluster assignment, a powerful
convolutional DAE algorithm [35] is introduced in this paper
for adaptive SVS scenario clustering. The CNN-based DAE
designed for SVS scenario clustering is illustrated in Fig. 4.

As can be seen, it is composed of a CNN-based en-
coder, a CNN-based decoder, and a Kullback-Leibler diver-
gence (KLD)-based clustering module. Similar to conventional
DAEs, the CNN-based encoder and decoder work together to
learn in-depth feature representations from the data matrices
of substantial SVS cases in an unsupervised way. While the
encoder tries to learn a concise feature representation of the
input data matrices in a low-dimensional embedded space, the
decoder strives to reconstruct the data matrices as precisely
as possible. Mathematically, given the data matrix X ′ of
a certain case, the per-instance learning objective along the
whole encoder-decoder path is described by minimizing the
following reconstruction error:

minLr = min ∥H (G(X ′,ΦG),ΦH)−X ′∥22 (12)

where G and H stand for the overall mappings of the encoder
and decoder; ΦG and ΦH denote their respective convolutional
neural parameters to be trained; ∥∗∥2 represents the square
norm. Since the encoder and decoder share the same structures
and operations with conventional CNN layers [32], their
detailed computations are not presented here.

As shown in Fig. 4, for the intermediate hidden layer
between the encoder and the decoder, denoted as φ =
G(X ′,ΦG), it captures the primary characteristics of the input
data matrices. Hence, it is taken as the embedded features
for SVS case clustering. By connecting it to the KLD-based
clustering module, a clustering path is built to perform cluster
assignment. With the emphasis on assigning all the SVS
cases to C clusters, the corresponding C cluster centers are
randomly initialized as {κj}Cj=1 in the embedded feature space
specified by φ. Given N SVS cases for clustering, based
on the Student’s t-distribution, the probability of assigning a
certain SVS case featured by φ to the jth cluster is estimated

as

pj =
(1 + ∥φ− κj∥22)

−1∑C
j′=1(1 +

∥∥φ− κ′
j

∥∥2
2
)−1

(13)

Taking {κj}Cj=1 as trainable neural parameters, the learning
objective of cluster assignment is quantified by minimizing the
KLD between pj and a target distribution qj :

minLc = min
∑C

j=1
qj log2(qj/pj), (14)

where qj is calculated as

qj = (p2i /fj)/(
∑C

j′=1
p2j′/fj′). (15)

Here fj refers to the cluster frequency obtained by summariz-
ing all the N cases’ probability values pj w.r.t. cluster j.

Taking feature representation and cluster assignment into
comprehensive account, the overall learning objective for
clustering all the N SVS cases is summarized as:

minL2 = min
(∑

i
Lr + γ

∑
i
Lc

)
, for 1 ≤ i ≤ N (16)

where γ is the regularization parameter that regularizes the
clustering path for scenario clustering. Following the guideline
in [35], γ is empirically set to γ = 0.1 in this paper. After
learning convergence, each SVS case is assigned to a cluster
that wins the largest probability value pj . Based on (16), the
whole DAE is able to adaptively group all the SVS scenarios
into C highly representative clusters.

2) Ensemble Model Construction: For each of the C clus-
ters obtained above, the SVS cases in it are expected to share
similar data characteristics with each other. Thus, they can be
collectively handled by a specific decision-making model. For
cluster j (1 ≤ j ≤ C), suppose Nj SVS cases are clustered
into it (for

∑C
j=1 Nj = N ). Given the z STGCN-enabled base

learners derived in Section III-B, an ensemble SVS assessment
model is constructed for cluster j by performing MLR:

Y = Ỹ α+ ξ (17)

for Y =


y1
y2
...

yNj

 , α =


α0

α1

...
αz

 , ξ =


ξ1
ξ2
...

ξNj

 ,

Ỹ =


1 ỹ11 ỹ12 · · · ỹ1,z
1 ỹ21 ỹ22 · · · ỹ2,z
...

...
...

...
...

1 ỹNj ,1 ỹNj ,2 · · · ỹNj ,z

 , (18)

where yi is the actual class lable of case i (1 ≤ i ≤ Nj); ỹij
is the probabilistic output of predicting case i as the stable
class by base learner j [see (9) for detailed computation]; α
is the vectorized MLR weight coefficients that assemble the z
base learners for weighted prediction; ξ represents the MLR
errors. In essence, the MLR model is determined by the (z+1)
weight coefficients in α. Based on the classical least square
method, the MLR problem in (17) can be efficiently solved
without iteration to estimate the optimal α.

Following the above procedure, C MLR models are con-
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structed for the C SVS clusters. Each MLR model outputs
the weighted softmax decision values for the cases belonging
to the corresponding cluster. The binary class label of each
case can be eventually determined by the threshold-based rule
in (10). Hence, these MLR models adaptively coordinating
the z base learners for decision-making can be taken as
ensemble models, and they are readily available for online
SVS assessment.

D. Online Application for SVS Assessment

During online SVS monitoring, when the system encounters
a transient fault or event, the given OTW with length Twin
is activated immediately to acquire sequential PMU measure-
ments of {V, P,Q} TS trajectories from the m buses in the
system. Based on missing data processing and data masking,
a measured four-channel data matrix Xmea is obtained from
the raw PMU measurements. By feeding Xmea into the z
well-trained base learners, z probabilistic decision values for
stability classification are derived. Meanwhile, Xmea is taken
as the input of the DAE to adaptively infer which SVS cluster
the current case belongs to. Assuming it is assigned to cluster
j (1 ≤ j ≤ C), the jth MLR model constructed above is
employed to estimate the weighted softmax decision value,
which is further sent to the threshold-based rule (10) for binary
SVS assessment. If the system is inferred to be unstable,
alerting signals would be triggered immediately to warn that
corrective countermeasures be taken as quickly as possible.
Otherwise, the system is deemed to be stable, and continuous
SVS monitoring can be performed by sliding the OTW.

To examine the overall SVS assessment performance of
the ERLS, three statistical indices, including misdetection
rate, false-alarm rate and accuracy (denoted by Mis, Fal,
and Acc, respectively), are computed from online stability
assessment results under multiple PMU data loss conditions.
In particular, with N ′ cases subject to diverse missing data
conditions for online SVS assessment, the three indices are
calculated as

Mis = Nfs/N
′ × 100% (19)

Fal = Nfu/N
′ × 100% (20)

Acc = (N ′ −Nfs −Nfu) /N
′ × 100% (21)

where Nfs is the number of unstable cases mistaken as stable;
Nfu is the number of stable cases falsely labeled as unstable.

To sum up, the proposed ERLS is implemented via the
following major steps. First of all, by randomly simulating
various data loss conditions and masking missing data points,
an offline lossy database for SVS classification learning is
well prepared. Then, with the help of the STGCN technique,
a series of base learners with strong capability in critical SVS
feature learning and representation are derived. Further, by
designing a CNN-based DAE, different SVS scenarios are
grouped into a handful of representative clusters; for each
cluster, the base learners derived above are systematically as-
sembled via MLR, so as to carry out ensemble SVS assessment
in a divide-and-conquer manner. With such a comprehensive
learning procedure, the whole ERLS would be able to achieve

robust SVS assessment performance in the presence of diverse
complicated data loss conditions during online application.

IV. CASE STUDY

In modern power grids, since the grids rarely experience
severe transient events, especially those that can lead to
system instability [27], [36], it is infeasible to collect a large
number of actual transient cases from practical power grids
for data-driven SVS assessment model construction. Taking
this issue into account, case studies in this section were
carried out with simulation data obtained from the numerical
simulation model of a specific power grid. In fact, this is
a common practice in many existing studies on data-driven
SVS assessment [16]–[21]. To make the simulation model
resemble practical contexts as closely as possible, here the
Nordic test system modified from the real-world Swedish
and Nordic power grid [37] was taken for realistic numerical
simulations. In fact, this system is also a benchmark system
strongly recommended by a specialized IEEE task force for
voltage stability study [38] and widely adopted by existing
voltage stability research in the literature [12], [16], [39], [40].
As shown in Fig. 5, the whole system is divided into four areas,
where the Central area is the receiving-end region heavily
consuming more than 55% of electric power. Hence, this area
was taken as the target region for SVS monitoring. In this
area, all the 130-kV and 400-kV buses were deployed with
PMUs for online SVS monitoring, as highlighted in Fig. 5.
The system was numerically modeled and simulated in PSD-
BPA, a popular power system TD simulation package widely
adopted in China. For the sake of adequately simulating system
SVS dynamics, all the loads in the system were modeled in
the form of composite loads consisting of equivalent IMs and
static ZIP loads. Data preprocessing and computations were
jointly conducted in MATLAB 2020 and Python 3.7 (with the
TensorFlow back end).

A. Simulation Setting and Data Generation

Let the operating point A of the system [38] be the
base operating condition. Starting from this point, substantial
representative operation variations and transient contingencies
were considered for batch TD simulations, so as to make the
obtained SVS cases cover a wide variety of transient scenarios
and characteristics. Specifically, the operation variations and
contingencies were generated by setting diverse load power
variations (80%∼120% of the base level), distinct dynamic
load (i.e., IM) proportions at individual load buses (60%, 75%,
and 90%), 18 typical three-phase short-circuit faults (with
different fault locations), and shifts of fault clearing times (0.1
s and 0.2 s). All of these combinations resulted in a raw SVS
case repository with 10800 cases, among which unstable ones
account for 13.7%. For each case, an OTW with length Twin
= 0.3 s and PMU data sampling interval ∆T = 0.01 s was
employed to acquire fault-on and early post-fault {V, P,Q}
TS data from the 13 major buses in the Central area.

To mimic severe missing data conditions, the proportion
of missing data points was set to r1% = 20% during lossy
data generation. For the purpose of mitigating the imbalance
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Fig. 5. Single line diagram of the Nordic test system.

degree of stable/unstable cases, the procedure of random
missing data point setting was repeated 12 times and twice
for unstable and stable cases, respectively. Based on missing
data processing and data masking, a masked SVS dataset with
18640 stable cases and 17760 unstable ones was obtained. The
whole dataset was divided into two groups via deterministic
separation: 1) 30000 cases involving the first 15 transient
faults; 2) the remaining 6400 cases related to the latter three
transient faults. The first group was further separated into a
training set (with 24000 cases) and a testing set (with 6000
cases) via random sampling with no replacement, while the
second group was used to test the ERLS’s online performance.
As this group of cases with distinct SVS events are totally
unfamiliar to offline learning procedures, it can be regarded as
an unknown set for online generalization tests. With the 24000
training cases, the ERLS was implemented for base learner
training and ensemble SVS assessment model construction.
The main parameters involved in the learning procedures were
empirically specified as r2% = 3/13 = 23%, z = 20, Ks = 3, Kt

= 3 and C = 10. Note that the mutual admittances constituting
the adjacency matrix W [see Eq. (3)] were obtained from the
transmission line parameters summarized in Tables 2 and 3 of
Ref. [37].
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Fig. 6. SVS assessment performance with/without PMU data losses.

B. Comprehensive Verification of the ERLS

1) Overall Learning Performance: The proposed ERLS’s
overall learning performance was first tested by feeding all
the 6000 testing cases and the 6400 unknown ones into it for
classification. To demonstrate its competence in handling mul-
tiple missing data conditions during online SVS monitoring,
each of the testing/unknown cases was further replaced by its
original pure version without any missing data for comparative
tests. All the test results are statistically summarized in Fig. 6.

Clearly, the ERLS achieves excellent online SVS assessment
performance under both conditions with and without PMU
data losses. In particular, with the misdetection and false-
alarm rates kept below 1.5%, the overall assessment accuracy
firmly remains above 97%. Comparatively speaking, after the
introduction of 20% of temporary missing data and 23% of di-
mensional data losses, the online SVS assessment performance
is slightly affected, with the assessment accuracy reduced
by less than 0.5%. These results verify that the proposed
ERLS has a strong capability in data loss-tolerant online SVS
assessment. Further, it is observed that the ERLS can maintain
an SVS assessment accuracy of more than 97% when faced
with unknown cases totally unseen by offline learning. This
implies that it generalizes well to unfamiliar conditions during
online SVS monitoring.

2) Effect of SVS Scenario Clustering: To illustrate the effect
of DAE-based scenario clustering on assisting SVS assess-
ment, the t-distributed stochastic neighbor embedding (t-SNE)
technique [41] was adopted to visualize the clustering results
derived from the CNN-based DAE. As depicted in Fig. 7, all
the testing/unknown cases were visualized as individual data
points in an embedded 2-D space via the t-SNE technique.

It is found that the clustering results marked with different
colors are largely consistent with the natural case distribution,
with most intra-cluster cases staying together and inter-cluster
cases remaining relatively far away from each other. This
reveals that the CNN-based DAE successfully captures the
primary data characteristics of different SVS cases, thereby
resulting in highly representative SVS clusters. As will be
verified below, such a clustering strategy would further help
enhance online SVS assessment performance in a divide-and-
conquer manner.

3) Comparison with Other Methods: To comprehensively
verify the advantage of the proposed ERLS, more extensive
tests were performed by comparing it with some representative
and/or conventional data-driven solutions: a) a single STGCN
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Fig. 7. t-SNE based visualization of DAE-based case clustering.

TABLE I
SVS ASSESSMENT PERFORMANCE ON 6000 TESTING CASES

Method Mis/% Fal/% Acc/%

Proposed 0.18 0.77 99.05
Single STGCN 1.15 1.27 97.58
STGCN ensemble 0.42 0.85 98.73
CNN + ERLS 1.88 1.43 96.68
LSTM + ERLS 2.53 0.42 97.05
GAN-based scheme [24] 0.77 0.87 98.36
kNN (imputation) + STGCN 1.82 1.08 97.10
ARMA (imputation) + STGCN 2.30 1.15 96.55

without ensemble learning; b) simplified STGCN-based en-
semble learning that handles all the SVS cases using one
ensemble SVS assessment model (without scenario clustering
for hierarchical decision-making); c) a variant of the ERLS
by replacing the STGCN with the conventional CNN for base
learner derivation; d) a similar variant of the ERLS that takes
the long short-term memory (LSTM)-based RNN to train base
learners; e) the data-driven solution in [24] that imputes all the
missing data with a well-trained GAN and employs RVFLs
and ELMs to derive an ensemble assessment model; f) the
conventional ARMA algorithm for missing data imputation
plus the STGCN for SVS assessment realization; the classical
kNN (k = 6) algorithm for missing data imputation plus
the STGCN for SVS assessment implementation. All the
comparative methods were tested with the same testing and
unknown cases, as shown in Tables I and II.

Obviously, the proposed scheme achieves the highest online
SVS assessment performance among all the methods. Specif-
ically, compared with the two simplified versions, i.e., the
single STGCN and the simple STGCN-based ensemble with
no hierarchical decision-making, the ERLS is able to improve
the assessment accuracies by 0.3%∼1.5% and 0.6%∼1.1%
on the testing and unknown SVS cases. Such a superiority
shows that the divide-and-conquer ensemble learning mecha-
nism devised in this paper effectively enhances the ensemble
decision-making performance during online application, espe-
cially when faced with unknown scenarios.

With further attention to the two variants adopting the CNN
and LSTM to train base learners, they have much higher mis-
detection rates than the proposed scheme (1.5%∼2.4% higher),
thus leading to relatively lower SVS assessment accuracies.
This implies that the CNN and LSTM are less competent than
the STGCN in SVS-related spatial-temporal feature learning

TABLE II
SVS ASSESSMENT PERFORMANCE ON 6400 UNKNOWN CASES

Method Mis/% Fal/% Acc/%

Proposed 1.36 1.45 97.19
Single STGCN 2.06 1.86 96.08
STGCN ensemble 1.58 1.83 96.59
CNN + ERLS 2.87 1.32 95.82
LSTM + ERLS 2.97 0.55 96.48
GAN-based scheme [24] 2.73 2.33 94.94
kNN (imputation) + STGCN 2.98 1.91 95.11
ARMA (imputation) + STGCN 3.19 2.16 94.65

and representation. With a more natural learning manner that
fully learns spatial-temporal SVS dynamics from the structural
network perspective, the STGCN is able to capture the inherent
SVS features for more accurate stability classification.

For the GAN-based scheme, although it achieves very high
performance on the initial 6000 testing cases, it does not gen-
eralize well to the 6400 unknown cases. This is attributed to
the fact that the GAN closely following the data distributions
of learning cases cannot reliably handle unknown cases with
different data distributions (see Fig. 7) for data imputation.
Besides, due to the adoption of shallow-structure RVFLs and
ELMs for ensemble learning, it is difficult for this scheme
to learn the in-depth SVS features from various complicated
SVS scenarios. Consequently, it performs even worse than the
CNN- and LSTM-based solutions when faced with unknown
cases. Analogously, the last two alternatives striving to fix
missing data values via the conventional ARMA and kNN
algorithms perform worse than the first five solutions that
directly learn from missing data assisted by data masking. As
can be observed in Table II, these two alternatives have rela-
tively low SVS assessment accuracies (94.6%∼95.1%) in the
presence of unknown cases. In fact, it is because the ARMA-
based and kNN-based imputation procedures introduce non-
negligible errors when a significant number of data points are
missing. As a result, those erroneously imputed values would
mislead the subsequent representation learning schemes for
SVS assessment model derivation.

Considering the above result analyses, the proposed ERLS
with superior capability in spatial-temporal SVS feature learn-
ing and representation under various missing data conditions
would be preferred for online SVS monitoring in practice.

C. Computational Efficiency

For the sake of examining the computational efficiency of
the ERLS, its computation time consumptions during both
offline learning and online application were recorded. In par-
ticular, the 6400 unknown cases were used for online compu-
tational efficiency tests. All the computations were conducted
on a PC with a 2.60-GHz∗12 Intel Core i7-10750H CPU and
an NVIDIA GeForce GTX-1650 Ti GPU. Multi-core parallel
computing was conducted to accelerate offline learning. All
the computation times are summarized in Table III.

Overall, the offline computational burden of the ERLS is
a bit heavy, with more than four hours consumed by the
whole offline learning procedure. Particularly, the procedures
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TABLE III
SUMMARY OF OFFLINE AND ONLINE COMPUTATION TIME

Base learner
training/s

Case clustering
model training/s

MLR-based model
assembling/s

Online SVS
assessment/s

12091.4352 2941.3869 4.2647 0.0023

Note 1: The first three items represent the time consumptions of in-
dividual computation procedures w.r.t. offline ERLS construction; the
4th item stands for the average computation time of online execution
of SVS assessment on the 6400 unknown cases, including masking-
based missing data processing, DAE-based cluster assignment, and
ensemble assessment model application.
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Fig. 8. SVS assessment performance with different ratios of temporary data
losses.

of base learner derivation and clustering model training cost
most of the offline computation time, while MLR-based SVS
assessment model assembling can be quickly completed in less
than 5 s. Note that the offline computational burden does not
essentially affect the online application efficiency. In fact, as
reported in Table III, it takes merely 2.3 ms for the ERLS
to implement online assessment on a single SVS case. Given
that the OTW begins to acquire sequential PMU measurements
immediately after fault occurrence, the proposed ERLS can
release online SVS assessment results in less than 0.21 s after
fault clearance. Owing to such a high efficiency, pre-emptive
control actions can be quickly taken to save the system from
potential instability as early as possible.

D. Performance in Diverse Data Loss Conditions

To explore the potential of the proposed ERLS in addressing
diverse severe PMU data loss conditions, additional tests were
carried out here by varying the ratio of missing data points.
Specifically, by separately setting different ratios of temporary
missing data, i.e., r1% = 0, 10%, 20%, ..., 80%, to the 6400
unknown cases, the ERLS’s online performance was evaluated.
As summarized in Fig. 8, both the misdetection and false-
alarm rates gradually grow with the increase of r1, which
results in the decrease of the overall SVS assessment accuracy.
However, it should also be noticed that the ERLS can maintain
a high assessment accuracy of more than 96% when r1% <
30%, which in fact covers most normal temporary missing
data conditions in practical grids [42]. Even if 80% of PMU
measurements encounter temporary data losses, the ERLS
can still work effectively in most cases, with the assessment
accuracy remaining above 86%.

TABLE IV
SVS ASSESSMENT PERFORMANCE UNDER PRACTICAL DATA LOSS

CONDITIONS

Scenario Missing Data
Ratio/% Mis/% Fal/% Acc/%

1 12.63 1.09 1.69 97.22
2 15.41 1.06 1.58 97.36
3 17.28 1.12 1.63 97.25

In addition to temporary missing data, severe dimensional
data loss conditions were considered for more extensive tests.
Concretely, different ratios of dimensional data losses were
simulated by assuming {0, 1, 2, ..., 10} PMUs underwent total
failures, respectively, which corresponds to setting r2% to
{0, 1/13, 2/13, ..., 10/13}×100%. With such data loss con-
ditions applied to the 6400 unknown cases, the ERLS’s SVS
assessment performance is presented in Fig. 9. Analogously,
the overall performance generally degrades with the increase
in the number of lost PMUs. Yet it is found that such
dimensional data losses have a weaker influence on the ERLS’s
performance than temporary data losses. When no more than
five PMUs are subject to total data losses (r2% < 40%),
the assessment accuracy is steadily kept above 96%. In the
extreme condition of losing 10 PMUs (r2% = 77%), the ERLS
can still maintain an SVS assessment accuracy of nearly 91%.

For the sake of verifying the performance of the proposed
ERLS in the presence of more realistic data loss conditions,
here additional tests were carried out by mimicking practical
data loss scenarios. Specifically, actual lossy PMU measure-
ments were first acquired from three representative transient
scenarios occurring in the real-world China Southern Power
Grid (CSG) [43]; in each scenario, the data loss information of
field PMU measurements was collected from a small 13-bus
region of CSG to mimic data loss conditions in the Central
area of the Nordic test system. Statistically, missing data
points in the three scenarios account for 12.63%, 15.41%,
and 17.28%, respectively. Given the information on missing
data positions in these three scenarios, missing values were
set to the corresponding data points of the data matrices of the
6400 unknown cases to mimic practical data loss conditions.
With such newly set unknown cases, the SVS assessment
performance of the proposed ERLS was examined again, as
presented in Table IV.

Clearly, the proposed ERLS exhibits excellent SVS perfor-
mance in the above-mentioned practical data loss conditions.
The misdetection and false alarm rates firmly remain below
1.15% and 1.70%, respectively, resulting in an overall SVS
assessment accuracy of more than 97.2%. Comparatively
speaking, the SVS performance presented here is a bit better
than that reported in previous tests where data loss conditions
were simulated by randomly setting missing data points. In
fact, with special attention paid to the three practical data
loss scenarios in Table IV, it is observed that most of the
missing data points belong to dimensional data losses, with
only a small number of missing values occurring in the
form of temporary data losses. As verified above, dimensional
data losses generally have weaker impacts on the ERLS’s
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Fig. 9. SVS assessment performance with different amounts of dimensional
data losses.

performance. On the contrary, the random data loss conditions
set up in Section IV-A are more diversified, being more
difficult to be handled. This indicates that the previous tests
with random data loss conditions are more stringent than that
with practical data loss scenarios here. This is the major reason
why the proposed ERLS performs slightly better in Table IV.

Considering its desirable tolerance capability w.r.t. both
randomly simulated and practical data losses, the proposed
ERLS is expected to perform well in various practical contexts
with diverse complicated missing data conditions.

E. Robustness to PMU Measurement Errors

As PMU measurement errors are often inevitable in practical
measurement environments, here the ERLS’s performance was
further tested by imposing measurement errors onto PMU data
matrices. In particular, random noises following the normal
distribution N(0, σ2) were generated to simulate online PMU
measurement errors, and they were further imposed onto
{V, P,Q} measurements in individual PMU data matrices
of the 6400 unknown cases. To sufficiently test the ERLS’s
performance under different levels of measurement errors, the
standard deviation σ was set to 0, 0.5%, 1.0%, 1.5%, 2.0%,
2.5%, and 3.0%, respectively. Fig. 10 summarizes the SVS
assessment test results with such PMU measurement errors.

Evidently, the ERLS exhibits desirable robustness to PMU
measurement errors. In the context of an extremely severe error
level of σ3 = 3%, which corresponds to a relatively severe error
level of as large as ±9% according to the 3σ rule, the ERLS
can still keep the overall SVS assessment accuracy above 94%.
In fact, as commercial PMUs deployed in practical grids are
required to follow the IEEE Standard with 3σ < 1% [44],
the practical measurement errors would normally fall into this
range. As can be seen in Fig. 10, the ERLS can hold the
overall SVS assessment accuracy above 97% in the presence
of normal measurement errors with σ < 0.33%. Given such
a satisfactory anti-error capability, the ERLS can be widely
applied in practical defective PMU measurement contexts.

V. CONCLUSION

Focusing on addressing the challenging issue of imple-
menting reliable online SVS assessment in the presence of
diverse PMU data loss conditions, this paper develops a
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Fig. 10. Online SVS assessment performance in noisy measurement contexts.

unified data-driven solution by proposing a robust ERLS.
With the incorporation of efficient missing data processing
techniques and well-designed DL methods for hierarchical
ensemble learning, the proposed ERLS gains high potential
in handling multiple missing data conditions during online
application of SVS assessment. Extensive numerical tests on
the Nordic test system show that it achieves highly reliable
online SVS assessment in an efficient way despite various
severe PMU data loss conditions, with the overall assessment
accuracy remaining above 97% in most cases. Compared with
existing methods, the ERLS with strong capability in SVS-
related spatial-temporal feature learning and representation
performs better in online SVS monitoring, especially when
faced with new cases unfamiliar to initial offline learning.
Also, it exhibits better robustness to various complicated data
loss conditions, being more applicable in practice.

This study mainly considers practical measurement con-
ditions of PMU data losses for the implementation of SVS
monitoring. How to cope with other defective conditions,
e.g., WAMS communication delays and failures, would be
investigated in future to derive a more applicable online
SVS assessment scheme. Future work would also be devoted
to developing an enhanced cost-sensitive SVS assessment
approach, where the distinct costs of misdetection and false
alarm would be incorporated into the DL procedure.
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