

1

Turbulent Transport Mechanism in the

2

Roughness Sublayers over Idealized Urban Areas and its

3

Implication to Street-Level Ventilation

4

5

Abstract

6 Turbulence in the roughness sublayer (RSL) is inhomogeneous compared with that in
7 the inertial sublayer (ISL) of the atmospheric surface layer (ASL) over urban areas. Drag
8 coefficient C_d , which measures aerodynamic roughness, is employed in this paper to examine
9 how (idealized) urban morphology influences ASL dynamics and transport. Wind tunnel
10 experiments are conducted to study the flows and turbulence in response to different
11 configurations of (identical) roughness elements. Statistics, quadrant analysis, and tilt angle
12 evidence the more efficient RSL transport over rougher surfaces even the winds are slower.
13 Although the power spectra of streamwise u'' and vertical w'' fluctuating velocities are rather
14 insensitive to C_d , their cospectrum shows a secondary peak at small motion scales λ_x ($\leq 0.1\delta$
15 where δ is the thickness of turbulent boundary layer) along with the primary peak at integral
16 length scale Λ_x ($\approx \delta$). It is thus suggested that, regardless of the turbulence intensity, RSL
17 streamwise and vertical winds are more correlated, enhancing the transport. Amplitude (AM)
18 and frequency (FM) modulations signify the positive correlation between RSL large and small
19 motion scales which is amplified over rougher surfaces. Furthermore, RSL turbulence kinetic
20 energy (TKE) production (entrainment) increases with decreasing (increasing) C_d , fostering the
21 basic mechanism of street-level ventilation.

(Word Count: 200)

22 Keywords: aerodynamic resistance; drag coefficient C_d ; inertial sublayer (ISL); roughness
23 sublayer (RSL); turbulent transport; ~~urban canopy layer (UCL)~~; wind tunnel experiment.

24 **1. Introduction**

25 Air pollution poses a serious health risk, causing 7 million premature deaths worldwide
26 annually (Dhimal et al., 2021). In view of the dense population, the air quality in urban
27 environment is one of the major public concerns, especially in rapidly growing cities (Lawal
28 et al., 2023; Vidanapathirana et al., 2023). The layout of congested, high-rise buildings in mega
29 cities further hinders pollutant dilution and removal from street level, degrading the urban air
30 quality (Liang et al., 2023; Zhang et al., 2022). Therefore, it is crucial to advance our
31 understanding of turbulent transport in the atmospheric surface layer (ASL) over urban areas
32 in order to improve the living environment (Michioka et al., 2023).

33

34 Urban morphology largely influences the street-level ventilation and air quality (He et
35 al., 2020; Leung et al., 2012; Lim et al., 2022; Peng et al., 2021). Evidently, surface roughness
36 is one of the key factors governing the transport processes (Liu et al., 2015). A series of
37 systematic studies have been conducted to examine how urban roughness affects street-level
38 ventilation and pollutant removal (Liu et al., 2018). In short, surface roughness promotes
39 pollutant removal yet the transport mechanism is unknown (Mo and Liu, 2019). In this
40 connection, this study is conceived to extend our on-going research effort, elucidating the
41 fundamental turbulent transport mechanism in terms of intermittent motion scales.

42

43 ASL, which consists of the inertial sublayer (ISL) and the roughness sublayer (RSL),
44 develops over buildings and trees (sizeable roughness elements) on ground surface (Raupach
45 et al., 1991). ISL is elevated high enough above the (urban or vegetation) canopy where the

46 flows and turbulence are rather homogeneous so the classic Monin–Obukhov similarity theory
47 (MOST) can be applied (Brunet, 2020). RSL, on the other hand, covers $2h$ to $5h$ over the
48 surface-mounted roughness elements with characteristic height h . Different from its ISL
49 counterpart, the turbulence within the RSL is modified by individual roughness elements that
50 ends up with substantial spatial variation (Peng and Sun, 2014). In view of the dissimilar
51 turbulence statistics, the transport processes in the turbulent boundary layers (TBLs) over rough
52 walls are more efficient than those over smooth walls (Finnigan et al., 2009). It is noteworthy
53 that flows are decelerating and turbulence kinetic energy (TKE) is diminishing toward a
54 rougher surface yet the transport processes, both momentum and pollutant, are enhanced (Mo
55 and Liu, 2018a). As such, there is a need for the in-depth understanding of the winds and
56 turbulence structures in RSLs as well as the fundamental transport mechanism.

57

58 The turbulent transport **efficiency** in ISLs can be described in terms of drag coefficient

$$C_d = \frac{2u_\tau^2}{U_\infty^2} \quad (1)$$

59 where u_τ is the friction velocity and U_∞ the freestream wind speed (Liu et al. 2015). **It indeed**
60 **measures the efficiency of momentum transport which is positively correlated with that of**
61 **turbulent transport.** Different from open terrain, urban areas consist of sizeable roughness
62 elements that exert substantial drag on the flows aloft, modifying various atmospheric
63 processes (Barlow, 2014). The drag parameterization over rough surfaces, such as air-land or
64 air-sea interaction, is a keen topic. Most studies have simplified the existence of RSL, which,
65 however, complicates the transport processes so the conventional ASL parameterization is not
66 fully applicable to urban areas (Ho and Liu 2017).

67 Numerous studies have been directed toward the response of aerodynamic resistance
68 with a range of building configuration and packing density. The effects of layout, winds, and
69 height variability of building blocks on drag coefficient C_d were examined so as to formulate
70 an urban aerodynamic parameter. Apart from plan area index λ_p and frontal area index λ_f
71 (Hagishima et al., 2009; Li et al., 2022), the drag coefficient C_d is sensitive to the standard
72 deviation of building height (σ_h ; Zaki et al., 2011). However, these studies have only
73 investigated C_d as an aerodynamic parameter being influenced by urban surfaces but not the
74 transport mechanism. Focusing on the turbulent flows over dense urban area, Peng and Sun
75 (2014) suggested that the drag coefficient is independent from wind speeds. Recently, Yuan
76 and Aghaei Jouybari (2018) found that drag coefficient is able to determine the double-
77 averaged momentum flux, form-drag-induced shear, as well as turbulence production in RSLs.
78 Besides, Mo and Liu (2018b) revealed that rougher urban surfaces increase aerodynamic
79 resistance that in turn enhance street-level ventilation. Lately, Shao et al., (2022) proved that
80 the drag coefficient is positively correlated with the coherent turbulence structures. These
81 findings have outlined the interaction among drag coefficients, urban morphology, and
82 turbulent transport. However, there is still a lack of systematic investigation or **theoretical**
83 **evidence for** the mechanism behind the RSL transport over urban areas using drag coefficients.

84

85 Over the decades, it has been recognized that the turbulence characteristics in the ISL
86 above vegetation canopies differ much from those in the RSL (Belcher et al., 2012).
87 Fitzmaurice et al. (2004) used large-eddy simulation (LES) to calculate the neutrally stratified
88 flows in and immediately above a vegetation canopy. It was shown that the RSL mean-wind-

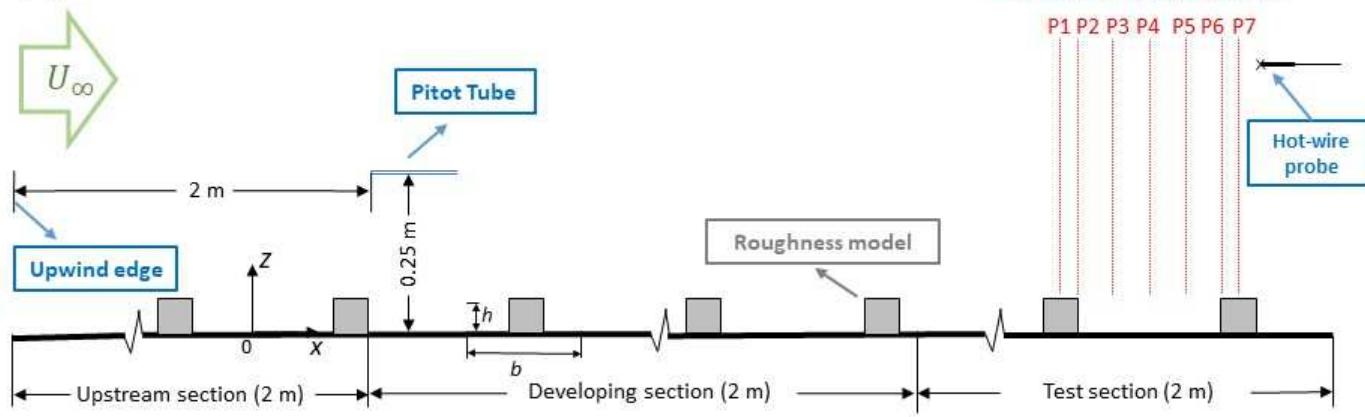
89 speed profile possesses an inflection (significant shear) in the vicinity of the roughness
90 elements. Finnigan et al. (2009) proposed a phenomenological model to differentiate the
91 turbulence in the RSLs and ISLs over vegetation canopies using LES. Although heterogeneous,
92 several studies have concurred that RSL turbulence is more coherent than the ISL one (Conan
93 et al., 2015; Finnigan et al., 2009). Moreover, it is dominated by energetic eddies which govern
94 the RSL transport of mass and momentum (Böhm et al., 2013; Finnigan and Shaw, 2000; Katul
95 et al., 2006). How *this* energetic turbulence coherence drives RSL transport is our
96 inquisitiveness.

97

98 In recent years, the interaction among the broad spectra of flows has been a major topic
99 attracted numerous investigations (Chen and Vassilicos, 2022; Liu et al., 2023a; Mäteling et
100 al., 2020; Pathikonda and Christensen, 2017; Perret and Kerhervé, 2019). Energy spectra of
101 velocity fluctuation and momentum flux are essential to scale interaction. The dominant
102 frequencies signify the spatio-temporal scales of eddy-resolved flows (Demarco et al., 2022).
103 Power spectrum and cospectrum delineate how energy is distributed across eddies of different
104 sizes using the fast Fourier transform (FFT; Roth et al., 2015). Apart from the primary spectral
105 peak attributed to buildings, Liu et al. (2023b) used wavelet analysis to unveil a secondary peak,
106 denoting the footprints of *very* large-scale motions (*VLSMs*) over real urban morphology.
107 Alternatively, a data-driven approach to energy spectrum is the Hilbert-Huang transform
108 (HHT). Wei et al. (2016) applied the Hilbert spectral analysis to characterize ASL turbulence
109 scales. Agostini and Leschziner (2016) introduced the empirical mode decomposition (EMD)
110 to investigate the inner-outer-scale interaction. Although scale interaction has been extensively

111 studied, most of the existing studies in the literature were based on either smooth walls or arrays
112 of identical, idealized roughness elements. There were few studies focusing on non-uniform
113 surface roughness to investigate how different aerodynamic roughness, such as the drag
114 coefficient and roughness length, influences the scale interaction.

115


116 As an extended effort of the previous investigations, the purposes of this study are to:

- 117 • Unveil the RSL transport mechanism in response to the more uniform mean winds;
- 118 • Examine how the aerodynamic resistance modifies the RSL transport and mixing; and
- 119 • Elucidate the RSL transport efficiency by statistical (time domain) and spectral
120 (frequency domain) analyses.

121

122 This study examines the turbulent transport mechanisms near rough surfaces by signal
123 processing to investigate how different motion scales contribute at different levels of
124 aerodynamic resistance. For example, a low-pass filter, which is the most well received
125 practical approach to decompose fluctuating signals, is applied to separate the motion scales.
126 Energy spectra and amplitude modulation (AM) are introduced to contrast the contribution
127 from different scales and their interactions. The TKE budget is used to compare the TKE
128 production and turbulent entrainment (from ISL downward to RSL) over different rough
129 surfaces.

(a) Schematic of wind tunnel

(b) Cube-type

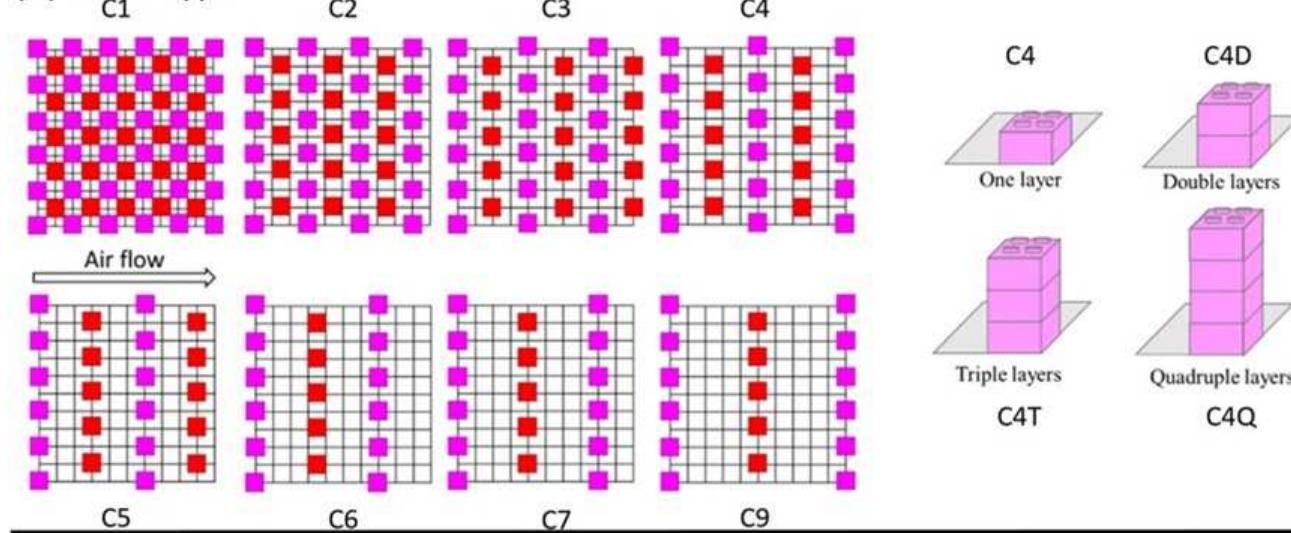


Figure 1. Configurations of cube-type, surface-mounted roughness elements employed in the wind tunnel experiments.

131 **2. Methodology**

132 **2.1 Wind Tunnel Infrastructure**

133 The experiments are conducted in the isothermal, open-circuit wind tunnel at the
134 Department of Mechanical Engineering, The University of Hong Kong. The flows are driven
135 by a centrifugal fan whose power is controlled by a frequency inverter (design wind speeds 0.5
136 $\text{m sec}^{-1} \leq U_0 \leq 15 \text{ m sec}^{-1}$ in the empty test section). After the fan, a diffuser, a settling chamber,
137 a flow straightener, and a contraction cone are built (in series) to control wind speed and
138 turbulence level. Moreover, a honeycomb filter is installed after the flow straightener in-
139 between the settling chamber and the contraction cone to reduce the background turbulence
140 intensity ($\leq 5\%$). **For environmental fluid mechanics applications, roughness elements are**
141 **purposely added upstream the test section to modulate the mean-wind-speed profile and the**
142 **turbulence intensity.** The test section is made of acrylic whose dimensions are $6\text{-m long} \times 0.56\text{-}$
143 $\text{m wide} \times 0.56\text{-m high}$. The roughness elements, which are used to model idealized urban areas,
144 are glued on the entire 6-m wind-tunnel floor to facilitate fully developed TBL flows. The
145 details of our wind tunnel infrastructure are available elsewhere (Mo and Liu, 2018c).

146

147 The idealized urban morphology in the wind tunnel experiments is fabricated by plastic
148 LEGO® blocks of size h ($= 9.6 \times 10^{-3} \text{ m}$; cube-type elements; Figure 1a). Arrays of LEGO®
149 bricks are distributed in a staggered pattern whose streamwise separation b is adjusted to
150 modulate the surface roughness, covering the range of $h \leq b \leq 9h$ (cases C1 to C9). In addition,
151 the height of roughness elements is increased by mounting double (C4D; $h = 19.2 \times 10^{-3} \text{ m}$),
152 triple (C4T; $h = 28.8 \times 10^{-3} \text{ m}$), and quadruple (C4Q; $h = 38.4 \times 10^{-3} \text{ m}$) layers of LEGO® bricks

153 in the C4 configuration to extend the drag coefficient by height variability (Figure 1b). This
154 ends up with the limitation of our work that the roughness element is relatively large with
155 respect to the wind tunnel height (close to 7%). When the TBL develops to a certain extent, it
156 affects the freestream region, causing the pressure gradient in the freestream region to change
157 more negative, leading to the mild freestream acceleration phenomenon. The mean wind speeds
158 in the presence of roughness elements are being monitored by a Pitot tube upstream the test
159 section that is over 8 m sec^{-1} throughout the experiments. The Reynolds number Re_∞ ($= U_\infty \delta / \nu$)
160 based on the TBL thickness δ and the kinematic viscosity of air at room temperature ν is over
161 10^5 to minimize the molecular effect.

162

163 **2.2 Measurement and Data Acquisition**

164 The flows are probed by a hotwire constant-temperature anemometer (CTA) with a
165 crosswire design to measure the streamwise u and vertical w velocity components. The sensing
166 element of the probe consists of a pair of 5×10^{-6} -m-diameter, platinum-plated tungsten wires
167 with 2×10^{-3} -m active length by copper electroplating. The included angle between the two
168 wires is 100° ($\geq 90^\circ$) that helps reduce the inaccuracy due to inadequate yaw response in
169 elevated turbulence intensity in the near-wall region. Sensor positioning on the vertical
170 centerplane (x - z at $y = 0$; where x , y , and z are the streamwise, spanwise, and vertical direction,
171 respectively) of the test section is controlled by a digital traverse system (spatial resolution
172 1 mm) and the National Instruments (NI) motion controllers (PCI-7390). The analog CTA
173 signal is digitalized by a 24-bit NI data acquisition module (NI 9239; offset error $\pm 0.05\%$ for
174 analog input ± 10.52 V) mounted in a NI CompactDAQ chassis (NI cDAQ-9188). The NI units

175 are connected to a digital computer via a local area network (LAN) cable. The LabVIEW
176 software is used to process the automatic data acquisition and conversion for the measurements.
177 Seven vertical profiles are collected for each test of roughness-element configuration (Figure
178 1a), covering the top of roughness elements (P1 and P7), cavity top (P3, P4, and P5), leeward
179 edge (P2), and windward edge (P6). Along each vertical profile, 96 to 101 sampling points are
180 probed, ranging from the roughness element height $z = h$ to the wall-normal distance over the
181 TBLs $z = 350$ mm. The sampling duration at each point is over 66 sec and the sampling
182 frequency is 2 kHz. In addition, the sample size (over 2^{17} data at each sampling point) is
183 sufficiently large so the measurement time for each LEGO®-array configuration is over 12
184 hours. The CTA calibration is traceable based on the universal calibration law of the Institute
185 of Sound and Vibration Research (ISVR; Bruun, 1971). Its readings are also compared in-
186 house with those monitored by a Pitot tube in which the uncertainty is within 3%, and the
187 correlation coefficient is up to $R^2 = 0.9997$.

188

189 **3. Results and Discussion**

190 **3.1 Turbulence Statistics**

191 **3.1.1 Boundary-Layer Parameters**

192 The TBL thickness δ is defined at the wall-normal distance z where the spatio-temporal
193 average of wind speed converges to 99% of the freestream one $\langle \bar{u} \rangle \Big|_{z=\delta} = 0.99U_\infty$. In this study,
194 the average freestream wind speed in the TBL is in the range of $10 \text{ m sec}^{-1} \leq U_\infty \leq 11 \text{ m sec}^{-1}$
195 for cube-type roughness elements (Table 1). Here, the overbar $\bar{\psi}$ and angle brackets $\langle \psi \rangle$
196 denote temporal and spatial averages, respectively.

197 The friction velocity u_τ ($= \sqrt{-\langle u''w'' \rangle}$) is the appropriate characteristic velocity scale
198 in the near-wall region (Mo and Liu, 2023). In wind tunnel experiments, the aerodynamic
199 resistance is commonly estimated from the spatio-temporal average of vertical momentum flux
200 $u''w''$ which is much larger than the viscous momentum flux $\nu \partial \langle \bar{u} \rangle / \partial z$ over the entire rough
201 surface. It was found that the Reynolds shear stress in the ISL is approximately 25% less than
202 the surface stress deduced from pressure-difference measurements (Cheng et al., 2007). It in
203 turn underestimates the friction velocity. Nonetheless, it is practically acceptable to adopt the
204 square root of maximum vertical turbulent momentum flux to determine the friction velocity
205 in wind tunnel experiments because the aerodynamic resistance is dominated by form drag
206 (rather than viscous shear) in the current study. Here, double prime ψ'' ($= \psi - \langle \bar{\psi} \rangle$) denotes
207 the deviation from the spatio-temporal average. The rough-TBL parameters, including the drag
208 coefficient C_d , the zero-plane displacement d , and the roughness length z_0 , are used to compare
209 the aerodynamic resistance of the various settings of idealized urban morphology adopted in
210 this paper. Using u_τ as the slope, the roughness length z_0 and the zero-plane displacement d are
211 then determined by the best fit of the spatio-temporal average of mean-wind-speed vertical
212 profiles measured in the wind tunnel experiments to the theoretical logarithmic law of the wall
213 (log-law) in the ISL (linear regression). The range of ISL is identified in the above comparison
214 as well whose deviation is bounded at 10%. Subsequently, the RSL height is defined at the ISL
215 bottom. Their uncertainty is thus comparable to that of wind-speed measurements, i.e., 3% (Mo
216 et al., 2021).

Table 1. Wind tunnel parameters and TBL properties over idealized urban morphology.

Case	h [$\times 10^{-3}$ m]	b [$\times 10^{-3}$ m]	h/b	U_∞ [m sec $^{-1}$]	u_τ [m sec $^{-1}$]	C_d [$\times 10^{-3}$]	δ [$\times 10^{-3}$ m]	d [$\times 10^{-3}$ m]	z_0 [$\times 10^{-3}$ m]
C1	9.6	16	0.6	10.0	0.42	3.6	135	5.2	0.02
C2	9.6	32	0.3	10.9	0.53	4.8	165	5.8	0.08
C3	9.6	48	0.2	10.8	0.54	4.9	165	5.3	0.09
C4	9.6	64	0.15	10.8	0.56	5.5	165	5.6	0.13
C5	9.6	80	0.12	10.6	0.54	5.2	160	5.4	0.11
C6	9.6	96	0.1	10.6	0.54	5.1	165	5.3	0.10
C7	9.6	112	0.086	10.6	0.53	5.0	160	5.0	0.09
C9	9.6	144	0.067	10.7	0.51	4.5	155	4.8	0.06
C4D	19.2	64	0.3	10.8	0.60	6.3	190	5.8	0.23
C4T	28.8	64	0.29	11.1	0.66	7.1	215	5.1	0.37
C4Q	38.4	64	0.6	11.2	0.70	7.9	219	3.6	0.52

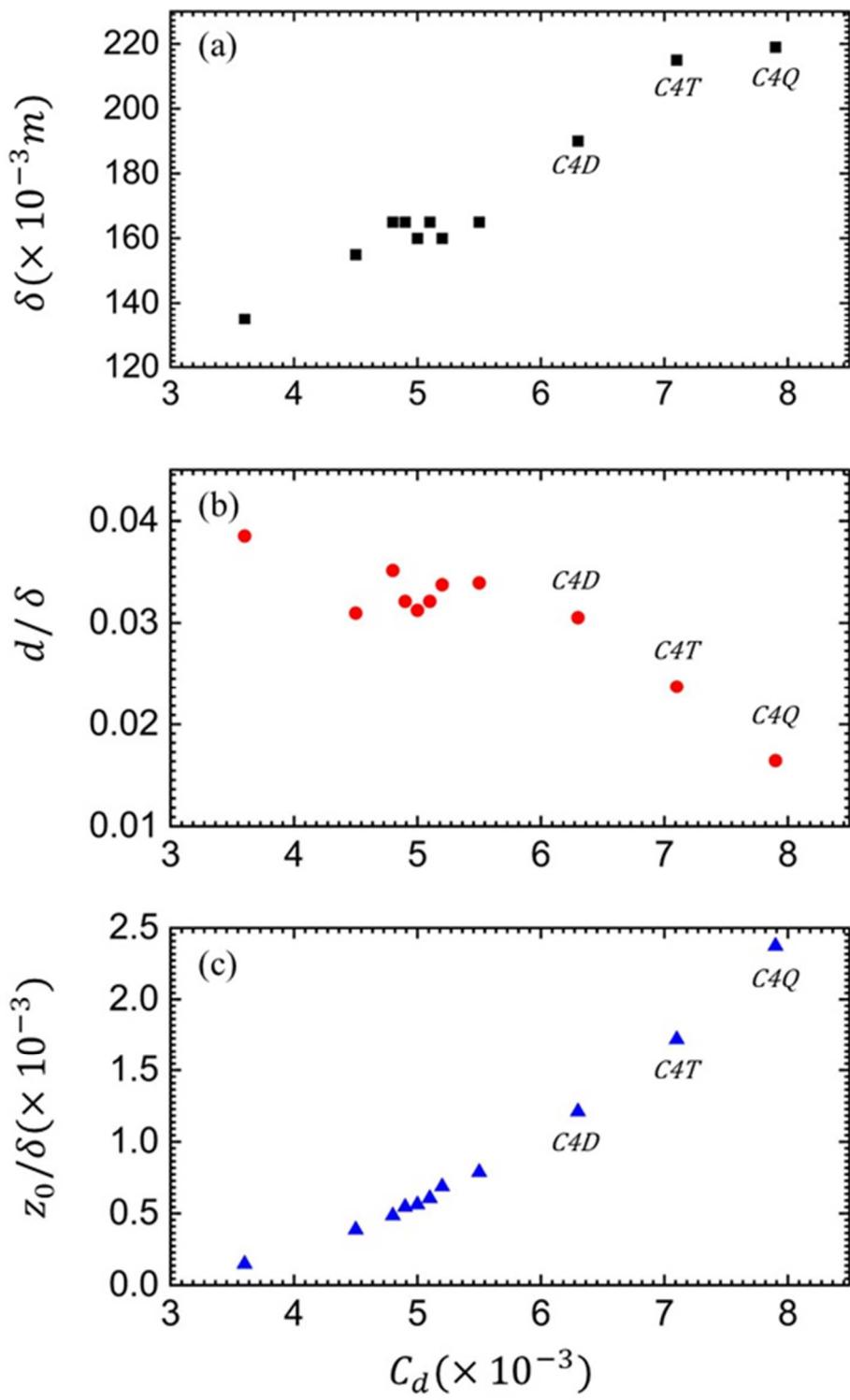


Figure 2. RSL parameters: (a) TBL thickness δ ; (b) zero-plane displacement d ; and (c) roughness length z_0 of the flows over cube-type roughness elements expressed in terms of drag coefficient C_d .

218 Figure 2 compares various aerodynamic parameters of the flows over different rough
219 surfaces as functions of the drag coefficient C_d . In this study, the TBL thickness δ increases
220 with increasing C_d (Figure 2a). It is because the TBL is (naturally) developed by the roughness
221 elements. Whereas, the zero-plane displacement d does not show any notable correlation with
222 the roughness elements tested (4.8×10^{-3} m $\leq d \leq 5.8 \times 10^{-3}$ m) except in the regime of high-drag
223 coefficient ($C_d \approx 8 \times 10^{-3}$). In the cases C4D, C4T and C4Q, it drops sharply with increasing C_d
224 (Figure 2b). As such, increasing roughness-element height h does not necessarily represent
225 increasing zero-plane displacement d nor aerodynamic resistance C_d . On the other hand,
226 roughness length z_0 increases monotonically with increasing C_d (Figure 2c). Its practical
227 function as the measure of surface roughness is therefore concurred (Cheng et al., 2007).

228

229 **3.1.2 Mean-Wind-Speed Profiles**

230 The dimensionless profiles of the spatio-temporal average of mean-wind-speed
231 $\langle \bar{u} \rangle / u_\tau$ over different idealized urban morphology collapse in the ISL (following the log-law)
232 and the outer TBL (Figure 3). Apparently, the RSL mean-wind speeds are more uniform than
233 their ISL counterparts, signifying the enhanced transport. ISL flows are rather homogeneous
234 so the flux-gradient relationship can be applied in the form of the [Monin-Obukhov similarity](#)
235 [theory](#) (MOST). Unlike the ISL, the dynamics in the RSL beneath is substantially modified by
236 individual roughness elements. The RSL turbulent diffusivity was found enhanced (compared
237 with that in the ISL) so the MOST is merely applicable. The log-law is no longer applicable to
238 describe the RSL mean-wind speed, hence, an analytical solution was proposed specifically for
239 both RSL and ISL winds elsewhere (Ho and Liu, 2017). In response to surface roughness, the

- 240 mean-wind-speed profiles in the RSL shift downward with increasing drag coefficient C_d .
- 241 **Eventually**, RSL flows are slowed down over rougher surfaces (yet the transport is enhanced).

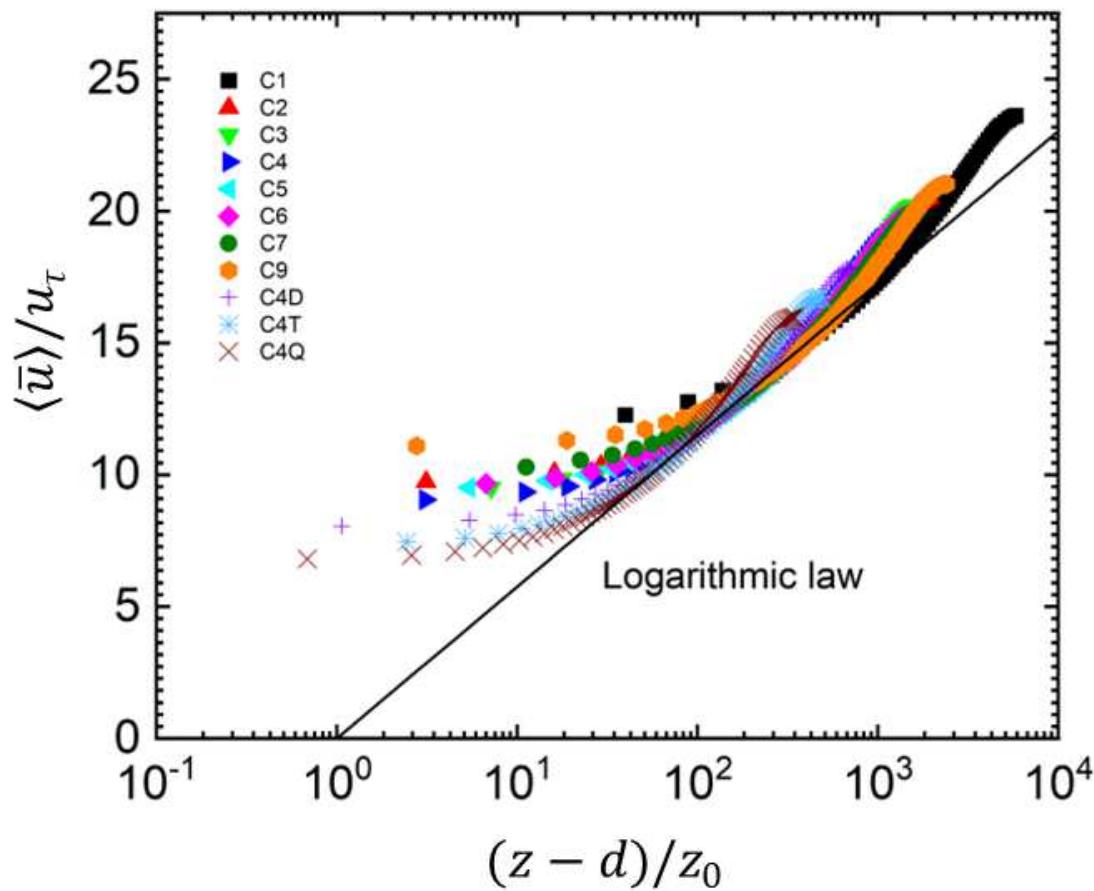


Figure 3. Dimensionless vertical profiles of spatio-temporal average of mean wind speed $\langle \bar{u} \rangle / u_\tau$ plotted against height $(z - d)/z_0$ in semi-logarithmic scale over idealized urban morphology.

243 **3.1.3 Transport Efficiency**

244 The momentum flux fraction

$$S_i = \frac{\langle \overline{u''w''} \rangle_{Qi}}{\langle \overline{u''w''} \rangle} \quad (2)$$

245 quantifies the contribution from the i -th quadrant Qi to the spatio-temporal average of vertical246 momentum flux $\langle \overline{u''w''} \rangle$. Subsequently, the exuberance

$$\eta = \frac{S_1 + S_3}{S_2 + S_4} \quad (3)$$

247 is defined to compare the transport efficiency over rough surfaces (Shaw et al., 1983). It is

248 negative because S_1 and S_3 are larger than zero while S_2 and S_4 are smaller than zero. Moreover,

249 less negative the exuberance implies more efficient the vertical transport. Quadrant events Q2

250 (ejection) and Q4 (sweep) signify the organized events that favor vertical momentum transport.

251 On the contrary, quadrant events Q1 (outward interaction) and Q3 (inward interaction)

252 represent the disordered events. Therefore, the closer the magnitude of η is to zero, the more

253 coherent the events, i.e. more efficient the transport.

254

255 Previous studies have introduced the exuberance η to quantify the transport efficiency

256 (Christen et al., 2007; Hertwig et al., 2017; Palusci et al., 2022). Yoshida et al. (2018) used this

257 parameter to investigate the transport efficiency of vertical momentum flux that elucidated the

258 relationship between building-height variability and characteristics of turbulent coherent

259 structures. In effect, exuberance expresses the negative-to-positive-contributions ratio to

260 momentum flux which indicates the vertical transport efficiency in terms of momentum. If the

261 exuberance is close to zero, it is suggested that the (larger) downward transport dominates

262 momentum and less unorganized, counter-flux events exist. It hence ends up with a more
263 efficient transfer of momentum. It is noteworthy that the net momentum flux could be large
264 even the exuberance is large in magnitude (i.e. inefficient transport). In this connection,
265 comparing the vertical profiles of momentum flux is an alternative to examine the transport
266 efficiency over different roughness which was reported elsewhere (Ho and Liu 2017b).

267

268 Previous studies have focused on the relative contributions of Q2 (ejection) to Q4
269 (sweep) at building height $z = h$ (S_2/S_4). Alike this study, comparing S_2/S_4 for regular and
270 staggered arrays showed that Q4 (sweep) dominates the dynamics over staggered arrays
271 (Kanda ,2006). Similarly, the outdoor measurements based on reduced-scale models of regular
272 cubical roughness elements in neutral stability found that the relative contributions from Q4
273 (sweep) are larger than those from Q2 (ejection) in all locations and at all heights (Roth et al.,
274 2015). The effect of both organized and disordered events on the transport efficiency of
275 different rough surfaces will be further discussed.

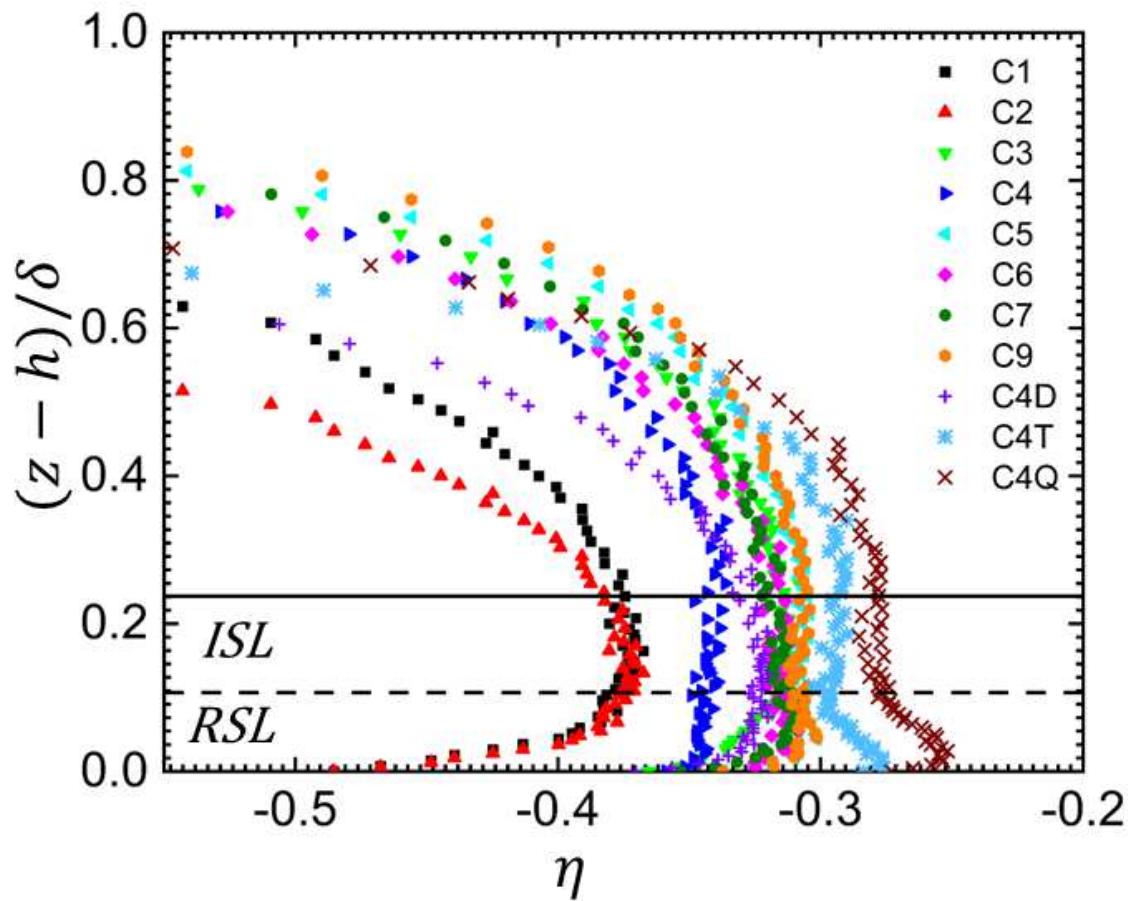


Figure 4. Vertical profiles of transport efficiency measured in terms of exuberance $\eta = (S_1 + S_3)/(S_2 + S_4)$. Dashed and solid lines denote the RSL and ISL top, respectively.

277 The exuberance η increases monotonically (less negative) with increasing drag
 278 coefficient C_d (Figure 4). In this connection, the transport efficiency gradually increases
 279 starting from the RSL bottom, arrives its (broad) maximum in the ISL, then decreases thereover
 280 toward the TBL top. Building height variability plays an important role in transport-efficiency
 281 improvement. In the cases C4T and C4Q (roughest), the transport efficiency increases sharply
 282 at the RSL bottom that outperforms its ISL counterpart, illustrating the roles of (dissimilar)
 283 buildings in urban ventilation. It is in turn implied that more diversified building height favors
 284 vertical transport in particular close to the urban canopy.

285

286 **3.1.4 Tilt Angle**

287 Quadrant analysis provides a perspective to examine turbulence structures. It divides
 288 the combination of streamwise and vertical flows into four quadrants on the $u'' - w''$ plane
 289 based on the sign (direction) of the fluctuating velocities. The quadrants are divided into
 290 outward interaction Q1 ($u'' > 0$ and $w'' > 0$), ejection Q2 ($u'' < 0$ and $w'' > 0$), inward
 291 interaction Q3 ($u'' < 0$ and $w'' < 0$), and sweep Q4 ($u'' > 0$ and $w'' < 0$). The joint probability
 292 density function (JPDF) $P(u'', w'')$ measures the occurrence frequency of streamwise u'' and
 293 vertical w'' fluctuating velocities. The product of JPDF and the vertical momentum flux $u''w''$
 294 yields the covariance integral

$$\overline{u''w''} = \int_{-\infty}^{+\infty} u''w'' P(u'', w'') du'' dw'' \quad (4)$$

295 which is used to examine the composition of the total momentum flux. Applying JPDF found
 296 that low- and high-momentum structures are associated with Q2 (ejection) and Q4 (sweeps) of
 297 the flows, respectively (Michioka et al., 2011).



Figure 5. (a) Contours of joint probability density function (JPDF) of the streamwise and vertical fluctuating velocities $P(u'', w'')$ and the linear regression for the determination of the tilt angle Θ in Case C4. (b) Vertical profiles of the spatio-temporal average of tilt angle $\langle \Theta \rangle$ over different configurations of cube-type roughness elements. (c) The spatio-temporal average of tilt angle $\langle \Theta \rangle$ plotted as a function of drag coefficient C_d and height $(z - h) / \delta$. Dashed and solid lines denote the RSL and ISL top, respectively.

298 The tilt angle Θ is obtained by the linear regression of the most energetic Q2 and Q4
 299 events on the JPDF (Figure 5a). The turbulence is isotropic when the tilt angle equals 45° . As

300 the tilt angle continues to increase, the vertical fluctuating velocity w'' increases to a greater
301 extent than does the streamwise one u'' . It is thus implied that the (vertical) transport is growing
302 to be more energetic.

303

304 Figure 5b depicts the vertical profiles of the spatio-temporal average of the tilt angle
305 $\langle \bar{\Theta} \rangle$ over different configurations of roughness elements. It is shown that, in the RSL, the tilt
306 angle increases with height that is peaked roughly at the RSL-ISL interface (most efficient
307 vertical transport). Apparently, there is a change in peaked tilt angle in response to drag
308 coefficients C_d . At the same height, the tilt angle increases with increasing drag coefficient.
309 **Figure 5c shows this phenomenon more noticeably.** Therefore, it is concluded that the ASL
310 vertical fluctuating velocity w'' is more energetic over rougher surfaces. The tilt angle
311 gradually decreases with increasing height in the ISLs. Thereover in the outer layer, it
312 converges regardless of the drag coefficient. In this connection, the turbulence structure in the
313 outer layer is merely influenced by surface roughness.

314

315 The above analysis suggests that the drag coefficient C_d is positively correlated to the
316 transport efficiency (exuberance) η and the tilt angle Θ . Organized events (Q2 and Q4) possess
317 more energetic vertical fluctuating velocity over rougher surfaces that favor ventilation. Hence,
318 the following sections explore their interaction in order to elucidate the transport mechanism
319 over urban areas. The augmented transport efficiency extends slightly over ISL to $0.5\delta \leq z \leq$
320 0.8δ that signifies the influence of surface-mounted roughness elements on the entire ASL.

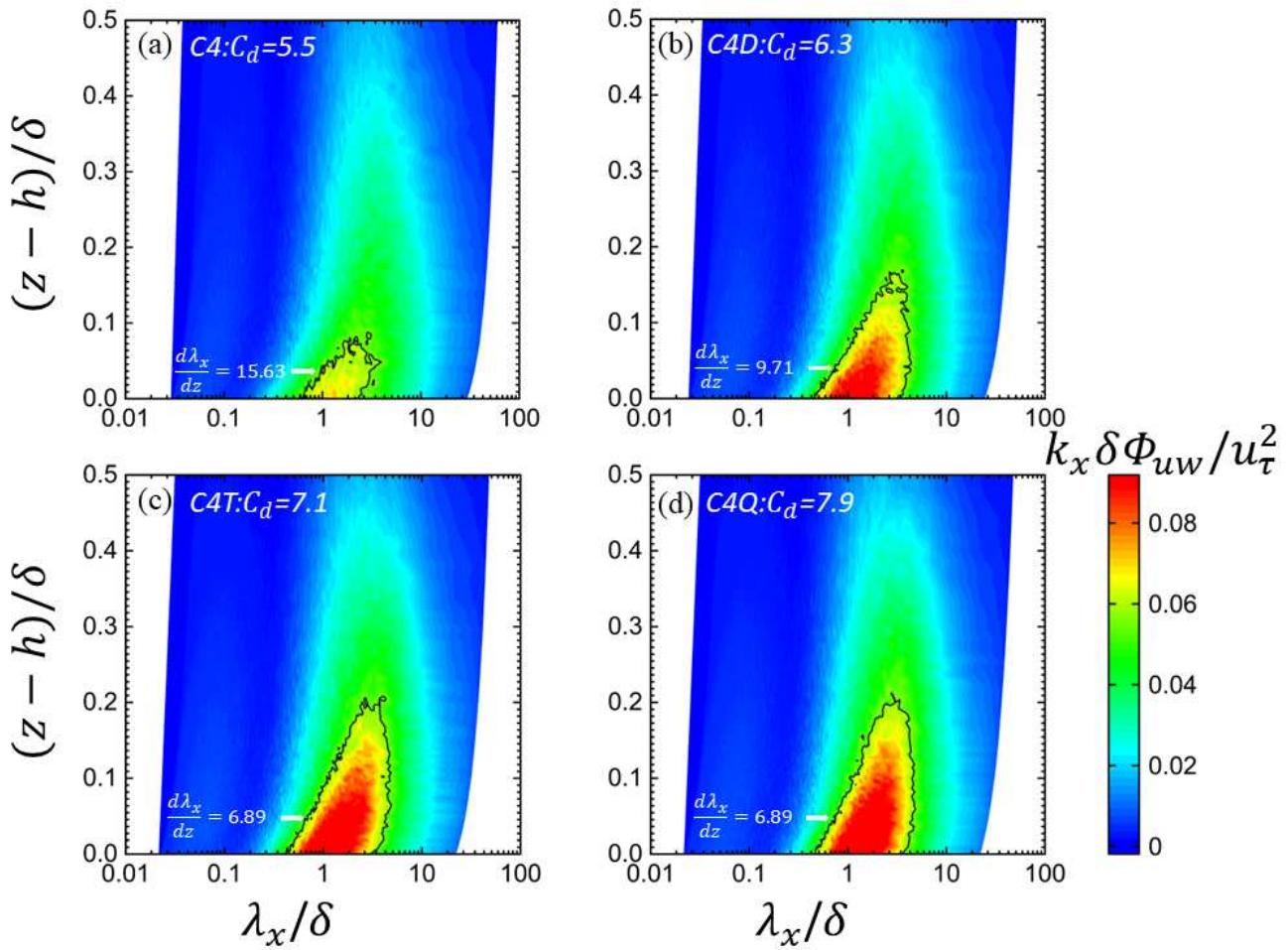


Figure 6. Shaded contours of dimensionless pre-multiplied energy cospectrum of the streamwise and vertical fluctuating velocities $k_x \delta \Phi_{uw} / u_\tau^2$ plotted as functions of motion scale λ_x/δ and height $(z - h)/\delta$. Cases (a) C4; (b) C4D; (c) C4T; and (d) C4Q.

322 **3.2 Spectral Analysis**

323 **3.2.1 Energy Spectrum**

324 Figure 6 compares the pre-multiplied energy cospectra of streamwise u'' and vertical
325 w'' fluctuating velocities across the entire TBL to observe the energy distribution of the large-
326 and small-scale structures. The streamwise Φ_{uu}/u_τ^2 and vertical Φ_{ww}/u_τ^2 energy spectra are non-
327 dimensionalized by the friction velocity u_τ . Here, $k_x (= 2\pi f_s/\langle \bar{u} \rangle)$ is the streamwise
328 wavenumber based on the Taylor's frozen turbulence hypothesis that is calculated by the
329 (sampling) frequency f_s and the ensemble average of mean-wind speed $\langle \bar{u} \rangle$ (Chin et al.,
330 2009). Obviously, the integral length scale Λ_x , i.e., the scale of the peaked pre-multiplied
331 energy cospectra, is comparable to the TBL thickness δ . It increases with increasing elevation
332 as well.

333

334 The RSL motion scales are examined by frequency spectrum. Aerodynamic resistance
335 also affects the dominant scale significantly. Comparing the cases C4, C4D, C4T, and C4Q
336 with elevated C_d , it is noticeable that the vertical gradient of streamwise wavelength $d\lambda_x/dz$,
337 which measures the change of the size of motion scales in height, decreases with increasing C_d
338 (Figure 6). Moreover, the energy intensity increases with increasing aerodynamic resistance.
339 Hence, the smoother the surface is, the faster the rate at which the dominant eddy size increases
340 with increasing height in RSL and the lower the energy intensity. In other words, near-ground
341 eddies are less heterogeneous over rougher surfaces.

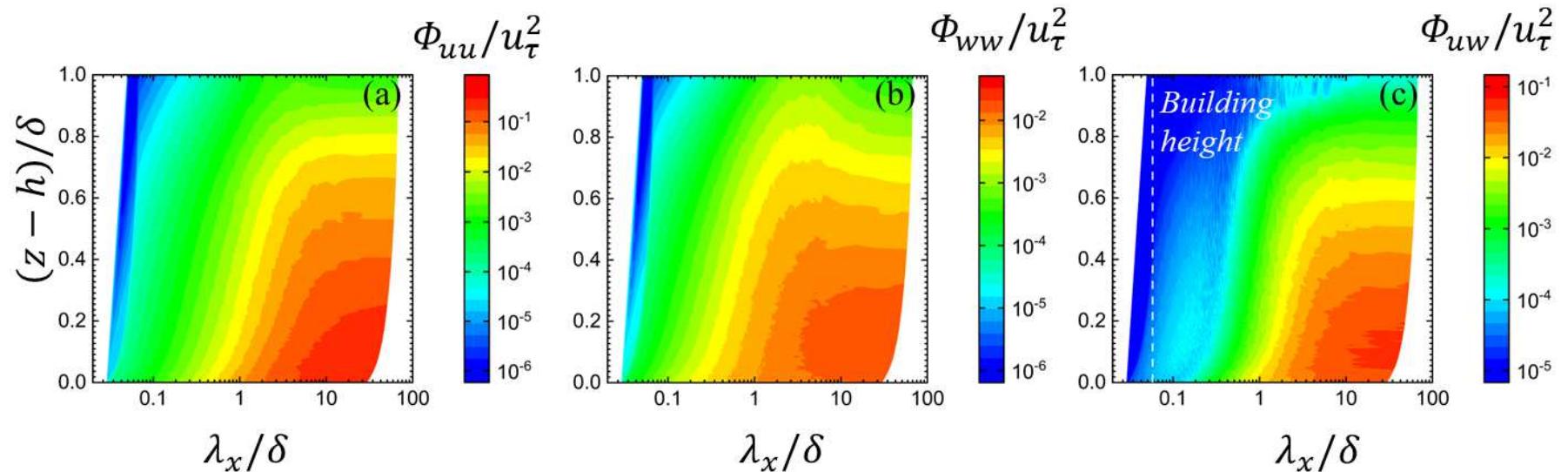


Figure 7. Shaded contours of dimensionless energy spectra in Case C4. (a) streamwise Φ_{uu}/u_τ^2 and (b) vertical Φ_{ww}/u_τ^2 fluctuating velocities together with (c) their cospectra Φ_{uw}/u_τ^2 plotted as functions of motion scale λ_x/δ and height $(z - h)/\delta$.

343 Using the roughness configuration setting C4 as an example (Figure 7), apparently,
 344 there is a peak in the power spectra and cospectra of streamwise u'' and vertical w'' fluctuating
 345 velocities. The peak is located approximately at $\lambda_x = 10\delta$ regardless of the elevation. Moreover,
 346 the streamwise motion scales obviously convey much more energy than the vertical ones (by
 347 almost an order of magnitude). As such, the energy is dominated by the anisotropic **LSMs**.

348

349 A secondary peak of cospectrum, **whose wavelength λ_x is of the same order of**
 350 **magnitude of the building height h** , is unexpectedly found in the logarithmic region that is
 351 attributed to small-scale motions roughly at $\lambda_x = 0.1\delta$ (Figure 7c). In particular, this sub-peak
 352 is not found in the power spectra of both streamwise and vertical fluctuating velocities. It is
 353 thus implied that, other than the integral length scale, TKE does not show any local maximum
 354 in the short-wavelength regime. Therefore, the small-scale motions ($\lambda_x < 0.1\delta$) are barely
 355 initiated by the roughness elements. Instead, the dynamics and intermittency are suppressed by
 356 the roughness elements while approaching the solid boundary. Under this circumstance, the
 357 secondary peak of cospectrum suggests that the streamwise and vertical fluctuating velocities
 358 are more correlated with each other in the RSL. As a result, the drag over rough surfaces
 359 enhances the mixing and transport processes.

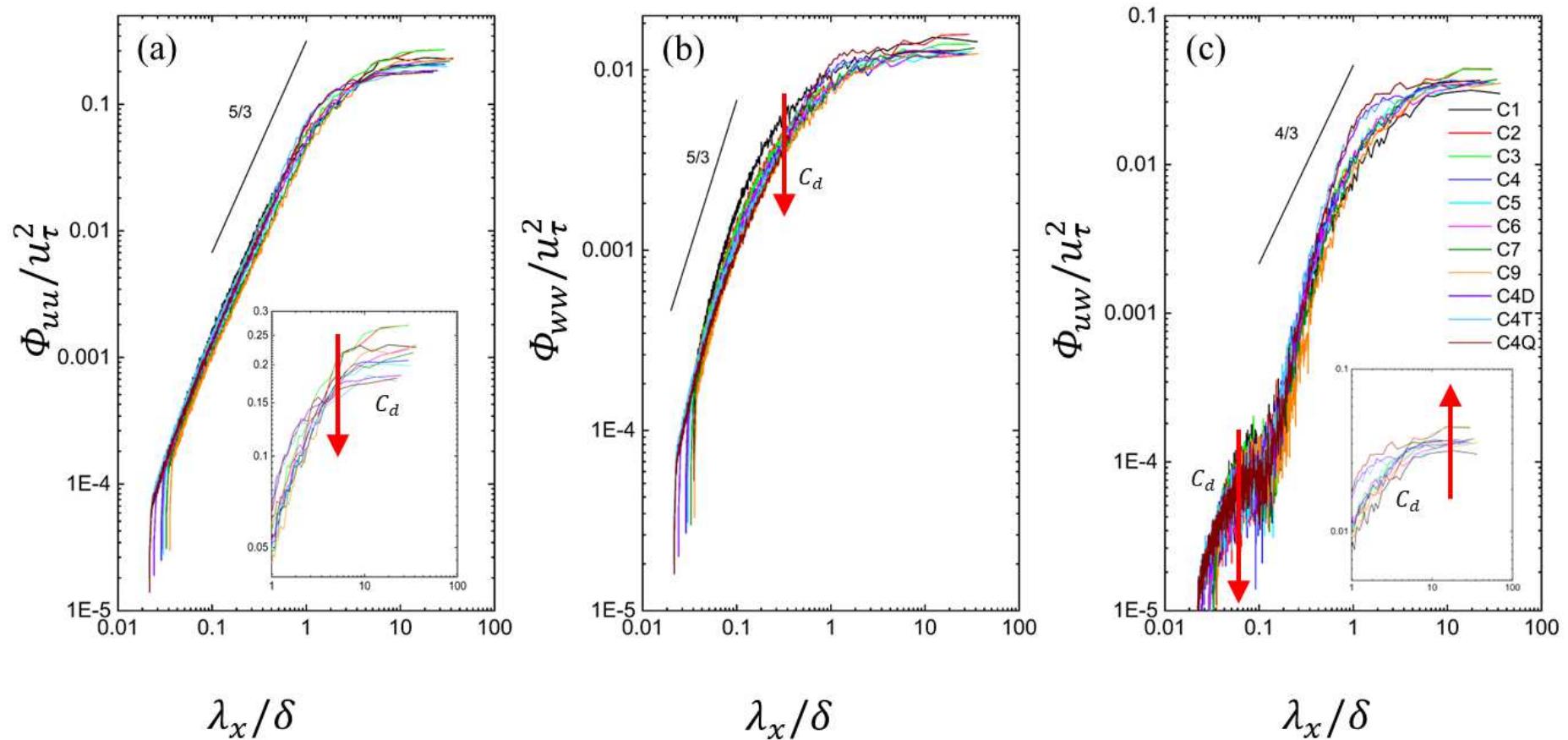


Figure 8. Energy spectra of the (a) streamwise Φ_{uu}/u_τ^2 and (b) vertical Φ_{ww}/u_τ^2 fluctuating velocities together with (c) the cospectra Φ_{uw}/u_τ^2 of u'' and w'' plotted as functions of motion scale λ_x/δ at $(z-h)/\delta = 0$. Arrow points increasing drag coefficient C_d .

361 Figure 8 compares the spectral energy density at the RSL bottom $z = h$ of all the cases.
362 The energy density follows the conventional energy spectrum based on Kolmogorov's theory
363 (Kolmogorov, 1991). For instance, the power spectra of both streamwise u'' and vertical w''
364 fluctuating velocities follow the $-5/3$ power-law scaling in the inertial subrange. In addition, a
365 4/3 ratio between the cospectral density of u'' and w'' follows as a consequence of local
366 isotropy.

367

368 Compared with the long-wavelength region ($\lambda_x > \delta$), the energy spectra of streamwise
369 u'' fluctuating velocities are smaller and are comparable over different rough surfaces in the
370 shorter-wavelength regime ($\lambda_x < 0.1\delta$). It is thus suggested that the motions governing energy
371 cascade and even dissipation are about the same scale regardless of the aerodynamic resistance
372 in the dimensionless manner. On the contrary, a noticeable difference in the energy spectra is
373 observed in the longer-wavelength regime. The spectra of both the streamwise (Figure 8a) and
374 vertical (Figure 8b) fluctuating velocities grow in energy contents with decreasing drag
375 coefficient. The spectral energy of w'' decreases with increasing C_d throughout the entire range
376 of wavelength. On the other hand, the corresponding changes in u'' is limited in the long-
377 wavelength region.

378

379 Sub-peaks with smaller motion scales are found in the cospectra between streamwise
380 u'' and vertical w'' fluctuating velocities regardless of the surface roughness (Figure 8c). In
381 the short-wavelength regime, a notable difference in the cospectra is observed among the rough
382 surfaces with different C_d . The flows over the least rough surface ([case C1](#)) exhibit the highest

383 sub-peak. The growth in the cospectral energy contents with decreasing drag coefficient in the
384 short-wavelength regime signifies the tightly coupled (small-scale) streamwise u'' and vertical
385 w'' fluctuating velocities in the RSLs. However, this phenomenon is reversed in the long-
386 wavelength region, where the energy increases with increasing C_d . This finding is consistent
387 with the previous discussion using the pre-multiplied energy spectrum (Figure 6). Therefore,
388 the more uniform RSL turbulence transport processes are attributed to the large, energy-
389 carrying motion scales together with **the** small, more correlated motion scales.

390

391 **3.2.2 Isotropy**

392 Statistical indicators are necessary to measure the interactions among motion scales. In
393 particular, different scale ranges are characterized by varying the levels of energy-density
394 anisotropy (Agostini and Leschziner, 2017) by the isotropy parameter

$$\gamma = \frac{2|\Phi_{uu}||\Phi_{ww}|}{|\Phi_{uu}|^2 + |\Phi_{ww}|^2} \quad (5)$$

395 that tends to a maximum of unity in case of isotropy.

396

397 The RSL turbulence tends to be more anisotropic when it is approaching the rough
398 surface (Figure 9). It implies that, though the eddies are large, they are isotropic when the
399 height is over the ISL. However, the RSL eddies tend to be anisotropic even they are already
400 small in size. This finding is consistent with our observations in the cospectra. As C_d increases,
401 **the shorter is** the range of isotropic eddy size in the RSL **is shortened**. In the long-wavelength
402 region, the isotropic tendency grows with increasing drag coefficient. It means that RSL large-
403 scale structure over rougher surfaces is more isotropic than that over smoother surfaces. This

404 finding is in line with the observation of tilt angle as well as previous study (Shafi and Antonia,
405 1997).

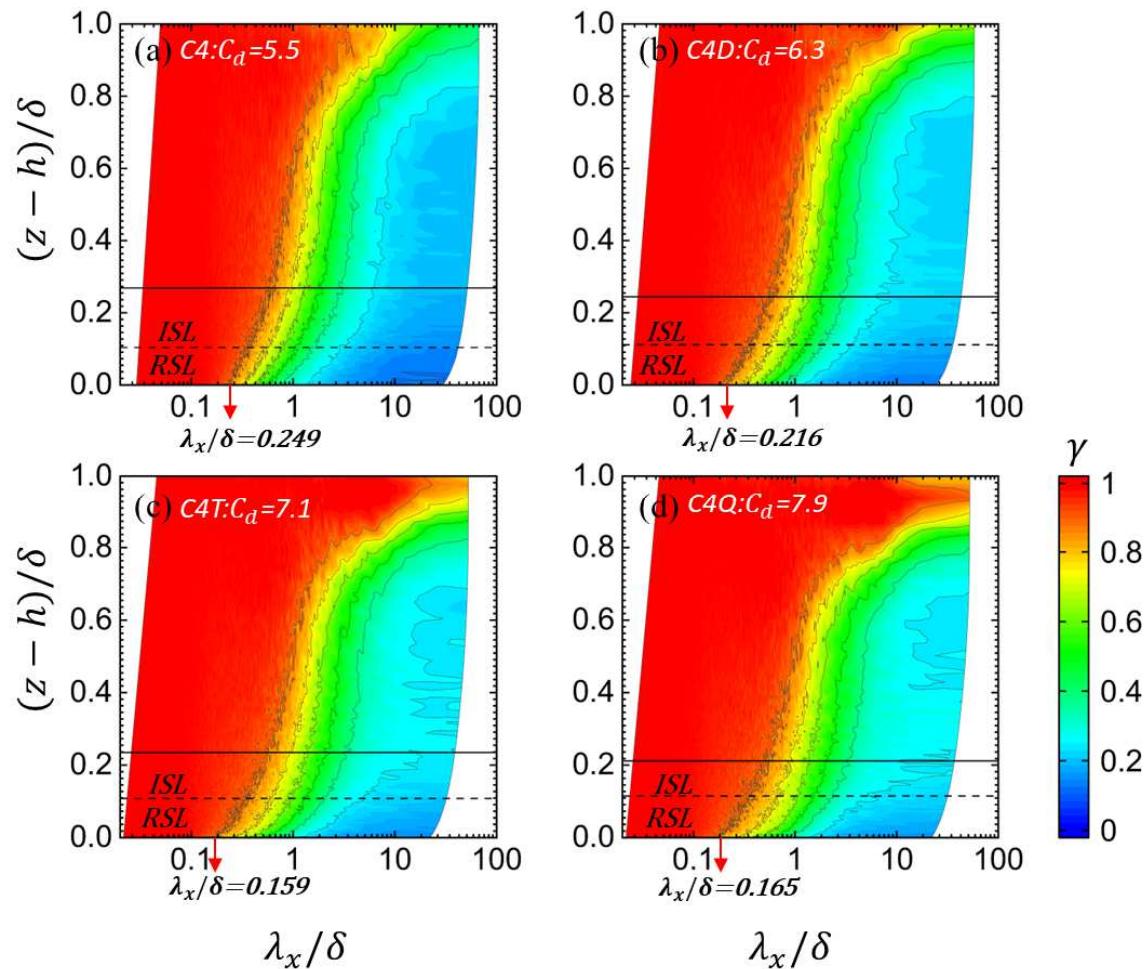


Figure 9. Shaded contours of isotropy parameter γ as functions of motion scale λ_x/δ and height $(z-h)/\delta$. Cases (a) C4; (b) C4D; (c) C4T; and (d) C4Q. Red arrows indicate λ_x/δ at which $\gamma = 0.875$.

407 **3.2.3 TKE Budget**

408 The effect of surface roughness on the TKE budget is important to elucidate the energy
 409 transfer within TBLs (Blackman et al., 2017). Numerous researches have attempted the TKE
 410 budget and fluxes (Yuan and Aghaei Jouybari, 2018).

411

412 To interpret the transport mechanism in RSLs, spectral analysis of TKE production is
 413 introduced (Cheng et al., 2020). TKE budget was derived by Lumley and Panofsky (1964),

$$\frac{\partial E(k_x)}{\partial t} + \frac{\partial Q(k_x)}{\partial z} = S(k_x) \frac{\partial \langle \bar{u} \rangle}{\partial z} - \frac{\partial \varepsilon(k_x)}{\partial k} + B(k_x) - 2\nu k_x^2 E(k_x) \quad (6)$$

414 where $E(k_x)$ is the spectral TKE density, $\partial Q(k_x)/\partial z$ the vertical TKE transfer in physical space,
 415 $S(k_x)$ the cospectrum of vertical momentum flux $u''w''$, $S(k_x) \times \partial \langle \bar{u} \rangle / \partial z$ the TKE transfer
 416 from mean flow to turbulence, $\varepsilon(k_x)$ the net rate of spectral energy transfer, and $2\nu k_x^2 E(k_x)$ the
 417 TKE dissipation rate by molecular (kinematic) viscosity ν .

418

419 Figure 10 shows the shaded contours of the spectral TKE production $S(k_x) \times \partial \langle \bar{u} \rangle / \partial z$
 420 as functions of streamwise wavelength λ_x and height $(z - h)$. Although it is the same peaked at
 421 large motion scales $\lambda_x = 10\delta$, the energy production decreases significantly with increasing
 422 aerodynamic resistance. It is therefore hypothesize that, as drag coefficient C_d increases, TKE
 423 production decreases but the entrainment (to RSL) increases. This practically means that
 424 rougher the surface is, the less TKE being produced but the more entrainment, and vice versa.

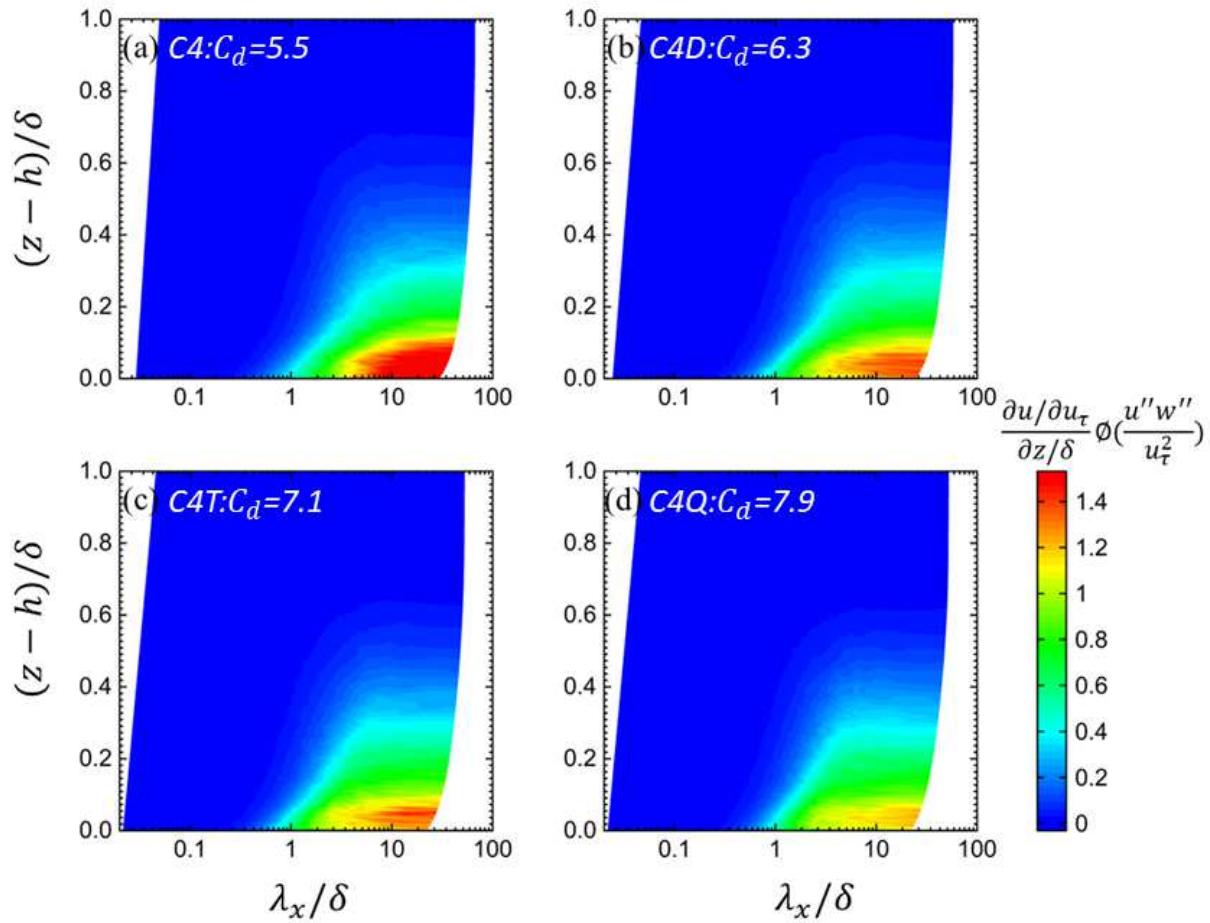


Figure 10. Shaded contours of spectral TKE production $S(k_x) \times \partial \langle \bar{u} \rangle / \partial z$ plotted as functions of wavelength λ_x/δ and height $(z - h)/\delta$. Cases (a) C4; (b) C4D; (c) C4T; and (d) C4Q.

426 **3.3 Scale Interaction**

427 **3.3.1 Amplitude Modulation and Frequency Modulation**

428 The scale interactions in the TBLs are examined to further characterize RSL turbulent
429 transport. As shown in the pre-multiplied energy spectra (Figure 6), there is no notable high-
430 energy peak at which the streamwise wavelength λ_x is much longer than inner peak representing
431 ~~very large scale motions (VLSMs)~~ in the outer layer (Tang et. al., 2016). Nevertheless, it is
432 necessary to separate the raw fluctuating signals into the large- and small-scale components by
433 a cut-off (wavelength) filter (Zhang et al., 2020). Alike previous studies, the cut-off wavelength
434 $\lambda_x = \delta$ is selected from the pre-multiplied energy spectra that is essentially based on the integral
435 length scale Λ_x .

436

437 Amplitude modulation (AM) and frequency modulation (FM) have been adopted to
438 investigate the coupling between the small- and large-scale fluctuating velocities (Iacobello et
439 al., 2021). The AM of TBL fluctuating flows is handled by the Hilbert transform (Mathis et al.
440 2009). Figure 11 depicts the representative filtered time traces of the raw data u'' at the roof
441 level $(z - h)/\delta = 0$ over the case C4 (Figure 11a). The small-scale u_s'' (Figure 11b) and large-
442 scale u_L'' (Figure 11c) fluctuating velocities are separated at wavelength $\lambda_x = \delta$. The filtered
443 envelope $E_L(u_s'')$ is calculated by the Hilbert transform that describes the modulation of small-
444 scale structures (Figure 11d). AM coefficient

$$R_{AM} = \frac{\overline{u_L'' E_L(u_s'')}}{\sqrt{\overline{u_L''^2}} \times \sqrt{\overline{E_L(u_s'')^2}}} \quad (7)$$

445 defines the correlation between the large-scale streamwise fluctuating velocity u_L'' and the
446 filtered envelope of the small-scale fluctuating velocity $E_L(u_s'')$.

447 Similar to AM, the effect of FM between large and small scales is found in the RSL.
 448 Recently, Baars et al. (2015) adopted the continuous wavelet transform (CWT) to quantify the
 449 FM in wall-bounded turbulence. By convoluting the time series of streamwise fluctuating
 450 velocity $u''(t)$ with a mother wavelet function $\psi(t/s)$, the CWT coefficient

$$\tilde{u}''(t, s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} u''(t') \times \psi\left(\frac{t'-t}{s}\right) dt' \quad (8)$$

451 is calculated where s is the wavelet time scales. In this study, the analytic Morlet wavelet is
 452 used as the mother wavelet for the convolution Equation (8). By transforming the wavelet time
 453 scale s to the frequency scale f according to the central frequency of the wavelet specified by
 454 Morlet, the wavelet power spectrum (WPS) at time t is equal to the square of the modulus of
 455 the CWT coefficients

$$\tilde{\phi}(t, f) = |\tilde{u}''(t, f)|^2. \quad (9)$$

456
 457 The wavelet transform includes 1,024 linear spaced scales to resolve the frequency in
 458 the range of $5 \text{ Hz} \leq f \leq f_N$ where $f_N (= fs/2)$ is the Nyquist frequency. Afterward, the time series
 459 of the energy spectrum of the small-scale streamwise fluctuating velocity

$$\varsigma_s(t) = \sqrt{\int_{f_c}^{f_N} \tilde{\phi}(t, f) df} \quad (10)$$

460 is obtained by integrating the WPS Equation (9) from the cut-off frequency f_c to f_N to delineate
 461 the contribution from the small scales ($\geq f_c$). It can also be used to construct the large-scale
 462 variation in small-scale amplitude. A representative, small-scale-frequency signal is taken as
 463 its instantaneous frequency (IF)

$$F_s(t) = \frac{1}{[\zeta_s(t)]^2} \times \int_{f_c}^{f_N} \tilde{\phi}(t, f) \times f \, df \quad (11)$$

464 which is the first spectral moment of the small-scale energy spectrum.

465

466 The fluctuating instantaneous frequency $F_s''(t)$ ($= F_s(t) - \bar{F}_s$) is calculated where

467 \bar{F}_s is the temporal average of characteristic frequency of the small scales. Analogous to AM,

468 after the low-pass-filtering $\lambda_x > \delta$, the large-scale variation of small-scale frequency $F_{s,L}''$ is

469 obtained (Figure 11e). The FM coefficient

$$R_{FM} = \frac{\overline{u_L'' F_{s,L}''}}{\sqrt{\overline{u_L''^2}} \times \sqrt{\overline{F_{s,L}''^2}}} \quad (12)$$

470 defines the correlation between the large-scale streamwise fluctuating velocity u_L'' and the

471 large-scale variation of the small-scale frequency $F_{s,L}''$.

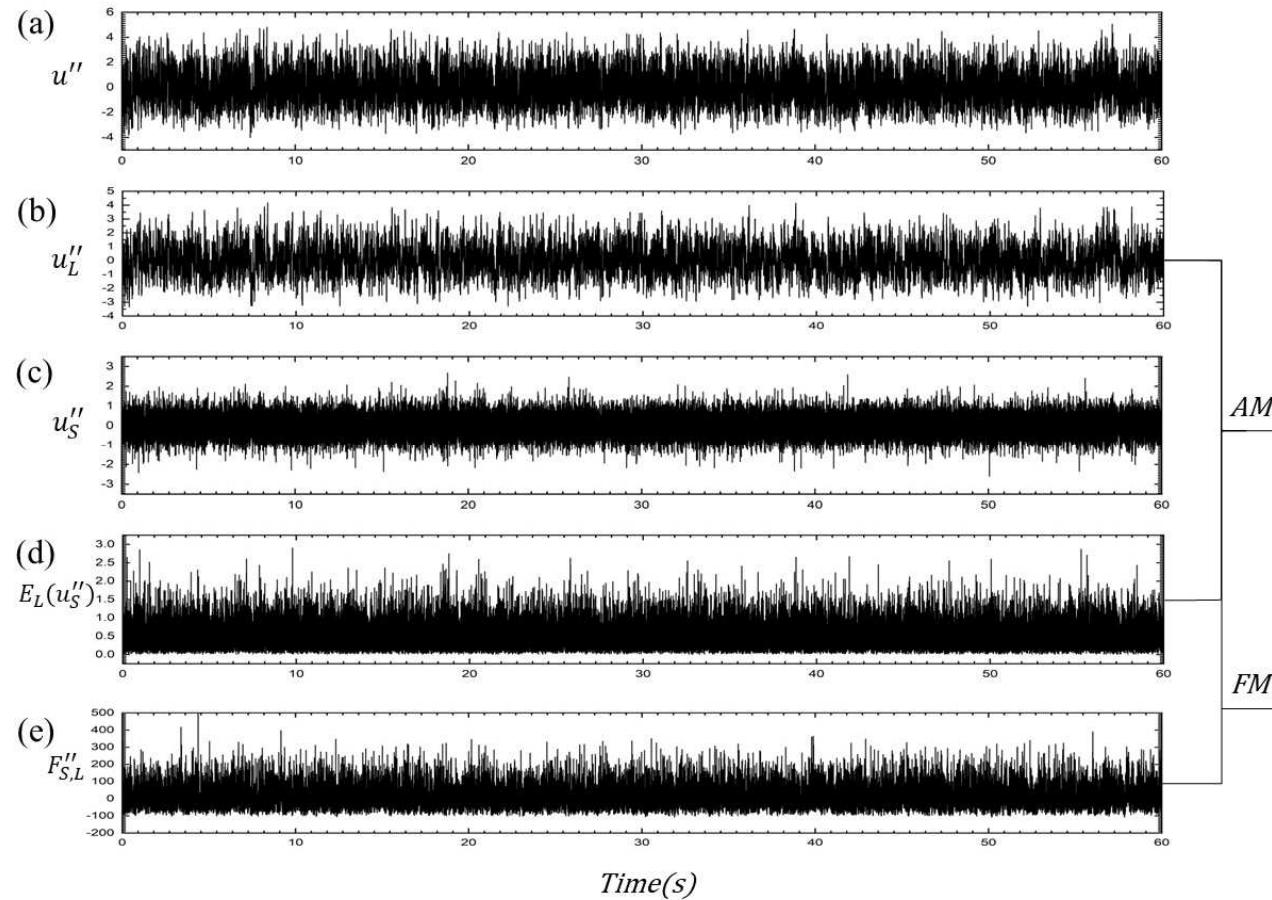


Figure 11. Time series of fluctuating streamwise velocity. (a) Raw data u'' ; (b) large-scale u_L'' and (c) small-scale u_S'' components after filtering; (d) filtered envelope of small-scale components $E_L(u_S'')$; together with (e) large-scale variation of the small-scale frequency $F_{S,L}''$.

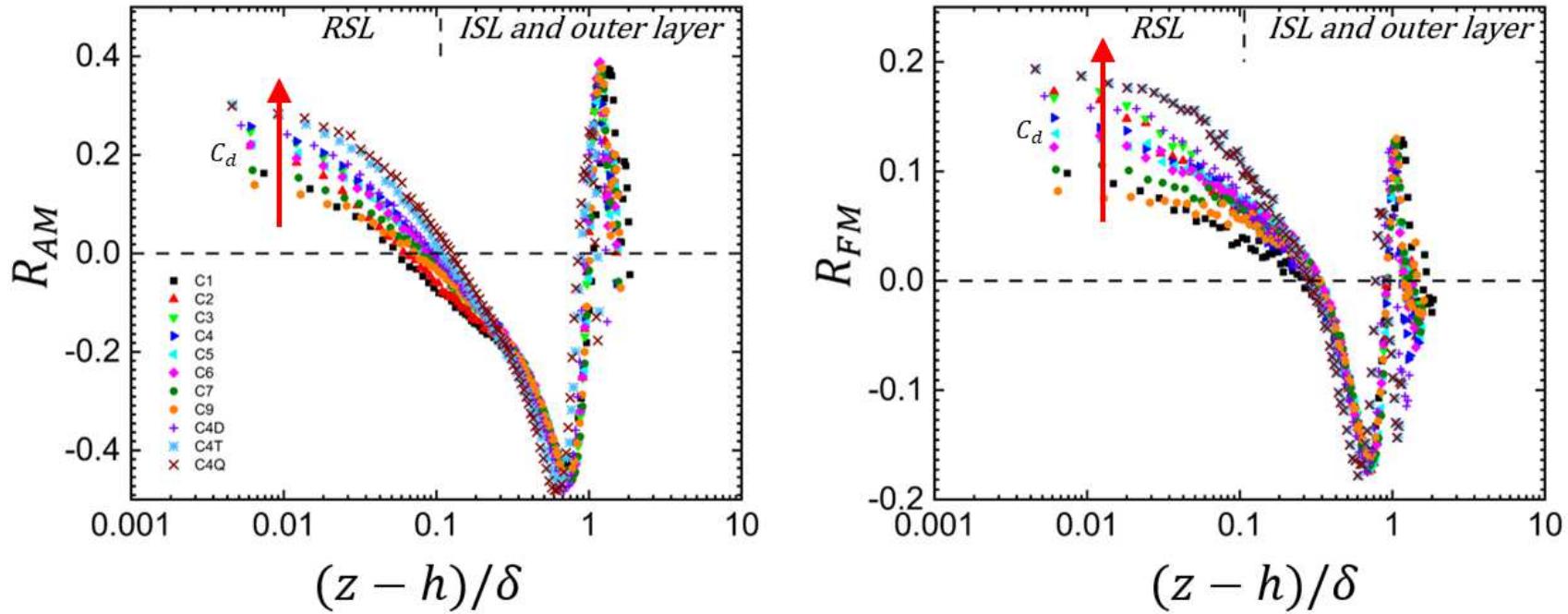


Figure 12. Coefficients of (a) amplitude modulation (AM) R_{AM} ($= \overline{u_L'' E_L(u_S'')} / \left\{ \left[\overline{u_L''^2} \right]^{1/2} \times \left[\overline{E_L(u_S'')^2} \right]^{1/2} \right\}$) and (b) frequency modulation (FM) R_{FM} ($= \overline{u_L'' F_{S,L}''} / \left[\left(\overline{u_L''^2} \right)^{1/2} \times \left(\overline{F_{S,L}''^2} \right)^{1/2} \right]$) between the large-scale component u_L'' and the filtered envelope of the small-scale components $E_L(u_S'')$ of streamwise fluctuating velocity u'' over different rough surfaces. Arrow points increasing drag coefficient C_d .

474 The AM correlation coefficients R_{AM} can be categorized into three different trends over
475 the rough surfaces (Figure 12a). It is positive, elevated in the RSL bottom followed by a gradual
476 decrease with increasing height z , zero-crossing, and finally switches to negative in the ISL.
477 The tight correlation observed in the RSLs in turn suggests that large-scale streamwise
478 fluctuating velocity are positively correlated with small-scale ones. The correlation diminishes
479 (R_{AM} close to zero) around the RSL-ISL interface that is known as *phase reversal* (Chung and
480 McKeon, 2010). In the ISLs, the correlation reverse ($R_{AM} < 0$) in which the large-scale
481 fluctuations are negatively correlated with the small-scale ones. It reaches a negative peak (R_{AM}
482 ≤ -0.4) in the outer layer ($z - h \geq 0.5\delta$) which is attributed to TBL intermittency (Zhang et al.,
483 2020). In addition, the (high-level, positive) R_{AM} in the RSLs increases with increasing C_d . As
484 such, the AM coupling is enhanced by surface roughness. Besides, the AM correlation
485 coefficients R_{AM} increase approaching the roughness elements that suggest the more significant
486 amplitude modulation between the large and small scales.

487

488 Similar to the AM correlation coefficients, the FM correlation coefficients R_{FM} depict
489 the interaction between the signature of small and large scales in the same distribution regime
490 (Figure 12b). Unlike R_{AM} , R_{FM} evidences the positive, high-level correlations in both the RSLs
491 and ISLs. The correlation coefficient R_{FM} diminishes thereover with increasing height in the
492 outer layer ($z - h \geq 0.5\delta$). The strong association of FM between RSL and ISL shows that large-
493 scale fluctuations and small-scale frequency are positively correlated. Whereas, $R_{FM} < 0$, which
494 denotes that large-scale fluctuations are negatively linked with large-scale variation of small-
495 scale frequency, is observed in the outer layer. As a result, both amplitude and frequency of

496 small motion scales in the RSLs are closely influenced by the positive, large-scale streamwise
497 fluctuating velocity. Alike AM, surface roughness amplifies the FM effect.

498

499 To further demonstrate the AM, the variance of small-scale streamwise fluctuating
500 velocity $u_s''^2$ is used to quantify the scale interaction as a function of large-scale streamwise
501 fluctuating velocity u_L'' and height z (Figure 13). As shown previously by R_{AM} , there exists a
502 strong modulation between the small- and large-scale streamwise fluctuating velocities in the
503 RSLs $z - h \leq 0.2\delta$ (Ganapathisubramani et al., 2012). Obviously, the variance of small-scale
504 streamwise fluctuating velocity $u_s''^2$ is more energetic in the RSL, overlapping with the
505 positive, large-scale streamwise fluctuating velocity $u_L''/u_\tau \geq 0$ (Figure 13). Moreover, large
506 scale **acceleration contributes** more, closer to the RSL bottom at faster wind speed, **signifying**
507 **the tight correlation between RSL small and large scales.** Whereas, negative, large-scale
508 streamwise **deceleration** $u_L''/u_\tau < 0$ does not show **noticeable** correlation. As such, AM is more
509 remarkable during (streamwise) acceleration (but not deceleration), concurring the more
510 energetic sweeps Q4 and entrainment in RSLs reported elsewhere by laboratory experiments
511 (Mo et al., 2022) as well as mathematical models (Yao et al., 2022). Besides, the contribution
512 from u_L'' to $u_s''^2$ is augmented with increasing drag coefficient C_d . In this connection, AM
513 plays a more important role over rougher surfaces. We therefore further hypothesize that large-
514 scale streamwise fluctuating velocity drives its small-scale RSL counterpart, entraining
515 momentum to overcome the aerodynamic resistance. **By contrast, large-scale streamwise**
516 **fluctuating flows** u_L''/u_τ **do not affect much the small-scale streamwise velocity variance**
517 **$u_s''^2/u_\tau^2$ in the outer layer.**

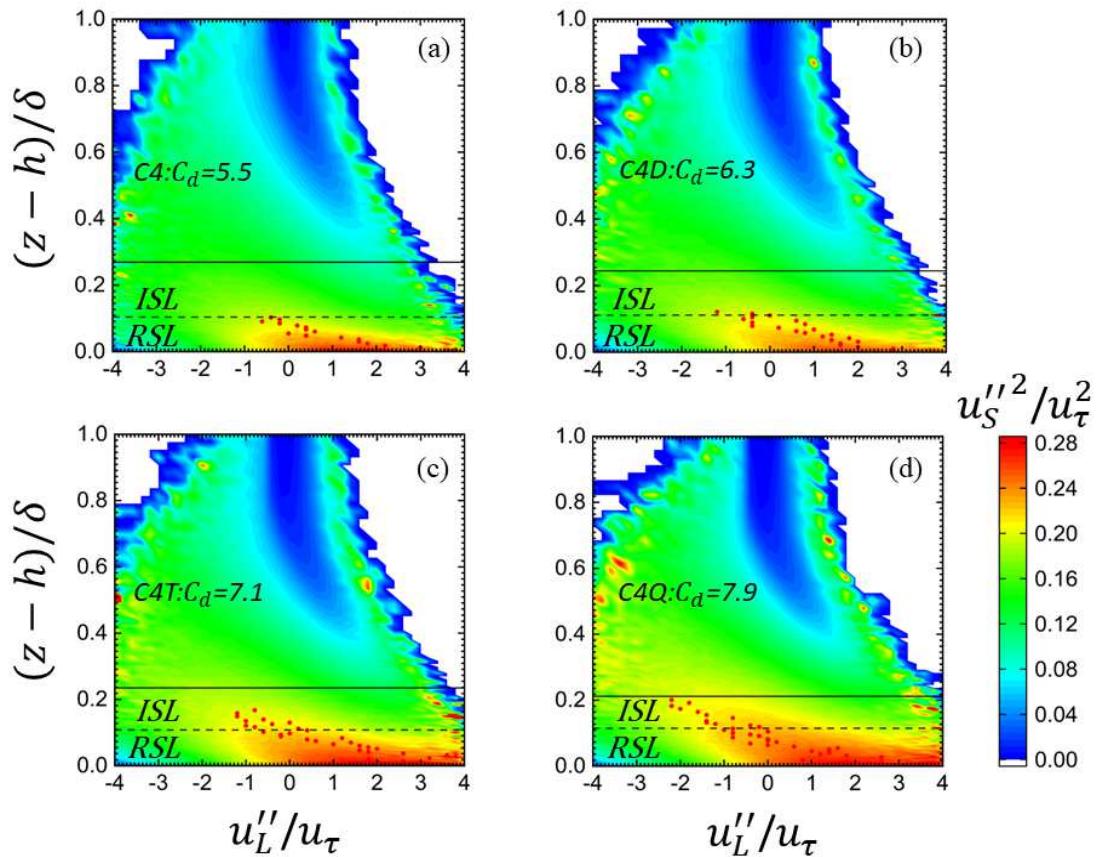


Figure 13. Shaded contours of small-scale streamwise velocity variance $u_S''^2/u_\tau^2$ plotted as a function of large-scale streamwise fluctuating velocity u_L''/u_τ and vertical height z . (a) C4; (b) C4D; (c) C4T; and (d) C4Q. Dashed and solid lines denote the RSL and ISL top, respectively. Red dots indicate the loci of maximum $u_S''^2/u_\tau^2$ at different elevation.

519 **4. Practical Significance**

520 To verify the aforementioned hypotheses, Figure 10 shows the TKE production budget

$$P = -\overline{\langle u'' w' \rangle} \times \frac{\partial \langle \bar{u} \rangle}{\partial z} \quad (13)$$

521 and the turbulent TKE flux

$$F_{TKE} = \frac{1}{2} \times \overline{\langle u'' u'' w'' \rangle} + \overline{\langle w'' w'' w'' \rangle} \quad (14)$$

522 in the space domain as functions of height z over different rough surfaces. As C_d increases, P
 523 decreases in the RSL. The difference in TKE production budget between the most and least
 524 rough surfaces is up to 50% (Figure 14a). On the contrary, it is negligible in the ISL.
 525 Unexpectedly, the lower is the aerodynamic resistance, the more important the TKE production
 526 in the RSL.

527

528 The vertical TKE flux F_{TKE} concurs Han et al. (2017) that denotes the TKE transfer.
 529 Positive and negative vertical TKE flux represent TKE detrainment and entrainment,
 530 respectively. All the cases exhibit downward TKE transport ($F_{TKE} < 0$) close to the roughness
 531 elements except Cases C1 and C2 with least surface roughness (Figure 14b). Moreover, the
 532 TKE entrainment increases significantly with increasing C_d in the RSL. It presents a reverse
 533 observation in the ISL so the detrainment (upward TKE flux) decreases with increasing
 534 aerodynamic resistance. It is in turn implied that the downward TKE flux is more important to
 535 rougher surfaces, entraining energy and momentum from the outer layers through the ISL down
 536 to the RSL. These results support our hypothesis that increasing surface roughness leads to
 537 decreasing RSL TKE production and a significant increase in TKE entrainment. This finding

538 is consistent with our observations in the cospectrum (Figures 6, 7 and 8). Although the
539 correlation between streamwise and vertical small-scale motion Φ_{uw} diminishes with
540 increasing surface roughness, the RSL transport efficiency η increases due to the (make up of)
541 substantial momentum entrainment.

542

543 As postulated by these results, roughness elements play a crucial role in RSL turbulent
544 transport so is vital to street-level ventilation. Analysis of turbulent transport mechanism shows
545 that the presence of roughness elements dominates that enhances the transport efficiency η .
546 Rougher surfaces enhance mixing and transport processes that collectively amplify the
547 modulations between the large and small scales in the RSLs. Furthermore, the RSL TKE
548 entrainment F_{TKE} increases with increasing drag coefficient C_d , constantly inducing fresh air
549 from the outer layers. As a result, roughness elements are beneficial to natural ventilation in
550 urban areas. From a practical point of view, this implies that more favorable street-level
551 ventilation could be realized by loose building arrangement and building height variability
552 (increasing aerodynamic resistance).

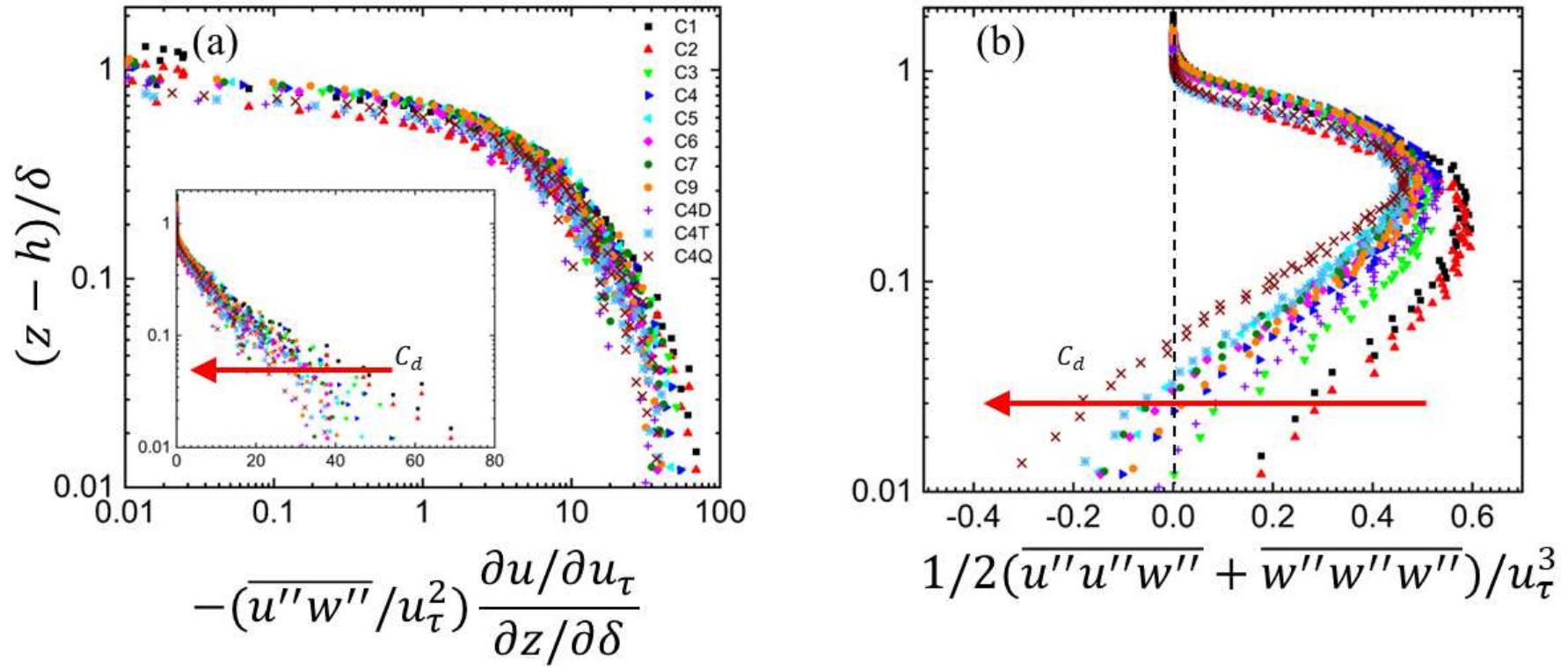


Figure 14. Dimensionless profiles of (a) TKE production budget P ($= -\langle \overline{u''w''} \rangle \times \partial \langle \overline{u} \rangle / \partial z$) and (b) TKE flux F_{TKE} ($F_{TKE} = [\langle \overline{u''u''w''} \rangle + \langle \overline{w''w''w''} \rangle] / 2$) plotted as functions of height z over different rough surfaces. Arrow points increasing drag coefficient C_d .

554 **5. Conclusion**

555 This study conducts wind tunnel measurements over idealized urban morphology to
556 elucidate the fundamental city ventilation mechanism. In the street-level ventilation
557 perspective, the RSL, whose dynamics is less homogeneous than those in the ISL, is developed
558 immediately over an array of roughness elements. Besides, it shows a tight correlation with the
559 drag coefficient C_d . Quadrants Qi , and tilt angle Θ , demonstrating the more efficient RSL
560 transport (more uniform mean-wind speeds than its ISL counterpart) than that over smoother
561 surfaces. Our key findings based on turbulence statistics, spectral analysis, and scale interaction
562 are summarized below.

563

564 • Turbulence Statistics: Among others, roughness length z_0 increases monotonically
565 with increasing drag coefficient C_d that measures well the aerodynamic resistance
566 of urban areas. While the RSL wind speeds are slowed down over rougher surfaces,
567 the transport efficiency, which is measured by the exuberance η , increases,
568 improving street-level ventilation. Further to quadrant analysis Qi , the tilt angle Θ
569 increases with increasing C_d due to the energetic vertical fluctuating velocity w'' .

570

571 • Spectral Analysis: While the integral length scale is comparable to the TBL
572 thickness $\Lambda_x \approx \delta$, the RSL eddy size enlarges faster in height over smoother surfaces.
573 Although the spectra of streamwise u'' and vertical w'' fluctuating velocities show
574 no change in TKE in response to RSL small-scale motions ($\lambda_x \leq 0.1\delta$), a substantial
575 increase in the cospectra of vertical momentum flux $u''w''$ is clearly observed.

576 Hence, surface-mounted roughness elements barely increase the RSL TKE but
577 enhance the correlation between the streamwise and vertical flows throughout the
578 range of motion scales. The tight coupling between the small-scale streamwise and
579 vertical flows in turn enhances the transport processes being driven by the motion
580 scales comparable to the size of the roughness elements.

581

- 582 • Scale interaction: Amplitude (AM) and frequency (FM) modulations indicate that
583 large- and small-scale motions are positively correlated in the RSLs. The coupling
584 between small and large motion scales is tightened by surface roughness. TKE
585 production is more significant in smoother RSLs that is usually assembled by
586 closely packed roughness elements of uniform height. On the other hand, the
587 downward TKE flux, which entrains momentum from the outer layers through the
588 ISL down to the RSL, dominates over rougher surfaces that often consist of loosely
589 packed roughness elements with diversified sizes. This finding suggests that,
590 unexpectedly, the rougher is the aerodynamic resistance, the weaker the (local) TKE
591 production. Instead, rougher urban areas promote entrainment from outer layers
592 through ISLs down to RSLs that is favorable to street-level ventilation.

593

594 This study unveils the basic street-level ventilation mechanism and contrasts the forcing
595 of winds and ventilation over sparse (TKE local production) and dense (TKE entrainment)
596 urban areas based on identical, idealized, roughness element. **The findings demystify the**
597 **fundamental mechanism of various existing urban-planning practices, such as packing density,**

598 building setback, or air corridors, by a series of systematic fluid mechanics examinations. The
599 outcome would help practitioners to effectuate street-level ventilation by properly architectural
600 design as well as urban planning, utilizing the limited land resource for sustainable cities. Real
601 urban morphology will be adopted in the future to verify the newly developed theory.

602

603 **Acknowledgment**

604 This study is partly supported by the Hong Kong (HK) Research Grants Council (RGC)
605 RGC Collaborative Research Fund (CRF) C7064-18G, the RGC General Research Fund (GRF)
606 17209819 and 17211322 as well as the General Programme of Guangdong Natural Science
607 Fund GD-NSF No. 2021A1515012517.

608

609 **References**

610 Agostini, L., Leschziner, M., 2017. Spectral analysis of near-wall turbulence in channel flow
611 at $Re \tau = 4200$ with emphasis on the attached-eddy hypothesis. *Phys. Rev. Fluids* 2,
612 014603. <https://doi.org/10.1103/PhysRevFluids.2.014603>

613 Agostini, L., Leschziner, M., 2016. Predicting the response of small-scale near-wall turbulence
614 to large-scale outer motions. *Physics of Fluids* 28, 015107.
615 <https://doi.org/10.1063/1.4939712>

616 Baars, W.J., Talluru, K.M., Hutchins, N., Marusic, I., 2015. Wavelet analysis of wall turbulence
617 to study large-scale modulation of small scales. *Exp Fluids* 56, 188.
618 <https://doi.org/10.1007/s00348-015-2058-8>

- 619 Barlow, J.F., 2014. Progress in observing and modelling the urban boundary layer. *Urban*
620 *Climate, ICUC8: The 8th International Conference on Urban Climate and the 10th*
621 *Symposium on the Urban Environment* 10, 216–240.
622 <https://doi.org/10.1016/j.uclim.2014.03.011>
- 623 Belcher, S.E., Harman, I.N., Finnigan, J.J., 2012. The Wind in the Willows: Flows in Forest
624 Canopies in Complex Terrain. *Annu. Rev. Fluid Mech.* 44, 479–504.
625 <https://doi.org/10.1146/annurev-fluid-120710-101036>
- 626 Blackman, K., Perret, L., Calmet, I., Rivet, C., 2017. Turbulent kinetic energy budget in the
627 boundary layer developing over an urban-like rough wall using PIV. *Physics of Fluids*
628 29, 085113. <https://doi.org/10.1063/1.4997205>
- 629 Böhm, M., Finnigan, J.J., Raupach, M.R., Hughes, D., 2013. Turbulence Structure Within and
630 Above a Canopy of Bluff Elements. *Boundary-Layer Meteorol.* 146, 393–419.
631 <https://doi.org/10.1007/s10546-012-9770-1>
- 632 Brunet, Y., 2020. Turbulent Flow in Plant Canopies: Historical Perspective and Overview.
633 *Boundary-Layer Meteorol.* 177, 315–364. <https://doi.org/10.1007/s10546-020-00560-7>
- 634 Bruun, H.H., 1971. Interpretation of a hot wire signal using a universal calibration law. *J. Phys.*
635 *E: Sci. Instrum.* 4, 225–231. <https://doi.org/10.1088/0022-3735/4/3/016>
- 636 Chen, J.G., Vassilicos, J.C., 2022. Scalings of scale-by-scale turbulence energy in non-
637 homogeneous turbulence. *J. Fluid Mech.* 938, A7.
638 <https://doi.org/10.1017/jfm.2022.153>

- 639 Cheng, H., Hayden, P., Robins, A.G., Castro, I.P., 2007. Flow over cube arrays of different
640 packing densities. *Journal of Wind Engineering and Industrial Aerodynamics* 95, 715–
641 740. <https://doi.org/10.1016/j.jweia.2007.01.004>
- 642 Cheng, Y., Li, Q., Argentini, S., Sayde, C., Gentine, P., 2020. A Model for Turbulence Spectra
643 in the Equilibrium Range of the Stable Atmospheric Boundary Layer. *J. Geophys. Res.*
644 *Atmos.* 125. <https://doi.org/10.1029/2019JD032191>
- 645 Chin, C.C., Hutchins, N., Ooi, A.S.H., Marusic, I., 2009. Use of direct numerical simulation
646 (DNS) data to investigate spatial resolution issues in measurements of wall-bounded
647 turbulence. *Meas. Sci. Technol.* 20, 115401. <https://doi.org/10.1088/0957-0233/20/11/115401>
- 649 Christen, A., van Gorsel, E., Vogt, R., 2007. Coherent structures in urban roughness sublayer
650 turbulence. *International Journal of Climatology* 27, 1955–1968.
651 <https://doi.org/10.1002/joc.1625>
- 652 Conan, B., Aubrun, S., Coudour, B., Chetehouna, K., Garo, J.-P., 2015. Contribution of
653 coherent structures to momentum and concentration fluxes over a flat vegetation
654 canopy modelled in a wind tunnel. *Atmospheric Environment* 107, 329–341.
655 <https://doi.org/10.1016/j.atmosenv.2015.02.061>
- 656 Demarco, G., Martins, L.G.N., Bodmann, B.E.J., Puhales, F.S., Acevedo, O.C., Wittwer, A.R.,
657 Costa, F.D., Roberti, D.R., Loredo-Souza, A.M., Degrazia, F.C., Tirabassi, T., Degrazia,
658 G.A., 2022. Analysis of Thermal and Roughness Effects on the Turbulent
659 Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel.
660 *IJERPH* 19, 5134. <https://doi.org/10.3390/ijerph19095134>

- 661 Dhimal, M., Chirico, F., Bista, B., Sharma, S., Chalise, B., Dhimal, M.L., Ilesanmi, O.S.,
- 662 Trucillo, P., Sofia, D., 2021. Impact of Air Pollution on Global Burden of Disease in
- 663 2019. *Processes* 9, 1719. <https://doi.org/10.3390/pr9101719>
- 664 Finnigan, J.J., Shaw, R.H., 2000. A Wind-Tunnel Study of Airflow in Waving Wheat: An EOF
- 665 Analysis of the Structure of the Large-Eddy Motion. *Boundary-Layer Meteorology* 96,
- 666 211–255. <https://doi.org/10.1023/A:1002618621171>
- 667 Finnigan, J.J., Shaw, R.H., Patton, E.G., 2009. Turbulence structure above a vegetation canopy.
- 668 *J. Fluid Mech.* 637, 387–424. <https://doi.org/10.1017/S0022112009990589>
- 669 Fitzmaurice, L., Shaw, R.H., Paw U, K.T., Patton, E.G., 2004. Three-Dimensional Scalar
- 670 Microfront Systems in a Large-Eddy Simulation of Vegetation Canopy Flow.
- 671 *Boundary-Layer Meteorology* 112, 107–127.
- 672 <https://doi.org/10.1023/B:BOUN.0000020159.98239.4a>
- 673 Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D., Marusic, I., 2012. Amplitude
- 674 and frequency modulation in wall turbulence. *J. Fluid Mech.* 712, 61–91.
- 675 <https://doi.org/10.1017/jfm.2012.398>
- 676 Hagishima, A., Tanimoto, J., Nagayama, K., Meno, S., 2009. Aerodynamic Parameters of
- 677 Regular Arrays of Rectangular Blocks with Various Geometries. *Boundary-Layer*
- 678 *Meteorol* 132, 315–337. <https://doi.org/10.1007/s10546-009-9403-5>
- 679 Han, X., He, G., Fang, H., 2017. Double-averaging analysis of turbulent kinetic energy fluxes
- 680 and budget based on large-eddy simulation. *J. Hydrometeorol.* 29, 567–574.
- 681 [https://doi.org/10.1016/S1001-6058\(16\)60769-2](https://doi.org/10.1016/S1001-6058(16)60769-2)

- 682 He, B.-J., Ding, L., Prasad, D., 2020. Relationships among local-scale urban morphology,
683 urban ventilation, urban heat island and outdoor thermal comfort under sea breeze
684 influence. Sustainable Cities and Society 60, 102289.
685 <https://doi.org/10.1016/j.scs.2020.102289>
- 686 Hertwig, D., Patnaik, G., Leitl, B., 2017. LES validation of urban flow, part II: eddy statistics
687 and flow structures. Environ Fluid Mech 17, 551–578. <https://doi.org/10.1007/s10652-016-9504-x>
- 688 Ho, Y.-K., Liu, C.-H., 2017a. A wind tunnel study of flows over idealised urban surfaces with
689 roughness sublayer corrections. Theor Appl Climatol 130, 305–320.
690 <https://doi.org/10.1007/s00704-016-1877-8>
- 691 Ho, Y.-K., Liu, C.-H., 2017b. Street-level ventilation in hypothetical urban areas. Atmosphere
692 8, 124. <https://doi:10.3390/atmos8070124>
- 693 Iacobello, G., Ridolfi, L., Scarsoglio, S., 2021. Large-to-small scale frequency modulation
694 analysis in wall-bounded turbulence via visibility networks. J. Fluid Mech. 918, A13.
695 <https://doi.org/10.1017/jfm.2021.279>
- 696 Kanda, M., 2006. Large-Eddy Simulations on the Effects of Surface Geometry of Building
697 Arrays on Turbulent Organized Structures. Boundary-Layer Meteorol 118, 151–168.
698 <https://doi.org/10.1007/s10546-005-5294-2>
- 699 Katul, G., Poggi, D., Cava, D., Finnigan, J., 2006. The relative importance of ejections and
700 sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer
701 Meteorol 120, 367–375. <https://doi.org/10.1007/s10546-006-9064-6>

- 703 Kolmogorov, A.N., 1991. The Local Structure of Turbulence in Incompressible Viscous Fluid
- 704 for Very Large Reynolds Numbers. *Proceedings: Mathematical and Physical Sciences*
- 705 434, 9–13.
- 706 Lawal, O., Ogugbue, C.J., Imam, T.S., 2023. Mining association rules between lichens and air
- 707 quality to support urban air quality monitoring in Nigeria. *Heliyon* 9, e13073.
- 708 <https://doi.org/10.1016/j.heliyon.2023.e13073>
- 709 Leung, K.K., Liu, C.-H., Wong, C.C.C., Lo, J.C.Y., Ng, G.C.T., 2012. On the study of
- 710 ventilation and pollutant removal over idealized two-dimensional urban street canyons.
- 711 *Build. Simul.* 5, 359–369. <https://doi.org/10.1007/s12273-012-0085-4>
- 712 Li, B., Jiang, C., Wang, L., Liu, J., 2022. Wind tunnel study on influences of morphological
- 713 parameters on drag coefficient of horizontal non-uniform buildings. *Building and*
- 714 *Environment* 207, 108412. <https://doi.org/10.1016/j.buildenv.2021.108412>
- 715 Liang, M., Chao, Y., Tu, Y., Xu, T., 2023. Vehicle Pollutant Dispersion in the Urban
- 716 Atmospheric Environment: A Review of Mechanism, Modeling, and Application.
- 717 *Atmosphere* 14, 279. <https://doi.org/10.3390/atmos14020279>
- 718 Lim, J., Ooka, R., Lim, H., 2022. Multicollinearity issue for the parameterization of urban
- 719 ventilation potential with urban morphology. *Sustainable Cities and Society* 87, 104218.
- 720 <https://doi.org/10.1016/j.scs.2022.104218>
- 721 Liu, C.-H., Mo, Z., Wu, Z., 2018. Parameterization of vertical dispersion coefficient over
- 722 idealized rough surfaces in isothermal conditions. *Geosci. Lett.* 5, 24.
- 723 <https://doi.org/10.1186/s40562-018-0123-x>

- 724 Liu, C.-H., Ng, C.-T., Wong, C.C.C., 2015. A theory of ventilation estimate over hypothetical
725 urban areas. *Journal of Hazardous Materials* 296, 9–16.
726 <https://doi.org/10.1016/j.jhazmat.2015.04.018>
- 727 Liu, Y., Liu, C.-H., Brasseur, G.P., Chao, C.Y.H., 2023a. Proper orthogonal decomposition of
728 large-eddy simulation data over real urban morphology. *Sustainable Cities and Society*
729 89, 104324. <https://doi.org/10.1016/j.scs.2022.104324>
- 730 Liu, Y., Liu, C.-H., Brasseur, G.P., Chao, C.Y.H., 2023b. Wavelet analysis of the atmospheric
731 flows over real urban morphology. *Science of The Total Environment* 859, 160209.
732 <https://doi.org/10.1016/j.scitotenv.2022.160209>
- 733 Lumley, J.L., 1964. The Spectrum of Nearly Inertial Turbulence in a Stably Stratified Fluid.
734 *Journal of the Atmospheric Sciences* 21, 99–102. [https://doi.org/10.1175/1520-0469\(1964\)021<0099:TSNIT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1964)021<0099:TSNIT>2.0.CO;2)
- 736 Mäteling, E., Klaas, M., Schröder, W., 2020. Detection of small-scale/large-scale interactions
737 in turbulent wall-bounded flows. *Phys. Rev. Fluids* 5, 114610.
738 <https://doi.org/10.1103/PhysRevFluids.5.114610>
- 739 Michioka, T., Funaki, R., Kawai, T., 2023. Effects of Building Arrays on Large-Scale Turbulent
740 Motions Within an Urban Canopy. *Boundary-Layer Meteorol.*
741 <https://doi.org/10.1007/s10546-022-00778-7>
- 742 Michioka, T., Sato, A., Takimoto, H., Kanda, M., 2011. Large-Eddy Simulation for the
743 Mechanism of Pollutant Removal from a Two-Dimensional Street Canyon. *Boundary-
744 Layer Meteorol* 138, 195–213. <https://doi.org/10.1007/s10546-010-9556-2>

- 745 Mo, Z., Liu, C.-H., 2023. Inertial and roughness sublayer flows over real urban morphology:
746 A comparison of wind tunnel experiment and large-eddy simulation. *Urban Climate* 49,
747 101530. <https://doi.org/10.1016/j.uclim.2023.101530>
- 748 Mo, Z., Liu, C.-H., 2019. Transport mechanism of urban plume dispersion. *Building and*
749 *Environment* 161, 106239. <https://doi.org/10.1016/j.buildenv.2019.106239>
- 750 Mo, Z., Liu, C.-H., 2018a. Wind tunnel measurements of pollutant plume dispersion over
751 hypothetical urban areas. *Building and Environment* 132, 357–366.
752 <https://doi.org/10.1016/j.buildenv.2018.01.046>
- 753 Mo, Z., Liu, C.-H., 2018b. A wind tunnel study of ventilation mechanism over hypothetical
754 urban roughness: The role of intermittent motion scales. *Building and Environment* 135,
755 94–103. <https://doi.org/10.1016/j.buildenv.2018.02.031>
- 756 Mo, Z., Liu, C.-H., 2018c. Wind tunnel measurements of turbulent boundary layer flows over
757 arrays of ribs and cubes. *Geosci. Lett.* 5, 16. <https://doi.org/10.1186/s40562-018-0115-x>
- 759 Mo, Z., Liu, C.-H., Chow, H.-L., Lam, M.-K., Lok, Y.-H., Ma, S.-W., Wong, F.-L., Yip, P.-Y.,
760 2022. Roughness sublayer over vegetation canopy: A wind tunnel study. *Agricultural*
761 *and Forest Meteorology* 316, 108880. <https://doi.org/10.1016/j.agrformet.2022.108880>
- 762 Mo, Z., Liu, C.-H., Ho, Y.-K., 2021. Roughness sublayer flows over real urban morphology: A
763 wind tunnel study. *Building and Environment* 188, 107463.
764 <https://doi.org/10.1016/j.buildenv.2020.107463>
- 765 **Palusci, O., Monti, P., Cecere, C., Montazeri, H., Blocken, B., 2022. Impact of morphological**
766 **parameters on urban ventilation in compact cities: The case of the Tuscolano-Don**

- 767 Bosco district in Rome. *Science of The Total Environment* 807, 150490.
- 768 <https://doi.org/10.1016/j.scitotenv.2021.150490>
- 769 Pathikonda, G., Christensen, K.T., 2017. Inner–outer interactions in a turbulent boundary layer
- 770 overlying complex roughness. *Phys. Rev. Fluids* 2, 044603.
- 771 <https://doi.org/10.1103/PhysRevFluids.2.044603>
- 772 Peng, Y., Gao, Z., Buccolieri, R., Shen, J., Ding, W., 2021. Urban ventilation of typical
- 773 residential streets and impact of building form variation. *Sustainable Cities and Society*
- 774 67, 102735. <https://doi.org/10.1016/j.scs.2021.102735>
- 775 Peng, Z., Sun, J., 2014. Characteristics of the Drag Coefficient in the Roughness Sublayer over
- 776 a Complex Urban Surface. *Boundary-Layer Meteorol* 153, 569–580.
- 777 <https://doi.org/10.1007/s10546-014-9949-8>
- 778 Perret, L., Kerhervé, F., 2019. Identification of very large scale structures in the boundary layer
- 779 over large roughness elements. *Exp Fluids* 60, 97. <https://doi.org/10.1007/s00348-019-2749-7>
- 780 Raupach, M.R., Antonia, R.A., Rajagopalan, S., 1991. Rough-wall turbulent boundary layers
- 781 44.
- 782 Roth, M., Inagaki, A., Sugawara, H., Kanda, M., 2015. Small-scale spatial variability of
- 783 turbulence statistics, (co)spectra and turbulent kinetic energy measured over a regular
- 784 array of cube roughness. *Environ. Fluid Mech.* 15, 329–348.
- 785 <https://doi.org/10.1007/s10652-013-9322-3>

- 787 Shafi, H.S., Antonia, R.A., 1997. Small-scale characteristics of a turbulent boundary layer over
788 a rough wall. *J. Fluid Mech.* 342, 263–293.
789 <https://doi.org/10.1017/S0022112097005612>
- 790 Shao, X., Zhang, N., Peng, Z., Zhao, K., Luo, Y., Song, X., 2022. Observed Surface Drag
791 Coefficient Under High Wind Speed Conditions and the Relationship With Coherent
792 Structures. *Journal of Geophysical Research: Atmospheres* 127, e2021JD035301.
793 <https://doi.org/10.1029/2021JD035301>
- 794 Shaw, R.H., Tavangar, J., Ward, D.P., 1983. Structure of the Reynolds Stress in a Canopy Layer.
795 *J. Climate Appl. Meteor.* 22, 1922–1931. [https://doi.org/10.1175/1520-0450\(1983\)022<1922:SOTRSI>2.0.CO;2](https://doi.org/10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2)
- 797 Tang, Z., Jiang, N., Zheng, X., Wu, Y., 2016. Bursting process of large- and small-scale
798 structures in turbulent boundary layer perturbed by a cylinder roughness element. *Exp
799 Fluids* 57, 79. <https://doi.org/10.1007/s00348-016-2174-0>
- 800 Vidanapathirana, M., Perera, N., Emmanuel, R., Coorey, S., 2023. Air pollutant dispersion
801 around high-rise building cluster forms: the case of Port City, Colombo, Sri Lank.
802 <https://doi.org/10.21203/rs.3.rs-2456185/v1>
- 803 Wei, W., Schmitt, F.G., Huang, Y.X., Zhang, H.S., 2016. The Analyses of Turbulence
804 Characteristics in the Atmospheric Surface Layer Using Arbitrary-Order Hilbert
805 Spectra. *Boundary-Layer Meteorol* 159, 391–406. <https://doi.org/10.1007/s10546-015-0122-9>
- 807 Yao, L., Liu, C.-H., Mo, Z., Cheng, W.-C., Brasseur, G.P., Chao, C.Y.H., 2022. Statistical
808 analysis of the organized turbulence structure in the inertial and roughness sublayers

809 over real urban area by building-resolved large-eddy simulation. *Building and*
810 *Environment* 207, 108464. <https://doi.org/10.1016/j.buildenv.2021.108464>

811 **Yoshida, T., Takemi, T., Horiguchi, M., 2018. Large-Eddy-Simulation Study of the Effects of**
812 **Building-Height Variability on Turbulent Flows over an Actual Urban Area. Boundary-**
813 **Layer Meteorol** 168, 127–153. <https://doi.org/10.1007/s10546-018-0344-8>

814 Yuan, J., Aghaei Jouybari, M., 2018. Topographical effects of roughness on turbulence statistics
815 in roughness sublayer. *Phys. Rev. Fluids* 3, 114603.
816 <https://doi.org/10.1103/PhysRevFluids.3.114603>

817 Zaki, S.A., Hagishima, A., Tanimoto, J., Ikegaya, N., 2011. Aerodynamic Parameters of Urban
818 Building Arrays with Random Geometries. *Boundary-Layer Meteorol* 138, 99–120.
819 <https://doi.org/10.1007/s10546-010-9551-7>

820 Zhang, A., Xia, C., Li, W., 2022. Exploring the effects of 3D urban form on urban air quality:
821 Evidence from fifteen megacities in China. *Sustainable Cities and Society* 78, 103649.
822 <https://doi.org/10.1016/j.scs.2021.103649>

823 Zhang, Z.-L., Zhang, M.-M., Cai, C., Cheng, Y., 2020. Characteristics of large- and small-scale
824 structures in the turbulent boundary layer over a drag-reducing riblet surface.
825 *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical*
826 *Engineering Science* 234, 796–807. <https://doi.org/10.1177/0954406219887774>