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Gut ecological networks reveal associations between bacteria, 
exercise, and clinical profile in non-alcoholic fatty liver 
disease patients
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ABSTRACT Gut microbial dysbiosis has been observed in non-alcoholic fatty liver 
disease (NAFLD). The beneficial impact of exercise, the recommended lifestyle change 
for NAFLD patients, might be mediated by the gut microbiome (GM). However, the exact 
taxonomic and functional signatures associated with the host’s clinical and biochem­
ical improvement during exercise in NAFLD patients have not been elucidated yet. 
To investigate the impact of exercise on GM and reveal GM structures associated 
with NAFLD improvement during exercise. Stool samples from a 12-week randomized 
controlled exercise study on NAFLD subjects (N = 39) were retrieved, and shotgun 
metagenomics was performed at baseline and endpoint. Differential correlation network 
and enrichment analysis were applied to characterize the GM taxonomic and functional 
changes during the exercise intervention and to associate GM changes with biomarkers 
of liver status and metabolic dysregulation. Network analysis demonstrated that exercise 
induced significant changes in the bacterial interactome, which were associated with 
waist circumference; resting metabolic rate; plasma fasting concentrations of triglyceride, 
glucose, insulin, and glycated hemoglobin A1c; and homeostasis model assessment for 
insulin resistance. Grouping the patients in the exercise group (N = 20) as responders 
(N = 13) and non-responders (N = 7) using their intrahepatic lipid content (IHL) change 
allowed us to identify bacteria consortia contributing to the levels of alanine fermenta­
tion, methanol-, creatinine-, and protocatechuate degradation and as a result to the 
plasma concentrations of liver injury markers alanine transaminase, gamma-glutamyl 
transaminase, and aspartate transaminase. We showed that even though exercise has 
not a significant impact on the alpha- and beta-diversity of NAFLD patients, it leads to 
a significant re-structuring of the gut bacteria interactome and that specific structural 
changes can be linked with improvements in IHL.

IMPORTANCE Our study is applying a community-based approach to examine the 
influence of exercise on gut microbiota (GM) and discover GM structures linked with 
NAFLD improvements during exercise. The majority of microbiome research has focused 
on finding specific species that may contribute to the development of human diseases. 
However, we believe that complex diseases, such as NAFLD, would be more efficiently 
treated using consortia of species, given that bacterial functionality is based not only on 
its own genetic information but also on the interaction with other microorganisms. Our 
results revealed that exercise significantly changes the GM interaction and that structural 
alterations can be linked with improvements in intrahepatic lipid content and metabolic 
functions. We believe that the identification of these characteristics in the GM enhances 
the development of exercise treatment for NAFLD and will attract general interest in this 
field.
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N on-alcoholic fatty liver (NAFLD) is the leading cause of chronic liver diseases and 
is strongly associated with metabolic syndrome (1). NAFLD, which ranges from 

benign steatosis up to non-alcoholic steatohepatitis (NASH) and can lead to cirrhosis and 
hepatocellular carcinoma, is significantly associated with increased overall mortality (2, 
3). Among multiple pathways and different interactions between the liver and organs, 
the gut and its microbiome have received increased attention in NAFLD pathogenesis. 
Small intestine bacterial overgrowth and altered microbiome signatures have been 
found in NAFLD patients compared to healthy controls (4–7). Due to dysbiosis and 
increased intestinal permeability, gut microbiome (GM)–derived metabolites can reach 
the liver via the portal vein and influence inflammation and NAFLD progression (1, 
8). Furthermore, microbial interactions have several crucial functions for community 
stability in a healthy microbiome and changes in this interactome can contribute to the 
host disease (9).

Exercise, in addition to diet, is the recommended treatment for NAFLD has recently 
been shown to be interconnected with gut microbiota (10–12). For example, professional 
rugby players have higher alpha diversity compared to healthy controls (13) and a half 
marathon in amateur runners yielded abundance changes in seven taxa and 20 bacterial 
clades (14). In addition, we previously found differences in gut microbiota associated 
with insulin sensitivity in prediabetic subjects responding differently to exercise (15). 
However, strenuous exercise can also induce loss of epithelial integrity and barrier 
function and splanchnic hypoperfusion with impaired nutrient absorption (16, 17).

While many microbiome studies focused on associations between diseases, low 
diversity, altered abundances, and composition of specific microorganisms, there is 
growing interest in the microbial interactome and identifying its keystone taxa in human 
health and disease (18–22). The microbial communities interact as a complex network 
in which species can cooperate or compete, for instance, for nutrients and metabolites 
(23). Recent co-occurrence network analysis studies in Crohn’s disease, irritable bowel 
disease, and obesity showed microbial disturbances and alteration in the GM interac­
tome suggesting an essential role of microbial interactions in disease progression (19, 
20). Earlier studies on the GM and NAFLD were predominantly centered on identifying 
individual gut species and their functions (24–27). While those studies have helped 
appreciate the involvement of gut species in NAFLD development, the complexity of the 
disease requires therapeutic interventions that move beyond individual species to small 
consortia.

We recently performed a randomized controlled exercise intervention in participants 
with NAFLD (28), and well-documented clinical measurements were taken to assess how 
the phenotypes changed to the exercise intervention. Here, we took a step further to 
characterize taxonomically and functionally the GM using a comprehensive shotgun 
metagenomics analysis. In addition, we used here a community approach, through 
co-abundance ecological networks, to investigate the impact of exercise on GM and 
reveal GM structures associated with NAFLD improvement during exercise.

MATERIALS AND METHODS

Study

The study design has been reported in detail previously (28). In brief, participants with 
NAFLD diagnosis were randomly assigned to an intervention or control group according 
to body mass index (BMI), age, gender, and status of glucose metabolism. The inclusion 
criteria were age 18–70 years and BMI below 35 kg/m2. NAFLD diagnosis was made 
with ultrasound, magnetic resonance imaging (MRI), or computed tomography. The 
intervention group followed an individualized 12-week high-intensity interval training 
(HIIT) based on an ergospirometry test. The control group maintained their sedentary 
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lifestyle with no changes in physical activity. The subjects were instructed to keep 
their dietary habits unchanged. Four-day food records were collected just before the 
intervention started and at week 11 checked by a clinical nutritionist at return. Intrahe­
patic lipid (IHL) content was measured by nuclear MRI.

Blood samples were drawn after an overnight fasting. Plasma glucose concentration 
and lipid profile were analyzed at Eastern Finland Laboratory Center ISLAB. Insulin, 
apolipoprotein (Apo) A1, and ApoB concentrations were analyzed at the University of 
Eastern Finland.

Responder and nonresponder definition

Participants who had a decrease in IHL content during the 12-week intervention were 
defined as responders (N = 13). Non-responders had unchanged or increased IHL during 
the intervention (N = 7).

Stool samples

Stool samples were collected by the subjects themselves in a plastic container with a lid 
at the beginning and end of the study. The sealed container was brought to the research 
unit the next day in an ice box with ice bags. At the research unit, stool samples were 
directly homogenized, aliquoted, and frozen at −80°C without any detergents for further 
analysis. The frozen stool samples were sent to Novogene, United Kingdom, for DNA 
extraction and shotgun sequencing.

DNA extraction and sequencing

The DNA extraction procedures were followed by QIAamp DNA Mini and Blood Mini 
Handbook (29). The DNA fragments were end-polished, A-tailed, and ligated with the 
full-length adapters of Illumina sequencing, followed by further PCR amplification with 
P5 and indexed P7 oligos. The PCR products as the final construction of the libraries were 
purified with the AMPure XP system. Then libraries were checked for size distribution 
by Agilent 2100 Bioanalyzer (Agilent Technologies, CA) and quantified by real-time PCR 
(to meet the criteria of 3 nM). The qualified libraries are fed into Illumina sequencers 
(NovaSeq system, 150-bp paired-end sequences).

Metagenomics data processing

Trimmomatic was used to clip adapter and low-quality bases (v0.36, ILLUMINACLIP:Tru­
Seq3-PE-2.fa:2:30:10:1:TRUE, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:30). 
The remaining reads with less than 36-bp length were discarded. BWA (v07.17) was used 
to align quality-filtered reads to the human reference genome (hg38). Originally 20.1M 
± 1.7M metagenomic reads remained after preprocessing per sample. MetaPhlAn3 and 
HUMAnN3 were used to estimate the taxonomic and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway composition of the non-human reads with default parame­
ters. Low abundance species were removed at a cut-off = 0.05%. R packages vegan (v2.5) 
and picante (v1.8.2) were used to calculate alpha diversity.

Differential correlation network analysis and enrichment analysis

We calculated the differentially correlated microbial pairs in the intervention and control 
groups, then excluded the differentially correlated microbial pairs that appeared in both 
groups. The remaining differentially correlated microbial pairs were used to construct 
the network of intervention groups. The abundance network was constructed based on 
the relative abundance values of all detected species (prevalence filter: 10%, abundance 
filter: 0.05%). DGCA (v2.0.0) was applied to construct the network from differentially 
correlated microbial pairs. To further decompose the complex microbiome network 
into sub-communities, MEGENA (v1.3.7) was used to identify modules in the construc­
ted network using significantly different microbial pairs (P < 0.05). MEGENA performs 
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clustering analysis through an iterative approach that divides parent clusters into 
sub-clusters and then evaluates the compactness and local clusteredness inside the 
cluster until no valid sub-clusters can be further identified. The same approach was 
also applied to analyze responder versus non-responder and to build the network of 
responder group.

We performed enrichment analysis, which includes permutation testing to determine 
whether correlations between modules and clinical parameters were possible by chance 
or not (30). The relative abundance of species was transformed by the centered log 
ratio transform method of the R package microbiome (v1.12.0). First, for a given module, 
correlations between particular clinical parameters and all species in this module were 
obtained using the partial Spearman correlation method adjusted by age, gender, and 
BMI. The sum of absolute correlation coefficients in this module was then calculated. 
Following that, the same number of species in the module was chosen at random 
1,000 times from all species, and the sum of absolute values of every correlation was 
calculated for each set. Finally, the sum of significant correlation values in a given module 
was evaluated to determine whether it was higher than 95% of the sums of significant 
correlation values in the repeated random selected species.

Statistics

Clinical

Unpaired t-test was used for comparing the clinical measurements between groups 
at baseline. For comparing both groups after 12 weeks, a generalized linear model 
(GLM) was used and adjusted by gender, age, BMI, and type 2 diabetes (T2D) sta­
tus. Low-density lipoprotein cholesterol (LDL-C), gamma-glutamyl transferase (GGT), 
insulin, homeostatic model assessment-insulin resistance (HOMA-IR), and high-sensitive 
C-reactive protein (hs-CRP) were log10 transformed, and apolipoprotein (Apo) B and total 
cholesterol (TC) were square rooted for normalization.

Metagenomics

The R package vegan (v2.5) was used to calculate alpha diversity with Shannon and 
Chao index for each sample. Statistical differences in alpha diversity were obtained by 
the Wilcoxon rank-sum test (between groups) and Wilcoxon signed-rank test (within 
groups). For beta diversity, the R package phyloseq (v1.34.0) and coda.base (v0.3.1) were 
used to calculate the weighted and unweighted UniFrac distance and Aitchison distance 
for samples. Statistical difference of beta diversity was calculated by permutational 
multivariate analysis of variance (PERMANOVA). Metagenomseq (v1.32.0, zero-inflated 
Gaussian mixture model) was used to perform differential abundance analysis of species 
and pathways. Correlations between clinical parameters, species, and pathways were 
obtained using the partial Spearman correlation method adjusted by age, gender, and 
BMI. Distance-based redundancy analysis (dbRDA, from R package vegan) was used 
to analyze the relationship between the host clinical profile and the taxonomic and 
functional composition of the GM. For all statistical analyses, P < 0.05 was considered 
statistically significant. False discovery rate (FDR) was calculated to adjust P values for 
multiple hypotheses testing by applying Benjamini-Hochberg procedure.

RESULTS AND DISCUSSION

Exercise induced global and personalized changes in clinical and biochemical 
profiles of NAFLD patients

Forty-two subjects (25 women, 17 men) from Finland participated in this 12-week HIIT 
(details have been published before [28]). The subjects in the intervention (I) and control 
(C) groups were similar in age (I, 59.9 ± 9.8 years; C, 56.7 ± 10.7 years), BMI (I, 29.7 ± 3.2; 
C, 29.5 ± 4.3), and fitness levels measured as maximum oxygen consumption (VO2max) (I, 
23.7 ± 4.0 mL/kg/min; C, 25.1 ± 5.3 mL/kg/min). During the intervention fasting, plasma 
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glucose concentration and waist circumference decreased significantly (GLM, P < 0.05), 
whereas the maximum rate of oxygen consumption (VO2max) and maximum achieved 
workload (maxW) increased significantly compared to the control group (normalized 
to baseline, GLM, P < 0.05). The IHL content did not change significantly during the 
intervention in either group (GLM, P > 0.05). For the metagenomics analyses, stool 
samples from one subject in the intervention group and two subjects from the control 
group were excluded since these subjects used antibiotics during the intervention.

Interestingly, the IHL content in the intervention group increased in some partici­
pants, suggesting a heterogeneous response to exercise. Therefore, the intervention 
group (N = 20) was further sub-divided into responders (N = 13) and non-responders (N 
= 7) based on decreased or increased IHL content during the 12-week HIIT intervention. 
Baseline characteristics did not differ between the responders and nonresponders except 
for food intake (Table 1). A significantly higher intake of total fat and saturated fat (SFA) 
(t-test, P < 0.05) was reported at baseline in the nonresponder group compared to the 
responders.

During the 12-week intervention, there were significant differences in the fold 
changes of the concentrations of plasma triglycerides (TGs) and ApoB, visceral fat area 
and body fat mass in kilogram and percentage (normalized to baseline, GLM, P < 0.05; 
Table 1) when comparing responders with non-responders. There was also a significant 
change in body weight in the responders (GLM, P < 0.05); however, 900 g of weight 
loss in 12 weeks is not considered clinically significant. We observed a statistically 
non-significant trend toward reduced concentrations of TC, GGT, and LDL-C in the 
responders compared to non-responders (GLM, P = 0.081, 0.081, and 0.076, respectively). 
These trends are in line with previous aerobic exercise studies in NAFLD subjects, which 
have reported decreases in IHL and decreases in triglyceride (TG), ApoB, LDL-C, and TC 
concentrations (31–34). Although our results did not reach statistical significance, these 
findings may suggest that aerobic exercise has a favorable effect on lipid metabolism 
in NAFLD patients. Despite the instructions not to change the diet, the intake of total 
fat (GLM, P < 0.05) and monounsaturated fat (MUFA) (GLM, P < 0.05) was significantly 
different between the groups at the end of the 12-week intervention (Table 1). No 
significant differences were observed in SFA intake (GLM, P = 0.645) between the two 
groups during the intervention.

Microbiome variance during exercise is associated with markers of liver and 
glucose metabolism

Shotgun metagenomics sequencing of stool samples from baseline and endpoint was 
used to examine the GM change during exercise. We sequenced an average of 20.1 
gigabase pairs of high-quality reads per sample from 78 stool samples [control group 
at baseline (N = 20), control group at week 12 (N = 19), intervention group at baseline 
(N = 20), and intervention group at week 12 (N = 19)]. MetaPhlAn3 (35) was used for 
taxonomic profiling and identified 129 genera and 363 species across all samples. We 
measured the community alpha diversity as Shannon and Chao1 indices and calculated 
also the weighted/unweighted UniFrac distance and Aitchison distance of the control 
and intervention groups, at baseline and 12 weeks. However, there were no statistically 
significant differences induced by exercise within and between the groups (Wilcoxon 
signed-rank test, Wilcoxon rank-sum test, and PERMANOVA, P > 0.05) (Fig. 1a; Table S1).

Next, we applied dbRDA (from R package vegan) to evaluate the association of the 
metadata with the GM taxonomic and functional composition (Fig. 1b). Many significant 
correlations between the clinical variables and the GM variance were discovered in 
univariate analysis (dbRDA, P < 0.05). More than 20 covariates including the liver-related 
parameters, such as IHL, concentrations of aspartate aminotransaminase (AST), alanine 
transaminase (ALT), GGT, plasma total and lipoprotein lipids, ApoA1, ApoB, and fasting 
insulin and glucose, showed a significant correlation (dbRDA, P < 0.05) to the GM 
composition at the genus and species levels. Exercise parameters like VO2max and 
maxW, which were found to be significantly different (normalized to baseline, GLM, P < 
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0.05) between the intervention group and the control group, were found also signifi-
cantly correlated with the species diversity. Moreover, IHL and concentrations of AST and 
ALT were significantly associated (dbRDA, P < 0.05) with the functional variance of the 
microbiota. In the non-redundant analysis, 16, 28, and 3 of the significant covariates 

TABLE 1 Clinical characteristics of responders and non-responders at baseline and at the end of the interventiond

Clinical parameter Responder (baseline) Non-responder (baseline) Responder (12 wk) Non-responder (12 wk) P valuea P valueb

Sex (M/F) 5/8 2/5
Age, years 60.6 ± 10.6 59.4 ± 9.7 0.316
IHL, % 17.61 ± 8.14 13.67 ± 10.82 14.1 ± 8.2 16.3 ± 11.6 0.394 0
Weight, kg 83.6 ± 19.2 85.5 ± 5.8 82.7 ± 19.6 86.3 ± 5.6 0.659 0.009
BMI, kg/m2 29.8 ± 3.7 29.8 ± 1.4 29.5 ± 3.8 30.1 ± 1.3 0.879 0.008
ALT, U/L 50.92 ± 21.2 48.14 ± 24.5 45.6 ± 23.1 48.3 ± 21.0 0.794 0.449
AST, U/L 34.23 ± 10.81 30.71 ± 7.8 34.2 ± 10.8 30.71 ± 7.8 0.458 0.811
GGT, U/L 66.4 ± 67.7 98.6 ± 76.1 69.5 ± 104.5 110.6 ± 86.0 0.344 0.081
TG, mmol/L 1.7 ± 0.8 1.7 ± 0.8 1.52 ± 0.65 1.96 ± 0.9 0.974 0.015
TC, mmol/L 4.4 ± 1.1 5.4 ± 1.0 4.0 ± 0.8 5.5 ± 1.2 0.06 0.081
LDL-C, mmol/L 2.7 ± 1.2 3.6 ± 1.1 2.3 ± 0.88 3.5 ± 1.09 0.108 0.076
HDL-C, mmol/L 1.4 ± 0.4 1.4 ± 0.4 1.44 ± 0.38 1.49 ± 0.5 0.964 0.394
Apo A1, g/L 1.54 ± 0.2 1.5 ± 0.2 1.53 ± 0.19 1.57 ± 0.29 0.902 0.289
Apo B, g/L 0.9 ± 0.32 1.1 ± 0.16 0.78 ± 0.28 1.15 ± 0.19 0.074 0.028
VFA, cm2 140.8 ± 45.5 163.5 ± 33.5 137.5 ± 42.1 170.4 ± 34.9 0.262 0.03
Fat mass, kg 29.3 ± 9.0 32.3 ± 6.4 28.9 ± 8.5 33.6 ± 4.6 0.432 0.016
Fat mass, % 34.7 ± 4.0 32.2 ± 4.8 34.7 ± 3.4 39.1 ± 6.0 0.184 0.045
Muscle mass, kg 30.3 ± 7.0 29.6 ± 4.9 29.9 ± 7.1 29.3 ± 4.8 0.822 0.959
Waist circumference, 

cm
100.4 ± 13.4 102.7 ± 7.0 99.7 ± 14.7 102.1 ± 6 0.681 0.846

Systolic BP, mm Hg 137.3 ± 9.0 141.1 ± 17.1 137.5 ± 7.6 136.9 ± 16.1 0.596 0.453
Diastolic BP, mm Hg 87.5 ± 6.0 91.6 ± 7.0 87.2 ± 4.7 88.1 ± 8.8 0.184 0.153
Gluc, mmol/L 6.4 ± 0.8 6.5 ± 1.1 6.3 ± 0.6 6.5 ± 0.9 0.765 0.89
HbA1c, mmol/L 40.3 ± 4.3 40.7 ± 7.6 40.2 ± 3.0 41.3 ± 8.2 0.879 0.487
Insulin, mU/L 18.8 ± 14.6 15.9 ± 12.6 17.2 ± 8.1 16.4 ± 10.0 0.654 0.596
HOMA-IR 5.3 ± 4.1 4.6 ± 3.7 4.7 ± 2.1 4.8 ± 3.2 0.707 0.600
hs-CRP, mg/L 1.2 ± 0.9 2.01 ± 0.01 2.6 ± 3.9 2.3 ± 0.9 0.09 0.878
VO2max, mL/minute 1.99 ± 0.6 1.97 ± 0.49 2.2 ± 0.7 2.1 ± 0.55 0.927 0.07
VO2max, mL/kg/

minute
23.9 ± 3.8 22.9 ± 4.6 26.4 ± 4.1 24.0 ± 5.1 0.584 0.088

maxM, W 148.54 ± 53 152.86 ± 48.74 169.2 ± 51.3 166.5 ± 52.3 0.861 0.2
RMR, kcal/day 1,584 ± 322 1,440 ± 203 1,514 ± 190 1,591 ± 339 0.3 0.975
Energy, kJ 8,379 ± 1646 8,145 ± 2172 7,065 ± 1501 8,898 ± 2513 0.788 0.065
Energy, kcal 2,002 ± 393 1,946 ± 519 1,904 ± 358 2,125 ± 600 0.778 0.065
CHO, %c 41.7 ± 4.8 37.8 ± 5.7 42.0 ± 5.8 41.5 ± 5.7 0.123 0.236
Protein, %c 18.7 ± 4.0 17.9 ± 1.6 18.2 ± 4.2 15.4 ± 2.5 0.618 0.645
Fat, %c 34.8 ± 6.1 41.4 ± 5.9 36.7 ± 5.6 36.0 ± 3.9 0.032 0.005
SFA, %c 12.8 ± 2.6 15.8 ± 2.5 12.7 ± 3.1 14.0 ± 3.0 0.021 0.645
MUFA, %c 12.7 ± 2.5 14.9 ± 2.7 13.6 ± 2.3 12.0 ± 1.8 0.081 0.012
PUFA, %c 6.2 ± 1.3 6.2 ± 1.2 6.9 ± 1.5 5.6 ± 1.0 0.913 0.105
Cholesterol, mg 277 ± 87 310 ± 110 240 ± 49 310 ± 116 0.46 0.364
Fiber, g 24.6 ± 7.8 22.9 ± 6.9 24.0 ± 8.2 26.0 ± 6.5 0.6332 0.12
aComparing responder at baseline vs non-responder at baseline.
bComparing the changes of both groups after intervention; bold refers to significant.
cFrom total energy intake.
dM, male; F, female; T2D, type 2 diabetes; BMI, body mass index; ALT, alanine transferase; AST, asparagine transferase; GGT, gamma-glutamyl transferase; TG, triglyceride; TC, 
total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; VFA, visceral fat area; cf, circumference; BP, blood pressure; Gluc, 
glucose; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment-insulin resistance; hs-CRP, high-sensitive C-reactive protein; VO2max, maximum rate of 
oxygen consumption = “cardiorespiratory fitness”; maxW, maximum workload achieved; RMR, resting metabolic rate; CHO, carbohydrate; SF, saturated fatty acids; MUFA, 
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.
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FIG 1 Global characteristics of gut microbiome and clinical profile. (a) Principal coordinate analysis (PCoA) of Aitchison dissimilarity between gut microbiome 

abundance profiles at the species level. PERMANOVA was used to assess the statistical significance of beta diversity comparisons within and between groups. 

(b) Clinical covariates explaining the variation of bacteria (left to right) genera, species, and pathways among all samples (N = 78, distance-based redundancy 

analysis). Aitchison distance was used to measure the beta diversity. The orange bars represent the individual variance explained by each of these covariates, 

while the cyan bars refer to the cumulative and non-redundant variance by stepwise dbRDA analysis. Only significant (P < 0.05) genera, species, and pathways in 

individual analysis are listed. Those above the red dotted line are significant (P < 0.05) in the non-redundant analysis.
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accounted for 25.2%, 32.9%, and 9.0% non-redundant variance in the genus, species, and 
pathway profiles, respectively. Significant covariates like IHL, concentrations of ALT, GGT, 
TG, high-density lipoprotein cholesterol (HDL-C), fasting glucose, and VO2max and maxW 
had a significant correlation (dbRDA, P < 0.05) with the GM composition, and IHL 
remained significantly correlated (dbRDA, P < 0.05) with the functional variance of the 
microbiota.

Bacteroides, Dorea, and Ruminococcus, known as short-chain fatty acid (SCFA) 
producers, which were found previously in higher abundances in NAFLD subjects 
compared to controls, were found as part of the 10 most abundant genera in our study 
(Fig. 2a) (6, 36, 37). Faecalibacterium prausnitzii found previously lower abundance in 
T2DM and obese people was the most abundant species in our subjects (Fig. 2a) (6). 
To find out the potential taxa responding to the exercise intervention, we analyzed (i) 
taxa whose abundance changed significantly only in the intervention group but not 
in the control group (zero-inflated Gaussian mixture model, P < 0.05) and (ii) taxa that 
differed significantly between the two groups at the end of the study but not at baseline 
(zero-inflated Gaussian mixture model, P < 0.05). We found in total seven genera and 19 
species meeting these criteria; however, none of these 10 most abundant genera and 
species including Bacteroides, Dorea, Ruminococcus and Faecalibacterium prausnitzii was 
in this list (Fig. 2b; Table S2).

In addition, we identified 456 pathways across all samples using HUMAnN3 as the 
functional pathway’s profile annotation tool. Similar to the taxonomic profile, the 
functional potential of the microbiota was unable to distinguish within or between the 
groups based on alpha and beta diversity (PERMANOVA, P > 0.05) (Fig. 1a). We compared 
the individual pathways between the two groups using similar criteria as in the taxon­
omy profile. In total, 30 pathways met these criteria, yet none of the most abundant 
pathways including pathways previously associated with NAFLD, such as isoleucine and 
valine (PWY-6386, PWY-6387, ILEUSYN-PWY, and VALLSYN-PWY) (38), was part of this list 
of significantly different pathways (Fig. 2c).

Exercise intervention altered significantly the gut microbiome interactome

To investigate the direct and indirect interactions within the bacterial community, we 
applied the R package DGCA (v2.0.0) (39), which takes the correlations between species 
in both before and after the exercise intervention into account and constructed a 
differential correlation network using the detected species in all samples. Our network 
displayed only the significant differential correlations among species (P < 0.05) and 
contained 66 nodes and 68 edges, representing the differentially correlated species pairs 
and the type of change in the observed correlations between these species, respectively 
(Fig. 2a see Materials and Methods). The exercise intervention induced 18 positive 
associations between species, including one association that was found negative before 
the exercise but turned positive during the 12-week intervention (−/+) and 17 that were 
not observed at baseline but only at week 12 (0/+). There were also 13 negative associa­
tions caused by the exercise intervention, including one that was positive at baseline but 
turned negative at week 12 (+/−) and 12 that were not seen at baseline but only at the 
week 12 (0/−). Additionally, 16 negative (−/0) and 21 positive (+/0) associations which 
were found at baseline were lost during the intervention. Overall, the direction and/or 
strength of the 68 correlation pairs implied that the exercise reshaped the bacterial 
interactions within the GM.

Our network analysis revealed three GM species modules (Fig. 3a), from now on 
referred to as Module 1, Module 2, and Module 3. There were 18 species in Module 1, 14 
species in Module 2, and 17 species in Module 3. We then surveyed the three modules for 
differentially abundant species (zero-inflated Gaussian mixture model, P < 0.05). We 
found the species Alistipes putredinis, Bacteroides cellulosilyticus, Lactococcus lacti, and 
Roseburia sp CAG 309 in Module 1 to be significantly higher in the exercise intervention 
group compared to the control group (FDR = 0.02–0.14). A. putredinis and L. lacti were 
found decreased in a cohort study in cirrhosis patients and found to improve NAFLD 
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FIG 2 Top abundant genera/species/pathways and analysis of the differential abundance of genera/species/pathways in the intervention group. (a) Heatmap 

showing the relative abundance of the top 10 most abundant genera, species, and pathways in intervention and control group at baseline and week 12. 

(b) Selected significant genera/species with different abundance (zero-inflated Gaussian mixture model, P < 0.05). (c) Significant pathways with different 

abundance (zero-inflated Gaussian mixture model, P < 0.05). Two comparison ways were used for analyzing the differential abundance of genera, species, and 

pathways: Comparsion1, significant differential abundant species found between baseline and week 12 in the intervention group (but not significant in the 

control group); Comparsion2, significant differential abundant species found between intervention and control at week 12 (but not at baseline).
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progression in mice models (40, 41). In Module 2, we found Coprococcus eutactus 
significantly increased (Week 0 vs Week 12) in the exercise intervention group but not in 
the control group (FDR = 0.18). C. eutactus has been reported to be more abundant in 
healthy individuals than in individuals with NAFLD and suggested as probiotic bacteria 
against NAFLD (42). In the same module, we found Dorea formicigenerans and Eisenber­
giella massiliensis having significantly higher relative abundance in the exercise interven­
tion group when compared to the control (FDR = 0.044–0.145). Two species in Module 3 
also showed significantly different abundances in the two groups: Lactobacillus acidophi­
lus was found significantly lower in the exercise intervention group compared to the 
control group (FDR = 0.0008) and Clostridium sp CAG 58 had significantly higher abun­
dance in the intervention group compared to the control group (FDR = 0.14).

Next, we performed enrichment analysis in these three modules to evaluate the 
implication of GM restructuring following the exercise (see Materials and Methods 
section). No significant association was found between Module 1 and any clinical 
parameters. However, we found Module 2 had associations with waist, resting metabolic 
rate (RMR), and TG, and Module 3 had associations with concentrations of fasting glucose 
and insulin, HbA1c, and HOMA-IR (Fig. 3a). Therefore, we then specifically focused on 
Module 2 and Module 3 to study the association between their bacterial members, the 
significant GM functional pathways (zero-inflated Gaussian mixture model, P < 0.05), and 
the significant clinical parameters (GLM, P < 0.05) in more detail.

An alluvial plot (Fig. 3b) was used to integrate the connections between the bacterial 
modules, pathways, and clinical parameters. We observed a high number (81%) of 
positive correlations between the functional potential of the microbiome and Module 2. 
Bilophila wadsworthia and Escherichia coli in Module 2 had the most correlations. Many of 
the pathways were positively correlated with significant decreased plasma glucose 
concentration and waist circumference. A previous study showed that B. wadsworthia 
was positively correlated with fasting glucose concentration and aggravates high fat–
induced metabolic functions including increased IHL content (43). In addition, there was 
a negative correlation between B. wadsworthia and C. eutactus observed after the 
exercise intervention (Fig. 3a), suggesting that decreased B. wadsworthia levels might 
facilitate the significant growth of C. eutactus. C. eutactus was previously found at lower 
levels in NAFLD subjects compared to healthy subjects and an increase could alleviate 
NAFLD progression (42, 44). The biosynthesis pathways of thiazole and polyamine and 
the nitrate reduction and protocatechuate degradation pathways had the highest 
number of correlations with the species in Module 2 (Fig. S2a, significantly correlated 
with at least five species, partial Spearman correlation, P < 0.05). It has been suggested 
that polyamine, nitrate, and protocatechuate play a role in obesity, NAFLD, and NASH 
(45–47).

Unlike Module 2, the majority of the correlations (66%) we observed between Module 
3 and the microbiota pathways were negative. Bifidobacterium adolescentis and Lactoba­
cillus acidophilus had the most correlations with the pathways. The relative abundance of 
B. adolescentis, a species that was reported to alleviate liver steatosis in mice (48), tended 
to increase during the 12-week intervention in the intervention group (P > 0.05). 
Interestingly, L. acidophilus which is known to be beneficial against NAFLD (49) 
decreased after the intervention in the intervention group (P < 0.05, FDR = 0.0008). The 
butanediol, menaquinol, methane, factor 420 biosynthesis pathways showed the most 
correlations with the species in Module 3 (significantly correlated with at least four 
species, partial Spearman correlation, P < 0.05) (Fig. S2a). Higher bacterial menaquinol 
production is associated with fibrosis in NAFLD patients (50). Furthermore, we found the 
protocatechuate degradation, which was positively correlated with L. acidophilus (partial 
Spearman correlation, P < 0.05), and the biosynthesis pathways of galactose, arginine, 
and polyamine mostly correlated with the clinical profile (significantly correlated with at 
least seven clinical parameters, partial Spearman correlation, P < 0.05) (Fig. S2b). Arginine 
was proposed to be a potential therapy for NAFLD when it conjugates with bile acids 
(51).
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According to our differential correlation analysis, exercise had a significant impact on 
the microbial interactome. We identified three bacterial modules with a high number of 
differential correlations induced by exercise, which involved some significantly differen-
tial abundant species with a reported role in NAFLD progression. Modules 2 and 3 were 
correlated with clinical metabolic measurements associated with NAFLD, such as TG, 
insulin, and HOMA-IR (Fig. 2a), suggesting the potential implication of these bacterial 
consortia to synergistically affect clinical parameters during exercise.

Network analysis suggested potential gut microbiota contributions in 
exercise responsiveness

We subsequently investigated the gut microbiota of the responders (13 subjects had 
decreased IHL) and non-responders (seven subjects had increased IHL) within the 
exercise intervention group using differential correlation network and enrichment 
analysis as above. The species’ alpha and beta diversity showed no significant difference 
within or between the responders and non-responders (Fig. S3). The responder network 

FIG 3 Analysis of microbiome-clinical associations in the intervention group. (a) Differential correlation network of the 

intervention group (see details in Materials and Methods). Triangle nodes refer to significant differential abundant species 

found between baseline and week 12 in the intervention group (but not in the control group), and square nodes refer to 

significant differential abundant species found between intervention and control at week 12 (but not at baseline). Significant 

differential species are colored in orange. (b) Alluvial plot was created using only samples in the intervention group, showing 

associations between bacterial modules, pathways, and clinical parameters.
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displaying only the significant differential correlations (P < 0.05) contained 43 nodes 
and 34 edges. The exercise intervention resulted in total of 16 new correlations in the 
responders, including three associations that were not observed at baseline but became 
positive at week 12 (0/+) and 13 that were not observed at baseline but found negative 
at week 12 (0/−). Also, 18 correlations were lost during the intervention, including nine 
that were found negative at baseline but were lost during the 12-week intervention (−/0) 
and nine that were positive at baseline but disappeared during the 12-week intervention 
(+/0).

This differential correlation network also revealed three GM modules in the responder 
group (Fig. 4a). There were four species in Module 1, seven species in Module 2, and 
four species in Module 3. The enrichment analysis in the three modules revealed that 
Module 1 was significantly associated with fat mass percentage; Module 2 had significant 
associations with plasma TG concentration, HbA1c, and intake of SFA; and Module 3 was 
significantly associated with systolic blood pressure and plasma asparagine transferase 
(AST) concentration. We examined the species abundances present in these modules 
using similar criteria as in the analysis above for the exercise intervention group. We 
found no species in Module 1 and Module 2 with statistically significant abundance 
changes. In Module 3, we found two species significantly different in relative abundance 
between the responder and non-responder group at the end of the study but not 
at baseline, including Bacteroides thetaiotaomicron and Bacteroides faecis, which were 
significantly lower and higher in responder, respectively (zero-inflated Gaussian mixture 
model, log2FC = −0.23 and 1.46, P < 0.05, FDR = 0.056 and 0.091; Table S3).

We subsequently built an alluvial plot (Fig. 4b) integrating the bacterial modules, 
functions, and clinical parameters. The strongest influence on clinical parameters in 
Module 1 came from Bacteroides dorei. This bacterium is shown to lower lipopolysacchar­
ide production in the gut (52). The pathways of creatinine and protocatechuate degrada­
tion had significant correlations with the species in Module 1 (partial Spearman 
correlation, P < 0.05; Fig. S4a). There were previous studies suggesting that creatinine 
and protocatechuate are associated with NAFLD (47, 53). HbA1c, concentrations of 
fasting glucose, ALT and GGT, visceral fat area, and fat mass were also significantly 
negatively correlated with these pathways (partial Spearman correlation, P < 0.05; Fig. 
S4b).

The main contributors of Module two impacting the clinical parameters included B. 
caccae and Bacteroides cellulosilyticus. Both were slightly decreased in the responder 
group. These two species were found to be higher in advanced fibrosis in NAFLD (54, 55), 
but B. cellulosilyticus seems also to be associated with a healthy fasting lipid profile (56). 
The increased alanine fermentation (to propionate and acetate) pathway, which is 
negatively associated with concentrations of AST, insulin, LDL-C and GGT, weight, fat 
mass, and visceral fat area, was correlated with bacteria only from Module 2 (Fig. 4b; Fig. 
S4b).

B. faecis and Catenibacterium mitsuokai in Module 3 had the most associations with 
the pathways. We found B. faecis significantly increased at week 12 in the responder 
group (zero-inflated Gaussian mixture model, P < 0.05) and was also negatively correla­
ted with the methanol degradation pathway, which has associations with decreased 
concentrations of liver enzymes ALT and AST (Fig. S4b). B. faecis was also found previ­
ously to be increased after decreased liver fat and was negatively associated with 
inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1), chemokine 
ligands 4 (CCL4), matrix metalloproteinase-1 (MMP-1), and tumor necrosis factor-alpha 
(57). Moreover, a negative correlation between insulin resistance and this bacterium was 
noticed in another study (56). There was a negative association between B. faecis and B. 
thetaiotaomicron (Fig. 4a). B. thetaiotaomicron from Module 3, which significantly 
decreased in responders, was significantly correlated with glycogen degradation (partial 
Spearman correlation, P < 0.05).

We took a closer look into the functional profile and specifically the associations 
between species and pathways, and the associations between pathways and clinical 
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parameters (Fig. S4). We observed that creatinine degradation pathway, which was 
negatively correlated with HbA1c and fasting glucose concentration, showed the most 
correlations with the species in the three modules (significantly correlated with at least 
three species, partial Spearman correlation, P < 0.05). The gut microbiota functional 
potential in methanol oxidation and alanine fermentation (to propionate and acetate) 
had the most correlations with the clinical profile (significantly correlated with at least 
seven clinical parameters, partial Spearman correlation, P < 0.05). B. dorei and B. faecis 
were significantly negatively correlated with the methanol oxidation pathway.

Previous microbiota network analyses in diseases showed the importance of the 
microbial interactome. For example, disturbances in the microbial network of Crohn’s 
disease might affect the relapse of the disease and non-response to antibody treatment 
(19). In addition, a recently published study about the microbial interactome in subjects 
with bronchiectasis exacerbations revealed differences in the numbers and directions of 
interactions of shared microbes between low- and high-frequency exacerbation clusters 
(9). This suggests that not the abundance of the microbe but more the interaction of the 
microbe with others are relevant for the disease outcome (9).

Our study uncovered besides differences in abundances of microbes in the inter­
vention and control, changes in the bacterial interaction pattern. Species such as B. 

FIG 4 Analysis of microbiome-clinical associations in the responder group. (a) Differential correlation network of the 

responder group (see Materials and Methods). Square nodes refer to significant differential abundant species found between 

responders and non-responders at week 12 (but not at baseline). Significant differential species are colored in orange. 

(b) Alluvial plot was created using only samples in the responder group, showing associations between bacterial modules, 

pathways and clinical parameters.
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wadsworthia that are not significantly different between the groups but has several 
interactions with the pathway influenced the significant clinical outcomes (Fig. 4) and 
has also interaction with a significantly changed species (C. eutactus) suggesting an 
important player in the improvement of NAFLD progression performing exercise besides 
its absence of significance abundance between and within the groups. In addition, 
species in the interactome of responders and non-responders (e.g., Catenibacterium 
mitsuokai) were also non-significant in the richness but interacted with a significantly 
changed species (B. faecis), and both were associated with pathways that correlated with 
clinical outcomes in this module (Fig. 4). Therefore, the microbiota richness alone might 
not be a sufficient indicator of microbes’ impact on the microbiome and clinical events 
(9) but rather cooperation and competition in their ecosystem. Finally, the small cohort 
size of our study may have prevented us from detecting some species with significant 
interactions with clinical parameters in the abundance analysis. Despite this limitation, 
our study revealed significant changes in the bacterial interaction pattern, highlighting 
the potential importance of microbial cooperation and competition in the microbiome 
and clinical outcomes.

Conclusion

We retrieved stool samples from a 12-week controlled HIIT intervention in NAFLD 
subjects (28) to investigate the changes in the gut microbiota induced by exercise as 
well as the role of the gut microbiota as a mediator of the positive effects of exercise in 
clinical parameters reflecting liver damage. While most microbiome research has focused 
on finding individual species that may be involved in the development of human 
diseases, believe that complex diseases, including NAFLD, would be more successfully 
treated with consortia of species especially considering that bacterial functionality is not 
only dependent on its own genomic information but also influenced by the interac­
tion with other microbes (58). From our differential correlation network analyses, we 
found that the microbial interactome was significantly altered by exercise and revealed 
small modules of bacteria potentially involved in the host’s metabolic responsiveness 
to exercise. Even though our study was a carefully conducted randomized controlled 
exercise intervention and all HIIT sessions were supervised, it has limitations. The sample 
size was relatively small. In addition, whereas the GM interactome was thoroughly 
studied, conclusions for the newly formed interactomes cannot be easily drawn, since 
the co-occurrence analysis is undirected and unweighted (59). More research is needed 
to understand the causative links between non-responder microbiome and responsive­
ness to exercise in NAFLD patients to design combinatorial therapeutic approaches.
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