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Networks of quantum devices with coherent control over their configuration offer promising advantages in
quantum information processing, including quantum communication, computation, and sensing. So far, the
investigation of these advantages assumed that the control system was initially uncorrelated with the data
processed by the network. Here, we explore the power of quantum correlations between data and control,
showing two communication tasks that can be accomplished with information-erasing channels if and only if
the sender shares prior entanglement with a third party (the “controller”) controlling the network configuration.
The first task is to transmit classical messages without leaking information to the controller. The second task
is to establish bipartite entanglement with a receiver, or, more generally, to establish multipartite entanglement
with a number of spatially separated receivers.
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I. INTRODUCTION

A remarkable feature of quantum particles is the ability
to undergo multiple evolutions simultaneously, in a coherent
quantum superposition [1–7]. In a seminal work [8], Gisin,
Linden, Massar, and Popescu showed that the interference
of multiple quantum evolutions could be used to filter out
noise in quantum communication, with potential benefits for
quantum key distribution and other quantum communication
tasks. Recently, the interference of multiple quantum evolu-
tions has been studied in terms of communication capacities
both theoretically [4,5,9,10], and experimentally [11,12], in
quantum computing [13] and also in quantum sensing [14,15].

The superposition of quantum evolutions is generated by
introducing a control system, which determines the evolution
undergone by a target system. Quantum networks equipped
with control systems provide a new paradigm for quantum
information processing, and at the same time are an inter-
esting toy model for investigating new causal structures that
could potentially arise in a quantum theory of gravity [16–18].
A concrete example of such a new causal structure is the
quantum SWITCH [19], a higher-order operation that con-
nects two variable channels in an order determined by the
state of a quantum system, giving rise to a feature called
causal nonseparability [20,21]. Over the past decade, the
quantum SWITCH stimulated several experimental investiga-
tions [22–26] (see also Ref. [27] for a review) and was
found to offer information processing advantages in many
tasks, including classification of quantum channels [28,29],
communication complexity [30], quantum communication
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[9,31–37], quantum metrology [38,39], and quantum thermo-
dynamics [40–42].

Previous studies on the quantum SWITCH and other coher-
ently controlled quantum networks explored the benefits of
quantum superpositions of states of the control corresponding
to definite configurations. In all these studies, the control was
assumed to be initially uncorrelated with the target. It is possi-
ble, however, to consider a more general situation in which the
control and the target share prior correlations. In this situation,
the data processed by the network becomes correlated with its
evolution, potentially giving rise to new phenomena that could
not be observed in the traditional setting.

In this paper, we explore the power of quantum correlations
between control and target, showing that they enable two
communication tasks that are impossible with an uncorrelated
control, or even with a classically correlated one. The tasks
involve the assistance of a third party (the “controller”) who
has access to the control system and shares initial quantum
correlations with the sender. The role of the controller is to
assist the receiver by providing classical information gathered
from the control system. For example, the controller could be
a quantum communication company responsible for the con-
nection between the sender and receiver. More generally, the
controller could be any party who has access to the outcomes
of measurements performed on the control system.

Our tasks involve communication through noisy channels
that completely erase information when used in a definite con-
figuration. The first task is the communication of a classical
message without leaking information to the controller. We
show that this task can be perfectly achieved with information-
erasing channels if and only if the sender and the controller
initially share a maximally entangled state. The second
task is to establish bipartite entanglement between a sender
and a receiver, or, more generally, to establish multipartite
entanglement network between the sender and a number
of spatially separated receivers. In this case, we show that
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perfect entanglement can be established via information-
erasing channels if and only if the target and the control are
initially in a maximally entangled state. Note that the term
“quantum network” as used in the present paper has a broader
meaning than just a quantum communication network in the
conventional sense. Our protocols can be used to transfer
information and establish entanglement in every set of inter-
connected quantum devices including quantum computers and
quantum sensors.

II. QUANTUM COMMUNICATION
WITH ENTANGLED CONTROL

We start by reviewing the mathematical description of co-
herent control over the configurations of quantum devices,
focusing in particular on coherent control over the choice
of quantum devices and over their order. For simplicity, we
discuss the case of N = 2 qubit channels, leaving the details
of the general cases to the Appendix.

The action of a quantum device is mathematically de-
scribed by a quantum channel; that is, a completely positive,
trace-preserving linear map, acting on the density matrices
of a given quantum system [43]. Quantum channels can be
conveniently expressed in the Kraus representation E (ρ) =∑

i EiρE†
i , where the Kraus operators {Ei} satisfy the normal-

ization condition
∑

i E†
i Ei = I , I denoting the identity matrix

on the system’s Hilbert space. Control over the order of two
devices is described by the quantum SWITCH [19], an opera-
tion that combines two channels E and F acting on a target
system, generating a new channel S (E,F ) acting jointly on
the target and a control system. In the simplest version of
the quantum SWITCH, the channel S (E,F ) executes the two
channels E and F either in the order E ◦ F or in the order
F ◦ E , depending on whether the control qubit is initialized in
the state |0〉 or |1〉, respectively. Explicitly, the control-order
channel S (E,F ) is specified by the relation

S (E,F )(ρ) =
∑
i, j

Si jρS†
i j, (1)

with

Si j = FiEj ⊗ |0〉〈0| + EjFi ⊗ |1〉〈1|, (2)

with {Ej} and {Fi} being the Kraus operators corresponding
to the channels E and F , respectively. Note that the control-
order channel S (E,F ) depends only on the input channels E
and F and not on the specific Kraus decompositions used in
Eq. (A3).

Control over the choice of a noisy channel can be described
in a similar way. A quantum channel T that executes either
channel E or channel F depending of the state of a control
system has the form [3–5]

T (ρ) =
∑

i j

Ti jρT †
i j , (3)

with

Ti j = Eiβ j ⊗ |0〉〈0| + Fjαi ⊗ |1〉〈1|, (4)

αi and β j being complex amplitudes satisfying the normaliza-
tion conditions

∑
i |αi|2 = ∑

j |β j |2 = 1.
An important difference between control over the choice

of two devices and control over their order is that, while
the control-order channel S (E,F ) depends only on the chan-
nels E and F , the control-choice channel T depends also
on the amplitudes αi and β j [2–7]. The physical reason for
this dependence is that controlling the channel choice means
choosing which channel is not used or, equivalently, which
channel is fed a trivial input, such as, e.g., the vacuum
state [5]. Modeling the trivial input as a state |triv〉 orthogonal
to all states of the target system, the choice-controlled channel
T can be regarded as a function of two extended channels
Ẽ and F̃ with Kraus operators Ẽi = Ei + αi|triv〉〈triv| and
F̃j = Fj + β j |triv〉〈triv|, respectively [5,7]. For this reason, in
the following we will use the notation T (Ẽ, F̃ ).

In contrast with previous studies that assume uncorrelated
target and control, we consider a scenario where the target and
control are correlated due to preshared entanglement between
the sender and a third party, named the controller, which
controls the configuration of the network. In our commu-
nication scenario, the sender (Alice) has access to a local
system, entangled with a control system in the hands of the
controller (Charlie). Alice encodes information by performing
local operations on her side of the entangled state, producing
as output a target system, which will be sent to the receiver
(Bob), and an auxiliary system, kept in her laboratory. Then,
the target system travels to Bob via a noisy communication
channel, while the control system is held by Charlie, whose
assistance will be limited to one round of classical communi-
cation to Bob. A schematic of this communication scenario is
illustrated in Fig. 1.

The initial entanglement between target and control can
then be regarded as an offline resource independent of the
message to be sent. Note that, assuming this resource is gen-
erally different from assuming entanglement directly with the
receiver. Indeed, in a communication network, different nodes
may be connected by channels of different quality. In our
paper, we consider the scenario where the communication
channel between the sender and the receiver is severely af-
fected by noise, whereas the channel between the sender and
the control is ideally noiseless and can be used to establish
entanglement. This situation could arise, for example, when
the controller is a server located in proximity of the sender,
whereas the receiver is a far-away client. In the following, we
assume that the roles of the sender, receiver, and controller
are fixed. In a general network, of course, the role of the
nodes can vary over time, and a party that acts as a receiver
at a given moment may become a sender at a later times. In
this more general scenario, one could imagine that the party
that acts as sender at a given moment is aided by a server
located in its proximity and plays the role of the controller
in our analysis. In other words, one would have a network of
local controllers aiding the communication between senders
and receivers. Note that communication between two dis-
tant controllers would likely suffer from the same limitations
as communication between senders and receivers. For this
reason, the local controllers could not be used to create noise-
less side channels that directly connect the senders to the
receivers.
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FIG. 1. Quantum communication with the assistance of correla-
tions with a control system. Sender A communicates to receiver B
through two noisy channels with the assistance of a third party C,
who controls the configuration of the two channels. We focus on
the case where the configuration is either (a) the order of the noisy
channels, or (b) the choice of which channel is used. The controller
and the sender initially share an entangled state (dotted line on the top
left). Then, the sender encodes some input data by performing local
operations on her part of the entangled state. The output of these
operations is a signal that is sent through the network, and possibly
some auxiliary systems that the sender will keep in her laboratory.
After transmission, the controller assists the receiver by providing
him classical information extracted from the control system.

To highlight the power of quantum correlations, we con-
sider the extreme case where the channels E and F completely
erase information, producing a fixed pure state for every
possible initial state of the target system. These channels
play a fundamental role in quantum thermodynamics, where
they serve as the basis for extending Landauer’s princi-
ple to the quantum domain [44] and for evaluating the
work cost of quantum processors [45]. We refer to these
channels as information-erasing channels. Taken in isola-
tion, information-erasing channels have no ability to transmit
any type of information, be it classical or quantum. In the
following we focus on the case where E and F are orthogo-
nal information-erasing channels that output orthogonal pure
states, hereafter denoted as |0〉 and |1〉, respectively. In the
case of control over the choice we consider the extended chan-
nels Ẽ and F̃ with Kraus operators Ẽ0 = |0〉〈0| + |triv〉〈triv|,
Ẽ1 = |0〉〈1|, F̃0 = |1〉〈0|, and F̃1 = |1〉〈1| + |triv〉〈triv|, re-
spectively. The benefit of this setting is that the control-order
and control-choice channels coincide, namely,

S (E,F ) = T (Ẽ, F̃ ) =: K, (5)

as one can readily verify from the definitions. This observation
allows us to treat the order and the choice in a unified way. It
is worth stressing, however, that the identification in Eq. (5)
holds only for specific extensions Ẽ and F̃ , and that these
extensions are not information-erasing channels on the larger
space spanned by the three states |0〉, |1〉, and |triv〉.

III. PRIVATE CLASSICAL COMMUNICATION

A sender Alice wants to communicate a bit of classical
information to a distant receiver Bob. She wants the commu-
nication to be secure, in the sense that no other party except
Bob can access the message. Unfortunately, Alice and Bob
do not share a secret key, and therefore protocols like the
one-time pad are not viable. Also, they do not have access to
a sufficiently clean quantum communication channel, which
could be used to establish a secret key via quantum key distri-
bution [46,47]. Still, Alice has the assistance of a third party,
Charlie, who controls the configuration of two communication
channels, as in Fig. 1. Charlie can share entangled states with
Alice and can assist the communication by sending classical
information to Bob. However, Charlie should not be able to
extract any information about Alice’s message, otherwise the
privacy requirement would be compromised.

We now show that the desired task can be achieved
perfectly using coherently controlled information-erasing
channels. The crucial observation is that the channel K in
Eq. (5) has a decoherence-free subspace [48–51] spanned
by the states |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉 (see Appendix A for a
detailed analysis). This subspace contains Bell states |�±〉 =
(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)/

√
2, which can be generated from

|�+〉 by performing local unitary operations. Hence, Alice
can encode a bit x ∈ {+,−} in one of the states |�±〉 and
send it through the channel K without encountering any noise.
On the other hand, Charlie has no access to the value of
the bit, because the states |�±〉 cannot be distinguished us-
ing only measurements on the control system. In the end,
Charlie measures the control on the Fourier basis {|+〉, |−〉},
with |±〉 := (|0〉 ± |1〉)/

√
2, and communicates the outcome

to Bob, who also measures on the Fourier basis. If Charlie’s
outcome is +, then Bob’s outcome is Alice’s original bit. If
Charlie’s outcome is −, then Bob only needs to flip the value
of his bit, thus obtaining the value of Alice’s bit.

In Appendix A, we show that maximal entanglement be-
tween target and control is strictly necessary: for information-
erasing channels E and F , Alice can perfectly communicate
a bit in a way that is oblivious to Charlie only if Alice and
Charlie initially share a maximally entangled two-qubit state.
In addition, we provide an extension of the above results from
qubits to general d-dimensional systems:

Theorem 1. A classical dit can be communicated, with no
leakage to the controller, through d orthogonal information-
erasing channels in d coherently controlled configurations
if and only if the control and target are initially in a
d-dimensional maximally entangled state.

Theorem 1 highlights the advantage of quantum correla-
tions between the target and control systems. Moreover, it also
highlights a fundamental difference between protocols using
control over the channels configurations and protocols using
the noisy channels E and F in a fixed configuration, while
allowing control over operations performed before and after
each noisy channel [52], as illustrated in Fig. 2. These proto-
cols allow Alice to send classical information to Bob through
the control in a way that is completely independent of the
noisy channels E and F [53]. However, this kind of protocols
generally leak information to Charlie, violating the privacy
requirement of our communication task. When E and F are
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FIG. 2. General protocol with two noisy channels E and F in a
fixed configuration and controlled operations before and after E and
F . Protocols of this type can perfectly transmit classical messages
from a sender to a receiver, but necessarily leak information to the
controller.

information-erasing channels, the leakage of information to
Charlie is strictly necessary:

Theorem 2. Protocols with fixed configurations of the chan-
nels E and F cannot achieve private communication.

Proof. Let x be the bit value encoded by Alice, and let
ρTC(x) be the joint state of the target and control after the
first controlled operation in Fig. 2 of the main text. With
the action of the information-erasing channel E , the target
system is erased and reset it to the fixed state |0〉, leaving
Charlie’s system in the marginal state ρC(x) := TrT[ρTC(x)].
Now, the state of all systems at later times of the protocol
depends only on the states ρC(x). For Bob to retrieve Alice’s
message, the states ρC(0) and ρC(1) must be perfectly distin-
guishable. But if they are perfectly distinguishable, they can
be copied by Charlie, who can read Alice’s message without
being discovered. �

We now demonstrate how to extend our protocol to
situations where the initial channels are partially information-
erasing.

Controlled configuration of partial
information-erasure channels

Let us now consider the examples of two partial
information-erasure channels, defined as follows:

E : ρ �→ pρ + (1 − p)|0〉〈0|,
F : ρ �→ qρ + (1 − q)|1〉〈1|. (6)

Here we use the term “partial information-erasing channels”
to distinguish these channels from the “erasure channels”
used in earlier works on quantum Shannon theory [54].
The latter are of the form N : ρ �→ N (ρ) = pρ + (1 −
p)|erasure〉〈erasure|, where the erasure state |erasure〉 is or-
thogonal to all the states of the input system. In other words,
these channels map a d-dimensional input system into a
(d + 1)-dimensional output system. The reason why we focus
on partial information-erasing channels rather than erasure
channels is that the sequential composition of two erasure
channels is not well-defined, due to the dimensionality mis-
match between their inputs and outputs. To consider two
erasure channels in an indefinite causal order, one would have
to introduce a third channel in between them, the choice of
which, however, is highly nonunique and would considerably
complicate our analysis.

For the partial information-erasing channels in Eq. (6), the
Kraus operators are given by

E : E0 = √
pI, E1 =

√
1 − p|0〉〈0|,

E2 =
√

1 − p|0〉〈1|,
F : F0 = √

qI, F1 =
√

1 − q|1〉〈0|,
F2 =

√
1 − q|1〉〈1|. (7)

Now, the Kraus operators for the controlled operations can be
obtained from Eq. (5) of the main text. When a maximally
entangled state |�+〉 (and similarly the state |�−〉) is sub-
jected to this controlled channel configuration, the output state
is given as

|�±〉 → (pq + (1 − p)(1 − q))|�±〉〈�±|
+ 1

2 p(1 − q)|1〉〈1| ⊗ I2 + 1
2 q(1 − p)|0〉〈0| ⊗ I2,

where In denotes the n × n identity matrix. To understand this
better, let us consider p = q = r. In that case,

|�±〉 → ρ± = [r2 + (1 − r)2]|�+〉〈�±| + 1
2 r(1 − r)I4,

which is a Werner state with probability r2 + (1 − r)2. When
Alice encodes the classical information by σz, we end up
distinguishing between the states ρ+ and ρ−. The minimum
error probability comes out to be

perr = 1 − r2 − (1 − r)2

2
. (8)

This minimum error probability can be achieved if Charlie
performs a measurement in the {|+〉 , |−〉} basis and commu-
nicates the measurement result to Bob who also measures in
the same basis. The number of private bits that can be sent
with these partial information-erasure channels is given by
the mutual information between Alice’s encoded data and the
message inferred by Bob. It reads as

C = 2 − H (X) � 1, (9)

where X = { 1+y
4 ,

1+y
4 ,

1−y
4 ,

1−y
4 }, with y = r2 + (1 − r)2.

H (X) denotes the Shannon entropy corresponding to the prob-
ability distribution X.

It is interesting to observe that, while these channels do
not completely erase the input information, their coherently
controlled configuration is unable to accomplish the task
perfectly. In contrast, the worst possible version of these
channels, which erase the input information completely (i.e.,
p = q = 0), can be used to perfectly communicate the pri-
vate bit. This is because the complete information-erasing
channels as in Eq. (5) possess a perfect decoherence-free
subspace spanned by the states |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, as
already pointed out in Sec. III. This feature is absent for partial
information-erasure.

IV. ESTABLISHING ENTANGLEMENT

Our second task is to establish entanglement between the
sender and a receiver, or, more generally, a number of spa-
tially separated receivers. We take each of the sender-receiver
links to consist of complete information erasing channels as
considered, and we show that, nevertheless, the entanglement
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between sender and controller can be used to achieve a high-
quality distribution of entanglement. An alternative way to
achieve long-distance entanglement would be to use quantum
repeaters [55,56], which, in the language of our paper, would
amount to entanglement shared between the sender and a
sequence of intermediate nodes.

A. One sender and one receiver

Let us consider first the case of a single receiver, Bob.
Initially, Alice and Charlie share a maximally entangled state.
Then, Alice converts it into the Greenberger-Horne-Zeilinger
(GHZ) state (|0〉 ⊗ |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 ⊗ |1〉)/

√
2 by apply-

ing a CNOT gate on the target qubit and on an additional
reference qubit, present in her laboratory and initially in the
state |0〉. Alice keeps the reference qubit with her and sends
the target qubit through the controlled channel K. The pres-
ence of the decoherence-free subspace Span{|0〉 ⊗ |0〉, |1〉 ⊗
|1〉} guarantees that the channel preserves the GHZ state. At
this point, Charlie measures the control qubit on the Fourier
basis {|+〉, |−〉} and announces the result to Bob, who does
nothing if the result is +, and performs a Pauli Z correction if
the outcome is −. The net result of the protocol is that Alice
and Bob share the maximally entangled state |�+〉, which can
later be used for quantum communication.

The above protocol can be generalized to dimension d , us-
ing d orthogonal information-erasing channels and quantum
control over d orders. Also in this case, we show that maximal
entanglement between target and control is strictly necessary:

Theorem 3. Coherent control on the configuration of d
orthogonal information-erasing channels enables perfect es-
tablishment of a maximally entangled two-qudit state if
and only if the sender and controller initially share a
d-dimensional maximally entangled state.

The proof is too lengthy to present here. See Appendix B
for the details of the proof.

B. One sender and multiple receivers

We now extend the protocol to the case of N spatially
separated receivers, each of which is connected to the sender
through coherently controlled information-erasing channels,
as in Fig. 3.

The generalization to N > 1 receivers has two important
features. First, we show that the dimension of the control
system can be kept constant, independently of N . In other
words, the amount of control required by the protocol is
asymptotically negligible in the large-N limit. The second
feature is that our protocol transmits perfect (N + 1)-partite
GHZ states, which can be used as a primitive in many
applications, including communication complexity [57], mul-
tiparty cryptography [58], secret sharing and entanglement
verification [59], and quantum sensor networks [60–62]. In
the context of quantum communication, GHZ states can be
used to achieve a task known as random receiver quantum
communication (RRQC) [35], where the goal is to transfer
quantum information to one of many receivers, whose iden-
tity is disclosed only after the transmission phase. Strikingly,
entanglement with the control allows us to achieve RRQC
with information-erasing channels, whereas in the lack of

FIG. 3. Distribution of entanglement to N = 2 spatially sep-
arated parties through coherently controlled information-erasing
channels. The task can be perfectly achieved with the assistance
of shared entanglement between the qubit at the sender’s end, and
a qubit used to control the configuration of channels between the
sender and each receiver.

such entanglement RRQC can only be achieved with quantum
channels that preserve classical information [35].

Let us see how the protocol works. Initially, Alice and
Charlie share a two-qubit maximally entangled state. Then,
Alice converts it in to an (N + 2)-qubit GHZ state by apply-
ing CNOT gates on her qubit and N additional qubits in her
laboratory. At this point, Alice sends N out of the (N + 1)
qubits from her part of the GHZ state to the N receivers.
Crucially, the controlled channel preserves the GHZ state
(see Appendix C for details). At this point, Charlie performs
a Fourier measurement on his qubit and communicates the
result to one of the N Bobs, who performs a local correction
operation, leaving the remaining N + 1 qubits (one with the
sender and N of them with Bob) in the GHZ state.

Also in this case, we prove that entanglement between con-
trol and target is strictly necessary for a perfect distribution of
GHZ states. This result and its d-dimensional generalization
are contained in the following theorem:

Theorem 4. Coherent control on the configuration of d
orthogonal information-erasing channels enables perfect es-
tablishment of d-dimensional GHZ states between the sender
and N spatially separated receivers if and only if the sender
and controller initially share a d-dimensional maximally en-
tangled state.

The details of the proof are provided in Appendix C.
In the subsequent section, we present a detailed compari-

son between our protocols and standard quantum communi-
cation schemes.

V. COMPARISON WITH STANDARD QUANTUM
COMMUNICATION PROTOCOLS

It is interesting to compare our proposed communication
scenario with the existing quantum information processing
protocols. For instance, one may find mathematical similari-
ties between the protocols for private classical communication
and dense coding [63]. Note that dense coding achieves trans-
mission of two bits using (1) a two-qubit entangled state
between sender and receiver, and (2) a perfectly noiseless
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communication channel. In contrast, our protocol (1) uses en-
tanglement between sender and controller, without requiring
any initial entanglement between sender and receiver, and (2)
allows for the transmission of one bit through channels that
completely erase information. In short, the initial resources
used in the two protocols are essentially different.

Regarding the performance difference between two bits
in dense coding and one bit in our protocol, it is important
to stress that, since our protocol does not require initial en-
tanglement between the sender and the receiver, the receiver
has to perform local decoding operations on a single qubit,
instead of the two qubits in the dense coding protocol. This
locality constraint implies that no more than one bit can be
communicated, even in principle, and even if one had access
to a noiseless channel. If we were to introduce the locality
constraint in the original dense coding protocol, the number
of bits would necessarily be reduced to one.

On the other hand, while the scenario of establishing entan-
glement is similar to that of quantum teleportation [64] at the
mathematical level, our protocol demands its own importance
in the conceptual point. The quantum correlations between
sender and controller enable a perfect distribution of entan-
glement from the sender to the receiver, even if the original
channels were information erasing.

Another important difference with teleportation or en-
tanglement swapping is again that these protocols require
entanglement between the sender and the receiver (or some
intermediate receiver, in entanglement swapping), while our
protocol provides a way to establish such entanglement
through a noisy channel. Clearly, after entanglement has been
established with our protocol, it can be used to perform quan-
tum teleportation or entanglement swapping, but the point of
our protocol is to show how this entanglement can be achieved
even if the original channels are information erasing.

It is also worth noting that that the N-receiver version of
our protocol achieves a task that is not achieved by normal
teleportation or entanglement swapping: starting from a single
ebit shared with Charlie, Alice can transfer an unknown quan-
tum state to one of the N Bobs without knowing the identity
of the actual receiver. Later, after the identity of the intended
receiver is announced, the N Bobs can cooperate via LOCC
operations in order to make the state accessible to the intended
receiver. This protocol requires a ebit shared between Alice
and Charlie, while a teleportation protocol would require an
(N + 1)-partite genuinely entangled state to be shared before-
hand, to accomplish this task perfectly.

VI. CONCLUSION

In this work, we initiated the exploration of quantum net-
works whose configuration is entangled with the state of
a control system. We focused on applications to quantum
communication, identifying two tasks that can be perfectly
achieved if and only if the sender and the controller initially
share maximal entanglement.

Our first task, the transmission of classical messages with-
out leakage to the controller of the network’s configuration,
highlights a fundamental difference between protocols where
the configuration of the channels is coherently controlled,
and protocols where the configuration is fixed and controlled

operations are allowed before and after each channel: when
the channels completely erase information, no protocol that
uses them in a fixed configuration can achieve private com-
munication between the sender and the receiver. Our second
task highlights the benefits of sender-controller entanglement
for establishing entanglement with one or more receivers.

While in this work we focused on quantum communica-
tion, we believe that protocols using quantum correlations
with the configuration of quantum networks will have signif-
icant implications also in other quantum technology, likely
including quantum metrology, thermodynamics, and com-
putation. Such protocols are potentially within reach with
existing photonic setups and would mark a new step in the
development of a quantum technology of coherent control
over the configurations of quantum networks.
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APPENDIX A: PRIVATE CLASSICAL COMMUNICATION

1. Proof of Theorem 1, if part

To prove the if part for Theorem 1, here we show that
the sender, Alice, can convey log2 d bit of classical informa-
tion privately to the receiver Bob by encoding the classical
information x ∈ {0, 1, . . . , d − 1} with a local operation on
one side of the shared maximally entangled state |�+〉 ∈
Cd ⊗ Cd .

Consider d orthogonal information-erasing channels
{E j}d−1

j=0 acting on the set of density matrices D(Hd ) over
a d-dimensional Hilbert space Hd . A set of Kraus for the
channel E j is

E ( j)
i j

= | j〉〈i j |, i j ∈ {0, . . . , d − 1}. (A1)

We now add quantum control over the order of the d
information-erasing channels, allowing a d-dimensional con-
trol system to select one out of d cyclic permutations. The
resulting channel is [9,36,37]

S (E0, E1, . . . , Ed−1)(ρAC) =
∑

i0,i1,...,id−1

Si0,i1,...,id−1ρACS†
i0,i1,...,id−1

,

(A2)
with Kraus operators

Si0,i1,...,id−1 =
d−1∑
j=0

E ( j)
i j

E ( j⊕1)
i j⊕1

· · · E ( j⊕(d−1))
i j⊕(d−1)

⊗ | j〉〈 j|, (A3)
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where ⊕ denotes the sum modulo d . Using Eq. (A1), we
rewrite Eq. (A3) in the following compact form:

Si0,i1,...,id−1 =
d−1∑
j=0

s j | j〉〈i j�1| ⊗ | j〉〈 j|,

s j : =
∏

l �= j�1

〈il |l ⊕ 1〉, (A4)

where � denotes subtraction modulo d .
At this point, there are three possible cases:
(1) il = l ⊕ 1 for all l ∈ {0, . . . , d − 1};
(2) il = l ⊕ 1 for all l except one, or equivalently, i j�1 = j

for all j except one;
(3) il �= l ⊕ 1 for two or more values of l .
In case 1, the Kraus operator is S1,2,...,d−1,0 =∑d−1
j=0 | j〉〈 j| ⊗ | j〉〈 j| =: P0. In case 2, the Kraus operators are

of the form | j〉〈i j�1| ⊗ | j〉〈 j|, where j is the one index for
which i j �= j � 1. In case 3, the Kraus operator Si0,i1,...,id−1 is
zero. Summarizing, the controlled-order channel is given by

S (E0, E1, . . . , Ed−1)(ρAC)

= P0ρACP0 +
d−1∑
j=0

∑
l �= j

〈l|〈 j|ρAC|l〉| j〉| j〉〈 j| ⊗ | j〉〈 j|.

(A5)

The same channel is obtained from a controlled choice
of the information-erasing channels {E j}d−1

j=0 , provided that

one adopts the extended channels {Ẽ j}d−1
j=0 with Kraus oper-

ators Ẽ ( j)
i j

= | j〉〈i j | + 〈i j | j〉|triv〉〈triv|. Indeed, the controlled-
choice channel is given by [4,5]

T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAC) =
∑

i0,i1,...,id−1

Ti0,i1,...,id−1ρACT †
i0,i1,...,id−1

,

(A6)
with Kraus operators

Ti0,i1,...,id−1 =
d−1∑
j=0

t j | j〉〈i j | ⊗ | j〉〈 j|, t j :=
∏
l �= j

α
(l )
il

, (A7)

where α
(l )
il

are the amplitudes associated with the lth channel.

If we set α
(l )
il

= 〈il |l〉, then there are three possible cases:
(1) il = l for every l ∈ {0, . . . , d − 1};
(2) il = l for every l except one;
(3) il �= l for two or more values of l .
In case 1, the Kraus operator is T0,1,...,d−1 = P0. In case 2,

the Kraus operator is |l〉〈il | ⊗ |l〉〈l|, where l is the one value
such that il �= l . In case 3, the Kraus operator Ti0,i1,...,id−1 is
zero. Summarizing, we obtained the relation

S (E0, E1, . . . , Ed−1) = T (Ẽ0, Ẽ1, . . . , Ẽd−1) =: K, (A8)

which proves Eq. (5) in the main text and generalizes it to
d � 2. In the following we treat the controlled order and
controlled choice in a unified way, referring to the channel
K.

Note that the channel K has a decoherence-free subspace
spanned by the vectors | j〉 ⊗ | j〉, j ∈ {0, . . . , d − 1}. Hence,

it preserves the maximally entangled states

|�x〉AC = 1√
d

d−1∑
j=0

e
2π i jx

d | j〉A ⊗ | j〉C , x ∈ {0, 1, . . . , d − 1}.

Since all these states are maximally entangled, they are
locally preparable from the canonical maximally entangled
state |�+〉AC = ∑d−1

j=0 | j〉A ⊗ | j〉C /
√

d by means of suitable
local unitary operations on Alice’s side. Therefore, Alice
can encode log2 d bits by locally transforming the preshared
|�+〉AC one of these d maximally entangled states. Then, she
can send her part of the state to Bob through the controlled
quantum channels. After the transmission, Bob and Charlie
share one of these d maximally entangled states.

The states {|�x〉BC} can be perfectly discriminated under
one-way LOCC. The protocol is simple: Charlie and Bob
perform two independent measurements on the Fourier basis
{| fm〉 = ∑

j e
2π i jm

d | j〉/√d}d−1
m=0, and Charlie communicates his

outcome to Bob. The joint probability distribution of their
outcomes mB and mC is p(mB, mC) = δmB+mC,x/d , and allows
Bob to infer the value of the message x from his outcome mB

and from Charlie’s mC. At the same time, Charlie remains
completely blind about the transmitted message becaus his
measurement outcome alone contains no information about x.

2. Proof of Theorem 1, only if part

In the previous section we have shown that Alice can com-
municate log2 d bits of classical information privately to Bob
via d controlled pin maps, provided that she initially shares a
d-dimensional maximally entangled state with the controller
Charlie. We now prove that maximally entangled states are
strictly necessary for this communication task. Precisely, we
show that a perfect communication of log2 d classical bits
through coherently controlled information-erasing channels is
possible only if Alice and Charlie initially share a bipartite
state ρ∗

AC that can be locally converted into the d-dimensional
maximally entangled state |�+〉AC.

The proof is rather complex and makes use of a series of
lemmas, proved in the following. All throughout this section,
we use the following notation: ρ∗

AC will be the state shared
by Alice and Charlie at the beginning of the protocol, Ax

be the local operation used by Alice to encode message x,
ρx,AC := (Ax ⊗ IC)(ρ∗

AC) will be the joint state of Alice’s
and Charlie’s systems right before transmission through the
controlled channel, and ρ ′

x,BC will be the state of Bob’s and
Charlie’s systems right after transmission.

Lemma 1. Perfect communication of log2 d bits through
coherently controlled information-erasing channels is possi-
ble only if the final states {ρ ′

x,BC}d−1
x=0 are pure, orthogonal, and

maximally entangled.
Proof. Let C be either the controlled-order chan-

nel S (E0, E1, . . . , Ed−1) or the controlled-choice channel
T (Ẽ0, Ẽ1, . . . , Ẽd−1), so that ρ ′

x,BC = C(ρx,AC).
Now, C transforms every density matrix into a den-

sity matrix with support contained in the subspace H0 :=
Span(| j〉 ⊗ | j〉, j ∈ {0, 1, . . . , d − 1}). This fact can be read-
ily checked from Eq. (A4) and (A7) in the cases of controlled
order and controlled choice, respectively.
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Since the subspace H0 is d dimensional, the only way
to achieve the perfect communication of log2 d bits is that
the states {ρ ′

x,BC} are pure and orthogonal, say ρ ′
x,BC =

|�x〉〈�x|BC where {|�x〉BC}d−1
x=0 is an orthonormal basis for the

subspace H0.
We now show that each state |�x〉 must be maximally

entangled. By definition, we have

|�x〉〈�x|BC = C((Ax ⊗ IC)(ρ∗
AC)). (A9)

Let us write |�x〉BC = ∑
j cx, j | j〉B ⊗ | j〉C. Multiplying both

sides of Eq. (A9) by IB ⊗ | j〉〈 j|C on the left and on the right,
we obtain

|cx, j |2| j〉〈 j|B ⊗ | j〉〈 j|C
= (IB ⊗ | j〉〈 j|C)C((Ax ⊗ IC)(ρ∗

AC))(IB ⊗ | j〉〈 j|C)

= C((IB ⊗ | j〉〈 j|C)(Ax ⊗ IC)(ρ∗
AC)(IB ⊗ | j〉〈 j|C))

= C(Ax(σ j,A) ⊗ | j〉〈 j|C),

σ j,A := (IA ⊗ 〈 j|C)ρ∗
AC(IA ⊗ | j〉C〉)

= E jAx(σ j,A) ⊗ | j〉〈 j|
= p j | j〉〈 j|B ⊗ | j〉〈 j|C, p j := Tr[σ j,A], (A10)

where the second equality follows from the expression of the
Kraus operators of K [Eqs. (A4) and (A7) for the controlled
order and controlled choice, respectively], the forth equality
follows from the fact that K is a controlled information-
erasing channel, and the fifth equation follows from the fact
that Ax is trace preserving.

Since j and x are arbitrary, we conclude that |cx, j |2 =
p j for every x and j. Now, recall that the vectors {|�x〉}
form an orthonormal basis for the subspace H0, and
therefore

∑d−1
x=0 |�x〉〈�x| = ∑d−1

j=0 | j〉〈 j| ⊗ | j〉〈 j|. Multiply-
ing both sides of this equation by 〈 j|C on the left and | j〉C

on the right, we obtain

d−1∑
x=0

|cx, j |2| j〉〈 j| = | j〉〈 j|, (A11)

which combined with the fact that |cx, j |2 is independent of
x, implies |cx, j |2 = 1/d for every j. In conclusion, the states
|�x〉 are maximally entangled. �

To continue the proof, we consider separately the cases of
the controlled order and the controlled choice.

Proof for controlled order. The proof uses the following
lemma:

Lemma 2. Perfect communication of log2 d bits with d
information-erasing channels in a controlled order is possi-
ble only if the initial state ρ∗

AC is locally convertible into a
d-dimensional maximally entangled state.

Proof. By Lemma 1, perfect communication is pos-
sible only if the states ρ ′

x,BC are pure, orthogonal, and
maximally entangled. Then, one has ρ ′

x,BC = |�x〉〈�x|BC =
S (E0, E1, . . . , Ed−1)(ρx,AC).

A necessary condition for the state
S (E0, E1, . . . , Ed−1)(ρx,AC) to be maximally entangled is
that the separable terms in Eq. (A5) vanish, or equivalently,
that |�x〉〈�x|BC = P0ρx,ACP0. Since P0 is a projector (up
to the inessential relabelling of the first space as B or

A), the normalization of the state P0ρx,ACP0 implies that
P0ρx,ACP0 = ρx,AC, and therefore, ρx,AC = |�x〉〈�x|AC. In
summary, all the states {ρx,AC}d−1

x=0 are maximally entangled.
But these states are obtained by performing local operations
on the initial state ρ∗

AC. Since local operations cannot
increase entanglement, we conclude that ρ∗

AC must be
locally convertible into a d-dimensional maximally entangled
state. �

Combining Lemmas 1 and 2, we obtain the desired ne-
cessity proof for the controlled order of information-erasing
channels: perfect communication of log2 d bits is possible
only if the initial state shared by Alice and Charlie is (locally
equivalent to) a d-dimensional maximally entangled state.

Proof for controlled choice. The proof is more subtle than
the proof for controlled order, because there are infinitely
many possible “controlled-choice channels,” depending on
which extensions Ẽ j are used. Our proof will hold for all
possible choices.

To get started, we need a general fact on the controlled
choice of d information-erasing channels:

Lemma 3. The controlled-choice channel T (Ẽ0,

Ẽ1, . . . , Ẽd−1) can be written as

T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAC)

= T0,...,0ρACT †
0,...,0 +

d−1∑
j=0

∑
i j �=0

Tr[(I − |v j〉〈v j |)A

⊗ | j〉〈 j|CρAC]| j〉〈 j|B ⊗ | j〉〈 j|C, (A12)

where {|v j〉} are suitable vectors satisfying ‖|v j〉‖ � 1 for
every j ∈ {0, . . . , d − 1}, and

T0,...,0 =
d−1∑
j=0

| j〉B〈v j |A ⊗ | j〉C〈 j|C. (A13)

Proof. The proof uses a property of extended channels
proven in Ref. [7]: for every extended channel Ẽ there ex-
ists a Kraus representation with operators of the form Ẽi =
Ei + αi|triv〉〈triv| such that α0 = 1 and αi = 0 for every i > 0.
Applying this result to the channels Ẽ j , we obtain Kraus
representations

Ẽ ( j)
i j

= | j〉〈v( j)
i j

∣∣ + α
( j)
i j

|triv〉〈triv|, (A14)

where (|v( j)
i j

〉)i j are (possibly nonorthonormal) vectors sat-

isfying the normalization condition
∑

i j
|v( j)

i j
〉〈v( j)

i j
| = I for

every j. In this representation, the controlled-choice channel
reads [4,5]

T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAC) =
∑

i0,i1,...,id−1

Ti0,i1,...,id−1ρACT †
i0,i1,...,id−1

,

(A15)
with Kraus operators

Ti0,i1,...,id−1 =
d−1∑
j=0

t j | j〉〈v( j)
i j

∣∣ ⊗ | j〉〈 j|, t j :=
∏
l �= j

α
(l )
il

. (A16)

At this point, there are three possible cases:
(1) i j = 0 for all j;
(2) i j = 0 for all j except one;
(3) i j �= 0 for two or more values of j.
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In case 1, the Kraus operator is T0,...,0 = ∑d−1
j=0 | j〉〈v( j)

0 | ⊗ | j〉〈 j|. In case 2, the Kraus operators are of the form | j〉〈v( j)
i j

| ⊗ | j〉〈 j|,
where j is the one index for which i j �= 0. In case 3, the Kraus operator Ti0,i1,...,id−1 is zero. Inserting these expressions into
Eq. (A15), we obtain

T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAC) = T0,...,0ρACT †
0,...,0 +

d−1∑
j=0

∑
i j �=0

〈
v

( j)
i j

∣∣
A〈 j|CρAC

∣∣v( j)
i j

〉
A| j〉C| j〉〈 j|B ⊗ | j〉〈 j|C

= T0,...,0ρACT †
0,...,0 +

d−1∑
j=0

Tr
[(

IA − ∣∣v( j)
0

〉〈
v

( j)
0

∣∣) ⊗ | j〉〈 j|ρAC
]| j〉〈 j|B ⊗ | j〉〈 j|C, (A17)

the second equation following from the normalization condi-
tion

∑
i j

|v( j)
i j

〉〈v( j)
i j

| = I for every j. Defining |v j〉 := |v( j)
0 〉 we

then obtain Eq. (A12). �
We now use the previous lemma to characterize the struc-

ture of the input states that give rise to orthogonal states in
the output. To this purpose, recall Lemma 1, which states that
the states {ρ ′

x,BC} are orthogonal only if they are maximally
entangled.

Lemma 4. If the state ρ ′
x,BC is maximally entangled, then

‖|v j〉‖ = 1 for every j ∈ {0, . . . , d − 1}, and the state ρx,AC

has support contained in the subspace spanned by the vectors
{|v j〉 ⊗ | j〉}d−1

j=0 .

Proof. Recall that ρ ′
x,BC = T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρx,AC). For

this state to be maximally entangled, the separable terms in
Eq. (A12) must vanish. These terms vanish if and only if

Tr[(IA − |v j〉〈v j |) ⊗ | j〉〈 j|ρx,AC] = 0 ∀ j ∈ {0, . . . , d−1}.
(A18)

This condition implies the relation ρx,AC(|v j〉〈v j |A ⊗
| j〉〈 j|C) = 0 for every j such that ‖v j〉‖ < 1. In turn, this
condition implies that the output state in Eq. (A15) becomes

T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρx,AC)=T0,...,0ρx,ACT †
0,...,0 = T∗ρx,ACT †

∗ ,

(A19)

with

T∗ =
∑
j∈S∗

| j〉〈v j | ⊗ | j〉〈 j|, (A20)

S∗ being the set of values of j such that ‖|v j〉‖ = 1.
The normalization of the states in Eq. (A19) implies

that the state ρx,AC has support contained in the vector
space spanned by the vectors {|v j〉 ⊗ | j〉} j∈S∗ . Moreover,
the condition that the state T∗ρ j,ACT †

∗ be maximally entan-
gled implies that the set S∗ must contain all values of j.
Hence, the condition ‖|v j〉‖ = 1 must be satisfied for every
j ∈ {0, . . . , d − 1}. �

We now show that the states sent by Alice and Charlie
through the channel must be maximally entangled.

Lemma 5. If the states {ρ ′
x,BC}d−1

x=0 are orthogonal and max-
imally entangled, then the states {ρx,AC}d−1

x=0 are maximally
entangled.

Proof. Since the states {ρ ′
x,BC}d−1

x=0 are obtained from the
states {ρx,AC}d−1

x=0 through the action of a quantum channel, the
former are orthogonal only if the latter are orthogonal.

By Lemma 4, the support of the states {ρx,AC}d−1
x=0 is con-

tained in the d-dimensional subspace spanned by the vectors

{|v j〉 ⊗ | j〉}d−1
j=0 . Since the states {ρx,AC}d−1

x=0 are d orthogo-
nal states in a d-dimensional subspace, they must be pure.
Let us write them as ρxAC = |	x〉〈	x|AC, with

|	x〉AC =
d−1∑
j=0

λx, j |v j〉A ⊗ | j〉C. (A21)

We now show that the orthogonal states {|	x〉AC}d−1
x=0

must be maximally entangled. First, recall that one has
|	x〉〈	x|AC = (Ax ⊗ IC)(ρ∗

AC). Tracing out both sides on the
equation with IA ⊗ | j〉〈 j|C we obtain

|λx, j |2 = Tr[(IA ⊗ | j〉〈 j|C)(Ax ⊗ IC)(ρ∗
AC)]

= Tr[(IA ⊗ | j〉〈 j|C)ρ∗
AC] =: p j . (A22)

In short, |λx, j | is independent of x.
Moreover, since the states {|	x〉AC}d−1

x=0 are orthogonal; that
is, they are a basis for the subspace spanned by the vectors
{|v j〉A ⊗ | j〉C}d−1

j=0 . Hence, we have

d−1∑
x=0

|	x〉〈	x|AC =
d−1∑
j=0

|v j〉〈v j |A ⊗ | j〉〈 j|C. (A23)

Multiplying both sides of the equation by 〈 j|C on the left and
| j〉C on the right, we obtain

d−1∑
x=0

|cx j |2|v j〉〈v j |A = |v j〉〈v j |A, (A24)

which implies |cx j |2 = 1/d (recall that ‖|v j〉‖ = 1 for every j
and therefore |v j〉 cannot be the zero vector).

Hence, the state |	x〉AC can be rewritten as

|	x〉AC = 1√
d

d−1∑
j=0

eiθx, j |v j〉A ⊗ | j〉C, (A25)

for some suitable phases θx, j ∈ R.
To conclude that the vectors |	x〉 are maximally entangled,

we show that the vectors {|v j〉}d−1
j=0 are mutually orthogonal. To

this purpose, recall that all the states |	x〉 must have the same
marginal on system C. The condition of equal marginals is∑

j,l

ei(θx, j−θx,l )〈vl |v j〉| j〉〈l|

=
∑

j,l

ei(θy, j−θy,l )〈vl |v j〉| j〉〈l| ∀ x, y ∈ {0, . . . , d − 1}.

(A26)
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The equality holds if and only if ei(θx, j−θx,l ) = ei(θy, j−θy,l ) for
every pair ( j, l ) such that 〈vl |v j〉 �= 0.

On the other hand, no such pair can exist. The proof is by
contradiction: suppose that there existed a pair ( j1, j2) such
that 〈v j1 |v j2〉 �= 0. Hence, there would exist a constant ω such
that

eiθx, j2 = ωeiθx, j1 ∀ x ∈ {0, . . . , d − 1}. (A27)

This condition would imply that two columns of the ma-
trix M = (eiθx, j ) are proportional to each other, and therefore
det(M ) = 0. But this would be in contradiction with the fact
that the states {|	x〉}d−1

x=0 be orthogonal, which implies that the
matrix M has full rank.

Hence, the condition 〈vl |v j〉 = 0 must hold for every j
and l . This implies that the vectors {|v j〉} form an orthonor-
mal basis, and therefore the states {|	x〉AC} are maximally
entangled. �

Putting everything together, we obtain the desired result:
Lemma 6. Perfect communication of log2 d bits with a

controlled choice of d information-erasing channels is pos-
sible only if the initial state ρ∗

AC is locally convertible into a
d-dimensional maximally entangled state.

Proof. By Lemma 1, perfect communication is possible
only if the states ρ ′

x,BC are orthogonal and maximally entan-
gled. Then, Lemma 5 implies that the states ρx,AC must be
maximally entangled. Since these states are obtained from the
state ρ∗

AC by applying local operations, the state ρ∗
AC must be

maximally entangled. �
Together, Lemmas 2 and 6 conclude the proof of the “Only

if” part of Theorem 1 in the main text.

APPENDIX B: ESTABLISHING ENTANGLEMENT
WITH ONE RECEIVER

Here we consider the scenario to establish log2 d ebits be-
tween Alice to Bob through d orthogonal information-erasing
channels and a perfect side channel of quantum capacity
log2 d . Importantly, Charlie, who has access on the side chan-
nel, is only allowed to communicate classically with the
receiver Bob. This prevents Alice from bypassing the zero
capacity channels via the perfect side channel.

1. Proof of Theorem 2, if part

Similar to the previous protocol, let us consider that Alice
shares a maximally entangled state |�+〉AC ∈ C⊗2

d with Char-
lie, beforehand. Now to establish the maximal entanglement
with Bob, she will first prepare a d-dimensional quantum
state |0〉A′ and apply a joint unitary VAA′ on the two qudits
she has at her possession. The action of the joint unitary
is VAA′ |kA0A′ 〉 = |kAkA′ 〉 ∀ k ∈ {0, 1, . . . , (d − 1)}, which can
also be identified as the perfect cloning machine for the
orthonormal basis {|k〉}d−1

k=0 . Hence, the final tripartite state
among the two qudits at Alice’s laboratory and a single qudit
at Charlie’s laboratory will be a genuinely entangled state
given by

|ψ〉AA′C = 1√
d

d−1∑
j=0

| j j j〉AA′C .

Now keeping the part A with her, Alice (and Charlie) will
send the qudit A′ (and B) through the controlled quantum
channels of d orthogonal information-erasing channels. The
joint channel action hence can be depicted as

IA ⊗ S (E0, E1, . . . , Ed−1)(ρAA′C)

= IA ⊗ T (E0, E1, . . . , Ed−1)(ρAA′C)

:=
∑

i0,i1,...,id−1

K̃i0,i1,...,id−1ρAA′CK̃†
i0,i1,...,id−1

, (B1)

where K̃i0,i1,...,id−1 = IA ⊗ Ki0,i1,...,id−1 and Ki0,i1,...,id−1 is same
as in Eq. (A8). This, in turn, assures that the controlled opera-
tion (B1) maps any arbitrary three-qudit state to the subspace
spanned by |ψ〉 ⊗ | j〉 ⊗ | j〉 ∀ ψ and { j = 0, 1, . . . , d − 1}.
This directly follows from the structure of the Kraus operators
in Eq. (B1), where there is no action on party A (IA) and the
operation on the A′C part (Ki0,i1,...,id−1 ) has a decoherence-free
subspace spanned by {| j〉 ⊗ | j〉}, with { j = 0, 1, . . . , d − 1}.
Also observing that the A′C marginal for the state |ψAA′C〉,
i.e., ρA′C = TrA(|ψ〉〈ψ |ATC), is diagonal in the basis | j〉 ⊗ | j〉,
{ j = 0, 1, . . . , d − 1} we conclude

IA ⊗ S (E0, E1, . . . , Ed−1)|ψ〉〈ψ |AA′C

= IA ⊗ T (E0, E1, . . . , Ed−1)|ψ〉〈ψ |AA′C

= |ψ〉〈ψ |ABC. (B2)

Hence, at the end Alice, Bob, and Charlie share
the same genuine entangled state among them. Now,
considering the d-dimensional Fourier basis {| fm〉 =

1√
d

∑d−1
j=0 exp(i 2π jm

d ) | j〉}d−1
m=0 in Charlie’s side, we can write

|ψABC〉 = 1√
d

d−1∑
m=0

|�(m)〉AB ⊗ | fm〉C ,

where |�(m)〉AB = 1√
d

d−1∑
j=0

exp

(
i
2π jm

d

)
| j j〉AB .

Evidently, Charlie, who has access on the control system, can
perform a measurement in the {| fm〉}d−1

m=0 basis in his posses-
sion and communicate the outcome classically to Bob, who
then applies a suitable unitary Um on his qudit to get the state
|�+〉 = |�0〉 = 1√

d

∑d−1
j=0 | j j〉 between Alice and himself.

2. Proof of Theorem 2, only if part

With the help of the following lemmas we conclude that
a preshared maximally entangled state between Alice and
Charlie is necessary to establish log2 d ebit between Alice and
Bob, using d orthogonal qudit pin maps.

Let us first consider the following result for the state shared
between Alice, Bob, and Charlie after the controlled quantum
operation:

Lemma 7. The state shared between Alice, Bob, and Char-
lie after the controlled quantum operation must be three-qudit
genuinely entangled GHZ state.

Proof. Let us consider the tripartite state produced after
controlled quantum operation is ρABC.

Now performing a measurement on his quantum system,
Charlie will communicate the result to Bob. Depending upon
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which Bob will apply a local operation on his qudit to
share a two-qudit maximally entangled state among Alice and
himself.

Noting the fact that local operation and classical com-
munication (LOCC) cannot increase entanglement, the state
ρABC should be maximally entangled in the A|BC bipartition.
Therefore the marginal of A and at least one of B or C should
be I

d .
Also from Eqs. (A5) and (A17), the two-qudit marginal

of the state ρABC should be in the d-dimensional subspace
spanned by | j〉 ⊗ | j〉, j ∈ {0, 1, . . . , d − 1}. These two con-
ditions together imply

σA := TrBC[ρABC] = 1

d

d−1∑
j=0

|ψ j〉〈ψ j | and

σBC := TrA[ρABC] = 1

d

d−1∑
j=0

| j j〉〈 j j|,

where the states {|ψ j〉}d−1
j=0 are orthogonal to each other.

Now, the condition that the state ρABC contains log2 d ebit
in A|BC bipartition implies that the state is pure and can be
written in the Schmidt form,

|ψ〉ABC = 1√
d

d−1∑
j=0

eiθ j |ψ j〉A ⊗ | j j〉BC . (B3)

This completes the proof. �

Now, the above lemma further helps us to conclude a corol-
lary regarding the state just before the controlled quantum
operation.

After sharing an arbitrary two-qudit state ρAC with Charlie,
Alice prepares an ancillary system σA′ and apply any possible
quantum operation �AA′ , which gives

ρ∗
AA′C := (�AA′ ⊗ IC)ρAC ⊗ σA′ .

Corollary 1. The state ρ∗
AA′C must be maximally entangled

in A|A′C bipartition.
Proof. After preparing, Alice sends the A′C subsystems of

state ρ∗
AA′C through the controlled configuration of d orthog-

onal information-erasing channels, which maps A′C �→ BC
and produces the state |ψ〉ABC [as in Eq. (B3)].

Since LOCC on any bipartition of a multipartite state
cannot increase the entanglement, the state ρ∗

AA′C should be
maximally entangled in A|A′C bipartition. �

Now, with the help of Lemma 7 and Corollary 1, we will
finally conclude that regarding the necessity of sharing max-
imal entanglement between Alice and Charlie, separately for
the controlled-order and controlled-choice configuration.

Proof for the controlled order.
Lemma 8. To establish log2 d-bit entanglement between

Alice and Bob after order-controlled configuration of d or-
thogonal pin maps, the state shared between Alice and Charlie
must be maximally entanglement.

Proof. To preserve the maximal entanglement in A|A′C
bipartition of the state ρ∗

AA′C under the controlled-order opera-
tion I ⊗ S (E0, E1, . . . , Ed−1), the separable terms in Eq. (B1),
i.e., in Eq. (A5), should vanish. This implies,

∑
l �= j

(IA ⊗ | j〉〈l|A′ ⊗ | j〉〈 j|C)ρ∗
AA′C(IA ⊗ |l〉〈 j|A′ ⊗ | j〉〈 j|C) = 0 ∀ j ∈ {0, 1, . . . , d − 1}.

Therefore σ ∗
A′C := TrA(ρ∗

AA′C) will be orthogonal to the sub-
space spanned by |l〉 ⊗ | j〉 ∀ l, j ∈ {0, 1, . . . , (d − 1)} and
l �= j.

This, along with Corollary 1, implies σ ∗
A′C =

1
d

∑d−1
j=0 | j j〉〈 j j| and hence the state ρ∗

AA′C is pure, which can
be written as

|ψ∗〉AA′C = 1√
d

d−1∑
j=0

eiφ j |ψ j〉A ⊗ | j j〉A′C ,

where 〈ψk |ψl〉 = 0 ∀ k �= l.

Note that, just by performing a measurement in d-dimensional
Fourier basis of {|ψ j〉} on the subsystem A′, Alice can prepare
a maximally entangled state between Charlie and herself.
This, in turn, demands that the state ρAC, initially shared
between Alice and Charlie, should be maximally entangled,
otherwise Alice can increase entanglement only by perform-
ing local operations in her laboratory. �

Proof for the controlled choice. Let us first consider the
controlled-choice configuration of d orthogonal information-
erasing channels acting on the three-qudit state ρ∗

AA′C.
Following from Eq. (A12) we can write,

T̃ (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAA′C)

:= IA ⊗ T (Ẽ0, Ẽ1, . . . , Ẽd−1)(ρAA′C)

= IA ⊗ T0,0,...,0ρAA′CIA ⊗ T †
0,0,...,0

+
d−1∑
j=0

TrA′C[IA ⊗ (IA′ − |v j〉〈v j |) ⊗ | j〉〈 j|CρAA′C]

× | j〉〈 j|B ⊗ | j〉〈 j|C (B4)

where ||v j || � 1, ∀ j ∈ {0, 1, . . . , d − 1} and T0,0,...,0 is same
as in Eq. (A13).

Keeping this in mind we now present the our main result.
Lemma 9. It is possible to obtain the state |ψ〉ABC [as in

Eq. (B3)] under controlled-choice configuration of d orthog-
onal pin maps only if Alice and Charlie share a maximally
entangled state.

Proof. Following from Corollary 1, to preserve the maxi-
mal entanglement in the A|A′C bipartition of the state ρ∗

AA′C
the separable terms in Eq. (B4) must vanish. Therefore,

[IA ⊗ (IA′ − |v j〉〈v j |) ⊗ | j〉〈 j|C]ρ∗
AA′C

= 0,∀ j ∈ {0, 1, . . . , d − 1}.
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This further implies (IA ⊗ |v j〉〈v j |A′ ⊗ | j〉〈 j|C)ρ∗
AA′C =

0,∀ ||v j || < 1, and hence we can rewrite Eq. (B4) as

T̃ (Ẽ0, Ẽ1, . . . , Ẽd−1)ρ∗
AA′C

= (IA ⊗ T0,0,...,0)ρ∗
AA′C(IA ⊗ T †

0,0,...,0),

where T0,0,...,0 is the same as in Eq. (A20). Also identifying
the form of T̃ (Ẽ0, Ẽ1, . . . , Ẽd−1)ρ∗

AA′C with that of Eq. (B3),
we can conclude that the A′C marginal of the state ρ∗

AA′C has
support contained in the subspace spanned by |v j〉 ⊗ | j〉 and
T0,0,...,0 contains every ||v j || = 1,∀ j ∈ {0, 1, . . . , d − 1}.

Therefore, following from Corollary 1, the A′C subsys-
tem of the state ρ∗

AA′C should be maximally mixed in the
d-dimensional subspace spanned by |v j〉 ⊗ | j〉, i.e., σ ∗

A′C =
TrA(ρ∗

AA′C) = 1
d

∑d−1
j=0 |v j j〉〈v j j| and also maximally entan-

gled in the A|A′C bipartition. Hence, the state ρ∗
AA′C can be

identified as a pure state given by

|φ∗〉AA′C = 1√
d

d−1∑
j=0

eiθ j |ψ j〉A ⊗ |v j〉A′ ⊗ | j〉C , (B5)

where {|ψ j〉}d−1
j=0 is any orthonormal basis for the subsystem A.

Therefore, applying a joint unitary UAA′ Alice can transform
the state

|φ∗〉AA′C → |ξ ∗〉AA′C := 1√
d

d−1∑
j=0

eiθ j |ψ j〉A ⊗ |w j〉A′ ⊗ | j〉C ,

where {|w j〉} is an orthonormal basis for the subsystem A′,
irrespective of the orthogonality condition for {|v j〉}.

Now, performing a measurement on the subsystem A of
the state |ξ ∗〉AA′C Alice can establish maximal entanglement
between Charlie and herself. This further demands that the
state ρAC, initially shared between Alice and Charlie, should
be maximally entangled. Otherwise, Alice will be able to
increase entanglement only performing local operations at her
possession.

This completes the proof. �

APPENDIX C: ESTABLISHING MULTIPARTITE
ENTANGLEMENT WITH MULTIPLE RECEIVERS

This section generalizes the results of the previous one
from a single receiver to multiple, spatially separated re-
ceivers. In this case, the task is to establish a d-dimensional
GHZ-state 1√

d

∑d−1
j=0 | j〉⊗(N+1) between Alice and N Bobs.

This state represents a natural generalization of the canonical
bipartite Bell state, and has applications in many quantum in-
formation processing tasks [57–62]. Moreover, the GHZ state
is important in that it maximizes a distance-based measure
of multipartite entanglement called the generalized geometric
measure (GGM) [65–68], which for pure states admits the
analytical expression

GGM(|ψn〉) = 1 − max{λA:B|A ∪ B = {1, 2, . . . , n},
A ∩ B = ∅}, (C1)

where λA:B denotes the maximal Schmidt number in the A :
B bipartition, and the maximization is carried out over all

possible bipartitions (note that, for mixed states, the compu-
tation of the GGM is generally hard [69]) In the case of the
d-dimensional GHZ state, the GGM assumes the maximum
value (d − 1)/d .

1. The Kraus operators

Let us first consider the Kraus operators for controlled
order of N noisy transmission lines for N spatially separated
Bobs, each consisting of d orthogonal qudit information-
erasing channels {E0, E1, . . . , Ed−1}, along with an identity
channel on Alice’s qudit.

IA ⊗ S (N )(E⊗N
0 , . . . , E⊗N

d−1

)
[ρA A1A2···AN C]

=
∑

I0,I1,...,Id−1

K̃I0I1···Id−1 [ρA1A2···AN C]K̃†
I1I2···Id−1

(C2)

where, Ik is a N-tuple consisting of the following set of
numbers {ik,n}N

n=1. The individual Kraus operators can then be
expressed as follows:

K̃I0I1···Id−1 =IA⊗
d−1∑
j=0

(
N⊗

n=1

E ( j)
i j ,n

E ( j⊕1)
i j⊕1,n

· · · E ( j⊕(d−1))
i j⊕(d−1),n

)
⊗| j〉〈 j|

= IA ⊗
d−1∑
j=0

(
N⊗

n=1

s j,n| j〉Bn〈i j�1,n|An

)
⊗ | j〉〈 j|C,

(C3)

where ∀ n, s j,n = ∏
l �=d�1〈il,n|l ⊕ 1〉. Again, one can identify

E (q)
ip,n

= |q〉〈ip| ∀ p, q ∈ {0, 1, . . . , (d − 1)} as the ith
p Kraus

operator of the qudit information-erasing channel Eq acting
on the nth transmission line. Now s j,n is nonzero only when
either one of the following two cases occur:

1. For all n ∈ 1, 2, . . . N , il,n = l ⊕ 1 for all j ∈
0, 1, 2, . . . d − 1.

2. For some n values, say k of them (1 � k � N ), il,n =
l ⊕ 1 holds for all j except one. For the remaining N − k
cases, we have il,n = l ⊕ 1 for all j ∈ 0, 1, 2, . . . d − 1.

The Kraus operator corresponding to case 1 is unique and
is given by I ⊗ ∑d−1

j=0 | j〉〈 j|⊗N ⊗ | j〉〈 j| =: PN
0 . The structure

of the Kraus operators for case 2 is given by

I ⊗ | j〉⊗N 〈xk (p)| ⊗ | j〉〈 j|, (C4)

where |xk (p)〉 is a ket with N elements such that k of them
are different from j. Clearly the elements of |xk (p)〉 can be
chosen in N Ck = N!/[k!(N − k)!] ways, and p denotes the pth
configuration. For example, for N = 2, k can take two values,
namely, 1 and 2. Now for k = 1, we have |x1(1)〉 = | jl〉 and
|x1(2)〉 = |l j〉. For k = 2, we get just |x2(1)〉 = |l1l2〉.

Lemma 10. The controlled operation of N noisy channels
each consisting of d orthogonal information-erasing chan-
nels using a perfect side channel for the control qudit maps
every (N + 1) qudit input state to the subspace spanned by
{|0〉⊗(N+1) , |1〉⊗(N+1) , . . . , |d − 1〉⊗(N+1)}. This also consti-
tutes the decoherence free subspace.

Proof. From the expression of the Kraus operators
arising from cases 1 and 2, it is clear that the (N +
1) qudit A1A2 · · · AN C subsystem of any arbitrary state
ρAA1A2···AN C would be mapped into the subspace spanned by
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{| j〉⊗(N+1)}d−1
j=0 . Furthermore, using these expressions, we can

rewrite Eq. (C3) as

IA ⊗ S (N )(Ẽ0, . . . , Ẽd−1)[ρAA1A2...AN C] = PN
0 ρAA1A2...AN CPN

0

+
N∑

k=1

d−1∑
j=0

∑
l1,l2...lk �= j

NCk∑
p=1

[IA ⊗ 〈
x{li}

k (p)
∣∣〈 j|(ρAA1A2...AN C

)
IA

⊗ ∣∣x{li}
k (p)

〉| j〉]| j〉〈 j|⊗N ⊗ | j〉〈 j|. (C5)

Here the additional superscript {li} in |x{li}
k (p)〉 denotes the

values of the k elements that are different from j.
The same channel is obtained from a controlled choice

of the information-erasing channels {E j}d−1
j=0 , for each of the

N noisy transmission lines when, as before, one considers
the extended channels {Ẽ j}d−1

j=0 with Kraus operators Ẽ ( j)
i j

=
| j〉〈i j | + 〈i j | j〉|triv〉〈triv|. The controlled-choice channel is
then given by [4,5]

IA ⊗ T
(
Ẽ⊗N

0 , Ẽ⊗N
1 , . . . , Ẽ⊗N

d−1

)
(ρAA1A2...AN C)

=
∑

I0,I1,...,Id−1

TI0,I1,...,Id−1ρAA1A2...AN CT †
I0,I1,...,Id−1

, (C6)

with Kraus operators

TI0,I1,...,Id−1 = IA ⊗
d−1∑
j=0

(
N⊗

n=1

t j,n| j〉Bn〈i j,n|An

)
⊗ | j〉〈 j|C,

t j,n :=
∏
l �= j

α
(l )
il,n

, (C7)

where α
(l )
il,n

are the amplitudes associated with the lth channel

of the nth transmission line. If we set α
(l )
il,n

= 〈il,n|l〉, then there
are two possible cases for which the Kraus operators become
nonzero:

(1) il,n = l for every n ∈ {1, 2, . . . , N} and for every l ∈
{0, 1, . . . , d − 1}.

(2) For some n values, say k of them (1 � k � N ), il,n = l
holds for all except one value of l . For the remaining N − k
cases, il,n = l for all l ∈ {0, 1, . . . , d − 1}.

For case 1, the Kraus operator is T0,1,...,d−1 = PN
0 , where k

is an n tuple with all elements equal to k. The Kraus operators
for case 2 is of the form

I ⊗ |l〉⊗N 〈xk (p)| ⊗ |l〉〈l|. (C8)

Here |xk (p)〉 is a ket with N elements such that k of them are
different from l . As also mentioned after Eq. (C4), p denotes
the pth configuration out of a total of NCk configurations. We
now arrive at the following relation:

I ⊗ S (N )(E⊗N
0 , E⊗N

1 , . . . , E⊗N
d−1

)
= I ⊗ T (N )(Ẽ⊗N

0 , Ẽ⊗N
1 , . . . , Ẽ⊗N

d−1

) =: K(N ). (C9)

It generalizes Eq. (B2) for an arbitrary number of noisy trans-
mission lines. In the following we treat the controlled order
and controlled choice in a unified way, referring to channel
K(N ).

Now if ρAA1A2···AN C is so chosen such that the span of its
A1A2 · · · AN C subsystem is {| j〉⊗(N+1)}k

j=0, where k � d − 1,
the second term of Eq. (C5) vanishes identically. Hence its

evolution is controlled by PN
0 which in turn keeps it un-

changed. Since this is true for any ρA1A2···AN C in the subspace
{| j〉⊗(N+1)}k

j=0 (k � d − 1), we conclude that {| j〉⊗(N+1)}d−1
j=0

is a decoherence-free subspace. �

2. The if part of Theorem 3

Consider initially a maximally entangled state
1√
d

∑d−1
i=0 |iAiC〉 shared between Alice and Charlie.

Alice then makes local operations in her laboratory
with additional ancillary qubits to extend her state to
an N + 2 qudit GHZ state 1√

d

∑d−1
i=0 | j〉⊗(N+2) shared

between A, A1, A2, . . . , AN , and C. Therefore we have
ρAA1A2···AN C = |GHZ〉N+2. Now using Eq. (C5) and Lemma
10, we have K(N )(Ẽ0, . . . , Ẽd−1)(|GHZ〉N+2) = |GHZ〉N+2.
Therefore, the final state shared between Alice (A),
the N spatially separated Bobs, (B1, B2, . . . , BN ) and
Charlie (C) is |GHZ〉N+2. Now Charlie performs a
measurement on his qudit in a d-dimensional Fourier basis
{| fm〉 = 1√

d

∑d−1
j=0 exp(i 2π jm

d ) | j〉}d−1
m=0 and communicates the

measurement outcome to the Bobs. They can now apply local
unitaries to share an (N + 1) qudit |GHZ〉N+1 among Alice
and themselves. This completes the if part of the proof.

3. The only if part of Theorem 3

Here we prove the necessity of shared maximally entangled
state between Alice and Charlie, with the help of the following
lemmas:

Lemma 11. The state shared between Alice, all the N Bobs,
and Charlie, after the controlled quantum operation, must be
the (N + 2)-qudit GHZ state.

Proof. Note that the lemma can be seen as a generalization
of Lemma 7 and here we will use the same flow of arguments.

Suppose the state shared between Alice, N Bobs, and
Charlie after controlled quantum operation is ρAB1B2···BN C.
Performing a local measurement on his qudit, Charlie can
communicate the result to the Bobs, who then able to apply
proper local operations to obtain a (N + 1)-qudit GHZ state
among Alice and themselves.

Furthermore, it is possible to distill a two-qudit maxi-
mally entangled between Alice and exactly one Bob, if all
N Bobs are allowed to perform only LOCC. Since, LOCC
cannot increase entanglement, this implies that ρAB1B2···BN C

will be maximally entangled in the A|B1B2 · · · BN C bipar-
tition. Hence, the marginal of the subsystem A and at least
one among N Bobs and Charlie should be maximally mixed,
I/d . This, along with Lemma 10, helps us to conclude that
ρAB1B2···BN C is pure and can be written in Schmidt form in the
A|B1B2 · · · BN C bipartition,

|ψ (N )〉AB1B2···BN C = 1√
d

d−1∑
j=0

eiθ j |ψ j〉A ⊗ | j〉⊗(N+1)
B1B2···BN C, (C10)

where {|ψ j〉}A is any arbitrary orthogonal basis for Alice’s
subsystem. One can identify the state (C10) as a generaliza-
tion of Eq. (B3).

This completes the proof. �
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This helps us to conclude the following corollary (gener-
alization of Corollary 1) regarding the entanglement content
of the state ρ∗

AA1A2···ANC used as an input for the controlled
quantum operations.

Corollary 2. The state ρ∗
AA1A2···ANC should be maximally

entangled in A|A1A2 · · · AN C bipartition.
Proof. Similar to Corollary 1, the proof follows from the

fact that operation performed on the A1A2 · · · AN C subsystem
of the state ρ∗

AA1A2···ANC cannot increase the entanglement con-
tent in the A|B1B2 · · · BN C bipartition of the final state. Now,
thanks to Eq. (C10) of Lemma C 3, the final state with log2 d
bits of entanglement completes the proof. �

At this end, we will now prove the only if part of Theorem
3, both for the controlled-order and controlled-choice config-
uration, separately.

Proof for the controlled-order configuration.
Lemma 12. To establish a perfect GHZ state among Alice

and all N Bobs after the controlled-order configuration of
d orthogonal pin maps in each of N transmission lines, the
state shared between Alice and Charlie must be maximally
entangled.

Proof. The proof follows as a generalization of Lemma 8.
Note that we can conclude from Corollary 2 that the state

ρ∗
AA1A2···AN C is maximally entangled in the A|B1B2 · · · BN C

bipartition, which can only be preserved after the controlled-

order operation only if the separable contribution for each
transmission lines from Eq. (C5) vanish and hence∑
l1,l2,...,lk �= j

(
IA ⊗ 〈

x{li}
k (p)

∣∣〈 j|)ρAA1···AN C
(
IA ⊗ ∣∣x{li}

k (p)
〉| j〉) = 0

for every choice of N Ck possibilities for each k ∈
{1, 2, . . . , N} and for every j ∈ {0, 1, . . . , d − 1}. This, in
turn, claims that the state σ ∗

A1···AN C := TrA[ρ∗
AA1···AN C] is or-

thogonal to the subspace S⊥, where S⊥ is the subspace
orthogonal to | j〉⊗N ⊗ | j〉 ∀ j ∈ {0, 1, . . . , d − 1}.

This, along with the result of Corollary 2, demands that the
state ρ∗

AA1···AN C can be expressed as

|ψ∗〉AA1···AN C = 1√
d

d−1∑
j=0

eiφ j |ψ j〉A ⊗ | j〉⊗N
A1···AN

⊗ | j〉C,

where , 〈ψk|ψl〉 = 0 ∀, k �= l.

Now, performing consecutive Fourier measurement on all
N qudits {A1, A2, . . . , AN } and performing local operations
Alice can generate maximal entanglement between Charlie
and herself, which once again confirms that the initial state
shared between Alice and Charlie must have log2 d bits of
entanglement. �

Proof for the controlled-choice configuration. Let us first consider the generalization of Eq. (B4) for N noisy transmissions
lines, each with d orthogonal pin maps, in a controlled-choice configuration with the help of a perfect qudit side-channel. This
reads

IA ⊗ T (N )(Ẽ⊗N
0 , Ẽ⊗N

1 , . . . , Ẽ (N )
d−1

)
[ρAA1A2···AN C] = IA ⊗ T (N )

0,0,...,0ρAA1A2···AN CIA ⊗ T (N )†
0,0,...,0

+
N∑

k=1

NCk∑
pk=1

d−1∑
j=0

TrA1···AN C

⎡⎣IA

⊗
n∈pk

(
IAn − |vn

j 〉〈vn
j |
) ⊗

m/∈pk

| j〉〈vm
j | ⊗ | j〉〈 j|CρAA1A2···AN C

⎤⎦| j〉〈 j|⊗N
B1···BN

⊗ | j〉〈 j|C, (C11)

where pk is all possible choice of k ∈ {1, 2, . . . , N} transmissions lines among N . We will now conclude the result finally with
the following lemma:

Lemma 13. It is possible to obtain the state |ψ (N )〉AB1B2···BN C of Eq. (C10) after controlled choice of N transmission lines, with
d orthogonal pin maps in each, only if Alice and Charlie share a maximally entangled state initially.

Proof. To preserve the maximal entanglement in the A|A1A2 · · · AN C bipartition of the state ρ∗
AA1A2···AN C, every possible

separable term in Eq. (C11) must vanish. In a similar argument as that of Lemma 9, the condition simply implies

T (N )
0,0,...,0 = IA ⊗

d−1∑
j=0

N⊗
n=1

| j〉〈v j,n| ⊗ | j〉〈 j|C,

where, for every j ∈ {0, 1, . . . , d − 1} and for every n ∈ {1, 2, . . . , N}, ||v j,n|| = 1. This, along with Corollary 2, demands a that
the state ρ∗

AA1A2···AN C is pure and can be written in the form

|φ(N )∗〉AA1···AN C = 1√
d

d−1∑
j=0

eiθ j |ψ j〉A

N⊗
k=1

|v j,n〉Ak
⊗ | j〉C,

where {|ψ j〉} is a orthonormal basis for the subsystem A and the state can be identified as the generalization of Eq. (B5).
Now, Alice is able to apply the joint unitary UAA1···AN on the AA1A2 · · · AN subsystem which takes

UAA1···AN |ψ j〉A

N⊗
k=1

|v j,n〉Ak
→ |ψ j〉A

N⊗
k=1

|w j,n〉Ak
,
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and hence

(UAA1···AN ⊗ IC)|φ(N )∗〉AA1···AN C → |ξ (N )∗〉AA1···AN C := 1√
d

d−1∑
j=0

eiθ j |ψ j〉A

N⊗
k=1

|w j,n〉Ak
⊗ | j〉C,

where {|w j,n〉}d−1
j=0 is an orthogonal basis for every n ∈ {1, 2, . . . , N}.

Now, just performing Fourier basis measurement on every Ak, k ∈ {1, 2, . . . , N} and performing suitably chosen unitary on
subsystem A, Alice can establish log2 d bits of entanglement with Charlie. This, in turn, assures that the state initially shared
between Alice and Charlie should contain log2 d bits of entanglement, i.e., a maximally entangled two-qudit state. �
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