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SUMMARY
The role of brain immune compartments in glioma evolution remains elusive. We profile immune cells in gli-
oma microenvironment and the matched peripheral blood from 11 patients. Glioblastoma exhibits specific
infiltration of blood-originated monocytes expressing epidermal growth factor receptor (EGFR) ligands
EREG and AREG, coined as tumor-associated monocytes (TAMo). TAMo infiltration is mutually exclusive
with EGFR alterations (p = 0.019), while co-occurring withmesenchymal subtype (p = 4.73 10�7) andmarking
worse prognosis (p = 0.004 and 0.032 in two cohorts). Evolutionary analysis of initial-recurrent glioma pairs
and single-cell study of a multi-centric glioblastoma reveal association between elevated TAMo and glioma
mesenchymal transformation. Further analyses identify FOSL2 as a TAMo master regulator and demon-
strates that FOSL2-EREG/AREG-EGFR signaling axis promotes glioma invasion in vitro. Collectively, we
identify TAMo in tumor microenvironment and reveal its driving role in activating EGFR signaling to shape gli-
oma evolution.
INTRODUCTION

Glioma is the most common adult brain tumor, and among

different disease subtypes, isocitrate dehydrogenase (IDH)-wild-

type glioblastoma (GB) is known for the worst patient prognosis

and a high degree of heterogeneity. While the application of

temozolomide as a first-line therapy has extended the median

survival of GB to over 14 months,1 there is still no reliable way

to prevent recurrence and progression. With the rise of immuno-

therapy, someGB patients demonstrated promising response to

immunotherapeutic strategies that boost T cell cytotoxicity,

including immune checkpoint blockades,2 neoantigen vac-

cines,3 and chimeric antigen receptor T cell therapies.4 However,

achieving long-term response across large patient cohorts re-
Cell Report
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mains challenging, partly because of low T cell counts and the

immunosuppressive microenvironment associated with GB.

One key immunosuppressive factor is the presence of tumor-

associated macrophages (TAMs).5 TAM-targeted therapies

such as CSF-1R inhibitor have also been developed,6 but

showed limited efficacy in clinical trials.7 To establish efficient

therapeutic strategies, a comprehensive analysis of the tumor

microenvironment in GB is essential.

Single-cell immuno-profiling strategies, including mass cytom-

etry (CyTOF) and single-cell RNA sequencing (scRNA-seq), have

been extensively applied to reveal the immune compartments in

different brain malignancies.8 CyTOF profiles single cells based

on dozens of immune-related protein markers. Meanwhile,

scRNA-seq profiles the whole transcriptome and provides deep
s Medicine 4, 101177, September 19, 2023 ª 2023 The Authors. 1
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Figure 1. Resolving the immune landscape in PBMC and glioma microenvironment

(A) Workflow of the generation and analysis of immune cell landscape with 10X and CyTOF.

(B) Immune cell types identified by CyTOF and 10X.

(C) Comparison of the fraction of Mono/Macro in glioma and PBMC profiled by 10X and CyTOF. The p-values were calculated by two-tailed paired t-test.

(legend continued on next page)
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insights into the molecular pathways involved in the disease. Both

platforms are promising tools for the analysis of the GB microen-

vironment, used alone or in conjunction.9–15 Previous CyTOF and

scRNA-seq studies have profiled the immune microenvironment

of IDH-wildtype GB and IDH-mutant astrocytoma, highlighting

their differences in the abundance of the monocyte-derived mac-

rophages (MDMs) and the brain-resident microglia (MG).10–12,15

However, there is limited knowledge regarding the minor immune

cell types, including T cells and natural killer (NK) cells, which

might be better captured in an immune-centric dataset.Moreover,

without including control immune populations located outside of

the tumor, the tumor-induced transcriptome reprogramming has

not been fully described.Our study aimed to provide an integrated

landscape of immune cells in glioma and control samples,

including peripheral blood mononuclear cells (PBMCs) and tu-

mor-free brain samples, which aided discovery of tumor-specific

changes in immune cell populations as potential therapeutic

targets.

Here we collected paired tumor and PBMC from 11 glioma pa-

tients and profiled the CD45+ immune cells using CyTOF and/or

scRNA-seq (10XGenomics) (Table S1). First, we observed enrich-

ment of monocytes and macrophages (Mono/Macro) in the intra-

cranial immune microenvironment compared with PBMC. The

Mono/Macro populations were highly diverse in origin and func-

tion and could be classified into three subgroups: monocyte,

MDM,andMG.Bothmonocytes andMDMsoriginated fromblood

and were more abundant in IDH-wildtype GB compared with the

MG-dominated IDH-mutant astrocytoma and non-tumor brain tis-

sue (fromapatientwith epilepsy).Moreover, trajectory analysis re-

vealed that, after infiltrating into GB, certain monocytes transi-

tioned into the EREG/AREG-expressing tumor-associated

monocytes (TAMo). Over-expression of these two epidermal

growth factor receptor (EGFR) ligands in TAMo was associated

with the mesenchymal subtype (expression-based glioma sub-

typing proposed by Verhaak et al.16), and mutual exclusivity of

EGFR alterations and TAMo infiltration suggested that TAMo is

sufficient to activate EGFR signaling in EGFR-wildtype GB. In

multi-centric GB and longitudinally collected glioma samples,

elevation in TAMo infiltration was also correlated with mesen-

chymal transformation. Transcriptional network analysis pin-

pointed FOSL2 as a master regulator of TAMo and regulated the

expression of EREG and AREG, hence providing a potential

mechanism of TAMo formation. Furthermore, we demonstrated

that the roles of FOSL2-EREG/AREG-EGFR axis in promoting

GB cell invasion using trans-well and three-dimensional (3D)

spheroid models. Altogether, our study provided a landscape of

the immune cell types and states in GB and identified TAMo as

a tumor-specific immune cell subtype that functions in promoting

EGFR signaling and tumor invasion through secretion of EREG

and AREG. This discovery lays the foundation for future develop-

ment of TAMo-targeting immunotherapy.
(D) The subtype (left) and sample of origin (right) of Mono/Macro profiled by 10X

(E) Boxplot comparing the fractions of MG, MDM, andmonocyte in epilepsy and g

sum test.

(F) Heatmap illustrating theMG-, MDM-, andmonocyte-specific markers express

whether the marker is MG-, MDM- or monocyte-specific. Abbreviations: FACS,

See also Figures S1 and S2 and Tables S1–S3.
RESULTS

Comparison of immune cell populations between glioma
and matched PBMC
To enhance the capture of immune cells in 11 glioma patients

and their paired PBMC (Table S1), the CD45+ immune popu-

lations were enriched and profiled by scRNA-seq and/or

CyTOF (Figure 1A). While CyTOF profiled 33 cell-surface pro-

tein markers (Table S2) of immune cells from nine glioma pa-

tients and provided the overall landscape of immune cell

types, scRNA-seq was applied in samples from three IDH-

wildtype GB, two IDH-mutant astrocytoma, and one epilepsy

patients to profile the whole transcriptome and generate

mechanistic insights. Using this combinational approach, our

study aimed to discover recurrent patterns of immune dys-

functions in GB to provide insights for immunotherapy devel-

opments. Quality control, data preprocessing and cell type

classification and quantification were first conducted on indi-

vidual samples, followed by merging and batch effect correc-

tion. As a result, 17,740 cells profiled by CyTOF and 21,240

cells profiled by scRNA-seq were retained for further ana-

lyses. To ensure consistency, identification of major immune

cells from two platforms were based on the same criteria, us-

ing the combinations of conventional markers17 (Figures S1A

and S1B; Table S3).

After data integration, cells co-clustered by cell type identity,

regardless of their tissue of origin, although their proportions var-

ied between glioma and PBMC (Figures 1B and S1C–S1F).

Consistent with previous report that Mono/Macro are the most

abundant immune cell type and constitutes 50% of cell popula-

tion in high-grade glioma.10 Mono/Macro are the most abundant

and most significantly enriched immune populations in glioma

compared with PBMC (Figure 1C). As for the lymphoid cells, T

and NK cells also constituted a large proportion of glioma-infil-

trating immune cells, while B cells poorly infiltrated into glioma

(Figure S1G). Thus, our data confirmed major differences in the

immune composition in the brain and peripheral blood.

Identification and characterization of lymphoid cell
subtypes in GB and PBMC
The lymphoid cells, including T and NK cells, are known to play

important roles in immune surveillance and elimination of tumor.

In our scRNA-seq dataset, T and NK cells were rarely detected in

epilepsy and astrocytoma, but were able to infiltrate into GB (Fig-

ure S1F), potentially permitted by the damage to the blood-brain

barrier, which more frequently occurred in the high-grade gli-

oma. To identify their functional states in GB, we performed un-

biased clustering and assigned the subtype identity to the T and

NK cells profiled by scRNA-seq, based on classical immune sub-

type markers17 and prediction by SingleR18 (Figures S1H and

S1I). This approach further revealed heterogeneity in immune
.

lioma patients profiled by 10X. The p-values were calculated byWilcoxon rank-

ion. Each row represents onemarker gene, and the left annotation bar indicates

fluorescence-activated cell sorting.
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cell subtypes and states, as well as their preference in localiza-

tion in PBMC versus GB. One of the GB-enriched cluster was

the KLRG1+CD8+ central memory T cell (Tcm), which resembled

the classical Tcm19 (CD27+CCR7+SELL+CX3CR1–), but ex-

pressed higher levels of KLRG1 and cytotoxicity markers

(PRF1, GZMA, and GZMH) and lower levels of CD127/IL7R

than the KLRG1-CD8+ Tcm subgroup (Figures S1H and S1I).

The KLRG1+CD8+ Tcm and KLRG1–CD8+ Tcm subsets identi-

fied in our study corresponded well with the short-lived effector

cells (IL7R-KLRG1+) and memory precursor effector cells

(IL7R+KLRG1–), respectively, which differ in their half-life,

response rate, and cell fate.19,20 In contrast, the B cell and naive

T cell populations were specifically found in PBMC.

Two populations of NK cells were identified, in line with

two classes of cytotoxic (CD56dimCD16+) and immature

(CD56+CD16�) NK cells reported previously.21 While the cyto-

toxic NK cells highly expressed cytotoxicity markers (PRF1

and GZMB) and were more abundant in PBMC, the immature

NK cells had low cytotoxic activity and showed significant

enrichment in GB (Figures S1J and S1K). The accumulation of

immature NK cells in IDH-wildtype glioma in contrast with

PBMC,22 IDH-mutant glioma and brain metastases was also re-

ported in a recent CyTOF-based study.12 Using our scRNA-seq

data, we further identified elevated expression of chemokines

(XCL1 and XCL2), major histocompatibility complex class II

(HLA-DRA) and inhibitory receptors (NKG2A/KLRC1) in imma-

ture NK cells. The immature NK subtypewas also found to be en-

riched in non-small cell lung cancer and demonstrated low capa-

bility of tumor killing.23 The NKG2A/KLRC1 was involved in

inhibition of NK cytotoxicity, and anti-NKG2A therapy has

demonstrated efficient NK cell activation and tumor shrinkage

in preclinical and clinical settings.24,25 While the functions of

immature NK cells in GB have not been elucidated in previous

studies, our analysis suggested that immature NK cells may be

a population of suppressed NK cells and pinpointed potential

involvement of NKG2A in immunosuppression.

Identification of monocyte infiltration in GB
microenvironment
To better resolve the origins of Mono/Macro, we applied the

ontogeny-specific marker-based approach that has been previ-

ously applied to distinguish MG and MDM.11 As the previous

study only included Mono/Macro from GB samples, we first

examined the validity of this approach on all Mono/Macro cells

collected from control and glioma samples. Based on

ontogeny-specific marker expression,11 three stable clusters

were observed, as suggested by the highest cophenetic correla-

tion value, as well as by visual inspection of principal component

analysis (Figures S2A and S2B). The first principal component

distinguished the ontogeny of Mono/Macro, which was similar

to previous results,11 with MG markers (P2RY12 and NAV3)

and MDM markers (ITGA4 and TGFBI) enriched at opposite

ends of the spectrum (Figure S2C). The decrease of the second

principal component captured the monocyte-to-macrophage

transition, with the preferred expression of MHC class II mole-

cule HLA-DQA1 in MDM and LYZ in monocytes, respectively.

Thus, by including PBMC as control, three Mono/Macro sub-

types were identified to represent the MG, MDM, andmonocyte,
4 Cell Reports Medicine 4, 101177, September 19, 2023
which expanded the dichotomic classification in previous

studies (Figure 1D). The enrichment of monocyte in PBMC and

MG in epilepsy was consistent with previous knowledge, sup-

porting the robustness of the method in distinguishing the three

cell subtypes in our dataset. Moreover, while MGwere present in

both glioma and non-cancerous brain, the GB-infiltrating MG

demonstrated elevated expression of genes associated meta-

bolic (APOC1), inflammatory (CD163 and CEBPD), interferon

signaling (TNFAIP3), and antigen presentation (HLA-DRB5 and

HLA-DMA) pathways (Figure S2D). These observations are

consistent with previous reports13,26 and suggest that tumor-

mediated effects can alter MG functions.

Noticeably, both monocyte and MDM fractions were signifi-

cantly elevated in GB compared with epilepsy and astrocytoma,

while MG proportion was significantly lower (Figure 1E). Inde-

pendent single-cell datasets15,27 and immunostaining-based

methods28 also supported the presence of a group of HLA-

DR-negative monocyte-like populations in GB. We then esti-

mated and compared the abundance of the three Mono/Macro

subtypes in TCGA glioma samples based on specific markers

in bulk RNA-seq (Figure 1F). Consistent with observations from

our single-cell dataset and other studies,12 increased MDM infil-

tration was observed in gliomas of higher grade, IDH-wildtype

subtype and mesenchymal transcriptome subtype, while MG

fraction was decreased (Figure S2E). Interestingly, monocyte

infiltration was also elevated in high-grade, IDH-wildtype, and

mesenchymal glioma, suggesting its associations and potential

functions in promoting more aggressive tumor phenotypes.

TAMo with elevated EREG and AREG expression is
specifically detected in GB
To study the dynamic changes and transcriptional programs

involved in the MDM and monocyte reprogramming, we per-

formed further analyses of monocytes and MDMs collected

from PBMC and GB. A large fraction of infiltrated monocytes

was activated and differentiated into MDM, which can be further

categorized into four clusters, namely NR4A3+ MDM, FN1+

MDM, INKA1+ MDM, and MRC1+ MDM, based on unsupervised

clustering, suggesting heterogeneity within the MDM subset

(Figure 2A). Starting from the PBMCmonocytes, the four subsets

of MDM also showed differences in the paths and locations on

the inferred trajectories (Figures 2B and S2F). Nevertheless,

they shared common characteristics including over-expression

of macrophage differentiation markers (FCGR3A, HLA-DQA1,

C1QA, and IGF1), TREM2, and CSF1R (Figure 2A), suggesting

they could be depleted by anti-TREM2 and anti-CSF1R therapy

in GB.15,29

In contrast, the monocytes found in GB samples, hereafter

termed TAMo, were more similar to monocytes found in the

blood and demonstrated lower level of expressions of TREM2,

CSF1R, and macrophage differentiation markers (Figure 2A).

More important, TAMo followed a different trajectory from the

MDM clusters (Figures 2B and S2E), and they demonstrated a

distinct transcriptional profile from MDM and PBMC-monocyte

with elevated expression of EGFR ligands (EREG and AREG),

pro-angiogenesis factors (LRG1 and VEGFA), chemokine

CXCL2, and scavenger receptor MARCO (Figure 2A). Based

on these TAMo-specific markers, we calculated the TAMo score
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Figure 2. TAMo specifically expressed EREG and AREG

(A) Violin plots highlighting the differentially expressed genes in different clusters, as well as their potential functions. The TAMo-specific genes are highlighted in

bold.

(B) Developmental trajectory of monocytes and MDM clusters. The black curves represented the trajectory predicted by Slingshot.

(C) Comparison of TAMoscore in patients of different glioma grade andmolecular subtype in the TCGAdataset. p valueswere calculated byWilcoxon rank-sum test.

(D) Representative images of GB samples simultaneously stained with CD45, CD14, EREG, and AREG antibodies. The arrowhead highlights cells with strong

signals for all four channels. Scale bar, 20 mm.

See also Figure S2.
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in glioma patients in the TCGA cohort and observed that TAMo

was significantly enriched in high-grade, IDH-wildtype GB

(Figure 2C).

Of the list of TAMo signature genes, EREG and AREGwere the

top two most significantly upregulated genes in TAMo and both

are known to be ligands of EGFR. As there has not been any

in vivo evidence or characterization of this cell population in pre-

vious studies, multicolor staining of tumor sections from these

GB patients was performed and the results validated the pres-

ence of a population of Mono/Macro (CD45+CD14+) that co-ex-

pressed EREG and AREG proteins (Figure 2D). Thus, our study

defined TAMo as a subgroup of Mono/Macro specifically en-

riched in GB and with potential functions in promoting EGFR

signaling in the tumor cells.
Cross-sectional analysis reveals involvement of TAMo in
EGFR signaling and mesenchymal transformation
Previous studies have shown that neither MG nor MDM fraction

were prognostic in GB patients.11,12 We found that the TAMo

score distinguished a subset of GBwith significantly worse over-

all survival in the TCGA cohort (Figure 3A, top), which was vali-

dated in an independent cohort from the Chinese Glioma

Genome Atlas30,31 (Figure 3A, bottom). Furthermore, in the GB

patients with a high TAMo score, we identified enrichment of gli-

oma of the mesenchymal subtype and harboring NF1 alterations

(Figures 3B–3E). While the EGFR ligands were highly expressed,

the EGFR gene was less frequently mutated or amplified in the

GB patients with high TAMo infiltration, and EGFR also demon-

strated lower expression in these patients (Figures 3F and S3A).

Homozygous loss-of-function alterations in PTEN were also

associated with higher TAMo infiltration in EGFR wild-type GB

(Figure 3G), compatible with recent reports.32,33

It is worth mentioning that EREG and AREG expression was

negatively correlated with EGFR expression and downregulated

in EGFR-altered tumor (Figure S3B), and such mutual exclusivity

suggest functional redundancy. Moreover, Gene Set Enrichment

Analysis revealed a significantly higher EGFR (also known as

ERBB) pathway activity in patients with high TAMo score (Fig-

ure 3H), suggesting that the infiltration of TAMomay be sufficient

for generating a high concentration of EGFR ligands and, thus,

activate the EGFR signaling in glioma in an EGFR-alteration-in-

dependent manner. Elevated activity of STAT3 signaling, which
Figure 3. TAMo was associated with elevated EGFR signaling in GB

(A) Associations between TAMo score and the overall survival in IDH-wildtype G

cohorts. The patients were group into high TAMo (with TAMo score >1.65) and lo

rank test.

(B) Heatmap of TAMo marker and EGFR gene expression in IDH-wildtype GBM

subtype and genetic alterations were marked on top of the heatmap.

(C) Comparison of TAMo score in patients of different transcriptome subtypes. p

(D–F) Comparisons of the fractions of patients of different transcriptome subtypes

groups. p values were calculated by two-tailed Fisher’s exact test.

(G) Comparison of TAMo score in EGFR-wildtype and EGFR-altered patientswith d

(H and I) Gene set enrichment analysis of ERBB signaling pathway (H) and JAK/

groups.

(J) Spearman’s correlation coefficient (SCC) and p values between phosphoryl

wildtype GB patients in the CPTAC dataset. Abbreviations: CL, classical subtype;

proneural subtype.

See also Figure S3.
is one of the downstream pathways of EGFR, was also observed

in the high-TAMo GB patients, thus linking EGFR activation

to STAT3-mediated mesenchymal transformation in GB34

(Figures 3H and 3I). To directly correlate TAMo scores with

EGFR-STAT3 signaling activities at the protein level, we explored

an independent proteomic dataset CPTAC35 and revealed signif-

icant positive correlations between TAMo score and phosphory-

lated EGFR and STAT3 in IDH-wildtype EGFR-wildtype GB pa-

tients (Figure 3J). The EGFR protein and RNA levels tend to

positively correlate with TAMo score in EGFR-wildtype GB (not

significant), while negative correlations were observed when

EGFR-altered cases were included (Figure S3C). Collectively,

our analyses suggest that, while EGFR-altered tumor generally

showed high level of EGFR expression and limited dependency

on tumor-extrinsic factors for EGFR pathway activation, the

EGFR-wild-type tumor are more responsive to activation by

EGFR ligands secreted by TAMo.

To study whether the induction of TAMo signature expression

in PBMC-monocyte was common across the 137 IDH-wildtype

GB patients from TCGA cohort, we analyzed the correlations be-

tween TAMo signatures and the monocyte-specific markers that

were expressed in both PBMC-monocyte and TAMo. While a

strong positive correlation was observed, a subgroup of patients

with high monocyte but low TAMo score, here defined as the

High-Mono Low-TAMo group, was identified (Figure S3D). This

subgroup of patients demonstrated significantly higher level of

EGFR expression, a larger fraction of EGFR mutant or amplified

cases, and better survival than patients in the High-TAMo group

(Figures S3E–S3H). The results hinted that the TAMo signature

was the key contributor to worse survival in high-TAMo sub-

group of GB patients, rather than the general infiltration levels

of monocytes.
Spatiotemporal dynamics of TAMo correlates with
mesenchymal transformation
Intratumoral heterogeneity drives tumor recurrence and progres-

sion.36–38 Among the transcriptome subtypes of glioma, the

mesenchymal subtype displays associations with worse survival

outcome,39 and the transformation of non-mesenchymal glioma

into the mesenchymal was frequently observed during glioma

progression.36,40 The roles of tumor-extrinsic factors41,42 in

mesenchymal transformation await to be further explored. In
B patients in TCGA (top) and Chinese Glioma Genome Atlas (CGGA) (bottom)

w TAMo (TAMo score <1.65) in both cohorts. p values were calculated by log-

samples in TCGA cohort. The patients were ranked by TAMo score, and the

value was calculated by Wilcoxon rank-sum test.

(D),NF1 (E), and EGFR alteration status (F) in the high-TAMo versus low-TAMo

ifferent PTENmutation status. p value was calculated byWilcoxon rank-sum test.

STAT3 signaling (I) between GBM patients in high-TAMo versus in low-TAMo

ated EGFR, phosphorylated STAT3 and TAMo score in IDH-wildtype EGFR-

FDR, false discovery rate; MES, mesenchymal subtype; N, neural subtype; PN,

Cell Reports Medicine 4, 101177, September 19, 2023 7
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our study, the enrichment of TAMo in mesenchymal GB in the

cross-sectional cohort also hinted their association with the

mesenchymal subtype.

To trace the dynamics of subtype switching and explore the

role of TAMo infiltration in this process, we designed a rank-

based approach to assess the shift toward mesenchymal sub-

type between two temporally or spatially separated samples

(Figure 4A and STAR Methods). Re-analyzing 57 GB patients

with longitudinally collected glioma pairs,36 we identified 13 pa-

tients with mesenchymal transformation during recurrence. In 10

of the 13 patients, increase in TAMo score was observed during

mesenchymal transformation (Figures 4B and S4A). Meanwhile,

in patients with increased TAMo level during recurrence, a signif-

icantly higher mesenchymal transformation score was observed

(Figure 4C). These results suggest the involvement of TAMo in

mesenchymal transformation.

While measurements in longitudinal data could be affected by

systematic changes in immune functions under radio-chemo-

therapy, we analyzed patient P673 with multicentric glioma at

the genomics, transcriptomic and cellular levels (Figure 4D).

Two tumors were identified in this patient and surgically removed

around the same time, including one tumor with 59.23 mL vol-

ume on the right and another with volume of 11.23 mL on the

left side (hereafter named as T-R and T-L, respectively). Both tu-

mor samples weremolecularly classified as the IDH-wildtype GB

with TERT promoter mutation (C250T), chromosome 7+/10– by

the World Health Organization in 2021, but T-R showed more

aggressive necrosis phenotypes. Comparing mesenchymal

markers in their bulk transcriptomes, T-R showed significant

enrichment of both classical andmesenchymal signatures, while

the T-L was classical subtype (Figure 4E). Compared with T-L,

T-R showed a remarkable elevation of mesenchymal transfor-

mation score (Figures 4F and S4B).

Our recent work generated single-cell RNA-seq data of these

two samples,43 and we further characterized the tumor cellular
Figure 4. TAMo was associated with mesenchymal transformation

(A) Characterization of the mesenchymal (MES) transformation process in longitu

paired initial and recurrent GB samples from the same patient; rank of MES marke

same gene in different samples connected by lines; change of rank (DRank) of M

enrichment score (ES), normalized enrichment (NES) and p value of MES markers

expression rank-change between initial and recurrent sample.

(B) The correlation between MES transformation and TAMo infiltration during re

correlation coefficient (PCC) and p value between MES transformation score (SM

(C) Comparison ofMES transformation score in patients with increased TAMo infil

sum test.

(D) MRIs of the multicentric glioma patient P673 before surgery. The location

labeled.

(E) The enrichment score of the four glioma transcriptome subtypes inferred from

The asterisks mark the significant subtypes (p < 0.05) in the sample.

(F) Analysis of changes in the four transcriptome subtypes based on gene expres

signature was shown.

(G) Representative markers of different tumor and non-tumor clusters identified in

expression and the fraction of cells expressing the markers.

(H) The t-SNE plot of cells identified from scRNA-seq of the T-R and T-L samp

visualization and comparison.

(I) Fold-change in the fraction of each cell type in T-R versus in T-L.

(J) Gene Set Enrichment Analysis (GSEA) analysis of JAK/STAT3 signaling pathw

(K) The evolution of T-L and T-R tumor in patient P673. The oncogenic mutations

plot.

See also Figure S4.
states as well as immune microenvironment differences in T-R

and T-L. The tumor and non-tumor cells were first segregated

by their copy number variation profiles, and the tumor cells

were further resolved into four subtypes as previously

described44 (Figures 4G, 4H, S4C and S4D). The copy number

variation inferred from single-cell RNA-seq aligned well with

the chromosome 7 gain and 10 loss identified fromwhole-exome

sequencing (Figure S4D). Chromosome 7 gain was detected in

most tumor cells classified as astrocyte-like (AC-like), mesen-

chymal-like (MES-like), and neural-progenitor-like (NPC-like),

while the oligodendrocyte-progenitor-like (OPC-like) cells either

did not carry chromosome 7 gain or did not over-express the

genes located on this chromosome (Figure S4D). Among the

non-tumor cells, we also identified a cluster of TAMo-like cells

with elevated expression of EREG and AREG, while other cell

types showed low expression (Figure 4G). Comparing their cell

fractions, T-L was mainly composed of the AC-like and OPC-

like cells, while the MES-like cells were more dominant in T-R

(Figures 4H and 4I). The increase in TAMo score accompanied

the mesenchymal transformation and more aggressive histolog-

ical phenotypes in T-R in contrast with T-L, while other immune

cells remain similar. Tumor cells in T-R also demonstrated

enrichment of STAT3 signaling (Figure 4J), which is one of the

downstream pathways of EGFR activation and is involved in gli-

oma mesenchymal transformation. Integration of the genomic,

transcriptome and cellular landscape of this multicentric glioma

case suggested that TAMo is a potential factor involved in the

formation of mesenchymal GB (Figure 4K).

FOSL2 is a master regulator of TAMo
Transcriptional factors (TFs) play important roles in programming

cell type identity and states. To disentangle the tumor-induced

changes in the transcriptional network of TAMo andMDM,we in-

ferred the TF activity from the single-cell transcriptome data by

SCENIC.45 The activity of each TF and their regulated targets,
dinal GB patients. From top to bottom: description of longitudinal dataset with

rs (maroon) and other genes (gray) in initial and recurrent GB, with ranks of the

ES markers (maroon) and other genes (gray) in recurrent versus initial sample;

by single sample Gene Set Enrichment Analysis (ssGSEA) analysis of the gene

currence (top) and number of patients in each category (bottom). Pearson’s

ES) and TAMo infiltration score (STAMo) are shown.

tration versus with no TAMo increase. p value was calculated byWilcoxon rank-

of the right-brain tumor (T-R) and left-brain tumor (T-L) of the patient were

the bulk RNA-seq data of the T-R (left) and T-L (right) samples of patient P673.

sion rank-change between T-R and T-L. The NES and p-value of mesenchymal

scRNA-seq data of patient P673. The dot color and size represented the mean

les of patient P673. The tumor and non-tumor clusters were outlined to ease

ays in tumor cells from T-R versus T-L.

and significant transcriptome subtypes of the two tumor were indicated in the

Cell Reports Medicine 4, 101177, September 19, 2023 9



A B

C

D FE

G

(legend on next page)

10 Cell Reports Medicine 4, 101177, September 19, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
which was defined as the TF regulon, were scored in individual

cells. Regulon-based unbiased clustering robustly distinguished

the TAMo population from PBMC-monocyte and MDM sub-

groups (Figure 5A), further supporting the distinctive cell identity

of TAMo. Compared with PBMC-monocyte and MDM sub-

groups with high activity of well-known monocyte differentia-

tion-related TF,46 TAMo showed elevated activity of a set of

TFs including FOSL2,CEBPB,NFKB1,NFKB2, andNFIL3. Apart

from the inferred regulatory activity, several of these TFs also

demonstrated significant over-expression in TAMo, especially

CEBPB and FOSL2 (Figure S5A). Interestingly, CEBPB and

FOSL2 have been identified as the master regulators for mesen-

chymal GB,34 and our analysis suggested their roles in reprog-

ramming the glioma-infiltrating immune cells.

Examining the network regulated by CEBPB and FOSL2 in

TAMo, we observed that FOSL2 positively regulated several

TAMo signature genes, including EREG and AREG (Figures

S5B and S5C). Moreover, among all potential TFs of EREG and

AREG, FOSL2 was the top-ranked TF inferred by SCENIC (Fig-

ure 5B). The FOSL2 binding motifs were also detected in the

two genes, and all FOSL2 ChIP-seq signal tracks available in

the ENCODE portal47,48 supported the binding of FOSL2 at these

motif positions (Figure 5C). In the THP-1 monocyte cell line, the

expression of EREG and AREG was significantly elevated and

down-regulated in response to FOSL2 over-expression and

knock-down, respectively (Figures 5D and 5E).43 Overall, our

analysis revealed CEBPB and FOSL2 as TAMo-specific master

regulators, and, among these two important TFs, CEBPB was

the upstream activator for FOSL2,49 which further acted as the

direct regulator for EREG and AREG expression in TAMo.

A recent study revealed that FOSL2 expression is induced in

hypoxic conditions,43 hinting the association between TAMo for-

mation and necrosis, which is one of the histological hallmarks of

a grade IV tumor diagnosis.50 In the Ivy Glioblastoma Atlas Proj-

ect (Ivy GAP) dataset with various anatomical regions of gli-

oma,51 we observed enrichment of TAMo near necrotic regions

(Figure 5F). In contrast, enrichment ofMGwas observed in tumor

periphery, while monocyte and MDM were preferentially local-

ized at the regions with microvascular formation (Figure S5D),

which is consistent with previous studies.11,12 The spatial tran-

scriptome dataset of IDH-wildtype GB52 also revealed co-local-

ization of the mesenchymal markers and TAMo, both of which

were enriched near the necrotic edges (Figures 5G and S5E).

In the two representative cases, all Mono/Macro (marked by
Figure 5. TF activity analysis reveals FOSL2 as a regulator of TAMo

(A) Heatmap of TF activity inferred by SCENIC. Each row represented the regulon o

The cell subcluster and tissue of origin were marked on top of the heatmap.

(B) The rank of feature importance scores of all TFs that potentially regulate E

importance of each TF, and the color represented whether the TF was over-exp

(C) The presence of FOSL2-binding peaks and motifs located near EREG (left) a

(D and E) Expression levels of EREG and AREG in THP-1 monocyte cell line und

PCR. ***p < 0.001, ****p < 0.0001 by two-sided unpaired t-test.

(F) Boxplot of TAMo score across different anatomical regions in IvyGBM dataset

group versus other samples.

(G) Spatial distribution of Mono/Macro markers (CD14, ITGAM), FOSL2, TAMo sc

wildtypeGBpatients. Abbreviations: PNZ, perinecrotic zone; PAN, pseudo-palisa

blood vessels; CT, cellular tumor; IT, infiltrating tumor; LE, leading edge.

See also Figure S5.
CD14 and ITGAM) in tumor 265_T resembled the TAMo popula-

tion and were found near the necrotic edge, while Mono/Macro

were spatially dispersed in tumor 260_T and only the necrosis-

proximal Mono/Macro resembled TAMo, suggesting that hypox-

ic environment at tumor necrosis areasmay play a role in reprog-

ramming infiltrating monocytes into TAMo. Interestingly, the

enrichment of MHC-II-low monocytes at hypoxic areas, which

tuned the expression of gene signatures related to angiogenesis

and metastasis in these monocytes, was also reported in mouse

models with lung and breast cancer.53

In vitro 3D spheroid model establishes the causal role of
EREG and AREG in promoting GB cell invasion
We thenmodeled TAMo formation and TAMo-tumor interactions

in vitro. Upon surveying 30 GB cell lines with available genomic

and transcriptomic sequencing data in the Cancer Cell Line

Encyclopedia database, we selected the U251 cell line as a

GB cell model as it has an IDH-wildtype and EGFR-wildtype

genomic background, as well as low expression in EREG and

AREG (Figure S6A). To investigate the roles of EGFR-EREG/

AREG axis in EGFR signaling and aggressive phenotypes in

GB cells, trans-well invasion assay was used to evaluate the

migration and invasion ability of U251 (Figures 6A and 6B). As

a result, the invasion of U251 cells increased more than 2-fold

with the addition of AREG and EREG (200 ng/mL) in the medium.

Moreover, adding the EGFR inhibitor gefitinib in the medium

notably decreased the invasion, demonstrating the role of

EGFR signaling in regulating U251 cell invasion (Figures 6A, first

row, and 6B, statistical analysis). Introducing human monocyte

cell line THP-1 to the lower chamber of trans-well system stimu-

lated the invasion of U251 cells cross the upper chamber, and

the invasion positively correlated with the ratio of THP-1 cells

in the non-contacting co-culture system (Figure 6A, second row).

To characterize the role of FOSL2, THP-1 cells with different

expression levels of FOSL2 and AREG were developed. FOSL2

over-expression in THP-1 cells dramatically increased the inva-

sion of U251 cross the trans-well chamber by approximately

2.8-fold (Figures 6A, third row, and 6B, 10th bar). In sharp

contrast, the invasion significantly decreased when FOSL2 or

AREG in THP-1 cells were downregulated (Figures 6A, third

row, and 6B, eighth and ninth bars). Similar effects were

observed when U251 cells were incubated with only THP-1

conditioned mediums instead of the cells, indicating FOSL2 is

a master regulator in monocytes that mediates extracellular
f one TF, and each column represented onemonocyte orMDMprofiled by 10X.

REG (top) and AREG expression (bottom). The dot size correlated with the

ressed in GBM-infiltrating monocytes.

nd AREG (right) genes. The data was obtained from ENCODE data portal.

er FOSL2 over-expression (OE) (D) and knock-down (KD) (E) quantified by RT-

. p values were calculated by Wilcoxon rank-sum test and between the highest

ore, and mesenchymal score across different histological regions in two IDH-

ding cells around necrosis; MVP,microvascular proliferation; HBV, hyperplastic
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signaling and promote GB cell invasion (Figures 6A, fourth row,

and 6B, fourth and sixth bars). Moreover, the expression of

mesenchymal markers (CD44 and TGFBI) in U251 cells showed

consistent changes with invasiveness (Figure 6C), supporting

the roles of FOSL2-EREG/AREG-EGFR axis in promoting the

mesenchymal transformation of GB cells. Intriguingly, the

THP-1 cells co-cultured with GB cell lines U251 or U87 also

showed elevated expression of AREG and EREG (Figure S6B),

thus suggesting reciprocal regulatory relationships between

monocytes and GB.

To further visualize and evaluate tumor cell invasion, we devel-

oped a 3D culture system to mimic tumor microenvironmental

conditions and monitor the tumor invasion process. By tracing

the area of invasion in the high-resolution and 3D-stacked

confocal images of U251 cell spheroids, the assay could robustly

and quantitatively reflect differences in the invasion capabilities

of the GB cells under different treatments. In the presence of

EREG and AREG, the invasion of U251 cell spheroids drastically

increased compared with the control (Figures 6D and S6C). The

edge of the spheroid appearedmore rugged due to profound cell

invasion when EREG and AREG were included in the medium.

Consistently, enhanced invasion of U251 cells were observed

with inclusion of THP-1 into the culture system (Figures 6D and

S6D). Quantification of the ratio of invasion area of U251 cell

spheroids showed that both the presence of recombinant

EREG and AREG proteins and the inclusion of THP-1 monocyte

cells lead to significant increase in GB cell invasion (Figure 6E).

Altogether our study identified a group of prognosis-related,

necrosis-associated, monocyte-derived cells called TAMo that

was transcriptionally reprogrammed by FOSL2 to express

EREG and AREG, which acts on GB tumor cells and promotes

EGFR signaling and mesenchymal transformation (Figure 6F).

The discovery of the FOSL2-EREG/AREG-EGFR axis in TAMo-

tumor crosstalk will shed light on the design of next-generation

immunotherapeutic strategies in GB.

DISCUSSION

We profiled the GB microenvironment, revealing changes in cell

type abundance and transcriptional profiles. By combining

scRNA-seq and CyTOF, our study sought to reveal GB-specific

immune microenvironment features and mechanisms of tumor-
Figure 6. TAMo promotes glioma invasion via the FOSL2-EREG/AREG

(A) Representative images of GB U251 cell in trans-well invasion assay under diffe

medium; EGFRi, EGFR inhibitor gefitinib.

(B) Quantification of U251 invasiveness in the trans-well invasion assay. Data were

by two-sided unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(C) Quantification of mesenchymal markers including CD44 and TGFBI in U251 c

replicates).

(D) Representative images of GB U251 cell spheroid invasion 24 h after embeddin

to right: contour of the core (black lines) and invading protrusion of spheroids (g

regions selected and zoomed in; zoomed view of spheroids, with white lines indic

100 mm.

(E) Quantification of GB cell invasion from spheroids. Ratio of invasion area repre

biological replicates for control and n = 3 biological replicates for other groups).

(F) Proposed model of glioma- and/or hypoxia-mediated monocyte reprogramm

axis and promoted mesenchymal transformation in glioma cells.

See also Figure S6.
immune interactions. Based on ontogeny-specific markers,11

Mono/Macro could be classified into MG, MDM andmonocytes.

More important, GB-infiltrating monocytes, which we here

termed TAMo, displayed elevated expression of EGFR ligands

EREG and AREG, which were not expressed in PBMC-mono-

cyte or MDM. The functions of EREG and AREG in activating

EGFR signaling and promoting tumor growth, metastasis and

vessel formation have already been well established in various

cancer types.54–57 By analyzing RNA-seq data of cross-

sectional, longitudinal, and multicentric glioma samples, as

well as spatial transcriptome dataset, we observed a consistent

trend of mesenchymal transformation accompanied by TAMo

infiltration. The presence of EREG and AREG also activated

EGFR signaling, promoted the expression of mesenchymal

markers, and enhanced GB cell invasion in trans-well invasion

assays and 3D spheroid models.

TAMo and MDM both originate in bone marrow, but they have

not been well distinguished in previous studies.12,15 In the pre-

sent study, themonocytes fromPBMCwere included in the clus-

tering analysis and aided the discovery of TAMo that stably co-

clustered with monocytes in PBMC. This co-clustering suggests

that TAMo is more similar to monocyte, as opposed to differen-

tiated macrophage states. The inclusion of PBMC-monocyte as

a control may also provide a reasonable starting point for trajec-

tory inference analysis. In another independent cohort, EREG-

and AREG-expressing monocytes were defined as transitory

macrophages that eventually differentiate into mature macro-

phages.15 In contrast, with the addition of PBMC-monocyte as

a starting point, we reconstructed the GB-infiltrating monocytes

as a distinct terminal state of differentiation.

We hypothesized that monocytes undergo reprogramming

initiated by the glioma cells after infiltrating into GB, resulting in

the expression of TAMo-specific genes including EREG and

AREG. Tumor-induced expression of EREG and AREG in mono-

cytes has been reported in several breast cancer studies,58,59

but the underlying mechanisms remain elusive. Through recon-

structing TF regulons and comparing their activities in different

Mono/Macro subgroups, we predicted and later verified the

roles of FOSL2 in regulating EREG and AREG expression in

TAMo. Enrichment of TAMo and FOSL2 expression near necrotic

area also hinted the involvement of hypoxia and other GB-

derived signaling molecules, such as extracellular ATP,60 in
-EGFR axis

rent treatment conditions. Scale bar, 100 mm. Abbreviations: CM, conditioned

presented as mean ± SD (n = 3 biological replicates). p values were calculated

ells under different treatment conditions using RT-PCR assay (n = 4 biological

g in extracellular matrix with and without AREG and EREG treatment. From left

reen lines); raw images of spheroids, with the yellow squares representing the

ating the boundary between spheroid core and invading protrusion. Scale bar,

sents the ratio of the protrusion area over the core area of each spheroid (n = 2

ing into TAMo, which acted through the FOSL2-EREG/AREG-EGFR signaling
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driving the monocyte-TAMo transition. Other than the hypoxic

microenvironment, elevated EREG and AREG expression was

also observed in THP-1 co-cultured with GB cell lines, and this

co-culture model could guide future studies of the molecular ba-

sis and mechanisms of extracellular signaling cues in GB that

promote the transformation of monocytes into TAMo.

GB-infiltrating MDM and MG both showed elevated expres-

sion of TREM2 and CSF1R, which could be specifically targeted

by anti-TREM2 and anti-CSF1R therapy. However, these strate-

gies failed to deplete the GB-infiltrating monocytes in a recent

study using a mouse model.15 We observed lower levels of

TREM2 and CSF1R expression in TAMo compared with MDM,

which potentially resulted in the limited targeting efficiency on

these cell populations. Alternatively, we identified a set of

TAMo-specific markers, including EREG and AREG, that

demonstrated low expression in PBMC-monocytes and MDM,

which could be potentially targeted to eliminate TAMo without

affecting the normal monocyte populations. The EREG- or

AREG-blocking strategies also demonstrated effective tumor

suppression in various cancer types.61–63 Our study therefore

lays the foundation for the future development of TAMo-targeted

immunotherapy in glioma.

Taken together, our findings provide a comprehensive view of

immune cell types in the GB microenvironment. We profiled the

glioma and PBMC samples collected from the same patient us-

ing two single-cell profiling approaches, which complimented

each other and generated useful data resources for glioma

microenvironment studies. Significantly, this study reveal

TAMo as a key player in promoting EGFR signaling and mesen-

chymal transformation in glioma. For future perspectives, our

study will serve as a useful reference for enhancing the under-

standing of the tumor microenvironment for rational design and

improvement of immunotherapy in GB.

Limitations of the study
While our study computationally and experimentally studied the

TAMo-glioma interactions in vitro, further efforts should be

devoted to establishing better in vitro and in vivo systems to

study this phenomenon. The in vitro experiments in this study

were carried out in long-term cultured cancer and monocyte

cell lines, while patient-derived glioma stem cells and primary

peripheral blood monocytes could more faithfully recapitulate

glioma and monocytes. Second, while our study verified the

roles of TAMo in promoting mesenchymal transformation of

the tumor, the possibility of positive regulatory loops between

TAMo and mesenchymal GB also need to be anticipated and

examined. Lastly, the clinical implications and translational po-

tentials of our findings require further mechanistic studies and

validation in larger patient cohorts.
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80. Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G.,

Benfeitas, R., Arif, M., Liu, Z., Edfors, F., et al. (2017). A pathology atlas

of the human cancer transcriptome. Science 357, eaan2507. https://doi.

org/10.1126/science.aan2507.

81. Veelken, C., Bakker, G.J., Drell, D., and Friedl, P. (2017). Single cell-based

automated quantification of therapy responses of invasive cancer spher-

oids in organotypic 3D culture. Methods 128, 139–149. https://doi.org/

10.1016/J.YMETH.2017.07.015.

82. Conti, S., Kato, T., Park, D., Sahai, E., Trepat, X., and Labernadie, A.

(2021). CAFs and Cancer Cells Co-Migration in 3D Spheroid Invasion

Assay. Methods Mol. Biol. 2179, 243–256. https://doi.org/10.1007/978-

1-0716-0779-4_19.
Cell Reports Medicine 4, 101177, September 19, 2023 17

https://doi.org/10.3390/IJMS222312828
https://doi.org/10.3390/IJMS222312828
https://doi.org/10.1016/J.BBCAN.2011.05.003
https://doi.org/10.1186/1471-2407-13-197/FIGURES/5
https://doi.org/10.1158/0008-5472.CAN-19-1934
https://doi.org/10.1158/0008-5472.CAN-19-1934
https://doi.org/10.1182/BLOOD-2010-01-265611
https://doi.org/10.1182/BLOOD-2010-01-265611
https://doi.org/10.1038/onc.2015.93
https://doi.org/10.1038/onc.2015.93
https://doi.org/10.1158/1940-6207.CAPR-08-0014
https://doi.org/10.1016/J.BBRC.2017.03.006
https://doi.org/10.1016/J.BBRC.2017.03.006
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1126/science.1254257
https://doi.org/10.1126/science.1254257
https://doi.org/10.1186/S12864-018-4772-0
https://doi.org/10.1186/S12864-018-4772-0
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.21105/joss.01317
https://doi.org/10.1002/cyto.a.22271
https://doi.org/10.1002/0471142956.cy1017s53
https://doi.org/10.1038/nn.4610
https://doi.org/10.1038/nbt.2594
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1073/PNAS.0308531101/SUPPL_FILE/08531DATASET9.RTF
https://doi.org/10.1073/PNAS.0308531101/SUPPL_FILE/08531DATASET9.RTF
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1016/J.YMETH.2017.07.015
https://doi.org/10.1016/J.YMETH.2017.07.015
https://doi.org/10.1007/978-1-0716-0779-4_19
https://doi.org/10.1007/978-1-0716-0779-4_19


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD14 antibody Abcam Cat# ab183322; RRID: AB_2909463

Anti-CD45 antibody Abcam Cat# ab10558; RRID: AB_442810

Anti-AREG antibody Proteintech Cat# 66433-1; RRID: AB_2881803

Anti-EREG antibody Biorbyt Cat# orb378205

Mass cytometry antibody panel See Table S2

Chemicals, peptides, and recombinant proteins

Recombinant EREG MedChemExpress Cat# HY-P7011

Recombinant AREG MedChemExpress Cat# HY-P7002

Dulbecco’s modified Eagle medium Gibco Cat# 11965092

Roswell Park Memorial

Institute 1640 medium

Gibco Cat# 11875119

Fetal bovine serum Gibco Cat# 11550356

Non-essential amino acids Gibco Cat# 11140050

Sodium pyruvate Gibco Cat# 11360070

Penicillin/streptomycin Gibco Cat# 15140122

DiO cell membrane dye Beyotime Biotechnology Cat# C1038

DiI cell membrane Beyotime Biotechnology Cat# C1036

Methylcellulose Dieckmann Cat# MD00291

Cultrex� RGF BME R&D SYSTEMS Cat# 3433-005-001

Collagen I Gibco Cat# A10483-01

LipofectamineTM 3000 Invitrogen Cat# L3000015

FOSL2 plasmid Sino Biological Cat# HG15308-ACG

Gefitinib MedChemExpress Cat# HY-50895

siRNA AREG 209 GenePharma GCUCUUGAUACUCGGCUCATT

UGAGCCGAGUAUCAAGAGCTT (50-30)

siRNA AREG 390 GenePharma GGAUUUGAGGUUACCUCAATT

UUGAGGUAACCUCAAAUCCTT (50-30)

siRNA AREG 348 GenePharma UCUGGGAAGCGUGAACCAUTT

AUGGUUCACGCUUCCCAGATT (50-30)

siRNA EGFR 456 GenePharma GCAGAGGAAUUAUGAUCUUTT

AAGAUCAUAAUUCCUCUGCTT (50-30)

siRNA EGFR 767 GenePharma GCAACAUGUCGAUGGACUUTT

AAGUCCAUCGACAUGUUGCTT (50-30)

siRNA EGFR 1068 GenePharma GGAGAUAAGUGAUGGAGAUTT

AUCUCCAUCACUUAUCUCCTT (50-30)

siRNA FOSL2 818 GenePharma GGAUUAUCCCGGGAACUUUTT

AAAGUUCCCGGGAUAAUCCTT (50-30)

siRNA FOSL2 1304 GenePharma CCUGCAGAAGGAGAUUGCUTT

AGCAAUCUCCUUCUGCAGGTT (50-30)

siRNA FOSL2 1643 GenePharma GAACCUCGUCUUCACCUAUTT

AUAGGUGAAGACGAGGUUCTT (50-30)

NucleoSpin RNA Plus kit Takara Cat# 740984.50

RIPA buffer Thermo Fisher Scientific Cat# 89901

Tris-HCl Invitrogen Cat# 15504-020

Dodecyl sulfate TCI Development Co. Cat# 151-21-3

(Continued on next page)
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Bromophonol blue BIO-RAD Cat# 161-0404

Glycerol ChemCruz Cat# SC-29096B

Deposited data

Single-cell RNA-sequencing data This study GEO: GSE237779

TCGA data Firehose https://gdac.broadinstitute.org/

CGGA data CGGA database http://www.cgga.org.cn/

Cancer Cell Line Encyclopedia data CCLE https://sites.broadinstitute.org/ccle/

Ivy Glioblastoma Atlas Project data IVY GAP https://glioblastoma.alleninstitute.org/

Longitudinal glioblastoma patient data SRA SRP074425

Experimental models: Cell lines

Human: glioblastoma cell line U251 Dr Hin Chu https://doi.org/10.1016/S2666-5247(2030004-5)

Human: monocyte cell line THP-1 Dr Chi-Ping Chan https://doi.org/10.1371/journal.ppat.1008611

Software and algorithms

Seurat (Stuart et al., 2019)64 https://satijalab.org/seurat/index.html

Cellranger 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/using/count

Cytobank Beckman Coulter https://premium.cytobank.org/cytobank

SingleR (Aran et al., 2019)18 https://rdrr.io/github/dviraran/SingleR/

InferCNV (Patel et al., 2014)65 https://bioconductor.org/packages/

release/bioc/html/infercnv.html

Slingshot (Street et al., 2018)66 https://bioconductor.org/packages/

release/bioc/html/slingshot.html

Monocle2 and Monocle3 (Cao et al., 2019; Qiu et al.,

2017b, 2017a; Trapnell et al., 2014)67–70
http://cole-trapnell-lab.github.io/monocle-release/

Gene Set Enrichment Analysis (Subramanian et al., 2005)71 https://www.gsea-msigdb.org/gsea/index.jsp

SCENIC (Aibar et al., 2017)45 https://scenic.aertslab.org/

ConsensusClusteringPlus (Wilkerson and Hayes, 2010)72 https://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

Lifelines (Davidson-Pilon, 2022)73 https://lifelines.readthedocs.io/en/latest/

SPATA2 (Ravi et al., 2022)52 https://github.com/theMILOlab/SPATA2
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jiguang

Wang (jgwang@ust.hk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available under accession numbers GEO: GSE237779.

The data of TCGAGB patients are available in the Broad Institute Firehose platform (https://gdac.broadinstitute.org/). The data

of CGGA GB patients are available in the CGGA website (https://cgga.org.cn/). The RNA-seq expression data of Ivy Glioblas-

toma Atlas Project are available on the data portal (https://glioblastoma.alleninstitute.org/static/download.html).

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and ethics statements
Peripheral blood samples and surgically resected tumor tissues were obtained from glioma patients undergoing craniotomy surgery

at Beijing Tiantan Hospital (Beijing, China) from June 2018 to April 2019 after informed consent was provided. All cases were

confirmed by histopathology. None of the patients used glucocorticoids before sampling. This research was approved by the Insti-

tutional ReviewBoard (IRB) and Ethics Committee of Beijing Tiantan Hospital (Beijing, China). Each patient provided written informed

consent.

Cell culture
Human glioblastoma cell line U251 was maintained in cell culture containing Dulbecco’s modified Eagle medium (DMEM), supple-

mented with 10% fetal bovine serum (v/v) and 1% penicillin/streptomycin (v/v). Humanmonocytes THP-1 cells were cultured in Ros-

well Park Memorial Institute (RPMI) 1640 medium, supplemented with 10% fetal bovine serum (v/v), 1% penicillin/streptomycin (v/v),

1X non-essential amino acids and 1 mM of sodium pyruvate. All cells were kept in an incubator at 37�C and 5% CO2. All reagents

were purchased from Gibco (Thermo Fisher Scientific, Massachusetts, USA).

METHOD DETAILS

GB specimens single-cell dissociation
After the operation ice-cold Dulbecco’s phosphate-buffered saline (DPBS, D8537, Sigma-Aldrich, St. Louis, MO) was used to wash

GB tissues immediately. Briefly, the GB specimens were dissociated using type IV collagenase (17104019, GIBCO, Gaithersburg,

MD) (10 min at 37�C). The specimens were then washed with Dulbecco’s Modified Eagle’s Medium (DMEM, D5796, Sigma-

Aldrich, St. Louis, MO) and centrifuged (4 min at 300 g with minimal braking). A 70 mm cell strainer were used to filter the specimens

in DPBS. The filtered cell suspension was washed with red blood cell (RBC) lysis buffer (555899, BD Biosciences, Franklin Lakes, NJ)

and with DPBS. The resulting cell pellet was then resuspended in 1mL staining buffer (DPBS containing 5% fetal bovine serum, FBS;

0500, ScienCell, Carlsbad, CA) and washed one more time. Single-cell specimens were prepared for CyTOF examination or single-

cell RNA Sequencing.

Peripheral blood single-cell dissociation
Peripheral blood was collected into ethylenediaminetetraacetic acid anticoagulation coated tubes. The specimens were first centri-

fuged (5 min at 800 g with minimal braking) to remove plasma. Then, the specimens were transferred into SepMate PBMC isolation

tubes containing Ficoll (86450, STEMCELL Technologies, Vancouver, Canada) and centrifuged (10 min at 1200 g with minimal

braking). Pelleted cells were then washed with RBC lysis buffer. The blood cell pellet was resuspended in 1 mL staining buffer fol-

lowed by washing to remove excessive stain. Single-cell specimens were prepared for CyTOF examination or single-cell RNA

Sequencing.

Mass cytometry
A panel of 27 antibodies was designed to distinguish immune cells from GB patients. Antibodies were either purchased in a precon-

jugated form from Fluidigm (South San Francisco, CA) or in a purified form from Biolegend (San Diego, CA). Purified antibodies were

conjugated in-house using theMaxpar X8Multimetal Labeling Kit (201300, Fluidigm, South San Francisco, CA) according to theman-

ufacturer’s recommendations. The antibodies and reporter isotopes are summarized in Table S2. For cell preparation, cell specimens

were rapidly rewarmed. Cell specimens were first stained with cell surface antibodies for 30min on ice. Subsequently, the specimens

were permeabilized (4�C overnight) and stained with intracellular antibodies for 30 min on ice. The antibody-labeled specimens were

washed and incubated in 0.125 nM intercalator-Ir (201192B, Fluidigm, South San Francisco, CA) diluted in phosphate-buffered saline

(PBS, 806544, Sigma-Aldrich, St. Louis, MO) containing 2% formaldehyde and stored at 4�C until mass cytometry examination.

Before acquisition, the specimens were washed with deionized water and then resuspended at a concentration of 1*106 cells/mL

in deionized water containing a 1:20 dilution of EQ Four Element Beads (201078, Fluidigm, South San Francisco, CA). The specimens

were then examined by CyTOF2 mass cytometry (Fluidigm, South San Francisco, CA).

Single-cell RNA sequencing
The GB or peripheral blood cell suspension was loaded into Chromium microfluidic chips with 3’ (v3) chemistry and barcoded with a

103 Chromium Controller (10X Genomics). RNA from the barcoded cells was subsequently reverse-transcribed and sequencing

libraries constructedwith reagents from aChromiumSingle Cell 3’ (v3) reagent kit (10XGenomics) according to themanufacturer’s rec-

ommendations. Sequencing was performed with Illumina (NovaSeq) according to the manufacturer’s recommendations (Illumina).

CyTOF data analysis
CyTOF data were obtained in fcs formed files. The addition of EQ Four Element Beads allowed us to use theMATLAB-based normal-

ization technique using bead intensities as previously described.74 The CyTOF data were uploaded and analyzed onCytobank.75 Cell
e3 Cell Reports Medicine 4, 101177, September 19, 2023
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type recognition parameters for CyTOF were summarized in Table S3. Manual gating was applied to mark cell types as previously

reported.76 Data were analyzed using viSNE algorithms on the indicated gated cells.77

Analysis of single-cell RNA sequencing data
Raw data of each sample was preprocessed using Cell Ranger,78 and the filtered expression matrix was obtained and analyzed with

Seurat.64 The high-quality cells were further selected by: (1) 600–3000 genes were detected; (2) at least 3000 UMIs were counted; (3)

the fraction of mitochondrial genes was below 20%. The selected cells in each sample were further characterized by clustering and

cell type annotation. After selecting the top 2000 variable genes for principal component analysis (PCA), the principal components

(PCs) above the elbow point were selected as features for clustering and dimensionality reduction by t-SNE. Clustering was per-

formed using Louvain’s method at resolution of 1. The annotation of major cell types in was conducted by matching each cluster

with criteria of marker combinations used in CyTOF (Table S3), and the annotation of cell subtypes was conducted by a combined

approach of manual inspection of classical markers17,19 and automatic cell type detection by SingleR,18 which compares each single

cell and cluster to purified cell types in reference datasets. Single cells from different samples were merged by the canonical compo-

nent analysis (CCA) method in Seurat. The removal of batch effect was examined by observing well-mixed sample labels in the t-SNE

plot, while the cell type labeled in the analysis of individual samples are well aligned with the clusters on the merged data. The dimen-

sionality reduction, re-clustering and identification of cell subtypes, and trajectory analysis was conducted on the merged data. The

classification of transcriptome subtypes and prediction of copy number alterations of tumor cells in single-cell RNA-sequencing data

was performed following the methods in previous studies.44,65

Single-cell trajectory analysis
The trajectory ofmonocyte-MDM transformationswas performed by Slingshot,66Monocle2 andMonocle3.67–70 Prior to constructing

the trajectory, the expression data of cells from different samples weremergedwith CCA in Seurat. The top 2000 variable genes were

selected for PCA analysis, and the PCswith standard variation above the elbow point were selected for dimensionality reduction with

t-SNE, UMAP, ICA or DDRTree.

Identifying Mono/Macro subtypes
The microglia- and MDM-specific gene sets were obtained from the study by M€uller et al.11 Principal component analysis and

consensus clustering72 of all monocytes andmacrophages in PBMC, epilepsy, astrocytoma and GB samples were performed based

on the expression of microglia- and MDM-specific genes. In the consensus clustering method, the cell-cell similarity was measured

by Euclidian’s distance and clustered by hierarchical clustering combined with Ward’s method, and 1000 permutations were per-

formed for k ranging from 2 to 10 classes. In each permutation, 80% of samples were selected and clustered. The method ensures

cluster stability and robustly. Cophenetic correlation coefficient (rk) was computed for each k to select the one with the largest rk, as

the Pearson correlation of the Euclidean distance induced by the consensus matrix C and the dendrogrammatic distance induced by

the complete linkage used in the reordering of C.79

Differential expression and pathway activity analysis
The significantly differentially expressed genes (DEGs) between two groups of cells analyzed are defined by: (1) Benjamini-Hochberg

adjusted p-value for Wilcox’s rank-sum test <0.05; (2) differences in the percentage of cells that express the gene in the two groups

were larger than 0.2. Differential gene expression analysis between two groups of patients were calculated by Wilcox’s rank-sum

test. Comparison of pathway activity between two groups of patients or cells was performed by Gene Set Enrichment Analysis

(GSEA).71

Scoring MG, MDM, monocyte and TAMo abundance in bulk RNA sequencing data
The MG-, MDM- and monocyte-specific markers were defined as a subset of ontogeny-specific markers11 that can distinguish the

three cell subtypes and were invariant regardless of tissue of origin. The selected markers were shown in Figure 2C and applied in

estimating the cell type abundance in bulk RNA sequencing data of TCGA glioma patients by calculating the average expression of

the gene sets in each sample. In the analysis of TAMo-specificmarkers, genes with significantly elevated expression in TAMo and low

expression in other monocyte and MDM subgroups (expressed in less than 20% of non-TAMo populations) were selected.

Survival analysis
Survival analysis was performed with python package ‘lifelines’. The associations between the cell type score and overall survival

was estimated according to previous methods,80 which segregated patients into high-expression and low-expression groups by

different cut-offs of FPKM level and calculating the p-value by log rank test, and the most significant p-value was reported.

Scoring mesenchymal transformation in paired samples from the same patient
To capture the changes inmesenchymal gene signature in longitudinally paired samples collected from the same patient while avoid-

ing batch effects, we converted the log2-transformed FPKM into ranks of each gene amongst all protein coding genes in the sample.

The rank-change of each gene between the recurrent and initial sample was calculated, and further applied in single-sample GSEA
Cell Reports Medicine 4, 101177, September 19, 2023 e4
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analysis.79 The four gene sets corresponding to the four GB transcriptome subtypes was assessed, and patients with significant

elevated mesenchymal subtype signatures (with normalized enrichment score for mesenchymal signature SMES > 2 and p < 0.01)

were defined as positive cases for mesenchymal transformation. In the longitudinal patient cohort, we analyzed the mesenchymal

transformation during recurrence in 57 GB patients that: (1) contained bulk RNA-seq data of both initial and recurrent tumor; (2)

were not hypermutated during recurrence. The TAMo infiltration score STAMo was calculated as the TAMo score of the recurrence

tumor eliminated by that of the initial tumor.

Single-cell transcriptional network analysis
The gene expression matrix of monocytes and MDMs were applied as the input for transcriptional network analysis using default

parameters in SCENIC.45 In the first step, the GRNBoost method was applied to identify coexpression of TF and potential targets.

In the second step, the regulon of each TF was refined either by searching for TF binding motifs in the 500bp-upstream sequence of

transcription start sites of the coexpressed targets (hereafter termed ‘‘motif analysis’’) or by overlapping with TF-bound peaks in

ChIP-seq data (hereafter termed ‘‘ChIP-seq analysis’’). As the number of TFs available in the ChIP-seq database was limited, we

applied the regulons inferred from motif analysis in the third step of SCENIC, which aggregated these regulons into AUC scores

of TFs. Based on the AUC matrix, we conducted hierarchical clustering as the examples in the SCENIC paper and unbiasedly iden-

tified a cluster of TAMo-specific TFs. The list of TAMo-specific TFs was further prioritized by whether the TF was over-expressed in

TAMo and whether EREG and AREG were regulated by the TF.

Glioblastoma proteomic data analysis
The public data used in this validation were generated by the Clinical Proteomic Tumor Analysis Consortium (NCI/NIH) and down-

loaded from the supplementary materials.35 The 110 samples were filtered based on the sample types (tumor only), the molecular

subtypes (IDH-wildtype only), and only the samples with both EGFR mutation status and EGFR copy number variation (CNV) status

are kept. Finally, 89 IDH-wildtype GB samples were included in the analysis. The EGFR-altered samples were defined as samples

having either EGFR mutation or amplification. In total, 12 samples were classified as EGFR-wildtype samples. As not all of the

TAMo signature geneswere provided in the proteomic data, the TAMo scores of each sample were calculated using RNA sequencing

data. The raw FPKM-UQ values of RNA sequencing were obtained, processed by log-transformation and gene-wise Z score scaling.

Then, the TAMo scorewas generated as themeanZ score values of the TAMo-specific genes (EREG, AREG, CXCL2,MARCO, LRG1,

and VEGFA) for each sample. The Spearman’s correlation test was used to determine the relation between TAMo score and various

phosphorylation sites’ abundance (EGFR-Y1172, EGFR-Y1197, STAT3-S727) among the EGFR-wildtype IDH-wildtype GB samples.

Glioblastoma spatial transcriptome data analysis
The spatial transcriptomic dataset52 was downloaded and analyzed. Histological regions were defined in the original study. The

TAMo score and mesenchymal score for different histological regions were calculated based on normalized expression. Scaled

expression levels of marker genes and signature scores amongst different histological regions of each sample were visualized by

SPATA2, an R tool developed for spatial transcriptomic data analysis.

siRNA transfection and reverse transcription-PCR
All siRNAs were from GenePharma (SH, China) and FOSL2 plasmid was from sinobiological (SH, China). Lipofectamine 3000 pur-

chased from Invitrogen (CA, USA) was used for siRNA transfection. Target gene expression was then quantified by reverse transcrip-

tion-polymerase chain reaction (RT-PCR), Briefly, total RNA was extracted using total RNA extraction reagent (Takara Bio, USA) ac-

cording to manufacturer’s instructions. Total RNA was reverse transcribed into single-stranded cDNA by thermal cycler (Applied

Biosystems, Thermo Fischer Scientific) prior to gene quantification by LightCycler 480 System (Roche Diagnostics) following stan-

dard procedures.

Trans-well invasion assay
Cells migration and invasion assay were conducted on the Corning Trans-well 3422 24-well plates (8 mmpore size). Collagen I diluted

with 6mMacetic acid was added on the upside of polycarbonatemembrane at 4�Cand gelled for 1 h at 37�CU251 cells were seeded

on the upper chamber in serum-freemedium. In the non-contacting co-culture model, THP-1 cells were placed in the lower chamber.

After incubation for 18 h, the cells invaded through the polycarbonate membrane were fixed with 4% paraformaldehyde and stained

with 0.1% crystal violet staining solution. Images were then captured by a standard microscope (Nikon Eclipse Ts2).

3D spheroid invasion assay
3D cell spheroids were generated from cultured cells by using hanging-drop method.81,82 Prior to spheroids formation, cells were

fluorescently labeled with DiO or DiI cell membrane dyes (C1038/C1036, Beyotime Biotechnology, China). Cells were detached

and suspended with 0.24% methylcellulose (MD00291, Dieckmann, China) in medium. Droplets (15 mL) containing 8000 cells

were placed onto the inner surface of a culture dish lid which was subsequently turned upside-down resulting in hanging droplets.

Co-culture spheroids were prepared by mixing THP-1 and U251 cell suspension (1:1, v/v) prior to droplets formations. After 16 h,

spheroids were harvested and embedded in a 8-well chamber slide with extracellular matrix containing 6 mg/mL matrigel (Cultrex
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RGF BME, 3433-005-001, Bio-Techne, Minneapolis, USA) and 1.4 mg/mL collagen (Gibco Collagen I, A10483-01, Massachusetts,

USA). Medium with 200 ng/mL of amphiregulin (AREG, HY-P7002, MedChemExpress, China) and 200 ng/mL epiregulin (EREG, HY-

P7011, MedChemExpress, China) were added on top of the solidified matrix, and spheroid cultures weremaintained at 37�C and 5%

CO2 to enable spheroid growth and invasion into the 3D matrix. Blank medium was added to the control group. Images of 3D spher-

oids were captured by a Zeiss LSM 900 confocal microscope with 15 mm thick z-stacks. 2D images were then generated using

maximum projection in Zeiss Zen Blue software for analysis. Quantifications of cell invasion were determined by the ratio of the pro-

trusion area over the core area of each spheroid.

Immunofluorescence staining
GB specimens were fixed in 4% PFA/PBS overnight at 4�C, dehydrated in 100% ethanol, and embedded in paraffin. Tissue sections

with thickness of 3 mmunderwent dewaxing and rehydration through xylene and ethanol treatment were subsequently used for stain-

ing. Then, the Opal Multiplex IHC Assay Kit (PerkinElmer, USA) was used for the paraffin-embedded tissue sections according to the

manufacturer’s instructions. Images were acquired on LSM 710 (Zeiss, Germany). Primary antibodies were: anti-CD14 (1:100,

ab183322, abcam), anti-CD45 (1:200, ab10558, abcam), anti-EREG (1:200, orb378205, biorbyt), anti-AREG (1:200, 66433-1,

proteintech).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size. For cell-based culture experiments, biological triplicates were per-

formed in each single experiment in general, unless otherwise states. Statistical analysis were performed using R 4.2.0 and Python

3.6 software. Two-tailed paired t-test and Wilcox’s rank-sum test were used and stated in the figures and legends. Details of CyTOF

and scRNA-seq data analysis are stated in the method details.
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