Accelerating Probabilistic Tensor Canonical Polyadic
Decomposition With Nonnegative Factors: An Inexact

BCD Approach

Zhongtao Chen, Lei Cheng, and Yik-Chung Wu

Zhongtao Chen and Yik-Chung Wu are with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong (e-mail:ztchen@eee.hku.hk;
ycwu@eee. hku.hk).

Lei Cheng is with the ISEE College, Zhejiang University, Hangzhou, China (email:
lei_cheng@zju.edu.cn).

Abstract

Recently, Bayesian modeling and variational inference (VI) were leveraged to
enable the nonnegative factor matrix learning with automatic rank determi-
nation in tensor canonical polyadic decomposition (CPD), which has found
various applications in big data analytics. However, since VI inherently per-
forms block coordinate descent (BCD) steps over the functional space, it
generally does not allow integration with modern large-scale optimization
methods, making the scalability a critical issue. In this paper, it is revealed
that the expectations of the variables updated by the VI algorithm is equiva-
lent to the block minimization steps of a deterministic optimization problem.
This equivalence further enables the adoption of inexact BCD method for
devising a fast nonnegative factor matrix learning algorithm with automatic
tensor rank determination. Numerical results using synthetic data and real-
world applications show that the performance of the proposed algorithm is
comparable with that of the VI-based algorithm, but with computation times
reduced significantly.
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1. Introduction

The surging interest in tensor decompositions has been recently prompted
by a proliferation of data-intensive applications [1, 2], which are awash in a
sea of high-dimensional and multi-indexed datasets. In order to reveal the
underlying informative patterns from these multi-indexed datasets, tensor
decompositions have been proven to be very successful and found applica-
tions in various big data analytic tasks, ranging from biomedical data analysis
3, 4, 5] to data mining [6, 7, 8] and speech signal processing [9, 10, 11]. In
many applications mentioned above, tensor canonical polyadic decomposi-
tion (CPD) with nonnegative factors [9] has played an important role, since
its model parameters are with clear physical interpretations. In particular,
each column in the decomposed nonnegative factor matrix represents one
underlying latent component (e.g., a chemical species in biomedical samples
[5] or a social group in social networks [6]); and the number of columns in
each factor matrix (also known as tensor rank) specifies the number of hidden
components.

Mathematically, in CPD with nonnegative factors, a set of nonnegative
factor matrices {E(™ € R7*%#} is sought from a N dimensional tensor ) €
R71XIN via solving the following problem [9]:

R
. =(1 =(2 = (N 2
min V- BV eE e o2 |}
{=‘ }nzl r=1
é[[s(l),s(‘;), 2]
st. 2™ >0, 5 n=12..N, (1)

where symbol o denotes vector outer product, shorthand notation [---] is
termed as the Kruskal operator, and || - || represents the Frobenius norm
of the argument. In problem (1), it can be seen that the tensor data ) is

decomposed into a summation of R rank-1 components {E(%) o=2®o..

2NV each determined by the ™ columns of all the factor matrices,

ie., {E™IN . Therefore, the set {Z/}V_| can be treated as the building
block of the tensor CPD model, and the tensor rank R controls the model
complexity (i.e., the number of building blocks) [12].

To solve problem (1), from the perspective of non-convex optimization,
block coordinate descent (BCD) [13, 26, 27, 28] is the prevalent framework.
In particular, problem (1) was found to be block multi-convex [13], in the
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sense that the problem is convex with respect to each factor matrix after
fixing other factor matrices. With each subproblem being solved with respect
to a factor matrix, the utilization of block minimization gives the widely-
used nonnegative alternating least-squares (NALS) method [9]. By exploring
the block proximal update with Nesterov-based acceleration [14] or block
prox-linear update with extrapolation [13], fast algorithms were developed.
Furthermore, a hybrid scheme [15] combining alternating direction method
of multipliers (ADMM) and alternating optimization (AO), and a framework
[16] integrating randomized BCD and stochastic proximal gradient (SPG),
were proposed to enable the nonnegative factor matrix learning with high
computational speed and low memory requirement.

However, the above optimization algorithms require the knowledge of the
tensor rank, which however is typically unknown in practice. For example,
recent work [39] utilized the proximal update to tackle the newly introduced
non-negative penalties and discussed the robustness against the inaccurate
estimation of tensor ranks, yet did not estimate tensor rank explicitly. Al-
though it is only a single number, its discrete nature makes its optimal de-
termination a generally non-deterministic polynomial-time hard (NP-hard)
problem [12].

To tackle this challenge, instead of acquiring the tensor rank estimate via
trial-and-error, in which the algorithms under different tensor rank assump-
tions are run until the best data interpretation is achieved, a recent approach
[17] recasts the tensor rank learning as a hyper-parameter inference step in
the framework of Bayesian modeling and inference [18, 19, 31, 32]. More
specifically, it adopts the sparsity-promoting nonnegative Gaussian-gamma
prior distribution to encourage the sparseness for the columns of the non-
negative factors. With variational inference (VI) algorithm [30], most of the
columns of the nonnegative factor matrices will be driven to zero. Therefore,
at convergence, the remaining number of non-zero columns in each factor
matrix gives the estimate of tensor rank.

While the VI algorithm in [17] follows the same framework as that in other
Bayesian CPD [20, 21, 22, 23, 24], due to the unique non-negative constraint
on the factor matrices, there is an update step in the VI algorithm of [17]
that does not admit closed-form expression, thus introducing a computational
bottleneck to the algorithm. To speed up the VI-based algorithm in [17], it
is natural to consider the advances from optimization community. However,
VI inherently operates in functional space of probability distributions, rather
than Euclidian space, in which most optimization theories and techniques are



developed [26, 27, 28]. Even though VI update steps could be interpreted
as the natural gradient descent steps in the Riemannian space under certain
conditions [33], it is still far from most large-scale optimization studies.

Fortunately, in probabilistic tensor CPD with nonnegative factors, this
link indeed exists. More specifically, in this paper, it is shown that an equiv-
alent optimization in the Euclidian space can be established that accurately
mimics the expectation updates of the VI algorithm. Based on this newly
found equivalence, a fast algorithm for the probabilistic tensor CPD with non-
negative factors is further developed under the framework of inexact BCD
[13, 26, 27]. Different from existing optimization methods [13, 26, 27, 39],
the proposed method is deduced from the analysis of the VI-based algorithm,
and thus includes automatic tensor rank learning as an integrated feature.
Numerical results on synthetic data and real-world datasets demonstrate the
excellent performance of the proposed algorithm in terms of tensor rank
learning, tensor recovery and computational time.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the probabilistic CPD model with nonnegative factors and the cor-
responding VI-based algorithm. In Section 3, an equivalent optimization
problem in the Euclidian space is constructed, based on which a fast algo-
rithm is derived in section 4. Numerical results with synthetic data and
real-world datasets are reported in Section 5 and 6. Finally, conclusions are
drawn in Section 7.

Notation: Boldface lowercase and uppercase letters will be used for vec-
tors and matrices, respectively. Tensors are written as calligraphic letters.
E[ - | denotes the expectation of its argument. Superscript 7' denotes trans-
pose, and the operator Tr (A) denotes the trace of a matrix A. N (x|u, R)
stands for the probability density function of a Gaussian vector & with mean
u and covariance matrix R. The N x N diagonal matrix with diagonal
elements a; through ay is represented as diag{a, as, ...,an}, while I, rep-
resents the M x M identity matrix. The (i, j)'* element, the i"* row, and the
7' column of a matrix A are represented by A, ;, A;. and A. ;, respectively.

2. Brief Review of Probabilistic Tensor CPD With Nonnegative
Factors [17]

In recent work [17], automatic tensor rank learning is achieved for tensor
CPD with nonnegative factors. Its key idea is the adoption of the nonnegative
Gaussian-gamma prior model for the probabilistic modeling of {E(Tﬁ) N and
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the utilization of VI to enable tractable algorithm derivation. In the section,
we briefly review the key results of [17].

2.1. Probabilistic Modeling And Analysis

The probabilistic model proposed in [17] is specified at the top of the
next page (labeled as Probabilistic NCPD Model). In its prior distribu-

tions, parameter v; denotes the precision (i.e., the inverse of the variance)

n)\N

1, and L is a pre-selected upper bound for

of the I* columns of {E i

the tensor rank. Function U (E(? >0 Jnx]_> is the unit-step function with

value one when E(?) > 0,1 and with value zero otherwise, which en-

forces the non-negativeness of the factor matrices. In [17], it was shown
that the employed nonnegative Gaussian-gamma prior distribution not only
satisfies conjugacy property! in exponential distribution family, but also is
sparsity-promoting. Moreover, ¢ and d were suggested to take very small
values (e.g., 107%) to approach a non-informative prior for the precision pa-
rameter ;. In its likelihood model, parameter 5 represents the inverse of
noise power, and was modeled to obey a non-informative gamma distribu-
tion p(B|e’, f0) = gamma(3]e?, f°) with {e°, f°} being a very small number
(e.g., 1079) [17]. The use of non-informative prior is common in Bayesian
model and these parameters are not tuned to influence the performance [40].
To make the problem well-conditioned, and match the prior assumption of
the probabilistic model in [17], we assume the factor matrices {Z™}N_ are
of full column rank.

2.2. Inference Algorithm Using VI

In Bayesian inference, the posterior distribution of each unknown param-
eter O, in the set @ = {{EM}N_ B, {v}E,} is aimed to be computed Fol-
lowing the Bayes’ rule, it can be derived by p(©,|Y) = [ +=& Tp(0)d6 @ y d@ dO iy,
where ©y;) denotes all the elements in the set @ except @k However,
the multiple integrations involved do not allow an analytically tractable so-
lution, due to the intricacy of the probabilistic model. Instead, in [17], VI
were leveraged to derive a tractable algorithm. The key idea is to approx-
imate the true posterior distribution by the variational probability density

! In Bayesian theory, a probability density function (pdf) p(x) is said to be conjugate
to a conditional pdf p(y|x) if the resulting posterior p(z|y) is in the same distribution
family as p(z).



Probabilistic NCPD Model: Probabilistic model for tensor CPD
with nonnegative factors [17]
Likelihood function:

r— r— — 5 p— l— l—l
p (1202, 2Y,6) cexp (-5 1Y - [0, 22,... 2] I}

Prior distributions:

function (pdf) Q(®) that minimizes the Kullback-Leibler (KL) divergence

KL(Q®) || p(©]Y)) & —Ege {ln pég?(g;)}, thus recasting the proba-

bilistic inference problem into a functional optimization problem [30]. To
achieve tractability, the variational pdf Q(®) is usually restricted to lie in
the mean-field family Q(©) = [[r_, Q(©4), under which the recasted func-

tional optimization problem can be generally stated as follows:

g%i@n) —Eqe) [Inp(0,Y)] +Eqe) [Q (©)] st. Q(O H QOr), (2)

where p (©,)) is the joint pdf for Probabilistic NCPD Model. It has been
shown in [30] that problem (2) enjoys the block multi-convex property in
the functional space, in the sense that after fixing other variational pdfs
{Q(©;)} 4k, the optimization problem for Q(®jy) is convex and thus can be
solved efficiently [30].

In [17], it was shown that Q(3) and Q(v;) are gamma distributions. That
is, in the iteration ¢ + 1, Q™ (B) = gamma(S|e!™!, fi71) and Q' () =
gamma(fyﬂc“rl dit1), where e!*t1 fi+1 ot and d/t! are shown in Algorithm

1 (at the top of the next page). However, when deriving Q**!(2™), a multi-
variate truncated Gaussian distribution would be obtained, of which the mo-
ments are very difficult to acquire [34]. Instead, [17] suggests further adopting
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a Dirac delta functional simplification Q'+ ( ) = §(2 —EMH1) where

B4+ g the point estimate of the parameter 2. With this simplification,
the optimal point estimate é(”)’t“, which is also the expectation of the vari-
ational pdf Q"' (E™), can be obtained via solving the following quadratic
programming (QP) problem:

min &H(EM) st 2™ >0, 4, (3)

where

¢ EM) = Hy [EOH L mm L g2

2ft

1 c
+ Tr( ”)dlag{ 2 E(”)T>. (4)
2 &AL

Consequently, by iteratively updating variational pdfs {Q(8),{Q ()}~ }
and solving (3), the probabilistic tensor CPD algorithm was obtained and is
summarized in Algorithm 1.

Notice that although the original unknown variables are @ = {{EM™N_ 5 {v ¥},
Algorithm 1 updates the hyper-parameters {e, f} of 5 and hyper-parameters
{c1,d;} of v, rather than § and ~; directly. This is because Bayesian algo-
rithms estimate the distributions of the parameters, rather than the point
estimates. After we obtain the distribution estimate, we can summarize the
distribution using any statistical measure, such as mean or mode. For Algo-
rithm 1, if the mean of the varational distribution is taken, the estimates of
v and 8 are E[y] = ¢} /d} and E[S] = €'/ f*, respectively.

Since 7, represents the precision of the [-th rank-1 component, the rank
learning is achieved by pruning out components with ¢;/d; larger than a
pre-defined threshold [17]. This is in fact equivalent to pruning the rank-1
components with small norms 30 5[:(7)]T”.n) but with a different thresh-
old. More specifically, according to the update of d; in Algorithm 1, with
the choice of small ¢ and d?, e.g., 107%, components with small norms will
lead to small d;. Further with the fact that ¢; is only updated once in the
first iteration and will stay as constant, a small d; would lead to a large ¢;/d;.
Therefore, it is reasonable to prune out components with ¢;/d; larger than a
certain threshold.



Algorithm 1: VI Based Probabilistic Tensor CPD with Nonnega-
tive Factors [17]

Initializations: Choose L > R and initial values {=
el '}y, e, £}

Iterations: For the iteration ¢t +1 (¢t > 0),

For n=1to N

Update the parameter of Q! (E™)

(n),01N
n=1»

E(n),t-l—l = arg minE(")ZOJnXLgH—I(E(n))a

where ¢F1(EM) is given in (4).

Here E(M™+1 can be obtained by any off-the-shelf QP algorithm. The
Nestorov-based acceleration (Algorithm 3 in Appendix B) is one particular
choice.

End

Update the parameter of Q'™ (v;)

N
it = Z 7" + ¢}
n=1
N
112 T .
J = i |:E.(n),t+1i| E'(n),t+1 o
1 nz:; 2 5l ) l

Update the parameter of Q**'(5)

N
In
et+1 — Hn:21 4+ 60

ft+1 _ 1 || y . [[é(l),t—&-l E(Q),t—&-l L E(N),t—f—l]] ||% +]cO
2 b b M)

Until Convergence

3. Equivalent Optimization Problem

From the review of the algorithm above, it can be seen that the compu-
tational bottleneck is due to solving problem (3), while the updates of other
variational pdfs take closed-forms, and thus are obtained with inexpensive



computations. To alleviate the computational burden, first-order method
with Nesterov-based acceleration was implemented in [17] and summarized
in Algorithm 3 in Appendix B, by which saving of running time was observed
compared to the projected gradient descent method. However, even with ad-
vanced acceleration scheme, the QP problem (3) still needs many iterations
to compute a solution, thus is time-consuming.

Since Algorithm 1 resembles an algorithm from conventional optimiza-
tion, one might contemplate borrowing the idea from inexact BCD meth-
ods [13, 26, 27]. That is, in each VI iteration, the QP problem (3) is not
completely solved, but only a better solution is provided, thus avoiding trou-
blesome inner-loop computations. However, inexact BCD was developed for
deterministic optimization, and it is not known if the solution obtained from
such modification would be meaningful from VI perspective. In particular,
the convergence of mean-field VI, under which Algorithm 1 is developed, is
established by assuming each subproblem is optimally solved [37]. To the
best knowledge of authors, there is still no rigorous convergence analysis for
the VI algorithm with inexact update steps.

However, a closer inspection on the update equations in Algorithm 1
reveals that although the variational pdfs for {Q(3),{Q ()}, } were opti-
mized via updating their parameters {e, f, {c;, d;}1—,}, only the expectations
of B and v, i.e., {e/f,{c/di}t_,} were passed to the factor matrix update in
(3). Therefore, if {e, f,{c;, di}t_,} could be acquired from certain optimiza-
tion subproblems, Algorithm 1 could be interpreted as the updating steps of
a BCD algorithm solving a deterministic optimization problem.

Although challenging as it may seem, it turns out that Algorithm 1 is
related to solving the following deterministic optimization problem:

min 0), 5)
{’—(n)>0}n 17{'”}1[1:17/3.9( ) ( )
where
9(0)
HN I —( =
= L=y, 5+—\|y—[[_ E® . B3 - Z Zlnw
n=1
N L
+ 3 ST (EWrET) = 3 [y —diy] — g+ 28, (6)

n=1 =1



with T' = diag{~1,...,7.}. To see the connections between solving (5) and
Algorithm 1, BCD method could be employed. That is, in each iteration,
after fixing other unknown parameters {©;},.; at their last updated values,
©,. is updated as follows:

@fjl = arg Ir@l)i:l g(@)ﬁ“, - G)’;j_ll, O, @ZH, e @’}() (7)

Next, we present the key proposition of this paper, which links the problem
(5) to Algorithm 1.

Proposition 1. Assume each initial value of the unknown parameter © in
(7) equal to the expectation of Oy with respect to the initial variational pdf
Q°(®y) in Algorithm 1. With the same update schedule for various parameter
blocks, in each iteration, the result of the block minimization update (7) for
parameter Oy equals to the expectation of O with respect to the variational
pdf Q(©y) from Algorithm 1, i.e., ®f = Egre,)[@k].

Proof: See Appendix A.

As pointed out in Proposition 1, Algorithm 1 is indeed related to parameter
block minimization of the optimization problem (5), and is further illustrated
in Figure 1. This new interpretation of Algorithm 1 opens up the possibility
of using inexact BCD to accelerate Algorithm 1.

Notice that the problem formulation (5) is established with reference to
the analysis of the Bayesian approach [17], and thus solving (5) yields esti-
mates of both tensor rank and noise power. This is in contrast to conventional
optimization formulations [13] which requires tensor rank or regularization
parameter tuning.

4. Acceleration via Inexact BCD Approach

Inexact BCD refers to a class of methods that do not seek the optimal
solution in each BCD block minimization (7) while still guarantee the conver-
gence to a stationary point. Among all the recent advances of inexact BCD
[13, 26, 27], we demonstrate in this paper the framework from [13] while
other frameworks are also applicable. In particular, in [13], the convergence
of inexact BCD is established if each of the update step is either a block min-
imization with strongly convex objective function, a proximal update with
regularization parameter being positive and upper bounded, or a prox-linear
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Figure 1: Illustration of equivalent optimization.

update with extrapolation and monotonicity check. Although [13] uses the
CPD problem (1) to exemplify its framework, tensor rank determination and
noise power learning cannot be easily incorporated. In the following, by
using the equivalent optimization problem (5), we demonstrate how the up-
date steps for parameters {{v;}/,, 3} could be seamlessly integrated with
the nonnegative factor learning in the inexact BCD framework.

More specifically, for updating noise precision parameter 3 in the iteration
t+ 1(t > 0), after fixing other parameters in problem (5), the subproblem is
expressed as:

min b (5), (8)

where

N
hH(B) = — <—H”:21 oy eo> In 3

1 = = =
+6(51-[EOHEOH L SO ). ()

11

Optimal solution



However, the objective function h'™'(j3) is not strongly convex since the

second-order derivative VZh'*1(3) = <@ —|-€0> % can be arbitrarily
close to zero as f — oco. Consequently, the block minimization scheme can-
not be used. To guarantee convergence, as suggested in [13, 25, 26, 27, 28],
a proximal term % (3 — 8")? is added to the objective function in (8), giving

the following optimization problem:
min ' (8) + (5~ 017 (10)

with parameter 0 < pug < oo. After setting the derivative of the objective
function of (10) to zero, it can be shown that the optimal solution takes a
closed-form:

= (1= 1)+ /(= 1B + dpger

t+1
= 11
g 0 SN
in which
N
In
1
ft+1 — 5 H Yy — [[E(l),t+1’E(2),t+1’ . 7E(N),tJrl]] H% ‘|‘f0- (13>
Similarly, for updating parameter ~;, the subproblem is
min A" (), (14)
"
where
iy iy T
n —(n),t+1 —(n),t+1
R ) = =3 T+ )y u(d + 5 [BP] =R s)
n=1 n=1

is not strongly convex. Therefore, a proximal term %(7;—7})2 with 0 < p,, <

oo is added to the objective function in (14) as follows [13, 25, 26, 27, 28]:

min A () + B (= A1), (16)
l

of which the optimal solution can be shown to be

2
—W“—wﬂ+¢@“—wﬂ-%wfl
2ty

t+1 _

'71 ) (17>
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where parameters cf“ and df“ are

In
= 5 +d. (18)
n=1
N T
—(n),t+1 —(n),t+1
dt =305 [ER] 'R . (19)
n=1

For updating each nonnegative factor in the iteration t + 1(¢ > 0), after
fixing other parameters, the subproblem can be formulated as:

min AHHEM), (20)

2™ >0

where

t 1
ht+1 (E(n)) _ E || y . HE(I)’t—H, . 7E(n)7 . 7E(N),t]]||% +§TI' (E(n)l—\tE(n)T) )
(21)

In (21), T = diag{~}, ...,7% }. After expanding the Frobenius norm and some
algebraic operations, problem (20) can be equivalently formulated as:

min ¢FH(EM), (22)
=2m>0

where

Ct+1 (E(n)> — lTr (E(n) |:ﬁt (B(n)’t)T B(n),t + I\ti| E(n)T—QﬁtE(n) (B(n),t)T y(n)> ]
2

(23)

In (23), matrix BW? = Bt 6. ..o Bt o @D+l o o B+ where
o denotes the Khatri-Rao product. Y® is a matrix obtained by unfolding
the tensor Y along its k' dimension.

The most straightforward method to solve (22) is the projected gradient
method, which needs iterative execution of 2" = [EM — 1, v (EM)]

+
where p; is the step size,

T

veHt(EM) = 50 [ﬁt (BMH)T B 4 thi| _ptymTBmE (04

13



and []; denotes projecting each element of the argument to [0,00] (i.e.,
[z]; =z if £ > 0 and [z]; = 0 otherwise). However, the projected gradient
method requires multiple iterations to converge and thus is computationally
demanding.

Fortunately, it is not necessary to obtain the optimal solution of (22) in
the inexact BCD framework. Instead, we can construct a prox-linear update
step with careful extrapolations and monotonicity-guaranteed modifications.
In particular, in the iteration ¢ + 1, the extrapolation parameter w!, is com-
puted by [13, 26, 27, 29]:

n

Lt—l
wh, = min (0}, puy [ 7 ) (25)

: -~ St—l : _ S 1
where p,, < 1 is preselected, !, = S with s =1, sp1 = 51+ /14 4s7),
and L} is assigned to be the spectral norm of the Hessian matrix of ¢/ (E™),
ie.,

L, = |8 (B™*) B 4 ] (26)
Using (25), the extrapolated factor matrix M is with the expression:
M(n),t _ E(n),t + wfl(E(n),t . E(n),t—l)‘ (27)

Based on (27), the prox-linear update can be expressed as [13]:

t

= (n)t+1 _ arg min <th+1(M(n),t)’ =) _ M(n),t> + ﬁua(n) — M(n%tH%’
=) >0 2

(28)

where (-, -) denotes the inner product of the arguments. It can be shown that
the solution of (28) takes the following closed-form:

=)+l _ |:M(n),t - ivct+1(M(n),t):| ’ (29)

Lt N
from which it can be seen that the prox-linear update only needs one-step
computation and thus can be run very fast.

Besides the extrapolation, monotonicity-guaranteed modification is needed
to ensure the convergence [13]. More specifically, after updating all the pa-

rameters in ©, whether the objective function of problem (5) is decreased

14



(ie., (@) < ¢(@")) is tested. If not, prox-linear update (29) for each

—

factor matrix Z(™*+1 will be re-executed without the extrapolation, i.e.,

1
E(n),t—i—l — E(n),t . L_tvct-i-l(E(n),t) ) (30)
n +
Using (11), (17), (29), (30), the inexact BCD based algorithm for proba-
bilistic tensor CPD with nonnegative factors is summarized in Algorithm 2.
In the following, discussions on its convergence property, automatic tensor
rank learning, and computational complexity are presented.

4.1. Convergence Property

Algorithm 2 is developed under the inexact BCD framework established
in [13]. Due to the added proximal terms, the subproblems (10) and (16)
are both strongly convex with a positive finite modulus [25, 28]. On the
other hand, when updating factor matrices, the extrapolation scheme and
monotonicity-guaranteed modification follow those suggested in [13]. There-
fore, according to Theorem 2.8 of [13], assume that the step size L is pos-
itive and upper bounded (which always holds under finite {;}*, according
to (26)), the limit point generated by the proposed algorithm is guaranteed
to be a stationary point of the objective function (5).

4.2. Automatic Tensor Rank Learning

Although the prox-linear update step in Algorithm 2 resembles that of
[13], these similarities are only on a superficial level, and there is a signif-
icant difference due to the tensor rank learning. More specifically, for the
proposed algorithm, when computing the gradient function (24), there is a
shrinkage term I'* that collects the precision parameters {v/}/,. If one of
the precision parameter 7/ goes to a very large number, e.g., 10°, the up-
date step using the gradient would push the [ column of the factor matrix
to be all zero, thus achieving automatic column pruning (and tensor rank
learning). With the precision parameters {+{}£ | being iteratively updated
together with other parameters in the optimization problem (5), which is
deduced from the analysis of the VI-based algorithm proposed in [17], the
proposed algorithm integrates the merits from [13] and [17] in a non-trivial
way.

To further speed up the computation, pruning can be executed on the
fly, rather than after Algorithm 2 converges. In particular, when executing
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Algorithm 2: Inexact BCD Based Probabilistic Tensor CPD with
Nonnegative Factors

Initializations: Choose L > R,p, < 1, {1, }l~;, ps and initial values

{E(n)ﬂv E(n)7_1}nNzlv {6?7 d?}lela 607 fo-

Iterations: For the iteration ¢t 4+ 1 (¢ > 0),

For n=1to N

Update factor matrix 2
Compute extrapolation parameter w!, using (25).
Compute extrapolated factor matrix:

A1,

MMt — =)t + w;‘/L(E(n),t _ E(n),tfl).
Update factor matrix:

E(n),tJrl — M(n),t _ LitvctJrl(M(n),t)

n -

Y

where Vet (M ™) is computed using (24), and Lf is computed using
(26).

End

Update parameter v,

2
(= )+ = ) A
2ty

t+1
M=

I

where ¢/ and di*!' are computed via (18) and (19), respectively.
Update parameter B+1:

= (1 = )+ (P41 = 15B)? o dpspet

5t+1 —
2pup

)

where e/t and fi! are computed via (12) and (13), respectively.

Monotonicity check:
Let ®t+1 = {{E(n)i—i_l}nNzlv {P)/ltJrl}lL:hﬁtJrl}'
If g(©1) > g(©"):

=)+l _ =(n)t _thJrl(E(n),t)

Until Convergence 16




Algorithm 2 in the iteration t+1(¢ > 0), if parameter 'ylt“ is with a very large
value, e.g., 109, it indicates that the [ building block {E:(;L)’tﬂ} plays no role
in data interpretation, and thus can be safely pruned out. Notice that after
pruning {E:(;)’Hl}, it is equivalent to restart Algorithm 2 for optimization
problem (5) with a reduced model and the current parameter estimate ©'*!
acting as the initializations. Thus, the pruning steps will not affect the
convergence property of the algorithm. This pruning principle was widely

used in sparse Bayesian learning based applications [18, 19, 20, 21, 22, 23, 24].

4.8. Computational Complexity

For each iteration, it is easy to see that the computational complexity is
dominated by computing the gradient function in (24), costing O(T[._, JoL).
Consequently, the proposed algorithm is with the computational complexity
O(q(HfL1 JnL)), where ¢ is the iteration number at convergence. In contrast
to the VI-based algorithm in [17], in which each factor matrix was updated
via multiple iterations to solve the block minimization problem, the com-
putational complexity is O(37_, m, [[_, JoL), where m, is the number of
iterations to solve the block minimization problem. Since the proposed al-
gorithm does not involve any inner iterations, and thus is expected to save
running time significantly, which will be corroborated in the numerical stud-
ies in the next section. Note that the NALS algorithm, whose computational
complexity is O(q(I[._, JoL)), has a complexity of the same order of the
proposed algorithm.

5. Numerical Results on Synthetic Data

In this section, numerical results are presented to assess the performance
of the proposed algorithm using synthetic data. For all algorithms, the pre-
selected rank upper bound L = min{Ji, Js, ..., Jx } is set to be the minimum

dimension, unless otherwise stated. The initial factor matrix =0 is set

as the singular value decomposition (SVD) approximation U. .1, (S1. 1. L)%,
where [U, S, V] = SVD[Y™]. Parameters {{c),d)}- ,, €°, f°} are all set to
be 107 to indicate the non-informativeness of the prior distributions [17].
The algorithms are deemed to be converged when the change of residual is be-
low a threshold, i.e., - | [EOHL o mWH]  [EW L BN | <
e. For the proposed algorithm, parameter p,, is set to be 0.99, and {{u., }H-,, s}
are set to be 1073, All experiments were conducted in Matlab R2021a with
an Intel Core i5 CPU at 2.5 GHz.
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5.1. Simulation Setup

The noise-free data tensor X = [AM, A?) AB] ¢ R20x50x10 with
rank R = 10 is considered in this subsection. Each element in the fac-
tor matrices {A™}3_, is independently drawn from a uniform distribution
[0,1] and thus is nonnegative. The observation data model Y = X + W,
where each element of the noise tensor W is independently drawn from a
zero-mean Gaussian distribution with variance o2. The SNR is defined as
101030 (| X 12 /Eyom [| W [[2]) = 101ogyo (I| & 3 /(10%62). All sinula-
tion results in this subsection are obtained by averaging 100 Monte-Carlo
runs.

5.2. Comparisons with PNCPD and PNCPD-A

Firstly, the tensor rank learning capability of the VI-based algorithm (la-
beled as PNCPD), its accelerated version using Nesterov scheme (labeled as
PNCPD-A), and the proposed algorithm (labeled as PNCPD-I) under differ-
ent SNRs is evaluated in Figure 2, in which the vertical bars show the mean
and the error bars indicating the standard deviation of tensor rank estimates.
The black horizontal dashed line shows the true tensor rank. From Figure 2,
it can be seen that the three algorithms have similar rank estimation abilities.
In particular, they can learn the true tensor rank with 100% accuracy when
SNR is larger than or equal to 10 dB. However, when SNR is smaller than
or equal to 5 dB, it can be observed that the three algorithms fail to recover
the true tensor rank, since the noise with large power masks the low-rank
structure of the data. Furthermore, an interesting observation is that when
SNR is small, the proposed algorithm shows different rank learning behavior
from those of the benchmarking algorithms. It suggests that in the region
of low SNR (or equivalently the model fitting error is large), the proposed
algorithm would converge to different stationary points from those of the
benchmarking algorithms.

In addition to the tensor rank learning performance, the tensor recovery
performance of the proposed algorithm is illustrated in Figure 3, where the

root mean-square-error (RMSE) (ﬁ“ [EW, 2@ 26)] - X||2F> * is adopted
as the assessment measure. In Fig&re 3, the NALS method with the exact
tensor rank R = 10 is employed as the benchmarking algorithm. From Figure
3, it can be seen that PNCPD-I, PNCPD, and PNCPD-A yield nearly the

same RMSE. This result aligns with the observation from Figure 2, where
all three algorithms have similar rank estimation ability over SNR = 0 dB
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Figure 2: Tensor rank learning performance under different SNRs.
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Figure 3: Tensor recovery performance under different SNRs.
to 20 dB. They perform slightly better than NALS with correct rank since
PNCPD, PNCPD-A and PNCPD-I are Bayesian algorithms with noise com-

ponent explicitly modeled. However, when SNR is smaller than or equal to
5 dB, the RMSEs of the three algorithms perform slightly worse than the
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Table I: Average running time (in seconds) of the algorithms.

SNR (dB) 0 5 10 15 20
PNCPD 96.0882 80.9924 39.8030 42.1420 22.5843
PNCPD-A 89.0141 61.2056 30.6726 23.6034 12.6460
PNCPD-I 3.0514 7.6629 5.7024 4.9418 4.0871
NALS (trail-and-error, 8.5160 10.0740 12.9480 17.5740 22.1660
rank 1-20)
NALS (with correct rank 10) 0.1023  0.1531  0.1860  0.1873  0.2216

benchmarking NALS algorithm, due to the inaccurate tensor rank learning.
The degradations from NALS are small since PNCPD, PNCPD-A, PNCPD-I
overestimate the tensor rank and the extra components recovered by them
are with small norms. The RMSEs of the PNCPD-I are also different from
PNCPD and PNCPD-A, since they converge to different stationary points.
Aside from the tensor recovery performance evaluations, we further report
the RMSEs of factors to evaluate the tensor factor recovery performance. Due
to the permutation and scaling ambiguity, the RMSE on the factors is found
by solving the following optimization problem,
)\ 2
) Se

where the permutation matrix P and diagonal scaling matrices {A™}3_,

are found by greedy least-squares column matching algorithm [35]. To cope
with the situation where the estimated rank R does not equal to the true
rank R, we construct A™ and E to ensure compatible matrix calculations.
In particular, if R < R, we construct i) by adding zero columns in the

1
A |y —
P{aAM}Y_, J, max(R, R)

n=1

‘ A _ B0 pA®

estimated factor matrix 2, i.e., = = [é(”), OJnX(R_R)}, while the true

factor matrix remains the same, ie., A™ = AM™_ On the other hand, if

A

R > R, weset A" = [A",0, ; p] 8" = 8. From Figure 4,
PNCPD-I, PNCPD, and PNCPD-A gives similar RMSEs of factors and the
RMSEs are near to that of the benchmarking NALS algorithm. However,
since they give inaccurate tensor rank estimates when SNR is smaller than or

equal to 5 dB, the RMSEs of factors are slightly worse than the benchmarking
NALS algorithm when SNR is low.
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Figure 4: Factor recovery performance under different SNRs.

Although the proposed algorithm and the benchmarking algorithms are
with similar performance in tensor recovery and nonnegative factor learning,
the running time of these algorithms are largely different, as reported in Table
I. From Table I, it is clear that the proposed algorithm has a speed-up ranging
from 3x to more than 25x compared to the other two algorithms, because
it does not need to solve the optimal factor matrix exactly in each iteration
(in contrast to the PNCPD and the PNCPD-A methods). Furthermore,
we report the sum of times running NALS with different ranks (1 to 20 in
this example), since NALS needs the true tensor rank, which can only be
found using trial-and-error. From Table I, it can be seen that the proposed
algorithm is advantageous in running time compared with NALS algorithm
using trail-and-error. By further comparing the running time of NALS using
trial-and error and that of NALS with the correct rank, it can be seen that
the increase of running time without rank specification is significant.
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Figure 5: Estimation accuracy performance of PNCPD-I and BC-VMFB under
different SNRs.

5.3. Comparisons with BC-VMFB [39]

Further comparisons are conducted with block coordinate variable met-
ric forward-backward algorithm? [39] (labeled as BC-VMFB). BC-VMFB is a
deterministic algorithm that promotes sparsity in factor matrices and circum-
vents hyper-parameter cross-validation by utilizing the discrepancy criterion.

We firstly present the estimation accuracy results in Figure 5, where L
denotes the pre-selected rank upper bound. BC-VMFB achieves nearly the
same estimation accuracy as PNCPD-I when L is 10 or 11, which is exactly
the true tensor rank or near the true tensor rank. However, BC-VMFB does
not yield comparable estimation accuracy when L is large (L = 15 or 20 in
this case). On the other hand, PNCPD-I yields excellent estimation accuracy
performance even when L is large (L = 20).

The inaccurate estimation of BC-VMFB in large L cases is due to its
incapability to estimate the true tensor rank. To see this, we report in Fig-

2We greatly appreciate Prof. Caroline Chaux and Prof. Xuan Vu for sharing the code
with us. The parameter settings in all experiments are the same as that of the provided
code.
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Table II: Average running time (in seconds) of PNCPD-I and BC-VMFB.

SNR (dB) 0 5 10 15 20
PNCPD-I (L —20) 3.0514 7.6629 5.7024 4.9418 4.0871

BC-VMFB (L =20) 89795 9.0328 9.0871 9.0651 7.8191
BC-VMFB (L =10) 6.1816 6.2197 6.2308 6.3023 6.3844
BC-VMFB (L =11) 5.8309 6.0292 6.4036 6.5674 6.4362
BC-VMFB (L =15) 7.7495 7.8174 7.8259 7.7745 7.7719

ure 6 the sorted length scales of rank-1 components in one Monte Carlo trial
under SNR is 20 dB, where the length scale of the I-th component is calcu-

lated as a; = 32°_,

pattern when L = 11, but fails to uncover the pattern when L is 15 or 20.
On the other hand, we present the learnt length scales of PNCPD-I for com-
parison. It can be seen that PNCPD-I successfully learns the tensor rank in
all cases given different L. Therefore, the sparsity in BC-VMFB [39] is not
strong enough to reveal the true tensor rank when the rank upper bound is
too large, while PNCPD-I still yields excellent tensor rank estimation per-
formance.

Finally, we present the running time results in Table II. It is seen that
PNCPD-I achieves the best running time given L = 20.

=1

‘ . BC-VMFB can identify the columns sparsity
2

6. Real-world Dataset Experiments

In this section, numerical results using two real-world datasets are pre-
sented: 1) the amino acids fluorescence excitation-emission measured (EEM)
dataset?® [36]; and 2) the ENRON Email corpus dataset? [7].

The first dataset Y is with size 5x 201 x 61, and consists of five laboratory-
made samples. Each sample contains different amounts of three types of
amino acids (tyrosine, tryptophan and phenylalanine) dissolved in phosphate
buffered water. The samples were measured by fluorescence and were cor-
rupted by Gaussian noise with power 0.01, resulting in SNR = 10.1 dB. The
goal of EEM data analytic is to mitigate the noise corruption and recover

3http://www.models.life.ku.dk
4The original source of the data is from [7], and we greatly appreciate Prof. Vagelis
Papalexakis for sharing the data with us.
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Figure 6: Tensor rank learning performance of PNCPD-I and BC-VMFB under
SNR = 20 dB in one Monte Carlo trial.

the spectrum of each latent component, which has been shown to suit the
model of tensor CPD with nonnegative factors. Since there are three types
of amino acids (i.e., latent components), the true tensor rank is 3, which is

however unknown in practice.
Assuming no knowledge of tensor rank, the proposed algorithm, the
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Table II: Average running time (in seconds) of the algorithms with automatic rank
determination (real-world datasets)

Dataset EEM Dataset ENRON Email Dataset

PNCPD 4.79 224.87
PNCPD-A 2.89 87.81
PNCPD-I 0.70 11.65

PNCPD method and the PNCPD-A method were run to decompose the
EEM tensor data with initial rank L = 5. To assess the performance of noise

mitigation, the fit value [9], which is defined as (1 — %) x 100%, is

adopted, where X represents the reconstructed EEM tensor data from the
algorithm and X denotes the clean data [36]. It is found that the three al-
gorithms all correctly estimate the true tensor rank R = 3 and achieve the
same fit value 95.73%, while the proposed algorithm is the fastest among
the three algorithms (as shown in Table II). In Figure 7, for the first slice of
the tensor data (i.e., X(1,:,:) € R¥**%1) the clean data, the noise-corrupted
data and the reconstructed data from the proposed algorithm are presented,
from which it can be seen that the proposed method mitigates the noise effec-
tively. To see how the proposed algorithm recover the spectrum of the latent
components, in Figure 8, the excitation spectra, which are obtained from
the decomposed nonnegative factor matrices using the three algorithms, are
depicted. It is clear that the proposed algorithm estimates nearly the same
excitation spectra as those from the benchmarking algorithms. This suggests
that in this application with a relatively high SNR, the proposed algorithm
converges to nearly the same stationary points as those of the benchmarking
algorithm.

Then, we analyze the ENRON Email corpus dataset ) € RI84x184xa4
This dataset collects the email communication records between 184 people
within 44 months, in which each entry denotes the number of emails ex-
changed between two particular people within a particular month. By fitting
this dataset into the tensor CPD models with nonnegative factors, the in-
formation of sending roles and receiving roles are encoded in factor matrices
2D and 2@, while 24 captures the temporal interactions between sender
groups and receiver groups [17]. The nonnegative constraint naturally en-
hances the interpretability of these factors. Notice that 2 and 2 cluster
the people into different groups. The number of groups, which is practically
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Figure 7: EEM data reconstruction using the proposed algorithm.

unknown, is specified by the tensor rank, or the number of columns in E"
and E?. With the initial tensor rank L = 44, the proposed algorithm,
the PNCPD algorithm and the PNCPD-A algorithm were run to decompose
the dataset. It has been found that all three algorithms estimate the tensor
rank to be 4, indicating that there are 4 groups of people. This is consistent
with the results from [6, 7], which are obtained via trial-and-error experi-
ments. From Table II, it is clear that the proposed method runs much faster
than the two benchmarking algorithms. Denote the model fitting error as
||V — X|| where X is the reconstructed tensor from the decomposed nonneg-
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Table III: Clustering results from the algorithms.

Algorithm Clustering Groups
Legal; Government Affair Executive;
PNCPD & PNCPD-A Trading/Top Executive; Pipeline
Legal; Government Affair Executive;
Trading/Top Executive; Governing Board

PNCPD-I

ative factors. The proposed algorithm is with model fitting error 345.2, while
the benchmarking algorithms are with model fitting error 345.7, indicating
that they converge to different stationary points. This is also reflected in
the clustering results obtained from the learnt nonnegative factor matrices,
as shown in Table III. More specifically, the proposed algorithm gives very
similar clustering results for the first three clustering groups. But it does
not render the pipeline group, and instead finds another governing board
group (including the president and vice-presidents). This discrepancy sug-
gests another reasonable interpretation for the dataset using unsupervised
learning.

7. Conclusions

In this paper, probabilistic tensor CPD with nonnegative factors was in-
vestigated under the lens of equivalent deterministic optimization. In partic-
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ular, it has been shown that the expectations of the variables updated by the
VI-based algorithm are the same as the block minimization steps of a deter-
ministic optimization problem. Based on this equivalence, a fast algorithm
based on inexact BCD framework was further developed in this paper. Nu-
merical results using synthetic data and real-world datasets were presented
to show that there is no loss in performance of the proposed algorithm in
terms of tensor recovery and tensor rank learning, while the computational
time is significantly reduced.
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Appendix A. Proof of Proposition 1

We prove Proposition 1 by induction on ¢. Assume @) ' = Eg:-1(e,) (O]
holds, that is, 2! = Egi 1 gy [EM] = B4 Wi, 4/ = Egiei o [1] =
A d VL B = Egeeap[8] = €71/ f71. We prove ©f = Egr(e,)[©] in
the following.

We firstly prove 2"t = EQt(E(m)[E(”)] = EM: V¥n, by induction on n.
It can be shown that

t—1
=M = arg min | Y —[EDER L g,
=it>0 2
| 1y =7
+ 5T (8 diag{ri ™ [ED]T ). (A

A~
—

Comparing (A.1) to the expression of 21+ in Algorithm 1, and utilizing
the facts v, ~' = /7' /d}7',Vl and B! = 71/ ft71 it is seen that B =
Egizan[BY]. Now we assume ECD! = Eqign-1y[E"Y] for some n.
Notice that

t—1

|y — [[E(l),t’... B L E(N)J—l]m%

=2t — arg min
=m)t>0 2

1
+ §Tr (E(”)’tdiag{vf_l, Iy [E(”)’t}T ) (A.2)

Y
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By (A.2), Bt = EQt('—(n))[’-‘( ]. Therefore, by induction, £+ = EQt(E(n))[E(")],Vn.
Next, we prove Y = Egt(yy 0] = ¢/d},VI. From (5), the subproblem for
optimizing fyl is

aly | T
. n —(n),t —(
n;}n— (nEZI 5+ c?) Inv +1f (n; 5 [::(J) } :7 't d0> VL (AL3)

Since problem (A.3) is convex, by setting its derivative to zero, the optimal
solution

v = — . (A.4)

As shown previously g2t — 21 it can be concluded that 4! = ¢! /d! with
the expressions of ¢} and d} given in Algorithm 1.
Similarly, the subproblem that optimizes 3! is

. Hsz:1 Jn o t | nt =(2).t =(N)f 12 4 0
n’é}tn_ T+€ lnﬁ +/8 ||y [[‘—' 7‘=' BPIR =" ’tﬂ HF+f )
(A5)

and the optimal

N
IT,.— Jn+e

2||y [[h‘ ’t7E‘ 7t 75 t]]||2+f0

It is easy to see that 5" = €'/ f" = Eqgt(g)[3].

Therefore, it can be concluded that given the same initial value (i.e.,
Egoe,)[©k] = ©}) and the same block update schedule, we have Eqte,) (@] =
©!,Vt, since their update equations are exactly the same. This completes
the proof of Proposition 1.

B = (A.6)

Appendix B. Nestorov-based Acceleration

The Nestorov-based acceleration algorithm for solving (3) is summarized
in Algorithm 3.
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Algorithm 3: Nestorov-based acceleration for solving (3) [17]

At iteration t + 1 in Algorithm 1, for a fixed n, we need to solve B+l —
arg mingm o £ (2), where ft“(u) is given in (4). Set

e N T/, N - c
_ E(kxs) ( E(k)s) ‘L
H = ft<k Lk#n . +d1ag{dt""’dtL}’
t
F = %(k iiki guc),s)y(n)T’
=1,k#n

where s denotes the most recent update index, i.e., s =t + 1 when k£ < n
and s = t otherwise. Then, set L = max(eig(H)), 1 = min(eig(H)), Ay =
B() = é(n),t'

Iterations: For the iteration i + 1 (i > 0),

Ay — [B,- - % (B.H — F)} K
VI-ym

B, =A+
VL + i

(Aitr — Aj).

Until Convergence
Return 2™t = A
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