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Abstract
Accurate traffic density plays a pivotal role in the Intelligent Transportation Systems (ITS). The current practice to obtain
the traffic density is through specialized sensors. However, those sensors are placed in limited locations due to the cost
of installation and maintenance. In most metropolitan areas, traffic surveillance cameras are widespread in road networks,
and they are the potential data sources for estimating traffic density in the whole city. Unfortunately, such an application
is challenging since surveillance cameras are affected by the 4L characteristics: Low frame rate, Low resolution, Lack of
annotated data, andLocated in complex road environments. To the best of our knowledge, there is a lack of holistic frameworks
for estimating traffic density from traffic surveillance camera data with 4L characteristics. Therefore, we propose a framework
for estimating traffic density using uncalibrated traffic surveillance cameras. The proposed framework consists of two major
components: camera calibration and vehicle detection. The camera calibration method estimates the actual length between
pixels in the images and videos, and the vehicle counts are extracted from the deep-learning-based vehicle detection method.
Combining the two components, high-granular traffic density can be estimated. To validate the proposed framework, two
case studies were conducted in Hong Kong and Sacramento. The results show that the Mean Absolute Error (MAE) for the
estimated traffic density is 9.04 veh/km/lane in Hong Kong and 7.03 veh/km/lane in Sacramento. The research outcomes can
provide accurate traffic density without installing additional sensors.
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Introduction

Accurate and real-time traffic density is the essential input
to the Intelligent Transportation Systems (ITS) with vari-
ous traffic operation and management tasks [1, 2]. Many
cities have expended considerable efforts in installing traf-
fic detectors to obtain traffic density and other traffic-related
information in recent years. However many ITS applications
are still data-hungry. Using Hong Kong as an example, the
current detectors (e.g., loop detectors) only cover approxi-
mately 10% of the road segments, which is not sufficient to
support the network-wide traffic modeling and management
framework. How to collect the real-time traffic density in an
accurate, efficient, and cost-effectivemanner presents a long-
standing challenge for not only the research community but
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also the private sector (e.g., Google Maps) and the public
agency (e.g., Transport Department).

Various sensors and devices can be employed to estimate
the traffic density directly or indirectly on urban roads. A
review of existing studies on traffic density estimation is
shown in Table. 1. Point sensors (e.g., inductive-loop detec-
tors, pneumatic tubes, radio-frequency identification (RFID),
etc.) are widely used for traffic density estimation [3], and
they are robust to environment changes (e.g., weather, light)
for stable 24/7 estimation. Some advanced techniques such
as Vehicular Ad hoc Network (VANET) [4] and Unmanned
Aerial Vehicle (UAV) [5], can complement point sensors and
contribute to traffic density estimation. However, the uniform
challenge for these sensing technologies is that they may not
suitable for traffic density estimation in the entire urban net-
work due to the deployment andmaintenance cost of sensors.

Traffic surveillance cameras are an essential part of an
urban traffic surveillance system. Cameras are often used for
visual inspection of traffic conditions and detection of traffic
accidents by traffic engineers sitting in the Traffic Manage-
ment Centers (TMCs). Such cameras are widely distributed
in most metropolises, making it possible for large-scale traf-
fic density estimation.

For example, in California, approximately 1,300 cameras
are set up by Caltrans to monitor the traffic conditions on
highways [6]; in Seoul, the TOPIS1 system functions on
834 surveillance cameras; and in Hong Kong, the Trans-
port Department uses about 900 surveillance cameras in
its eMobility System.2 With various camera-based traf-
fic surveillance systems deployed globally, there is great
potential to extract traffic information from camera images
and videos. Combined with recent advanced technologies,
several attempts have been made to vehicle information
extraction (speed and count) [7, 8], vehicle re-identification
[9, 10] and pedestrian detection [11, 12]. Furthermore, it is
in great need to make use of the massive traffic surveillance
camera data for traffic density estimation.

To look into the density estimation problem, we note that
the traffic density k is computed as the number of vehicles N
per lane divided by the length of a road L [13], as presented
in Eq. (1).

k = N

L
(1)

Note that in several studies [14–18], the road length is
assumed to be fixed and known. Hence estimating the traf-
fic density is equivalent to counting the number of vehicles
on the road. However, such an assumption has been relaxed
in this study, as the road lengths in camera images are also

1 Seoul Transport Operation & Information Service.
2 https://www.hkemobility.gov.hk/en/traffic-information/live/cctv.

unknown to us in different surveillance systems. Therefore,
based on Eq. (1), the traffic density estimation from surveil-
lance cameras can be decomposed into two sub-problems:

• Camera calibration: aims to estimate the road length
L from camera images, in which the core problem is to
measure the distance between the real-world coordinates
corresponding to the image pixels.

• Vehicle detection: focuses on counting the vehicle num-
ber N , and it can be formulated as the object detection
problem.

Both problems are separately discussed in the research field
of Computer Vision (CV) [19, 20]. However, the challenges
of traffic density estimation from surveillance cameras are
unique.

The data collected from traffic surveillance cameras
appeal to the 4L characteristics. Firstly, due to personal pri-
vacy concerns and network bandwidth limits, the camera
images are usually in Low resolution and Low frame rate.
For example, in Hong Kong, the resolution of the monitoring
image is 320× 240 pixels, and all images are updated every
twominutes [15]. Secondly, it is onerous to annotate detailed
information for each camera, and hence most of the col-
lected data are Lacking in annotations. Thirdly, surveillance
cameras distributed across urban areas are often Located in
complex road environments, where the roads are not simply
straight segments (e.g., curved roads, mountain roads and
intersections). Overall, we summarize the challenges of the
traffic density estimation using the surveillance cameras as
4L, which represents:Low resolution,Low frame rate,Lack
of annotated data andLocated in complex road environments.

The 4L characteristics present great challenges to both
camera calibration and vehicle detection problems. There is
a lack of holistic frameworks to comprehensively address the
4L characteristics for traffic density estimation using surveil-
lance cameras. To further highlight the contributions of this
paper, we first review the existing literature on both camera
calibration and vehicle detection.

Literature review on camera calibration. Camera cali-
bration aims to match invariant patterns (i.e., key points)
to acquire a quantitative relationship between the points on
images and in the real world. Under the 4L characteristics,
conventional camera calibration faces multi-fold challenges:
(1) The endogenous camera parameters (e.g., focal length)
can be different for each camera and are generally unknown.
(2) Recognizing the brands and models of vehicles from
low-resolution images is challenging, making it difficult to
correctly match key points based on car model information;
(3) Continuous tracking a single vehicle from low frame
rate images is nearly impossible, which makes some of the
existing algorithms inapplicable. (4) The invariant patterns
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Table 1 A review of emerging sensing technologies for estimating traffic density

Sensors Advantages Disadvantages

Point sensors [3] 1. Steady data sources for 24/7 monitoring 1. Expensive and difficult for
massive installation and
maintenance

VANET [4] 1. No additional hardware required 1. Limited accuracy when the
penetration rate of PVs islow

2. Potential data sources covered a large-scale traffic network 2. Rare pilot studies have been
conducted

UAV [5] 1. High flexibility and instant deployment 1. Challenging to long-time
estimation with large perspective

2. High-fidelity data sources 2. Expensive for massive
deployment

Traffic surveillance cameras 1. Widespread in many cities 1. Low data quality leading to
potentially inaccurate results

This paper 2. Steady data sources for 24/7 monitoring 2. Owing to privacy concerns,
sometimes only images (and not
videos) can be acquired

in images are challenging to locate. This difficulty is caused
by both the locations of the surveillance cameras (usually at
the top of buildings or bridges to afford a wide visual per-
spective for visual monitoring traffic conditions) and the low
image resolution. Even a one-pixel shift of the annotation
errors (errors when annotating the key points) will result in
a deviation of tens of centimeters in the real world, which
fails the camera calibration (Impact of annotation errors on
calibration algorithms can be referred in Appendix. A). (5)
Existing camera calibration algorithms assume straight road
segments, butmany surveillance cameras locate atmore com-
plex road environments (e.g., curved roads, mountain roads,
intersections),making the existing algorithms not applicable.

Existing camera calibrationmethods only solve a subset of
the aforementioned challenges. In the traditional calibration
paradigm, a checkboard with a certain grid length is man-
ually placed under the cameras [19], and key points can be
selected as the intersections of the grid. However, it is time-
and labor-consuming to simultaneously calibrate all cam-
eras in the entire surveillance system. A commonmethod for
traffic camera calibration without the need of special equip-
ment is to estimate the camera parameters using the vanishing
point method, which leverages the perspective effect. The
key points can be selected either as road markings [21] or
common patterns on vehicles on roads [22–24]. These works
assume that both sides of the road are parallel straight lines
or all vehicles drive in the same direction. However, this
assumption is invalid for complex road environments, such as
curved roads and intersections, where vehicles drive in mul-
tiple directions. Hence, it is difficult to generalize the method
to all camera scenarios in different traffic surveillance sys-
tems. Another alternative method is the Perspective-n-Point
(PnP) method, which does not rely on vanishing points, but

estimates the camera orientation given n three-dimensional
points and their projected two-dimensional points (Normally
n ≥ 3) in the image. Several algorithms have been pro-
posed to solve the PnP problem [25–29], and they have been
validated as feasible and efficient methods of traffic camera
calibration using monitoring videos [30]. However, the PnP
method requires prior knowledge of the camera focal length,
which is unknown for many surveillance cameras in real-
world applications. The PnP method can be further extended
to the PnPf method, which considers the focal length as
an unknown variable during the calibration [31–34], but it
has rarely been successfully applied to the traffic surveil-
lance camera in practice. An important reason is that PnPf
is normally sensitive to annotation errors which can lead to
a completely false solution. Because the images from traffic
surveillance cameras are in low resolution, the PnPf method
may not be applicable. Additionally, a recently reported
method [35] calibrates the camera in complex road environ-
ments without knowing the focal length, but it requires that
the key points are on a specific vehicle model e.g., Tesla
Model S, which is impractical for low-resolution and low-
frame-rate cameras.

In summary, existing camera calibration methods may not
be suitable under 4L characteristics. The main reason is that
the key points on the single vehicle cannot provide enough
information for the calibration due to the 4L characteris-
tics. In contrast, if multiple key points on multi-vehicles are
considered in the camera calibration method, the calibration
results could be made more stable and robust. However, this
is still an open problem for the research community.

Literature review on vehicle detection. For vehicle detec-
tion, current solutions leveragemachine-learning-basedmod-
els to detect vehicles from camera images, while many
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Fig. 1 Challenges and limitations of existing methods for traffic camera calibration and vehicle detection

challenges still remain: (1) The machine-learning models
heavily rely on the annotated images for supervised train-
ing, and the labeled images are generally not available for
each traffic surveillance system. (2) Vehicles only occupy
several pixels in images due to the low resolution of images,
making them difficult to be detected by the machine learn-
ing models; (3) during nighttime, the illumination conditions
may hinder the detection of vehicles, presenting a challenge
to 24/7 traffic density estimation.

Vehicle detection from surveillance cameras has been
extensively studied for many years. Background subtrac-
tion was initially considered an efficient algorithm to extract
vehicles from the background [14, 15, 18]. The underlying
assumption in background subtraction is that the background
of multiple images is static, and can therefore be obtained
by averaging multiple images. However, this assumption
may be improper when the illumination intensity of differ-
ent images varies significantly, such as at night or on windy
days. Recent studies have focused on detection-based algo-
rithms since they are more resistant to background changes.
General object detection frameworks can be used to detect
vehicles from images [20, 36–38], while as they are not
tailored for vehicle detection, the performance is not satis-
factory. In the transportation community, work [39] applied
a convolutional neural network (CNN) for vehicle detection
in low-resolution traffic videos; [17] combined two classi-
cal detection frameworks for accuracy consideration, and
[40] extended to automatically segment the region of inter-
est (ROI) based on optical flow. Recently, [16] generated a
weightedmask to compensate for size variance caused by the
perspective effect. They subsequently combined a CNNwith
Long-Short-Term Memory (LSTM) to exploit spatial and

temporal information from videos [41]. Shen et al. [42] took
advantage of the K-means GIoU algorithm and then added
a detection branch for fast convergence and small object
detection. However, the performance of existing detection
models degrade drastically when annotated data are lacking.
Though the few-shot learning [43] may be incorporated to
compensate for transferring the model into new scenes with-
out or with a few annotated data, the unified performances
under different camera conditions during daytime and night-
time cannot be guaranteed. To develop a generalized vehicle
detectionmodel in various surveillance systems, we augment
the training data by incorporating traffic-related datasets in a
systematic way.

Overall, the challenges to traffic density estimation under
4L characteristics are summarized in Fig. 1.

For road length estimation, we aim to calibrate the surveil-
lance camerawith an unknown focal length using low-quality
image slices obtained under complex conditions. For vehicle
number estimation, we focus on developing a training strat-
egy that is robust for low-resolution images acquired during
both daytime and nighttime without annotating extra images.

This paper proposes a holistic framework that turns traf-
fic surveillance cameras into intelligent sensors for traffic
density estimation. The proposed frameworkmainly consists
of two components: (1) camera calibration and (2) vehi-
cle detection. For camera calibration, a novel method of
multi-vehicle camera calibration (denoted as MVCalib) is
developed to utilize the key point information of multiple
vehicles simultaneously. The actual road length can be esti-
mated from the pixel distance in images once the camera
is calibrated. For vehicle detection, we develop a linear-
program-based approach to hybridize various public vehicle
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Fig. 2 Framework of traffic
density estimation with
surveillance cameras

datasets to balance the images during daytime and nighttime
under various conditions, and these public datasets are orig-
inally used for different purposes. A deep learning network
(YOLO-v5) is trained on the proposed hybrid dataset. The
trained network can achieve decent detection accuracy during
both daytime and nighttime in various surveillance camera
systems without extra training on those surveillance cam-
eras, which exempts additional effort from annotating labels
on images.

Two case studieswith ground truth have been conducted to
evaluate the performance of the proposed framework.Results
show that the estimation accuracy for the road length is
more than 95%. Vehicle detection can reach an accuracy of
88% during daytime and nighttime, under low-quality cam-
era images.

To summarize, the major contributions of this paper are
as follows:
• It provides a holistic framework for 24/7 traffic density
estimation using traffic surveillance cameras with 4L
characteristics: Low frame rate, Low resolution, Lack
of annotated data, and Located in complex road environ-
ments.

• It first time develops a robust multi-vehicle camera cali-
bration method MVCalib that collectively utilizes the
spatial relationships among key points from multiple
vehicles. The proposed method can be used to calibrate
surveillance cameras under the 4L characteristics.

• It systematically designs a linear-program-based data
mixing strategy to synergize image datasets from dif-
ferent cameras and to balance the performance of the
deep-learning-based vehicle detection models under dif-
ferent traffic scenarios.

• It validates the proposed framework in two traffic surveil-
lance camera systems inHongKong andSacramento, and
the research outcomes create portals for rapid and mas-
sive deployment of the proposed framework in different
cities.

Methods

In this section, we first introduce the overall framework, and
the camera calibration model and vehicle detection model
are then elaborated separately.

The overall framework

The framework of the traffic density estimation model is
shown in Fig. 2.

Camera images are first collected from public traffic
surveillance camera systems, and then key points on vehi-
cles are annotated. The camera calibration model uses the
annotated data to derive a relationship between points on
images and in the real world. If we can acquire the skeleton
of the road, the road length can be further computed after cal-
ibration. For vehicle detection, the camera image data are fed
to a deep-learning-based vehicle detection model pre-trained
on a hybridized dataset, which is used to count vehicles on
the road. Combining the road length and vehicle number
information, we can estimate the high-granular traffic den-
sity information on the road.

Camera calibration

In this section, we present the proposed camera calibration
method, MVCalib. The background about camera calibra-
tion is first reviewed, then the detailed information about the
proposed camera calibration model will be elaborated sub-
sequently.

Overview of camera calibration problems

A simplified pinhole camera model is widely used to illus-
trate the relationship between three-dimensional objects in
the real world and the projected two-dimensional points on
the camera images. Given the location of a certain point in
the real world [X ,Y , Z ]T ∈ R

3, the projected point on the
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camera image can be represented as [u, v]T ∈ R
2. The rela-

tionship between [X ,Y , Z ]T and [u, v]T is defined in Eq. (2)
and (3).

s

⎡
⎣
u
v

1

⎤
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⎡
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2
0 f h
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spi = K [R|T ] Pi (3)

where Eq. (3) is the vectorized version of Eq. (2). K =⎡
⎣
f 0 w

2
0 f h

2
0 0 1

⎤
⎦ encodes the endogenous camera parameters,

where f denotes the focal length of the camera.w and h rep-

resent the width and height of images. R =
⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦

and T =
⎡
⎣
t1
t2
t3

⎤
⎦ are the rotation matrix and translation vec-

tor of the camera, respectively. Hence, [ f , R, T ] ∈ R
13 are

the 13 parameters to be estimated in the problem of camera
calibration. Once the camera parameters f , R, and T are cal-
ibrated, the location of projection points on an image can be
deduced from the coordinates in the real-world system.

The key points on vehicles in two-dimensional images
and the three-dimensional real world are typically com-
mon features such as headlights, taillights, license plates,
etc. Existing camera calibration methods assume that the
key points of a specific vehicle model (e.g., Tesla Model
S, Toyota Corolla) are known. Under the 4L characteris-
tics, camera images are too blurry for us to distinguish
vehicle models. Hence, in the proposed method, a set of
vehicle model candidates is built to serve as the references
of three-dimensional points. The dataset of two-dimensional
and three-dimensional key points for the i th vehicle in images
and in the real world can be represented as

√i =
{
pi1, p

i
2, . . . , p

i
k, . . . , p

i
Mi

}

P i
j =
{
Pi
j,1, P

i
j,2, · · · , Pi

j,k, · · · , Pi
j,Mi

}
,

i ≤ n, j ≤ m,

(4)

where i represents the vehicle index in images and j rep-
resents the index of vehicle models. pi represents the set
of two-dimensional key points of the i th vehicle on camera
images, and P i

j denotes the sets of three-dimensional key
points of the i th vehicle in real world assuming the vehi-
cle model is j . n and m represent the number of vehicles
and the number of vehicle models in the real world, respec-
tively.Mi denotes the number of key points on the i th vehicle.

More specifically, pik represents the location of the kth key
point on vehicle i in the image, and Pi

j,k represents the three-
dimensional coordinates of the kth key point on the vehicle
i assuming that the vehicle model is j .

The MVCalibmethod

In this section, we present the proposedmulti-vehicle camera
calibration method MVCalib. The pipeline of MVCalib is
shown in Fig. 3.
MVCalib proceeds through three stages: candidate genera-
tion, vehicle model matching and parameter fine-tuning. In
the candidate generation stage, the solution candidates for
each vehicle are generated separately based on conventional
camera calibration methods. In the vehicle model match-
ing stage, a specific model is assigned to each vehicle in
the camera images. In the parameter fine-tuning stage, joint
information on multiple vehicles is utilized to fine-tune the
camera parameters. The fine-tuned value of f , R, T will be
carried out to estimate the road length for the traffic density
estimation.

Candidate generation. In the candidate generation stage,
we first apply the conventional camera calibration method
to the key points on each vehicle, assuming that its vehi-
cle model and the focal length of the camera are known.
Mathematically, for the i th vehicle, the coordinates of Mi

pairs of key points in two-dimensional space pi and in three-
dimensional spaceP i

j under the j th model are known. Given

a default value of focal length f̂ , the parameters of rotation
matrix R and translation vector T can be estimated through
the Efficient PnP algorithm (EPnP) [27] with a random sam-
ple consensus (RANSAC) strategy [44].

The EPnP method is applied to all pairs of (i, j), and
hence a total number of m × n times of estimation using
EPnP are conducted. The estimated camera parameters (can-

didates) are denoted as ψ̃ i
j =
{
f̂ , R̃i

j , T̃
i
j

}
, which represents

the focal length, rotation matrix and translation vector for the
i th vehicle of the j th model.

Vehicle model matching. In the vehicle model matching
stage, the most closely matched vehicle model is determined
to minimize the projection error from the real world to the
image plane for each vehicle i . Mathematically, we aim to
select the best vehicle model j from ψ̃ i

j to obtain the camera

parameter ψ i for each vehicle. In the candidate generation
stage, the focal length is fixed to a default value, which may
contribute to errors in the projection. Therefore, in this stage,
we adjust the focal length to a more accurate value and
refine the parameter estimation. To this end, we formulate
an optimization problem with the objective of minimizing
the projection loss from the three-dimensional real world to
two-dimensional camera images, as presented in Eq. (5).
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Fig. 3 The pipeline of the MVCalib method for camera calibration

Lv

(
ψ i
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i
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i
j

}

sij,k = Ri
j

∣∣∣
3
· Pi

j,k + T i
j

∣∣∣
3

f ij ≥ 0,∀i ≤ i, j ≤ m

(5)

where Lv (·) defines the projection loss from the three-
dimensional real world to two-dimensional images for the

key points on vehicles. sij,k = Ri
j

∣∣∣
3
· Pi

j,k + T i
j

∣∣∣
3
is the scale

factor for the combination of the kth key point on the i th

vehicle with the j th model. Ri
j

∣∣∣
3
represents the third row of

the rotation matrix and T i
j

∣∣∣
3
denotes the third element of the

translation vector. The focal length of a camera f ij should be
greater than 0.

To solve the optimization problem Lv(ψ
i
j ), we employ the

Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [45], which is an evolutionary algorithm for non-linear
and non-convex optimization problems, to search for the
optimal parameter ψ i

j for each combination of vehicle and
vehicle model. As the performance of the CMA-ES depends
on the initial points, we start by searching for the parameters
from ψ̃ i

j . For vehicle i , we assign the vehicle model with the
minimal projection loss Lv , as presented in Eq. (6).

ψ i =
{
f i , Ri , T i

}
= argmin Lv

(
ψ i

j

)
, ∀i ≤ n (6)

Parameter fine-tuning. In this stage, we combine the key
point information on multiple vehicles and further fine-tune
the information to obtain the final estimation of the camera
parameters ψ . In previous stages, we made use of the key
point information on every single vehicle and applied the
estimated camera parameter ψ i to each vehicle i separately.
Ideally, if ψ i is perfectly estimated, we can project the key
points on all vehicles in camera images back to the real world
using ψ i , and those key points should exactly match the key
points on the vehicle models. Based on this criterion, we can
select the camera parameters from ψ i and further fine-tune
them to obtain ψ .

To this end,we back-project the two-dimensional points in
camera images to the three-dimensional real world by using
the parameter ψ i ′ for vehicle i ′ as an “anchor”. Mathemat-
ically, given an i th vehicle, the coordinates of the kth key
point on the camera image and in the real world can be rep-
resented as pik and Pi

k , respectively. Note that P
i
k is a member

of {Pi
j,k |, 1 ≤ j ≤ m} as the vehicle model is fixed in the

vehicle model matching stage. To back-project pik to the real-

world space usingψ i ′ , we solve a systemof equations derived
from Eq.2, as shown in Eq. (7).

⎧⎪⎪⎨
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(
ũik

[
Ri ′ |T i ′

] ∣∣∣
3
−
[
Ri ′ |T i ′

] ∣∣∣
1

)
·
[
P̂i
k (ψ

i ′)
1

]
= 0

(
ṽik

[
Ri ′ |T i ′

] ∣∣∣
3
−
[
Ri ′ |T i ′
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2

)
·
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k (ψ
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1

]
= 0

(7)
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where ũik = uik− w
2

f i ′ , ṽik = vik− h
2

f i ′ , (uik, v
i
k) is the two-

dimensional coordinate of the kth key point on vehicle i in the
camera images, and P̂i

k (ψ
i ′) represents the back-projected

point on the i th vehicle of the kth key point given the camera
parameter ψ i ′ of anchor vehicle i ′.

The primary loss between back-projected points and real-
world points is defined in Eq. (8).
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where ξl

(
i, k1, k2, ψ i ′

)
and ξr

(
i, k1, k2, ψ i ′

)
represent the

distance and angle loss between the back-projected points
and real-world points, and α is a hyper-parameter that adjusts

the weight of each loss.

∥∥∥∥
−−−→
Pi
k1
Pi
k2

∥∥∥∥
2
and

∥∥∥∥
−−−−−−−−−−−→
P̂i
k1

(ψ i ′)P̂i
k2

(ψ i ′)

∥∥∥∥
2

are vectors that consist of any two real-world and back-
projected points on the same vehicle i . k1 and k2 represents
two non-overlapping indices of the key points on the same
vehicle i . The distance loss represents the gap between the
Euclidean distance of the back-projected points and one of
the real-world points, while the angle loss can be regarded as
the sine value of the angle between two vectors formed with
the back-projected points and real-world points. We further

aggregate the loss L p

(
i, ψ i ′ |α

)
for different vehicles i based

on their relative distance. In general, if a vehicle is further
from the anchor vehicle, then the loss in the back-projected
points is larger, and we have less confidence in these points.
Therefore, smaller weights are assigned to vehicles that are
further from the anchor vehicle.

The objective of minimizing the fine-tuning loss for all
vehicles is formulated to consider different weights due to
the relative distance, as presented in Eq. (9).

L f

(
ψ i ′ |α, τ

)
= ∑

i<n
ω
(
Ĉi , Ĉi ′ |τ

)
L p

(
i, ψ i ′ |α

)

ω
(
Ĉi , Ĉi ′ |τ

)
=

exp

(
τ

∥∥∥∥
−−−→
Ĉi Ĉi ′

∥∥∥∥
2

)

∑
i ′′<n exp

(
τ

∥∥∥∥
−−−−→
Ĉi ′ Ĉi ′′

∥∥∥∥
2

)

Ĉi = 1
Mi

∑
k<Mi

P̂i
k (ψ

i ′)

Ĉi ′ = 1
Mi ′
∑

k<Mi ′
P̂i ′
k (ψ i ′)

(9)

where Ĉi is the centroid of all back-projected key points on
the i th vehicle, and Ĉi ′ is the centroid of all back-projected

key points on the anchor vehicle i ′. ω
(
Ĉi , Ĉi ′ |τ

)
is the

weighting function for vehicle i using the vehicle i ′ as an
anchor. The temperature τ is a hyper-parameter that controls
the distribution of the weighting function. When τ = 0, the
weighting function uniformly averages the loss for all vehi-
cles; when τ < 0, more attention will be paid to vehicles that
are close to the current vehicle, and vice versa.

To obtain the final estimation of the camera parame-

ters, we minimize the objective L f

(
ψ i ′ |α, τ

)
in Eq. (9) for

each selection of anchor vehicle. The optimal estimation is
selected as that with the minimal loss, as shown in Eq. (10).

ψ = argmini ′<n L f

(
ψ i ′ |α, τ

)
(10)

Vehicle detection

In this section, we present the vehicle detectionmodel, which
counts the number of vehicles on road segments from cam-
era images. The state-of-the-art vehicle detection models
adopt Deep Learning (DL) based methods to train the model
on a vehicle-related dataset. The training process of DL
models usually requires massive data. Owing to the 4L char-
acteristics, the quantity of annotated camera images for a
specific traffic surveillance system cannot support the com-
plete training of amodernDL-based vehicle detectionmodel.
In addition, it is inefficient to train new models for each traf-
fic surveillance system separately. Therefore, we adopt the
transfer learning scheme to first train the model on traffic-
related public datasets and then apply the model to specific
surveillance camera systems [46].

Existing public datasets are designed for a range of pur-
poses, such as vehicle re-identification (reID), autonomous
driving, vehicle detection, etc. [16, 47–52]. The camera
images in different datasets have different endogenous
attributes (e.g., focal length, type of photosensitive element,
resolution, etc.) and exogenous attributes (e.g., perspective,
illumination, directions, etc.) Additionally, the datasets dif-
fer in size. A summary of the existing traffic-related public
datasets is presented in Table. 2, and snapshots of some of
the datasets are shown in Fig. 4.

We categorize the camera images from these datasets into
different traffic scenarios, which include the time of day
(daytime and nighttime), congestion level, surrounding envi-
ronment, etc. Each traffic scenario represents a unique set of
features in the camera images, so if a DLmodel is trained for
one traffic scenario, it might not perform well on a different
scenario. Given the 4L characteristics, the camera images
in a large-scale traffic surveillance system may cover multi-
ple traffic scenarios, so it is important to merge and balance
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Table 2 A summary of
traffic-related image datasets

Name Size Resolution Camera angle Original usage

BDD100K 100,000 1280 × 720 Front Autonomous driving

BIT Vehicle 9,850 Multiple Inclined top Vehicle reID

CityCam 60,000 352 × 240 Inclined top Vehicle detection

COCO 17,684 Multiple Multiple Object detection & segmentation

MIO-TCD-L 137,743 720 × 480 Inclined top Vehicle detection & classification

UA-DETRAC 138,252 960 × 540 Inclined top Vehicle detection

Fig. 4 A glance of various
traffic-related image datasets
used in this study

the different datasets summarized in Table. 2 for training the
vehicle detection model.

To this end, we formulate a Linear Program (LP) to
hybridize a generalized dataset called theLPhybriddataset,
by re-sampling from multiple traffic-related public datasets.
TheLPhybrid dataset balances the proportion of images from
each traffic scenario to prevent one traffic scenario fromdom-
inating the dataset. For example, if most camera images are
captured during the daytime, then the trained vehicle detec-
tion model will not perform well on the nighttime images.
If different traffic scenarios are comprehensively covered,
balanced, and trained, the robustness and generality of the
detection model will be significantly improved.

Following the above discussion, the pipeline for the vehi-
cle detection model is presented in Fig. 5.

One can see that themultiple traffic-related datasets are fed
into the LP to generate the LP hybrid dataset, and the dataset
will be used to train the vehicle detection model. The trained
model can be directly applied to different traffic surveillance
systems.

As stated above, the hybrid detection dataset is formulated
as an LP, the goal of which is to maximize the total number
of images in the dataset, written as

max
u−1∑
μ=0

v−1∑
ν=0

qμ,ν (11)

where u denotes the number of datasets, and v represents the
number of traffic scenarios. qμ,ν are decision variables that
denote the number of images to be incorporated into the LP
hybrid dataset from dataset μ for traffic scenario ν.

The constraints of the proposed LP are constructed based
on two principles: (1) The difference between the numbers
of images from different traffic scenarios should be limited
within a certain range. (2) The number of images contributed
by each dataset should be similar. Mathematically, the con-
straints are presented in Eq. (12).

123



7180 Complex & Intelligent Systems (2023) 9:7171–7195

Fig. 5 The pipeline of vehicle
detection

qμ,ν − (1+β)
∑u−1

μ=0 qμ,ν∑u−1
μ=0 δ(0,Qμ,ν)

≤ 0,

∀0 ≤ μ < u, 0 ≤ ν < v, Qμ,ν �= 0

qμ,ν − (1−β)
∑u−1

μ=0 qμ,ν∑u−1
μ=0 δ(0,Qμ,ν)

≥ 0,

∀0 ≤ μ < u, 0 ≤ ν < v, Qμ,ν �= 0
u−1∑
μ=0

qμ,ν − 1+γ
v

u−1∑
μ=0

∑v−1
ν=0 qμ,ν ≤ 0,

∀0 ≤ ν < v
u−1∑
μ=0

qμ,ν − 1−γ
v

u−1∑
μ=0

∑v−1
ν=0 qμ,ν ≥ 0,

∀0 ≤ ν < v

qμ,ν ≤ Qμ,ν,

∀0 ≤ μ < u, 0 ≤ ν < v

qμ,ν ≥ 0,
∀0 ≤ μ < u, 0 ≤ ν < v

(12)

where the former two constraints adjust the image contri-
bution from different datasets, while the latter two balance
the number of images from different traffic scenarios. Qμ,ν

represents the total number of data for traffic scenario ν in
dataset μ, and qμ,ν ≤ Qμ,ν enforces that the selected num-
ber of images should be smaller than the total number of
images. β is the maximum tolerance parameter for the upper
and lower bound of the image number in different traffic
datasets given certain scenarios, and γ is another maximum
tolerance parameter limiting the difference between the num-
bers of images selected from different scenarios. δ(0, Qμ,ν)

is defined as δ(0, Qμ,ν) =
{
0, Qμ,ν = 0

1, Qμ,ν �= 0
. Combining

the objective in Eq. (11) and constraints in Eq. (12), we can
formulate the LP hybrid dataset that maximizes the number
of data and balances the contributions of data from different
datasets as well as traffic scenarios.

The vehicle detection model is built on top of You Only
Look Once (YOLO)-v5, a widely used object detection
model [53]. YOLO-v5 is initially pre-trained on the full
COCO dataset, and we adopt the transfer learning scheme

Table 3 The comparison for the selected traffic cameras used for case
studies in Hong Kong and Sacramento

Attributes HK Sac

Resolution 320 × 240 pixels 720 × 480 pixels

Update rate 2min 1/30 s

Orientation Vehicle head Vehicle tail

Road type Urban road Highway

Speed limit 50km/h 105.3 km/h

to inherit the pre-trained weights and tune the weight param-
eters on the LP hybrid dataset. The YOLO-v5 network is
a general framework for detecting and classifying objects
simultaneously. In the vehicle detection context, we only
need to box out the vehicles from the background images
regardless of vehicle type. Hence we reshape the output
dimension into one with randomly initialized parameters.
As the LP hybrid dataset contains camera images in various
traffic scenarios, we can build a generalized detection model
suitable for various traffic surveillance systems in different
countries.

Numerical experiments

In this section, we conduct numerical experiments on the
proposed camera calibration and vehicle detection methods
to evaluate the performance of two traffic surveillance camera
systems.

Experimental settings

To demonstrate that the proposed framework can be applied
to traffic density estimation in countries with different traf-
fic surveillance systems, two case studies of traffic density
estimation are conducted, Hong Kong (HK) and Sacramento,
California (Sac) where the ground true data can be obtained
at both sites. A comparison of these two cameras is shown in
Table. 3.
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• HK: Camera images in Hong Kong are obtained from
HKeMobility3 at the Chatham Road South, Kowloon,
Hong Kong SAR, with the camera code K109F. Images
containing seven vehicles are selected from June 22nd to
June 25th, 2020.

• Sac: Camera images in Sacramento are obtained from
Caltrans system4 at Capital City Freeway at E Street,
Sacramento, CA, the US. Images containing seven vehi-
cles are selected from February 17th to December 18th,
2022.

For camera calibration, we select all the vehicles that are
not shadowed by other vehicles, and those vehicles are anno-
tated with eight key points: left headlight, right headlight,
front license plate center, front wiper center, left wingmirror,
right wingmirror, back left corner and back right corner. Any
key points not visible in an image are excluded. Besides, five
popular vehicle models are involved with three-dimensional
information: Toyota Corolla, Toyota Prius, Honda Civic,
BMW Series 4 and Tesla Model S. The three-dimensional
key points for those models are measured from the Dimen-
sions.5 α in Eq. (9) is set to 6.

For vehicle detection, all of the datasets are summarized
in Table. 2 are incorporated. The ratio factors γ and β in Eq.
(12) are set to 0.25. The LP hybrid dataset is divided into
a training set (80%) and a validation set (20%). A total of
3,812 camera images are annotated to test the performance
of the model trained on the LP hybrid dataset.

All experiments are conducted on a desktop with Intel
Core i9-10900K CPU @3.7GHz × 10, 2666MHz × 2 ×
16GB RAM, GeForce RTX 2080 Ti × 2, 500GB SSD. The
camera calibration and vehicle detection models are both
implemented with Python. For the camera calibration model,
OpenCV [54] is used for computing Eq. (2) and running
the EPnP algorithm [27]. In the candidate generation stage,
the focal length is fixed at 350 millimeters. The CMA-ES
algorithm [45] is executed with the Nevergrad package [55].
The numbers of iterations of CMA-ES in the vehicle model
matching and parameter fine-tuning stages are set to 4,000
and 20,000, respectively. When tuning the vehicle detection
model, we set the number of training epochs to 300, and
other hyperparameters take the default settings6 of the orig-
inal YOLO-v5. The Adam optimizer [56] is adopted with
a learning rate of 0.001. In the testing stage, the inference
speed is more than 100 fps (frames per second). Supposed
the camera images are updated every 2min, which means
the frequency of the camera image is 1/120 fps, then a sin-

3 https://www.hkemobility.gov.hk/tc/traffic-information/live/cctv.
4 https://cwwp2.dot.ca.gov/vm/iframemap.htm.
5 https://www.dimensions.com.
6 https://github.com/ultralytics/yolov5.

Fig. 6 Fine-tuning losses with parameters in the three stages for camera
calibration in HK (vehicle index is defined in Eq. (4)

gle server can simultaneously process the images from over
12,000 cameras. As surveillance cameras are only required to
be calibrated once with few input parameters, the city-wide
real-time traffic density estimation can be achieved using the
proposed framework.

Experimental results

In this section, we compare the proposed camera calibration
and vehicle detection models with existing baselines, respec-
tively.

Camera calibration

To evaluate the performance of the camera calibration
method, we first compare the fine-tuning loss defined in Eq.
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(9) among baseline models for the two cameras in HK and
Sac. Based on the calibration results, we estimate the road
length from the camera images, and the length estimated by
each model is compared with the actual length.

Todemonstrate the necessity of the three steps inMVCalib,
Fig. 6 plots the fine-tuning loss defined in Eq. (9) for the
three stages: candidate generation, vehicle model matching
and parameter fine-tuning. In particular, Fig. 6a includes the
losses of all the vehicle index and vehicle model pairs for
the first two stages, and Fig. 6b plots the loss based on the
matched vehicle model with the minimal fine-tuning loss.
One can see that the fine-tuning loss defined in Eq. (8)
decreases after each stage, which indicates that the CMA-
ES can successfully reduce the loss in each stage.

We thenmeasure the lengths of roadmarkings on the cam-
era images, as the road markings are invariant features on the
road, and their lengths can be determined frommeasurements
or official guidebooks.Detailed roadmarking information for
the HK and Sac studies is shown in Fig. 7.

InFig. 7a, the length of thewhite line is 1mand the interval
between thewhite lines is 5ms, which are obtained fromfield
measurements. On the camera images, a total of 14 points are
annotated at the midpoints of white lines, resulting in 12 line
segments of the same length (shown in Fig. 7b). Hence each
line segment corresponds to 6ms in the real world. For the
camera images in Sac, we likewise use the actual lengths of
the lane markings on the Capital City Freeway as the ground
truth. According to the Manual on Uniform Traffic Control
Devices (MUTCD) [57], the length of a white line is 10 feet
(approximately 3.05ms) and the interval is 30 feet (approx-
imately 9.14ms) (shown in Fig. 7c). On the camera images,
we annotate 14 points resulting in 12 line segments (shown
in Fig. 7d), elongated in 40 feet (approximately 12.19ms) for
each segment.

We compare our method with existing baseline models
including EPnP [27], UPnP, UPnP+GN (UPnP fine-tuned
with the Gauss-Newton method) [31], GPnP and GPnP+GN
(GPnP fine-tuned with the Gauss-Newton method) [32]. The
calibration results are shown in Table. 4. The estimated
lengths of the road markings on camera images with the
actual lengths are compared and three metrics are employed
for benchmark comparison: Rooted Mean Square Error
(RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). The calculation of MAE, RMSE,
and MAPE is shown in Eq.13.

RMSE =
√√√√ 1

Nrm

Nrm∑
i=0

(lirm − l̂ irm)2

MAE = 1

Nrm

Nrm∑
i=0

|lirm − l̂ irm |

MAPE = 1

Nrm

Nrm∑
i=0

∣∣∣∣∣
lirm − l̂ irm

l̂irm

∣∣∣∣∣ , (13)

where Nrm represents the number of roadmarks, lirm and
l̂ irm are the estimated and actual length of the i th roadmark,
respectively. At each stage of MVCalib, we compare its
result with baseline methods in terms of their ability to solve
the PnPf problem. To conduct an ablation study gauging the
contribution of each stage, we run MVCalib with only the
first stage (candidate generation), with the first two stages (up
to vehicle model matching), and with all three stages. The
three models are referred to as MVCalib CG, MVCalib
VM, and MVCalib, respectively. In fact, the MVCalib CG
is equivalent to the EPnP method.

One can see from Table. 4 that UPnP (GN) and GPnP
(GN) yield unsatisfactory solutions owing to the low image
quality. As they take the focal length into account, the com-
plexity of the problem is significantly increased, and hence
they require high-resolution images and more numerous and
accurate annotation points.

As for the ablation study, we compare MVCalib CG,
MVCalib VM, and MVCalib to evaluate the contribution
of each stage. In the vehicle model matching stage, if we
optimize the focal length with other parameters simultane-
ously, the estimation results are greatly improved relative
to MVCalib CG, demonstrating that the estimation of focal
length is necessary and important for the calibration of traffic
surveillance cameras. In the full MVCalib, we also incor-
porate the joint information of multi-vehicle under the same
camera. MVCalib achieves the best result among all mod-
els. For the surveillance camera in HK, the average error is
only approximately 40cms for estimating the six-meter road
markings, less than 10% inMAPE.while in Sac, the average
error is about 1m for the forty-foot road markings, less than
10% in MAPE.

Besides,MVCalib outperforms the othermodels in terms
of all three metrics, which means that the calibration results
are close to the ground truth. Snapshots of calibration results
of surveillance cameras in HK and Sac are shown in Fig. 8,
where the distance between any two red dots is one meter.

Owing to the perspective effect, the distance between red
dots on images appears closer when they are more distant
from the camera. Through visual inspection, we note that
the estimation of focal length is reasonable and the skew of
perspective error is small. Additional experiments regarding
the convergence and sensitivity of the MVCalib are further
presented in Appendix. B, and the choice of τ is discussed
in Appendix. D.

123



Complex & Intelligent Systems (2023) 9:7171–7195 7183

Fig. 7 Driving lanes from real
world and camera images in HK
and Sac

Table 4 The comparison of
results of surveillance camera
calibrated by different methods
in HK and Sac (unit for RMSE
and MAE: meter)

Method HK Sac

RMSE MAE MAPE RMSE MAE MAPE

UPNP 25.80 22.21 370.03% 9.66 8.86 72.66%

UPNP+GN 2.02 0.62 10.36% 9.40 9.34 76.67%

GPNP 3.14 2.76 46.15% 2.12 1.71 14.09%

GPNP+GN 2.24 1.98 33.15% 2.03 1.64 13.48%

MVCalib CG 1.68 1.49 24.91% 4.48 4.46 36.61%

MVCalib VM 0.98 0.77 12.83% 2.27 1.88 15.45%

MVCalib 0.49 0.43 7.22% 1.28 1.05 8.62%

Bold indicates the best performance

Table 5 The allocation of the
vehicle-related dataset in the LP
hybrid dataset

Dataset # images in daytime # images at nighttime Total # images

BDD100K 8319 8398 16,717

BITVehicle 7325 0 7325

CityCam 8459 0 8459

COCO 7111 7,619 14,730

MIO-TCD-L 8892 7413 16,305

UA-DETRAC 7955 5407 13,362

Total 48,061 28,837 76,898
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Fig. 8 Snapshots of calibration
results in HK and Sac

Table 6 Evaluation results for
different detection models on
images during the daytime

Name Precision Recall mAP@0.5 mAP@0.5:0.95 Dataset size

BDD-100K 0.361 0.364 0.326 0.144 100,000

BITVehicle 0.255 0.009 0.062 0.035 9,850

CityCam 0.412 0.938 0.881 0.538 60,000

COCO 0.978 0.017 0.556 0.340 17,684

MIO-TCD-L 0.737 0.885 0.899 0.578 137,743

Pretrained 0.455 0.899 0.838 0.552 0

UA-DETRAC 0.775 0.693 0.758 0.488 138,252

Spaghetti 0.605 0.948 0.927 0.608 434,993

Random 0.588 0.942 0.919 0.595 76,898

LP hybrid 0.583 0.949 0.921 0.594 76,898

Bold indicates the best performance

Vehicle detection

In the detection model, two traffic scenarios are consid-
ered: daytime and nighttime. A total of 76,898 images are
hybridized in the LP-hybrid detection dataset after solving
for the LP in Eq. (11) and (12). The detailed allocation of the
76,898 images is presented in Table. 5.

To evaluate the generality of the vehicle detection model
trained on the LP hybrid dataset, we also train the YOLO-
v5 individually with the BDD100K, BITVehicle, CityCam,
COCO,MIO-TCD-L, and UA-DETRAC datasets for bench-
mark comparison. Additionally, an integrated dataset incor-
porating all of the aforementioned datasetswithout balancing
the numbers of images in the daytime and at nighttime is also
considered, called the Spaghetti dataset, is also compared.
Moreover, we down-sample five datasets named Random
dataset whose sizes are the same to the LP hybrid dataset
to ablate the influence of image number. The mean of Ran-
dom dataset performance with be considered in the final
results. For the model trained on each dataset, we report
the vehicle detection accuracy on the testing data. Several
metrics are used in evaluating the performance of the vehi-
cle detection models, including precision, recall, AP@0.5,

and AP@0.5:0.95. Interpretation about these metrics is in
Appendix.C. In this paper, the threshold for IoU (Intersection
over Union) is 0.45 and the threshold for object confidence
is 0.25, which are the default settings in YOLO-v5.

Tables 6 and 7 present the evaluation results for themodels
trained with the LP hybrid and other datasets for daytime and
nighttime, respectively. The model trained on the LP hybrid
dataset reaches the highest recall rate and also achieves a
desirable precision rate. The high recall ratemeans themodel
trained on the LP hybrid dataset is confident to find as many
vehicles as possible in surveillance images. In daytime detec-
tion, the gaps between the model trained on the LP hybrid
dataset and the ones trained on the Spaghetti and Random
dataset based on recall rate are not conspicuous, since most
images in the training set are shot during daytime. When it
comes to nighttimedetection, the recall rate has elevatedby2-
3% compared to the model trained on Spaghetti and Random
dataset, which demonstrates that the proposed hybrid strat-
egy is adept at catching vehicles at night while maintaining
a decent detection performance during daytime. For the met-
rics of mAP@0.5 and mAP@0.5:0.95, the model trained on
the Spaghetti dataset achieves the best performance, but the
gap between the models trained on the Spaghetti dataset, the
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Table 7 Evaluation results for
different detection models on
images during the nighttime

Name Precision Recall mAP@0.5 mAP@0.5:0.95 Dataset size

BDD-100K 0.443 0.316 0.302 0.124 100,000

BITVehicle 0.058 0.001 0.018 0.010 9,850

CityCam 0.402 0.793 0.713 0.412 60,000

COCO 0.949 0.003 0.397 0.223 17,684

MIO-TCD-L 0.805 0.746 0.817 0.511 137,743

Pretrained 0.387 0.862 0.781 0.471 0

UA-DETRAC 0.708 0.573 0.629 0.365 138,252

Spaghetti 0.689 0.872 0.882 0.546 434,993

Random 0.674 0.864 0.871 0.536 76,898

LP hybrid 0.653 0.89 0.886 0.545 76,898

Bold indicates the best performance

Random dataset and the LP hybrid dataset for mAP@0.5
is less than 1% and the gap for mAP@0.95 is less than
2%. For images at nighttime, the model on the LP hybrid
dataset outperforms those trained on the Spaghetti dataset
and the Random dataset on mAP@0.5, also indicating that
the proposed LP hybrid dataset can improve the detection
performance at night.

Moreover, the Spaghetti dataset contains more than
430,000 images, which takes more than 21 days for train-
ing. The LP hybrid dataset is a strategic sample from the
Spaghetti dataset whose size is about 76,000, one-sixth of
the Spaghetti dataset. It only takes 6 days to train the model
on the LP hybrid dataset, but it reaches a competitive per-
formance with the model trained on the Spaghetti dataset.
The Random dataset is a random sample from the Spaghetti
dataset with the same size as the LP hybrid dataset. While it
maintains a decent performance in daytime detection, night-
time detection has been weakened since it contains fewer
images at night. The size of the rest dataset varies a lot. How-
ever, based on the performance, the models trained on these
datasets may not be able to transfer into new scenes.

In a nutshell, compared with a dataset of similar size, the
LP Hybrid dataset can balance the accuracy for different sce-
narios (e.g., daytime, nighttime, etc.), which has important
real-world implications. Compared with other datasets with
larger sizes, the LP Hybrid data can achieve similar perfor-
mance in different scenarios, but it takes less time for training
the detection model. The LP hybrid approach is a simple and
easy-to-implement approach to boost detection accuracy for
rare traffic scenarios in the face of limited computational
resources.

Case study I: surveillance cameras in Hong
Kong

In this section, we conduct a case study of traffic density esti-
mation using camera images on Chatham Road South, Hong

Fig. 9 Driving lanes for traffic density estimation beneath the surveil-
lance camera

Kong SAR. Given the study region, we divide the roads into
four lanes (numbered along the x-axis), and define vehicle
locations along the y-axis, as shown in Fig. 9.

The length of each lane can be estimated from the images
using the calibration results, and the number of vehicles can
be counted using the vehicle detection model. The traffic
density in each lane can be estimated by dividing the num-
ber of vehicles by the length of each lane at each location
and time point. To evaluate the estimated density, a high-
resolution (1920×1080 pixels per frame) camera is installed
shooting the same region with different directions, and the
camera video is acquired in this case study as a ground truth.
The video recorded by this camera, shows the traffic condi-
tions over 21h from 11:30 PM, September 23rd to 8:30 PM,
September 24th, 2020.

An overviewof the vehicle detection results is presented in
Fig. 10. Figure 10A displays a snapshot of vehicle detection
using the model trained on the LP hybrid dataset of images
taken in the daytime. By boxing out identical study regions
in the traffic surveillance camera images and high-resolution
videos (shown in Fig. 10B, C), the estimated number of vehi-
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Fig. 10 Overview of the vehicle detection results in HK

Table 8 The RMSE, MAE and MAPE of the estimated density for
different lanes from surveillance cameras in HK (unit: RMSE, MAE:
veh/km/lane)

Lane ID RMSE MAE MAPE

Lane #1 16.94 12.65 19.60%

Lane #2 12.98 9.23 27.48%

Lane #3 11.11 7.77 41.24%

Lane #4 8.70 6.53 50.44%

Average 12.43 9.04 34.69%

cles can be compared with the ground truth in Fig. 10D. We
select four points or regions in Fig. 10D, which are shown
in Fig. 10A, E, F and G. Figure 10A shows the beginning
of the morning peak when the vehicle number significantly
increases. Lanes #1 and #2 in the study region (numbered
from the left) becomevisibly congested in the camera images.
Points E and F are a pair of points that depicts contrasting

traffic conditions when the traffic density fluctuates dramat-
ically in a short time interval. If we inspect images taken
around 11:00 AM and 11:30 AM, respectively on Septem-
ber 24, 2020, which are the corresponding points E and F.
In Fig. 10E, it can be seen that there are few vehicles on the
road, and hence the traffic density is relatively low at point E.
However, at point F, there is a sharp increase in the demand on
the road. The traffic condition oscillates owing to the traffic
signals downstream, which causes the pronounced changes
between points E and F. Figure 10G depicts the traffic con-
ditions at the evening peak when the vehicle number reaches
the daily maximum. The evening peak fades away quickly
and disappears at approximately 8:00 PM.

Compared to the estimated and ground true traffic den-
sity, the developed model succeeded in tracking the growth
of the morning peak and detecting the fluctuation of traf-
fic conditions. However, at point G, some of the vehicles
are miss-detected in the evening peak. This may have been
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Fig. 11 The variation of traffic density from 00:00 AM to 9:00 PM in HK

Fig. 12 The location of the matched surveillance camera and double-loop detector in Caltrans

caused by dazzles from the headlights and the light reflected
from the ground, which make it difficult for the vehicle
detectionmodel to identify the features of vehicles. This phe-
nomenon is a common issue inComputerVision (CV),which
will be left for future research. Overall, the estimated result
is close to the ground truth most of the time, which demon-
strates that the detection model can accomplish an accurate
detection despite the low resolution and low frame rate of the
images.

TheRMSE,MAE, andMAPE of the estimated traffic den-
sity for each lane and the entire road are presented in Table. 8,
and a comparison of traffic densities from estimation and the
ground truth is shown in Fig. 11.

One can see that the estimated density approximates the
actual density, and the density fluctuation is accurately cap-
tured. The MAPE is relatively high because this metric is
sensitive when the density is small. For example, if the true
density is 2 veh/km/lane, while the estimated density is 1
veh/km/lane, then the MAPE is 50%. The traffic density of
Lane #1 is overestimated with an MAE of approximately 12
veh/km/lane, while the traffic density of Lanes #2, #3 and #4
are underestimated with an MAE of approximately 9, 7, and
6 veh/km/lane, respectively. The possible causes of the under
estimation and over estimation are two-fold: (1) The frame
rate is not sufficient enough to support an individual esti-

mation for each lane. Since the image will be updated once
every twominutes, an average of 7.5 images will be accumu-
lated in a time interval of 15min. The estimation may result
in a biased estimation since the small-size samples happen
to capture the non-recurrent patterns of the traffic density.
(2) The determination of the lane of each vehicle may be
biased, as the lane occupied by each vehicle is determined
by the center of the bounding box. When the road is curved
in images and the vehicle is large, the center of the bounding
box may shift to another lane, affecting the accuracy of the
estimations in both lanes.

Case study II: surveillance cameras in
Sacramento

To demonstrate the generality of the proposed framework,
another case study is conducted using a surveillance camera
in theCaltrans system.Themonitoring video data is collected
from the camera on the Capital City Freeway, Sacramento,
CA (shown in Fig. 12 left).

A 24-hour video is downloaded, covering the period from
12:00 AM on February 17th to 12:00 AM on February 18th,
2022. Similar to the procedures for HK, key points on vehicles
are annotated manually for camera calibration. The ground
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Fig. 13 The variation of traffic density in 24h in Sac

Table 9 The RMSE, MAE and MAPE of the estimated density in dif-
ferent lanes from surveillance cameras in transition and non-transition
time in Sac (unit for RMSE, MAE: veh/km/lane)

Lane ID Transition time Non-transition time
RMSE MAE MAPE RMSE MAE MAPE

Lane #1 17.38 11.60 17.80% 8.84 5.76 24.53%

Lane #2 16.62 12.04 19.23% 9.75 5.85 16.48%

Lane #3 31.33 22.62 24.85% 14.03 7.44 14.23%

Average 21.78 15.42 20.63% 10.87 6.35 18.31%

true density data are obtained from a double-loop detector at
the same location (shown in Fig. 12 center) within the same
time period. The detector data are obtained from the PeMS
system, which includes the average traffic speed, density,
and flow data. Given the study region, we can also divide the
roads into three lanes (numbered along the x-axis), and define
vehicle locations along the the y-axis, as shown in Fig. 12
right.

The accuracy of the estimated traffic density is shown
in Fig. 13. The blue curve represents the estimated den-
sity, while the orange curve represents the ground truth. The
gaps between these curves are small from visual inspec-
tion, and the proposed framework can successfully detect
sudden changes happened in traffic density. Furthermore,
the estimation accuracy does not deteriorate at nighttime.
In this scenario, the sunset ended about 6:00 PM, but the
proposed framework can follow the evening peak even after
6:00 PM. To evaluate the estimation accuracy in transition
time from free-flow to congestion or from congestion to free-
flow regimes, we divide the 24h into two density regimes,
transition time and non-transition time. The transition time
is from 11:00 AM to 1:00 PM and from 5:00 PM to 7:00 PM.
The non-transition time consists of rest time intervals. From
Table. 9,

the average MAPE in transition time and non-transition
time are 20.63% and 18.31%, respectively. Though the
MAPE in transition time is 2% higher than that in non-

transition time,MAPEs remain at the same level in transition
time and non-transition time, meaning that the method can
capture the transition in traffic density.

Conclusions

In this paper, we propose a framework for traffic density
estimation using traffic surveillance cameras with 4L char-
acteristics, and the 4L represents Low frame rate, Low
resolution, Lack of annotated data, and Located in complex
road environments. The proposed density estimation frame-
work consists of two major components: camera calibration
and vehicle detection. For camera calibration, amulti-vehicle
calibration method named MVCalib is developed to esti-
mate the actual length of roads from camera images. For
vehicle detection, the transfer learning scheme is adopted
to fine-tune the deep-learning-based model parameters. A
linear-program-based data mixing strategy that incorporates
multiple datasets is proposed to synergize the performance
of the vehicle detection model in different traffic scenarios.

The developed camera calibration and vehicle detection
models are compared with existing baseline models in terms
of the performance on real-world surveillance camera data
in Hong Kong and Sacramento, and both models outperform
the existing state-of-the-art models. TheMAE of camera cal-
ibration is less than 0.4ms out of 6ms, and the accuracy of the
detection model is approximately 90%. We further conduct
two case studies in Hong Kong and Sacramento to evalu-
ate the quality of the estimated density. The experimental
results indicate that the MAE for the estimated density is
9.04 veh/km/lane in Hong Kong and 7.03 veh/km/lane in
Sacramento. Comparing the estimation results in the two
study regions, we also observe that the performance of
the proposed density estimation framework degrades under
low-quality images and high-illumination-intensity environ-
ments. Considering the robustness of surveillance cameras
and the estimation accuracy, we think the performance is
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acceptable for current transport industries. The proposed
framework has great potential for large-scale traffic den-
sity estimation from surveillance cameras in cities across the
globe and it could provide considerable and fruitful informa-
tion for traffic operations and management applications.

In future research, we would like to extend the pro-
posed framework to estimate other traffic state variables such
as speed, flow, and occupancy. In the camera calibration
method, the key points of each vehicle are manually labeled,
which can be further automated [30]. In addition to the vehi-
cle detection model, a vehicle classification model could
also be developed to estimate traffic density by vehicle type.
Moreover, it would be of practical value to develop a fully
automated and end-to-end pipeline to deploy the proposed
density estimation framework in different traffic surveillance
systems.
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Appendix A Impact of Annotation Errors of
Key Points on the MVCalib Algorithm

Todiscuss the impact of annotation errors of key points on the
proposed MVCalib algorithm, we set different experiments
in HK and Sac. In HK, we randomly shift the location of
the annotated key points on images by 1 to 5 pixels while
fixing the real-world three-dimensional points. For each shift
group, we randomly shift annotation points in the up, down,
left and right directions 5 times. So, there is a total of 25 sets
for the input. For each group, we take the average value for
the RMSE, MAE and MAPE. In Sac, since the width and

Table 10 The comparison of RMSE, MAE and MAPE of surveillance
camera calibrated by different methods in HK and Sac (unit for RMSE
and MAE: meter)

HK Sac

Pixel
shifts

RMSE MAE MAPE Pixel
shifts

RMSE MAE MAPE

±0 0.49 0.43 7.22% ±0 1.28 1.05 8.62%

±1 0.98 0.84 14.15% ±2 1.12 0.93 7.70%

±2 1.15 1.04 17.36% ±4 3.42 3.22 26.42%

±3 1.48 1.35 22.61% ±6 5.98 5.83 47.86%

±4 2.38 2.28 38.16% ±8 7.01 6.92 56.78%

±5 2.90 2.84 47.37% ±10 7.05 6.97 57.22%

Bold indicates the best performance

height of the images are doubled compared to those in HK,
we random shift the annotation points in images for 2, 4, 6,
8 and 10 pixels (double size of 1 to 5 pixels) while fixing
the real-world three-dimensional points for fairness. Other
settings are the same as HK.

All the results are shown in Table. 10. It is shown that, for
the camera in HK, the RMSE, MAE and MAPE positively
correlate with the number of pixel shifts. When there is no
pixel shift, the RMSE, MAE and MAPE are minimal among
all groups. Errors enlargewith the increase of pixel shifts. The
calibration performance remains decent when the average
shift is less than 4 (MAPE< 25%). In contrast, the calibration
error significantly increases and becomes unacceptable when
the average shift is larger than 4 pixels. For the camera in
Sac, the calibration error reaches the minimum when the
pixel shift is 2. This may be because the original annotations
of key points are not accurate. When the number of pixel
shifts is greater than or equal to 4, the calibration results
cannot be used for practical applications (MAPE > 25%). It
is reasonable to conjecture that the proposed MVCalib can
sustain about 1% annotation error in the location of the key
points.

Appendix B Convergence and Sensitivity of
the MVCalib Algorithm

In this section, we discuss the convergence and sensitivity of
the proposed MVCalib algorithm.

B.1 Convergence

The MVCalib algorithm consists of a series of optimiza-
tion problems that are solved by different algorithms. In the
candidate generation stage, the EPNP algorithm [27] can
approximately solve the problem through a bundle of systems
of equations. In the vehicle model matching and parameter
fine-tuning stage, two non-linear optimization problems are
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Fig. 14 The calibration losses
in the vehicle model matching
stage for the camera in HK. The
x-axis is the iteration of
optimization, while the y-axis
means the loss

Fig. 15 The calibration losses
for the camera in the parameter
fine-tuning stage in HK. The
x-axis is the iteration of
optimization, while the y-axis
means the loss
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Table 11 The sensitivity of
initial parameters in HK and
Sac (unit for RMSE and MAE:
meter, VMM: vehicle model
matching, PF: parameter
fine-tuning)

Group Change HK Sac

RMSE MAE MAPE RMSE MAE MAPE

Only VMM 0% 0.49 0.43 7.22% 1.28 1.05 8.62%

10% 0.49 0.43 7.22% 1.33 1.23 10.13%

20% 0.67 0.59 9.96% 1.72 1.66 13.68%

30% 1.07 0.95 15.88% 2.34 2.27 18.64%

Only PF 0% 0.49 0.43 7.22% 1.28 1.05 8.62%

10% 0.49 0.43 7.22% 0.99 0.86 7.12%

20% 1.01 0.85 14.28% 1.40 1.17 9.61%

30% 1.29 1.10 18.38% 1.29 1.03 8.47%

VMM + PF 0% 0.49 0.43 7.22% 1.28 1.05 8.62%

10% 0.50 0.44 7.49% 1.31 1.18 9.75%

20% 0.63 0.55 9.32% 1.88 1.82 14.93%

30% 1.91 1.65 27.56% 5.28 4.98 40.90%

formulated, respectively, and there is no guarantee to find the
global optimal. Since the gradients of variables are difficult
to formulate in these optimization problems in the vehicle
model matching and parameter fine-tuning stage, we con-
sider a non-gradient-based optimization algorithm, named
CMA-ES to solve these problems.

The calibration losses for the camera in HK in the vehicle
modelmatching and parameter fine-tuning stage are shown in
Figs. 14 and 15. It is clear to see that most losses with differ-
ent combinations of vehicles and vehicle models converge in
the vehicle model matching stage, and all losses converge
to the local minimum in the parameter fine-tuning stage.
The patterns of calibration losses in Sac for both vehicle
model matching and parameter fine-tuning stages are similar
to those in HK, so we do not discuss them respectively.

B.2 Sensitivity

The robustness of the MVCalib algorithm is important
in real-world applications. In this section, we discuss the
impact of initial parameters on the MVCalib algorithm. The
MVCalib algorithm consists of three-stage calibrations. In
the candidate generation stage, the problem is not solved by
an optimization algorithm. Hence there is no initial parame-
ter in this stage. In the vehiclemodel matching and parameter
fine-tuning stage, problems are solved by two optimization
algorithms. The initial parameters may individually or mutu-
ally affect the calibration results. Hence, we set up three
groups of experiments to figure out the influence of initial
parameters.

In the first group, we only change the initial parameters
within the scale of 10%, 20% and 30% in the vehicle model
matching stage. We repeat the process 5 times. In the second
group, we only change the initial parameters in the parameter
fine-tuning stage within the same scale 5 times. In the third
group, both initial parameters in the vehicle model matching

and parameter fine-tuning stages are changed 5 times within
the same scales. Table. 11 shows the average results within
the same scale in each group. It can be seen that, when the
change scale is less than 20%, the calibration results do not
degrade significantly in most groups in HK and Sac. When
the change scale is over 30%, RMSE, MAE and MAPE are
nearly doubled in most groups in HK and Sac, meaning that
the camera calibrations results are not reliable. Therefore,
the MVCalib algorithm can sustain the vibration of initial
parameters within 20% of the original scale.

Appendix C The choice of � in the MVCalib
Algorithm

The choice of τ in Eq. 9 is important to the accuracy of the
MVCalib algorithm. To find out the relationship between τ

and calibration results, we set up the experiments as follows.
For both datasets inSac andHK, the value of tau ranges from
−3.0 to 3.3 with a step size of 0.3. The calibration results are
compared under different values of τ in HK and Sac.

In Fig. 16, the values of τ are 0 and 2.4 in HK and Sac
when the calibration losses reach the minimum. Though the
value of τ should be set differently in different scenarios,
when τ = 0, we can get the best result in HK and the third-
best result in Sac. Hence the value of τ is set to 0 in this
study.

Appendix D The Interpretation of Metrics of
Vehicle Detection

The metrics for evaluating the accuracy of vehicle detection
models include precision, recall, PR-curve, mAP@0.5, and
mAP@0.5:0.95. These metrics are commonly used to eval-
uate the quality of object detection models in CV. Before
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Fig. 16 The calibration losses
with different τ in HK and Sac

(a) The calibration losses with different τ in HK.

(b) The calibration losses with different τ in Sac .

introducing the concept of the above metrics, there is a pre-
requisite metric called intersection over union (IoU), which
defines the gaps between the estimated objection location and
the ground truth. The outputs of the detection model are two-
fold. One is four corner coordinates that locates the object
position in the image. The other is the confidence probability
of the belonging category. If we overlap the estimated and the
ground true bounding boxes, there will be an area of inter-
section (shown in Fig. 17a) and an area of union (shown in
Fig. 17b), where the red and green rectangle means the esti-
mated and ground true bounding boxes of an object, and the
blue rectangle shows the intersection and union area, respec-
tively. The intersection over union is defined as the quotient
of the intersection area over the union area.

A threshold for IoU is set to decide if the bounding box
is real or fake. If the IoU exceeds the threshold, we label
it as True Positive (TP). Moreover, we can divide all cir-
cumstances into three categories, True Positive (TP), False
Positive (FP), and FalseNegative (FN). The illustration about
these circumstances is shown in Table 12.

Additionally, the precision and recall can be calculated as

Precision = T P

T P + FP

Recall = T P

T P + FN

, (D1)

The precision and recall are a a pair of contradictory met-
ric. When the precision is high, the recall is relative low,
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(a) Area of intersection.

(b) Area of union.

Fig. 17 Illustration of the intersection over union (IoU)

Table 12 Illustration of TP, FP, and FN

Categories Comments

True Positive
(TP)

The IoU between predicted and
ground truth exceeds the
threshold

False Positive
(FP)

1. The IoU between predicted and
ground truth is smaller than the
threshold.

2. Estimated bounding boxes not
overlapping with any ground true
bounding boxes

False Negative
(FN)

The object is not detected by the
algorithm

vice versa. If we rank all the detection results according to
the confidence probability, set different thresholds for confi-
dence probability and re-calculate the precision and recall, a
precision-recall (PR) curve can be plotted where the x-axis
is the recall and the y-axis is the precision. An example is
shown in Fig. 18. The Precision-Recall curves of different
vehicle detection models are shown in Fig. 18.

With the increasing of confidence threshold, the recall
enlarges while the precision reduces. If the curve is close
to the upper right corner of the figure, the performance of the
model is good. Hence, it can be seen that the detection mod-

(a) The PR curve for images at daytime.

(b) The PR curve for images at night-
time.

(c) The PR curve for images throughout
day and night.

Fig. 18 The PR curve for camera images on the testing set

els trained with Spaghetti and LP hybrid datasets outperform
other models trained with sole datasets. In particular, if we
compare the curve between models trained with Spaghetti
and LP hybrid datasets, the differences between these two
models are marginal.

The Average Precision (AP) is the area that below the PR
curve, calculated as

AP =
∫ 1

0
PR(r)dr , (D2)

where r is the recall and PR(r) is the precision. The
mAP@0.5means theAP valuewhen the IoU threshold is 0.5.
Besides, the mAP@0.5:0.95 means the average of AP when
the IoU threshold equals to 0.5, 0.55, 0.9, · · · , 0.9, 0.95 sep-
arately. These two metrics are extensively used to evaluate
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the performance of algorithms in object detection tasks in
CV.
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