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Abstract
In recent decades, the effects of vehicle emissions on urban environments
have raised increasing concerns, and it has been recognized that vehicle emis-
sions affect peoples’ choice of housing location. Additionally, housing allocation
patterns determine people’s travel behavior and thus affect vehicle emissions.
This study considers the housing allocation problem by incorporating vehicle
emissions in a city with a single central business district (CBD) into a bilevel
optimization model. In the lower level subprogram, under a fixed housing allo-
cation, a predictive dynamic continuum user-optimal (PDUO-C) model with
a combined departure time and route choice is used to study the city’s traffic
flow. In the upper level subprogram, the health cost is defined and minimized
to identify the optimal allocation of additional housing units to update the
housing allocation. A simulated annealing algorithm is used to solve the hous-
ing allocation problem. The results show that the distribution of additional
housing locations is dependent on the distance and direction from the CBD.
Sensitivity analyses demonstrate the influences of various factors (e.g., budget
and cost of housing supply) on the optimized health cost and travel demand
pattern.
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1 INTRODUCTION

Air pollution has become one of the most important prob-
lems in today’s world, with serious effects on ecosystems,
economies, and human health. Transportation has been
identified as a major man-made contributor to air pol-
lutant emissions, and one study determined that approx-
imately 45% of all air pollution emitted in the United
States is produced directly by vehicle emissions (Soffer
et al., 1995). Vehicle emissions contain very high concen-
trations of NO𝑥 (Chen & Liu, 2010; Tong et al., 2000),
and motor vehicles contribute approximately 35% of all
emissions of this pollutant (Nizich et al., 1994). Despite
the use of advanced vehicle technologies, such as elec-
tric motors, to reduce fuel consumption and traffic-related
emissions, two problems remain: First, there is no guaran-
tee that in the future, all vehicles will be electric. If some
vehicles still use fossil fuels, emissions will remain a prob-
lem. Second, even if possible, the transformation to 100%
electric vehicles may take decades. Emissions during this
transition period thus need to be considered. Transporta-
tion and/or land-use design/policies, such as land-use
changes, housing allocation, and emission permits, have
been identified as promising approaches for addressing
traffic-related air pollution by changing travel behaviors
within cities (Barthelemy, 2016; Nagurney et al., 1998).
It is well known that interaction between land use and

transportation is bidirectional. On one hand, land use
defines the travel demands within a city and the corre-
sponding travel patterns and disutilities as these demands
are applied to the transportation system. On the other
hand, the resulting travel patterns and disutilities will
in turn affect future land-use designs. This reciprocal
relationship was first demonstrated in Washington, D.C.
(Hansen, 1959) and has since been acceptedworldwide and
used as the basis for many transportation and land-use
models (Giuliano, 1989, Lin et al., 2021, Yin et al., 2017).
Of these, the model proposed by Lowry (1964) was most
influential, as it was the first analytical tool to consider the
land-use and transportation feedback cycle. Subsequently,
many models have been established in recent decades and
can be classified into following four groups: spatial inter-
action, mathematical programming, random utility, and
bid-rent models (Chang & Mackett, 2006). However, few
studies of land-use and transportation models have con-
sidered environmental aspects, such as noise pollution
and vehicle emissions. Environmental factors (e.g., vehicle
emission) were shown to affect land-use and travel pat-
terns, and therefore these factors must be included when
modeling the interactions between land use and trans-
portation (Wegener, 2004). Wagner and Wegener (2007)
introduced the interactions between land-use, transporta-
tion, and environmentmodels in detail, and severalmodels
have been established, including the Urbanism model

(Wadell, 1998), MEPLAN model (Echenique, 1985), and
PECAS model (Hunt & Abraham, 2005).
Land-use patterns, which explore where people live,

work, shop, and entertain, influence the travel patterns and
evolution of transportation infrastructure. The choice of
housing location is fundamental to a land-use model and
is traditionally considered to represent a trade-off between
the costs of housing rent and transportation (Giuliano,
1989). Wheaton (1977) found that a decision to live fur-
ther from a city center requires an income elasticity of
land consumption that exceeds the income elasticity of
the travel cost (including the value of commuting time).
Although that study was able to solve the housing loca-
tion choice model analytically, its various assumptions
that simplified the theory (e.g., assumption of a mono-
centric model) have been criticized. To overcome these
simplifying assumptions, several housing location choice
models based on the trade-off between land rent and trans-
portation costs have been developed for polycentric cities
(Hartwick & Hartwick, 1974; Ogawa & Fujita, 1980). Rosen
(1974) describes the relationship between providers and
buyers by proposing the hedonic theory, and this theory
is now widely used to describe housing rent. However,
Ellickson (1981) suggested that hedonic prices are not suf-
ficient to describe travelers’ behavior. To better model this
behavior, recent studies have adopted the random utility
theory (e.g., the logit model) when modeling the housing
location choice (Ben-Akiva & Bowman, 1998; Bhat & Guo,
2004; Zondag & Pieters, 2005). Various types of factors
influencing houses and households have been considered,
such as the house sizes and neighborhood environments,
family structures, distances from schools, and networks
(Schirmer et al., 2014) in the utility function used to
determine housing location choices.
In a housing location choice model, travel cost is one

of the most important determinants of the housing loca-
tion. This cost is a measure of the transportation network
performance and has been widely studied and analyzed in
the context of transportation network and city planning
and management. Wardrop (1952) first used the concept
of supply and demand equilibrium in economics to the
transportation problem, and the traffic equilibrium prob-
lems have since receivedmuch attention in recent decades.
Generally, there are two main modeling approaches in
these studies: discrete modeling or continuum modeling.
The first involves a conventional traffic equilibriummodel
that has been adapted for a detailed transportation prob-
lem. In this approach, travel demands are concentrated
at zone centroids and connected to road links, which are
modeled separately (Lee & Boyces, 2004). In contrast,
the latter assumes that the transportation system is very
dense. Thus, the characteristics, or transportation vari-
ables (e.g., traffic density, travel demand, and local travel
cost), are assumed to be continuous and can be described
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using smooth mathematical functions (Vaughan, 1987).
These two modeling approaches have also been explored
extensively in the literature and applied to various types
of problems. The discrete modeling approach is more
suitable for detailed transportation network management
and analysis problems. For example, Bell et al. (1999)
applied the discrete modeling approach to a road network
reliability analysis, and Yin and Lawphongpanich (2006)
and Nagurney et al. (2010) used this approach to study the
relationship between a road network and traffic emissions.
The continuum modeling approach has the following
benefits over the discrete modeling approach (Blumen-
feld, 1977; Du et al., 2013; Ho & Wong, 2007). First, the
continuum modeling approach reduces the problem size
when modeling a dense transportation network because it
approximates the region as a continuum instead of mod-
eling each of the links/nodes. Second, because it is not
necessary to define each link/node in the modeled region,
the continuum approach requires less data for model
building and is more suitable for initial-stage planning,
when data availability is typically limited. This approach
therefore has advantages when addressing housing alloca-
tion problems in city planning. Third, because no links or
nodes are considered, the continuum modeling approach
places a greater focus on the trends and patterns that lead
to a better understanding of various global characteris-
tics of the modeling region, such as travel demand, land
development intensity, and travel cost.
Today, traffic-related emissions are of particular con-

cern (International-Energy-Agency, 2006) with respect
to the various adverse impacts of traffic on the envi-
ronment (e.g., vehicle emissions and noise pollution;
Rodrigue et al., 2016). In the literature, both macro- and
microscale approaches to traffic emission problems have
been described (Nejadkoorki et al., 2008). Generally, a
macroscale approach is used to consider an emission prob-
lem affecting a large area (e.g., city or country) for a long
period of time (e.g., 1 year or season). This type of approach
generally includes averaged and aggregated parameters.
Well-known models based on a macroscale approach are
MOBILE (EPA, 1994) and EMFAC (CARB, 2006). Com-
pared with the microscale approach, the macro-scale
approach needs less computational cost but is inaccurate.
In contrast, the microscale approach uses vehicle engine
or vehicle speed/acceleration data to estimate the vehi-
cle emissions rate. Some well-known models based on the
microscale approach are the VT-Micro (Ahn et al., 1999),
VERSIT (Smit et al., 2007), and motor vehicle emission
simulator (MOVES) models (Vallamsundar & Lin, 2011).
In addition to emissions, the dispersion of air and

atmospheric pollutants (e.g., NO𝑥 and CO2) should also
be considered to ensure an accurate evaluation of the
concentrations of these pollutants over the region of

interest (e.g., city). The dispersion of air pollution near the
Earth’s surface is affected by turbulent eddy motion of the
wind. Accordingly, the concentration of a pollutant can
be determined by using an advection–diffusion equation.
Many different dispersion models have been derived
(Ermak, 1977; Stockie, 2011). The Gaussian dispersion
model (Hickman & Colwill, 1982; Stockie, 2011) is used
extensively to simulate the dispersion of air pollution over
local and urban areas and can be subclassified as a Gaus-
sian plume dispersion (Loos et al., 2003; Turner & Hurst,
2001) or Gaussian puff dispersion (Fallah-Shorshani
et al., 2017; Hargreaves & Baker, 1997). A Gaussian plume
dispersion describes a source that continuously emits a
contaminant, whereas a Gaussian puff dispersion refers
to a nearly instantaneous emission of a contaminant
(i.e., occurring over a relatively short time interval).
The Gaussian dispersion model (Yin et al., 2017) and a
three-dimensional advection–diffusion equation (Yang
et al., 2019) have been used recently to model air pollutant
concentrations more realistically.
Governments have introduced housing allocation poli-

cies to manage air emissions from vehicles and reduce
health cost. Although governments make policies, the
effectiveness of the policies depends on the actions of the
citizens, who choose their housing locations and influ-
ence the traffic demand. Given this characteristic, bilevel
optimization models have been widely adopted to study
these types of problem, such as housing allocation (Boyce
& Mattsson, 1999; Lin et al., 2021; Yin et al., 2017), high-
way road pricing (labbé et al., 1998), and ship air emissions
(Qi et al., 2021). In these bilevel models, the lower level
subprogram is a traffic equilibrium problem that provides
the network conditions (e.g., travel time) to the upper level
subprogram, which addresses the housing allocation, such
that the planning objectives are optimized (e.g., total disu-
tility of travelers is minimized). Boyce andMattsson (1999)
were among the first researchers to use a bilevel model to
study the connection between housing location and traffic
based on a discrete modeling approach. Yin et al. (2013)
updated this bilevel model by incorporating the envi-
ronmental factor. However, all of the above studies only
addressed static problems and did not consider temporal
variations in various parameters (e.g., demand, travel time)
in their solutions of integrated land-use, transportation,
and environment problems (Yin et al., 2013, 2017).
In this paper, a bilevel model is used to consider a hous-

ing allocation problem. In the lower level subprogram,
the housing decision (i.e., housing location choice) and
travel choices (i.e., departure time and route choices) are
determined based on a given housing allocation, for which
a predictive dynamic continuum user-optimal (PDUO-C)
model (Du et al., 2013) is used to describe traffic flow. The
housing location choices of travelers is assumed to depend
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on housing rent costs, traffic-related costs, and air quality,
the latter of which is affected only by traffic emissions. In
traffic analysis, not all of the analyzed quantities can be
reasonably defined in links and nodes, which is a require-
ment of the discrete modeling approach. For example,
although air pollutants are emitted by vehicles traveling on
roads/links, the dispersion of these air pollutants is contin-
uous over the residential and commercial areas of an entire
city (Stockie, 2011). Continuum models can directly and
precisely estimate continuously varying quantities (e.g.,
the concentration of air pollutants) and incorporate them
into the analysis. Fixed sources of emissions is considered
in Yang et al. (2022), in which a plant located at themargin
of the city has a strong effect on the nearby location, espe-
cially downwind of the plant, because the emission rate
of the plant is much higher than that of vehicles. At the
upper level, the health cost is minimized (Yang et al., 2022)
by choosing the optimal additional housing allocation and
updating the housing allocation accordingly.
Traffic emission is recognized as one of the key concerns

of the transportation industry. The interaction between
land use and transportation is bidirectional, and hous-
ing location choice is a fundamental aspect of land use.
Thus, housing allocation patterns define travel demand
and related travel patterns and determine vehicle emis-
sions. In addition, air quality influences housing location
choice. Owing to its importance and usefulness, a housing
allocation problem incorporating air quality has long been
a primary concern of researchers, planners, and decision
makers (Barthelemy, 2016). This study considers a hous-
ing allocation problem by incorporating vehicle emissions
in a city with a single central business district (CBD) into
a bilevel model and examining the connection between
housing allocation and traffic emissions. The housing allo-
cation model devised in the current study is based on the
dispersion model of air pollutants devised by Yang et al.
(2019) and the housing location choice model developed
by Yang et al. (2022). Our aim is to establish an integrated
land-use, transportation, and environment model to pro-
vide an evaluation/design tool for planners. This study
makes the following two contributions. First, a bilevel pre-
dictive dynamic continuum transportation model is used
to consider a housing allocation problem in which the
health cost is defined in terms of the effects of vehicle emis-
sions and set as the optimal objective in an upper level
subprogram. This is different from the traditional opti-
mal objective to minimize the total amount of emissions.
Second, a predictive traffic model to describe commuter
activity in the housing allocation problem is used. As com-
muters travel to the CBD each day and are very familiar
with local transportation, they have perfect information
about transportation and the predictive model is suitable
for studying city commuter activity in a housing allocation
model.

This paper is organized as follows. Section 2 gives the
formulation of the bilevel dynamic continuummodel. Sec-
tion 3 introduces the solution algorithms. Section 4 uses
a numerical example to demonstrate the characteristics of
the model and the effectiveness of the solution algorithm.
Finally, Section 5 presents our conclusions.

2 MODEL FORMULATION

To facilitate the presentation of essential ideas, the follow-
ing assumptions are adopted in this paper:

A1 The proposed model falls within the category of con-
tinuummodeling approaches for the network equilib-
rium problem. The road network considered in this
study is relatively dense and is approximated as a con-
tinuum. Travelers (or vehicles) are free to travel in both
the x and y directions within the modeling region (Du
et al., 2013; Ho et al., 2006; Yang et al., 2022).

A2 Travelers have perfect information about traffic con-
ditions (e.g., flows, travel times) over time and are
familiar with the modeling region (Du et al., 2013;
Yang et al., 2022).

A3 Only trips from travelers’ home locations to theCBDor
from the CBD back to their home locations are consid-
ered (Yang et al., 2020). Other trips (e.g., trips between
the home locations of different travelers) are ignored.

A4 The modeling period T covers a complete day and is
divided into two subperiods: 𝑇1 and 𝑇2. During 𝑇1, all
travelers travel from their home locations toCBDs, and
no travelers leave the CBDs. During 𝑇2, all travelers
travel from CBDs back to their home locations, and no
travelers travel to the CBDs (Yang et al., 2019).

A5 Variations of topography within the modeling region
are negligible, and the ground surface (i.e., 𝑧 = 0) can
be taken as the plane (Stockie, 2011; Yang et al., 2019).

A6 Transport-related air pollutants are emitted froma sur-
face source at the ground surface (i.e., 𝑧 = 0; Stockie,
2011; Yang et al., 2019).

A1 and A2 are the basic assumptions for the predictive
continuum model. For A3 and A4, as urban commuter
activity is the focus in this paper and this activity is domi-
nant in city transportation systems, other travel behavior is
ignored. In future studies, multiple travel activities will be
considered and these two assumptions are relaxed. A5 and
A6 can be relaxed in future studies by considering varia-
tions in topography (Britter&Hanna, 2003). Also, different
eddy diffusivities𝐾(⋅) for different land-use characteristics
will be considered, such as high-rise building clusters and
open spaces.
Consider an urban citywith an arbitrary shape and a sin-

gle CBD (Figure 1) as the modeling region of this study.
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F IGURE 1 An example of a modeling domain. Abbreviations:
CBD, central business district.

Let the modeling region be Ω and the outer boundary
be Γ𝑜. The boundary of CBD is denoted by Γ𝑐. Then, let
Γ = Γ𝑜 ∪ Γ𝑐 be the boundary of Ω. Note that the domain
Ω is a two-dimensional region, but the related bound-
ary Γ is a one-dimensional curve. The travel demand in
Ω is assumed to be distributed continuously. All employ-
ment and business activities are assumed to occur within
the CBD, thus requiring residents to travel back and forth
between their home locations and the CBD. Note that trav-
elers will select departure times and route to minimize the
costs of this back-and-forth travel.
The flow vector of travelers at location (𝑥, 𝑦) ∈

Ω and time 𝑡 ∈ 𝑇𝑗 is defined as 𝐟 (𝑥, 𝑦, 𝑡) =

(𝑓1(𝑥, 𝑦, 𝑡), 𝑓2(𝑥, 𝑦, 𝑡)), where 𝑓1(𝑥, 𝑦, 𝑡) and 𝑓2(𝑥, 𝑦, 𝑡) are
the flow-fluxes in the 𝑥 and 𝑦 directions, respectively. 𝑇𝑗 =

[𝑡
𝑗

𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔
, 𝑡

𝑗

𝑒𝑛𝑑
] denotes the 𝑗-th modeling period. In this

study, 𝐽 denotes the total number of modeling periods, and
𝐽 = 2 (i.e., 𝑗 ∈ {1, 2}). Let 𝑇 = 𝑇1 ∪ 𝑇2 represent the com-
plete modeling period, where 𝑇1 and 𝑇2 indicate the mod-
eling periods duringwhich travelersmove from their home
locations to the CBD and vice versa, respectively. This flow
vector is dependent on the density, 𝜌(𝑥, 𝑦, 𝑡), and velocity
vectors, 𝐯(𝑥, 𝑦, 𝑡), of the corresponding location (𝑥, 𝑦) and
time (𝑡), and is defined by the following Equation (1):

𝐟 (𝑥, 𝑦, 𝑡) = 𝜌 (𝑥, 𝑦, 𝑡) 𝐯 (𝑥, 𝑦, 𝑡) (1)

Using Equation (1) and the velocity vector (𝐯(𝑥, 𝑦, 𝑡)),
flow intensity (i.e., the norm of the flow vector) is
defined as |𝐟 (𝑥, 𝑦, 𝑡)| = 𝜌(𝑥, 𝑦, 𝑡)𝑉(𝑥, 𝑦, 𝑡). Define
𝐯(𝑥, 𝑦, 𝑡) = (𝑣1(𝑥, 𝑦, 𝑡), 𝑣2(𝑥, 𝑦, 𝑡)) as travelers’ veloc-
ity vector, where 𝑣1(𝑥, 𝑦, 𝑡) and 𝑣2(𝑥, 𝑦, 𝑡) are the velocities
in the 𝑥 and 𝑦 directions, respectively. Define 𝑉(𝑥, 𝑦, 𝑡)

as the speed (in km∕h), which is derived by the corre-
sponding velocity vector (i.e., 𝑉(𝑥, 𝑦, 𝑡) = |𝐯(𝑥, 𝑦, 𝑡)|) and
is defined as:

𝑉 (𝑥, 𝑦, 𝑡) = 𝑉𝑓 (𝑥, 𝑦) exp [−𝜁 (𝑥, 𝑦) 𝜌 (𝑥, 𝑦, 𝑡)] (2)

where 𝑉𝑓(𝑥, 𝑦) is the free-flow speed of the travelers,
𝜌(𝑥, 𝑦, 𝑡) is the density, and 𝜁(𝑥, 𝑦) is positive parameter at
location (𝑥, 𝑦) ∈ Ω. The local travel cost, 𝑐(𝑥, 𝑦, 𝑡), satisfies:

𝑐 (𝑥, 𝑦, 𝑡) =
𝜅

𝑉 (𝑥, 𝑦, 𝑡)
+ 𝜅𝜋 (𝜌 (𝑥, 𝑦, 𝑡)) (3)

where 𝜅 is value of time. 𝜅

𝑉(𝑥,𝑦,𝑡)
represents the cost related

to travel time. The second term in Equation (3) represents
other costs that depend on vehicle density, such as the
perceived difficulties of lane-changing and crash risks in
a crowded condition with an identical travel time to that
represented by the first term. The total travel cost (in $)
𝑙(𝑥, 𝑦, 𝑡) is defined as:

𝑙 (𝑥, 𝑦, 𝑡) = 𝑝 (𝑥, 𝑦, 𝑡) + 𝜙 (𝑥, 𝑦, 𝑡) (4)

where 𝜙(𝑥, 𝑦, 𝑡) is travel cost potential of the traveler based
on the optimal departure time and route choice deter-
mined from the lower level subprogram (Section 2.1) to
(1) travel from home to the CBD (i.e., going to work) or
(2) depart from the CBD to back home (i.e., returning
home). Here, 𝑝 is schedule delay cost. This schedule delay
cost is a penalty for an early or late arrival and depends
on 𝑡 + 𝐼(𝑥, 𝑦, 𝑡), where 𝐼 denotes travel time of travelers
from point (𝑥, 𝑦) traveling to the CBD (or in the reverse
direction). The details of 𝑝(𝑥, 𝑦, 𝑡) will be discussed next.
Using the cost potentials at different times, the average
transportation cost between location (𝑥, 𝑦) and the CBD,
Φ(𝑥, 𝑦, 𝑡), is defined as:

Φ (𝑥, 𝑦) =
1|𝑇2| ∫𝑇2

𝜙 (𝑥, 𝑦, 𝑡) 𝑑𝑡 +
1|𝑇1| ∫𝑇1

𝜙 (𝑥, 𝑦, 𝑡) 𝑑𝑡

(5)
Using the average transportation cost as defined in

Equation (5), the total perceived travel cost between loca-
tion (𝑥, 𝑦) and the CBD, 𝑃(𝑥, 𝑦), is defined as follows:

𝑃 (𝑥, 𝑦) = 𝜃 + 𝑆 (𝑄) + Φ (𝑥, 𝑦) (6)

where 𝜃 represents the travelers’ preference for the CBD
and 𝑆(𝑄) is the internal operating cost of traffic (e.g., park-
ing cost, local circulation cost) within theCBDand is relied
on total travel demand attracted to that CBD, 𝑄, which is
defined as:

𝑄 = ∫
𝑇1 ∫∫Ω 𝑞 (𝑥, 𝑦, 𝑡) 𝑑Ω𝑑𝑡 (7)

Here, 𝑞(𝑥, 𝑦, 𝑡) is travel demand. Based on 𝑞(𝑥, 𝑦, 𝑡),
the related total travel demand during modeling period
𝑗 is defined as 𝑞𝑗(𝑥, 𝑦) = ∫

𝑇𝑗 𝑞(𝑥, 𝑦, 𝑡)d𝑡. Using the
above fundamental definitions, the formulations of the
various models applied in this study are introduced in the
following subsections.
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YANG et al. 2581

2.1 Lower level model

Traffic flow within the modeling region is modeled using
the PDUO-C model, which serves as the lower level of
the bilevel model in this study. The PDUO-C model is
used to explore the combined choices of travelers with
respect to housing location, route, and departure time,
based on the air quality, perceived travel cost, and housing
rent.

2.1.1 PDUO-C model

This study assumes that travelers are very familiar to the
transportation in the city because they commute to the
CBD each day. As in Yang et al. (2019), the PDUO-Cmodel
can be divided into two periods for modeling the route
choices within an entire day. The PDUO-C model of trav-
elers traveling to the CBD (𝑗 = 1) is defined as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌𝑡 + ∇ ⋅ 𝐟 = 𝑞

𝐟 = −𝜌𝑉
∇𝜙|∇𝜙|

𝐟 (𝑥, 𝑦, 𝑡) ⋅ 𝐧(𝑥, 𝑦) = 0 ∀(𝑥, 𝑦) ∈ Γ ⧵ Γ𝑐

𝜌(𝑥, 𝑦, 𝑡1
𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔

) = 𝜌0(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Ω

(8)

⎧⎪⎪⎨⎪⎪⎩

1

𝑉
𝜙𝑡 − |∇𝜙| = −𝑐

𝜙 (𝑥, 𝑦, 𝑡) = 𝜙𝐶𝐵𝐷 ∀ (𝑥, 𝑦) ∈ Γ𝑐

𝜙
(
𝑥, 𝑦, 𝑡1

𝑒𝑛𝑑

)
= 𝜙10 (𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω

(9)

where 𝜌𝑡 = 𝜕𝜌(𝑥, 𝑦, 𝑡)∕𝜕𝑡, ∇ ⋅ 𝐟 = (𝜕𝑓1(𝑥, 𝑦, 𝑡)∕𝜕𝑥) +

(𝜕𝑓2(𝑥, 𝑦, 𝑡)∕𝜕𝑦), and 𝜙𝑡 = 𝜕𝜙∕𝜕𝑡; 𝐧(𝑥, 𝑦) represent the
outer boundary’s unit normal vector, and 𝜙𝐶𝐵𝐷 is value of
𝜙 on the boundary of the CBD. Based on the analysis in
Du et al. (2013), when travel cost 𝜙 is the integral over the
local unit travel cost 𝑐(⋅) and satisfies the Hamilton–Jacobi
equation, the travelers traveling along direction ∇𝜙 satisfy
the predictive dynamic user-optimal condition. This study
assumes that the densities will be zero at the start (i.e.,
𝜌(𝑥, 𝑦, 𝑡1

𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔
) = 0). Accordingly, 𝜙10 can be solved by

considering the following 2D Eikonal equation:

⎧⎪⎨⎪⎩
|||∇𝜙10 (𝑥, 𝑦)||| = 𝑐

(
𝑥, 𝑦, 𝑡1

𝑒𝑛𝑑

)
∀ (𝑥, 𝑦) ∈ Ω

𝜙10 (𝑥, 𝑦) = 𝜙𝐶𝐵𝐷 ∀ (𝑥, 𝑦) ∈ Γ𝑐

(10)

Similarly, model formulation of the second part (𝑗 = 2)
is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌𝑡 + ∇ ⋅ 𝐟 = 𝑞

𝐟 = −𝜌𝑉
∇𝜙|∇𝜙|

𝐟 (𝑥, 𝑦, 𝑡) ⋅ 𝐧 (𝑥, 𝑦) = 0 ∀ (𝑥, 𝑦) ∈ Γ ⧵ Γ𝑐

𝜌
(
𝑥, 𝑦, 𝑡1

𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔

)
= 𝜌0 (𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω

(11)

⎧⎪⎪⎨⎪⎪⎩

1

𝑉
𝜙𝑡 − |∇𝜙| = −𝑐

𝜙 (𝑥, 𝑦, 𝑡) = 𝜙𝐶𝐵𝐷 ∀ (𝑥, 𝑦) ∈ Γ𝑐

𝜙
(
𝑥, 𝑦, 𝑡1

𝑒𝑛𝑑

)
= 𝜙10 (𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω

(12)

Then, 𝜙20 can be solved by considering the following 2D
Eikonal equation (Equation 13):

⎧⎪⎪⎨⎪⎪⎩

1

𝑉
𝜙𝑡 − |∇𝜙| = −𝑐

𝜙 (𝑥, 𝑦, 𝑡) = 𝜙𝐶𝐵𝐷 ∀ (𝑥, 𝑦) ∈ Γ𝑐

𝜙
(
𝑥, 𝑦, 𝑡1

𝑒𝑛𝑑

)
= 𝜙10 (𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ Ω

(13)

2.1.2 Departure time

Beyond the definition of the travelers’ route choice in
the last subsection, the travelers’ departure time choice is
also an important component of a dynamic traffic assign-
ment (DTA) problem. Before introducing the departure
time choice model, the schedule delay cost should first be
defined. According Du et al. (2013), the travel time 𝐼(𝑥, 𝑦)
satisfies:

1

𝑉
𝐼𝑡 (𝑥, 𝑦, 𝑡) − |∇𝐼 (𝑥, 𝑦, 𝑡)| = −

1

𝑉 (𝑥, 𝑦, 𝑡)
(14)

Using this travel time, 𝐼(𝑥, 𝑦, 𝑡), the schedule delay cost,
𝑝(𝑥, 𝑦, 𝑡), is defined as follows:

𝑝 (𝑥, 𝑦, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝛾1

[(
𝑡𝑗∗ − ∇

)
− 𝑡𝑎𝑟𝑣

]
, 𝑡𝑎𝑟𝑣 ∈

[
0, 𝑡𝑗∗ − ∇

)
,

0 𝑡𝑎𝑟𝑣 ∈
[
𝑡𝑗∗ − ∇, 𝑡𝑗∗ + ∇

]
,

𝛾2
[
𝑡𝑎𝑟𝑣 −

(
𝑡𝑗∗ + ∇

)]
, 𝑡𝑎𝑟𝑣 ∈

(
𝑡𝑗∗ + ∇,∞

)
(15)

where 𝑡𝑎𝑟𝑣 = 𝑡 + 𝐼(𝑥, 𝑦, 𝑡) is actual arrive time that depar-
ture from time 𝑡, 𝑡𝑗∗ is desired arrival time, ∇, 𝛾1 and
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2582 YANG et al.

𝛾2 are both positive scalars that define the values of time
for early and late arrivals, respectively. According to pre-
vious empirical studies (Small, 1982), this study assumes
that 𝛾2 > 𝜅 > 𝛾1. Given the above definition of a schedule
delay cost, (𝑝(𝑥, 𝑦, 𝑡)), total travel cost, (𝑙(𝑥, 𝑦, 𝑡)), can be
calculated using Equation (4).
Given the distribution of the travel demand, 𝑞, 𝑙 can

be computed using the PDUO-C model defined in Sec-
tion 2.1.1. Thus, the total travel cost can be denoted as
𝑙(𝑥, 𝑦, 𝑡) = 𝑙(𝑥, 𝑦, 𝑡, 𝐪𝐣), and the minimum total travel cost
of the travelers during modeling period 𝑗, 𝑙𝑗(𝑥, 𝑦, 𝐪𝐣), can
be defined as:

𝑙𝑗
(
𝑥, 𝑦, 𝐪𝑗

)
= 𝑒𝑠𝑠𝑖𝑛𝑓

{
𝑙
(
𝑥, 𝑦, 𝑡, 𝐪𝑗

)
, ∀𝑡 ∈ 𝑇𝑗

}
(16)

Similar to Yang et al. (2022), this minimum total travel
cost can be used to define the principle for dynamic user-
optimal condition with departure-time consideration, as
follows:

Definition 1. The dynamic user-optimal condition with
departure-time consideration is satisfied during the mod-
eling period, 𝑗, if the following equation is satisfied:

⎧⎪⎨⎪⎩
𝑙
(
𝑥, 𝑦, 𝑡, 𝐪𝑗

)
= 𝑙𝑗

(
𝑥, 𝑦, 𝐪𝑗

)
, if𝑞 (𝑥, 𝑦, 𝑡) > 0

𝑙
(
𝑥, 𝑦, 𝑡, 𝐪𝑗

) ≥ 𝑙𝑗
(
𝑥, 𝑦, 𝐪𝑗

)
, if 𝑞 (𝑥, 𝑦, 𝑡) = 0

(17)

where Λ𝑗 = {𝐪𝑗 ∶ 𝑞(𝑥, 𝑦, 𝑡) ≥ 0, ∫
𝑇𝑗 𝑞(𝑥, 𝑦, 𝑡)dt = 𝑞𝑗(𝑥, 𝑦)}

denotes the feasible set of travel demands, 𝐪𝑗 .
From Equation (17), the dynamic user-optimal condi-

tion ensures that for each traveler departing from the
same position at any time, the total travel cost is equal
and minimized. In other words, no traveler in the sys-
tem can reduce their total travel cost by changing their
departure time and/or route choice. Based on the above
optimality condition, the equivalent variational inequal-
ity formulation adopted to solve the departure time
and route choice problem is defined by the following
theorem.

Theorem 1. The dynamic user-optimal condition in Defi-
nition 1 is equivalent to the following variational inequality
problem (Equation 18) in modeling period j: Find 𝐪𝑗∗ ∈ Λ𝑗

so that for all 𝐪𝑗 ∈ Λ𝑗 ,

∫ ∫
Ω
∫
𝑇𝑗

𝑙
(
𝑥, 𝑦, 𝑡, 𝑞𝑗∗

)
(𝑞 (𝑥, 𝑦, 𝑡) − 𝑞∗ (𝑥, 𝑦, 𝑡)) 𝑑𝑡𝑑Ω ≥ 0

(18)

Detailed proof of the equivalency of this variational
inequality problem to the dynamic user-optimal condi-

tion with departure-time consideration (Equation 17) is
presented in Yang et al. (2022).

2.1.3 Emission and dispersion model

In this study, the travel cost, housing rent, and air quality
in a residential location are assumed to affect the hous-
ing location choices of the travelers or residents. The travel
cost and housing rent at a location, which are based on the
travel demand at that location, can be determined using
the above PDUO-Cmodel. The air quality in an urban city
is directly affected by traffic-related emissions. In the liter-
ature, most of the developed vehicle emissionmodels were
established at a microscopic level (i.e., individual vehi-
cles) and depend on the instantaneous vehicular speed and
acceleration (Ahn et al., 1999; Yang et al., 2019). Thesemod-
els cannot be applied directly in this study, as the PDUO-C
model is formulated at the macroscopic level. Thus, the
macroscopic emissionmodel proposed in Yang et al. (2022)
is adopted to determine the traffic-related emissions in this
study (Equation 19).

Ψ(𝑥, 𝑦, 𝑡) = 𝜓(𝑉, 𝑎) +
1

2

𝜕2𝜓(𝑉, 𝑎)

𝜕(𝑈)
2

(𝜎𝑉)
2

+
1

2

𝜕2𝜓(𝑉, 𝑎)

𝜕(𝑠)
2

(𝜎𝑎)
2 (19)

where Ψ(𝑥, 𝑦, 𝑡) is macroscopic emission rate that
describes average emission rate. 𝑉 = 𝑉(𝑥, 𝑦, 𝑡) and
𝑎 = 𝑎(𝑥, 𝑦, 𝑡) ( 𝜎𝑉 = 𝜎𝑉(𝑥, 𝑦, 𝑡) and 𝜎𝑎(𝑥, 𝑦, 𝑡)) are
the mean (standard deviation) of the instanta-
neous speed (𝑈 = 𝑈(𝑥, 𝑦, 𝑡)) and instantaneous
acceleration (𝑠 = 𝑠(𝑥, 𝑦, 𝑡)), respectively. Accord-
ing to Yang et al. (2020), 𝑈(𝑥, 𝑦, 𝑡) and 𝑠(𝑥, 𝑦, 𝑡)

are random variables that follow certain normal
distributions (i.e., 𝑈(𝑥, 𝑦, 𝑡) ∼ 𝑁(𝑉(𝑥, 𝑦, 𝑡), 𝜎𝑉) and
𝑠(𝑥, 𝑦, 𝑡) ∼ 𝑁(𝑎(𝑥, 𝑦, 𝑡), 𝜎𝑎)). The macroscopic emission
model (Equation 19) is then derived by applying the Taylor
expansion of the microscopic emission model in Ahn et al.
(1999) (Equation 20) up to second-order terms (Yang et al.,
2020)

𝜓(𝑥, 𝑦, 𝑡) = 𝜓 (𝑈 (𝑥, 𝑦, 𝑡) , 𝑠 (𝑥, 𝑦, 𝑡))

= exp

[
3∑

𝑖=0

3∑
𝑘=0

𝑤𝑖,𝑘[𝑈 (𝑥, 𝑦, 𝑡)]
𝑖
[𝑠 (𝑥, 𝑦, 𝑡)]

𝑘

]
(20)

where 𝜔𝑖,𝑘 is model regression coefficient. This value dif-
fers for various types of emissions (e.g., hydrocarbons, CO,
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YANG et al. 2583

or NO𝑥), which are given by Ahn et al. (1999) and Yang
et al. (2022). The emission rate is dependent on the vehi-
cle speed and acceleration, which are affected by the level
of traffic congestion. Thus, traffic congestion affects both
delays (i.e., travelers’ loss of time) and levels of emissions
(i.e., health impacts on travelers/residents). In summary,
𝑈(𝑥, 𝑦, 𝑡), 𝑠(𝑥, 𝑦, 𝑡), and 𝜓(𝑥, 𝑦, 𝑡) are defined at a micro-
scopic level (i.e., for a single vehicle), whereas 𝑉(𝑥, 𝑦, 𝑡),
𝑎(𝑥, 𝑦, 𝑡), and Ψ(𝑥, 𝑦, 𝑡) are defined at the macroscopic
level when individual vehicles (based on the macroscopic
model) cannot be distinguished. The instantaneous accel-
eration (𝑎(𝑥, 𝑦, 𝑡)) for travelers along their PDUO-C route
satisfy (Yang et al., 2022):

𝑎 (𝑥, 𝑦, 𝑡) =
𝑎1 (𝑥, 𝑦, 𝑡) 𝜙𝑥 (𝑥, 𝑦, 𝑡) + 𝑎2 (𝑥, 𝑦, 𝑡) 𝜙𝑦 (𝑥, 𝑦, 𝑡)√

[𝜙𝑥 (𝑥, 𝑦, 𝑡)]
2
+
[
𝜙𝑦 (𝑥, 𝑦, 𝑡)

]2
(21)

where 𝑎1(𝑥, 𝑦, 𝑡) and 𝑎2(𝑥, 𝑦, 𝑡) represent the accelerations
in the 𝑥 and 𝑦 directions, respectively, at location (𝑥, 𝑦)

and time 𝑡, 𝜙𝑥(𝑥, 𝑦, 𝑡) = 𝜕𝜙(𝑥, 𝑦, 𝑡)∕𝜕𝑥 and 𝜙𝑦(𝑥, 𝑦, 𝑡) =

𝜕𝜙(𝑥, 𝑦, 𝑡)∕𝜕𝑦. 𝑎1(𝑥, 𝑦, 𝑡) and 𝑎2(𝑥, 𝑦, 𝑡) are further defined
as:

𝑎1 (𝑥, 𝑦, 𝑡) =
𝜕𝑣1 (𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝑣1 (𝑥, 𝑦, 𝑡)

𝜕𝑣1 (𝑥, 𝑦, 𝑡)

𝜕𝑥

+ 𝑣2 (𝑥, 𝑦, 𝑡)
𝜕𝑣1 (𝑥, 𝑦, 𝑡)

𝜕𝑦
(22)

𝑎2 (𝑥, 𝑦, 𝑡) =
𝜕𝑣2 (𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝑣1 (𝑥, 𝑦, 𝑡)

𝜕𝑣2 (𝑥, 𝑦, 𝑡)

𝜕𝑥

+ 𝑣2 (𝑥, 𝑦, 𝑡)
𝜕𝑣2 (𝑥, 𝑦, 𝑡)

𝜕𝑦
(23)

This study assumes that the vehicle exhaustwill disperse
via turbulent diffusion and wind advection, and therefore
the exhaust concentration satisfies the below equation:

𝜕𝐶 (⋅)

𝜕𝑡
+ ∇ ⋅

(
𝐶 (⋅) 𝑢𝑓 (⋅)

)
=

𝜕

𝜕𝑥

(
𝐾𝑥

𝜕𝐶 (⋅)

𝜕𝑥

)
+

𝜕

𝜕𝑦

(
𝐾𝑦

𝜕𝐶 (⋅)

𝜕𝑦

)
+

𝜕

𝜕𝑧

(
𝐾𝑧

𝜕𝐶 (⋅)

𝜕𝑧

)
+ �̂� (⋅) (24)

where 𝐶(⋅) = 𝐶(𝑥, 𝑦, 𝑧, 𝑡) is the air pollutant concentration
at location (𝑥, 𝑦, 𝑧) and time 𝑡, 𝐮𝑓 = 𝐮𝑓(𝑥, 𝑦, 𝑧, 𝑡) repre-
sents vector of wind velocity; and𝐾𝑥,𝐾𝑦, and𝐾𝑧 represent
the eddy diffusivities, �̂�(⋅) = �̂�(𝑥, 𝑦, 𝑧, 𝑡) = �̂�0(𝑥, 𝑦, 𝑧, 𝑡) +

�̂�𝑡(𝑥, 𝑦, 𝑧, 𝑡) (in kg∕km3h) is the source term used to define
the source of air pollutants (i.e., 𝐶(𝑥, 𝑦, 𝑧, 𝑡)) at location

(𝑥, 𝑦, 𝑧) at time 𝑡, where �̂�𝑡(𝑥, 𝑦, 𝑧, 𝑡) represents the air
pollutants from traffic and �̂�0(𝑥, 𝑦, 𝑧, 𝑡) represents the air
pollutants fromother sources (e.g., power plants, residents’
activities). The source terms are

�̂�𝑡 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛿 (𝑧) 𝜌 (𝑥, 𝑦, 𝑡) Ψ (𝑥, 𝑦, 𝑡) (25)

�̂�0 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛿 (𝑧) 𝜚 (𝑥, 𝑦, 𝑡) (26)

where 𝛿(𝑧) (in km−1) is the Dirac delta function, and
𝜚(𝑥, 𝑦, 𝑡) represents emission rate of the other sources, and
Ψ(𝑥, 𝑦, 𝑡) is the emission rate of vehicles at a macroscopic
level.

2.1.4 Housing location choice

In the above section, the total travel demand 𝑞(𝑥, 𝑦) is
always given, where pass superscript j for simplicity. This
term is now defined in this subsection. This paper assumes
that travelers choose their housing location according to
the total travel cost, housing rent, and air quality dis-
tribution in the city. The housing allocation problem is
incorporated into the transportation equilibrium problem
by the following equation:

𝑞 (𝑥, 𝑦) = 𝑄
𝑒𝑥𝑝 (−�̂�𝜎 (𝑥, 𝑦))

∫∫
Ω
𝑒𝑥𝑝 (−�̂�𝜎 (𝑥, 𝑦)) 𝑑Ω

(27)

where 𝑄 is total travel demand in modeling region Ω,
𝜎(𝑥, 𝑦) is housing utility function, and �̂� is a positive scalar
parameter. Similar to Yang et al. (2022), the housing util-
ity function, 𝜎(𝑥, 𝑦), which depends on total travel cost,
housing rent, and air quality, is satisfied:

𝜎 (𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) + 𝜏 (𝑥, 𝑦) + 𝑟 (𝑥, 𝑦) (28)

where 𝑃(𝑥, 𝑦) is the the total perceived travel cost as
defined in Equation (6). 𝜏(𝑥, 𝑦) represents travelers’ per-
ception of air quality, which is assumed to share a linear
relationshipwith the average local pollutant concentration
(�̄�(𝑥, 𝑦, 0), and is defined by:

𝜏 (𝑥, 𝑦) = 𝜉�̄� (𝑥, 𝑦, 0) (29)

where 𝜉 represents the sensitivity of the travelers to the
air quality, and �̄�(𝑥, 𝑦, 0) = 1|𝑇| ∫𝑇 𝐶(𝑥, 𝑦, 0, 𝑡)d𝑡 is the aver-
age local pollutant concentration at ground level. 𝑟(𝑥, 𝑦) is
housing rent, and is defined by:

𝑟 (𝑥, 𝑦) = 𝛼 (𝑥, 𝑦)

(
1 +

𝛽 (𝑥, 𝑦) 𝑞 (𝑥, 𝑦)

𝐻 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦)

)
(30)
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2584 YANG et al.

where 𝛼(𝑥, 𝑦) and 𝛽(𝑥, 𝑦) is a scalar parameter, 𝐻 is total
housing-supply density. This latter variable satisfies:

𝐻 (𝑥, 𝑦) = ℎ0 (𝑥, 𝑦) + ℎ (𝑥, 𝑦) (31)

where ℎ0(𝑥, 𝑦) is the existing housing provision density.
Note that 𝐻(𝑥, 𝑦) at any location (𝑥, 𝑦) should be greater
than 𝑞.
In addition to housing location choice, the travel

demand, (𝑞(𝑥, 𝑦, 𝑡)), is also dependent upon depar-
ture time choice and can be written as 𝑞(𝑥, 𝑦, 𝑡) =

𝑞(𝑥, 𝑦)𝑔(𝑥, 𝑦, 𝑡), where 𝑔(𝑥, 𝑦, 𝑡) is departure-time distribu-
tion during period 𝑗 and ∫∫

𝑇𝑗
𝑔(𝑥, 𝑦, 𝑡)𝑑𝑡 = 1. In departure

time choice model, 𝑞(𝑥, 𝑦) is fixed to determine a 𝑔(𝑥, 𝑦, 𝑡),
or 𝑞(𝑥, 𝑦, 𝑡) that satisfies the dynamic user-optimal con-
dition with departure-time consideration. In contrast, this
section aims to find a desired 𝑞(𝑥, 𝑦) for a fixed 𝑔(𝑥, 𝑦, 𝑡).

2.2 Upper level subprogram

In the lower level subprogram, based on the housing allo-
cation 𝐻(𝑥, 𝑦) obtained from the upper level subprogram,
the housing decision (i.e., housing location choice) and
travel choice (i.e., departure time and route choice) of trav-
elers are solved. In the upper level subprogram, based
on the housing location choice, the housing allocation
is updated by the additional housing allocation, and the
optimal additional housing allocation is determined by
minimizing the overall health cost Υ (Yang et al., 2022) of
the modeling region, which is defined as follows:

Υ = ∫ ∫
Ω

(𝑥, 𝑦, 0) 𝑞 (𝑥, 𝑦) 𝑑Ω (32)

Using the above definition of (Υ), the upper level sub-
program can be written as the following optimal problem:

min
ℎ(𝑥,𝑦)

Υ (ℎ (𝑥, 𝑦)) = ∫ ∫
Ω

�̄� (𝑥, 𝑦, 0) 𝑞 (𝑥, 𝑦) 𝑑Ω (33)

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℎmax (𝑥, 𝑦) − ℎ (𝑥, 𝑦) ≥ 0, ∀ (𝑥, 𝑦) ∈ Ω

ℎ (𝑥, 𝑦) ≥ 0, ∀ (𝑥, 𝑦) ∈ Ω

𝐵 − ∫∫
Ω
𝑃 (𝑥, 𝑦) ℎ (𝑥, 𝑦) 𝑑Ω ≥ 0

ℎ (𝑥, 𝑦) + ℎ0 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦) ≥ 0

(34)

where ℎmax(𝑥, 𝑦) is maximum additional housing supply
density. 𝐵 is total budget and 𝐺(𝑥, 𝑦) is unit cost for hous-
ing supply. The first inequality constraint in Equation (34)

ensures that the additional housing supply density is
always less thanmaximum additional housing supply den-
sity. The second inequality constraint in Equation (34)
ensures that the housing supply will not be reduced. The
third inequality constraint in Equation (34) ensures that
the additional housing supply provision cost cannot exceed
the total budget. The last inequality constraint in Equa-
tion (34) is a natural constraint to ensure a sufficient
housing supply for all travel demands at location (𝑥, 𝑦).

3 SOLUTION ALGORITHM

3.1 Solution algorithm for the lower
level subprogram

For the lower level subprogram introduced in Section 2.1,
this study adopts the Lax–Friedrichs scheme to solve the
conservation law equation (Equations 8 and 11) and the
Hamilton–Jacobi equation (Equations 9 and 12) in the
PDUO-C model. Moreover, the fast-sweeping method is
adopted to solve the Eikonal equation (Equation 10 and
Equation 13). Details about the use of these algorithms can
be found in Yang et al. (2022).

3.2 Solution algorithm for the upper
level subprogram

According to the description of the upper level subpro-
gram in Section 2.2, the upper level model equivalent a
constrained optimization problem about optimal variable
ℎ(𝑥, 𝑦). To derive a realistic and reliable solution for this
upper level subprogram, a finer grid, in which the addi-
tional housing provision ℎ(𝑥, 𝑦) is defined at each grid
point, should be considered. However, such a fine grid
would lead to a large problem size because the number
of variables depends on the number of grid points. This
would substantially increase the computation cost. Addi-
tionally, as the macroscopic and continuum model has
been applied to model the traffic flows and exhaust emis-
sion and dispersion, it is reasonable to define the housing
provision at the macroscopic level.
Accordingly, this paper assumes that ℎ(𝑥, 𝑦) is a func-

tion dependent on the distance and direction from theCBD
defined as:

ℎ(𝑥, 𝑦) =

𝑀∑
𝑚=1

𝑑𝑚(𝑥, 𝑦)

(
𝑁∑
𝑛=0

(𝑎𝑚,𝑛sin(𝑗𝜃(𝑥, 𝑦))

+ 𝑏𝑚,𝑛cos(𝑗𝜃(𝑥, 𝑦))

)
(35)
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YANG et al. 2585

where 𝑑(𝑥, 𝑦) and 𝜃(𝑥, 𝑦) are the distance and direction
about the center of the CBD, respectively, and 𝜃(𝑥, 𝑦) is
counterclockwise start from positive 𝑥-axis. The additional
housing provision is a continuous function and thus can be
constructed based on the Fourier series. In amathematical
method, the Fourier series provides a good approxima-
tion of a continuous function if indexes 𝑀 and 𝑁 are
sufficiently large. Based on this approximation, the opti-
mal variables can be reduced to 2𝑀𝑁 + 1. By substituting
Equation (35) into Equations (33) and (34), the constrained
optimization problem can be updated as follows:

min
ℎ(𝑥,𝑦)

Υ (ℎ (𝑥, 𝑦)) = ∫ ∫
Ω

�̄� (𝑥, 𝑦, 0) 𝑞 (𝑥, 𝑦) 𝑑Ω (36)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
ℎmax (𝑥, 𝑦) −

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑎𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) sin (𝑛𝜃 (𝑥, 𝑦)) −

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑏𝑚,𝑛𝑑
𝑛 (𝑥, 𝑦) cos (𝑛𝜃 (𝑥, 𝑦)) ≥ 0,

⎧⎪⎪⎨⎪⎪⎩

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑎𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) sin (𝑛𝜃 (𝑥, 𝑦)) +

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑏𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) cos (𝑛𝜃 (𝑥, 𝑦)) ≥ 0,

⎧⎪⎪⎨⎪⎪⎩
𝐵 − ∫∫

Ω
𝑃 (𝑥, 𝑦) (

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑎𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) sin (𝑛𝜃 (𝑥, 𝑦)) +

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑏𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) cos (𝑛𝜃 (𝑥, 𝑦)))𝑑Ω ≥ 0

⎧⎪⎪⎨⎪⎪⎩

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑎𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) sin (𝑛𝜃 (𝑥, 𝑦)) +

𝑀∑
𝑚=1

𝑁∑
𝑛=0

𝑏𝑚,𝑛𝑑
𝑚 (𝑥, 𝑦) cos (𝑛𝜃 (𝑥, 𝑦)) + ℎ0 (𝑥, 𝑦) − 𝑞 (𝑥, 𝑦) ≥ 0

(37)
where ℎ(𝑥, 𝑦) depends on 𝑎𝑚,𝑛, 𝑏𝑚,𝑛 as calculated using
Equation (35); thus, the optimal variables are 𝑎𝑚,𝑛, 𝑏𝑚,𝑛.
Next, a solution algorithm is developed to solve the above
minimization problem.As shown by the objective function
(Equation 36), the design variable, that is, additional hous-
ing provision ℎ(𝑥, 𝑦), is not included. In fact, the objective
function Υ implicitly couples the design variable (ℎ(𝑥, 𝑦))
with the average air pollutant concentration (�̄�(𝑥, 𝑦, 0))
and the travel demand (𝑞(𝑥, 𝑦)), as these two variables
are solved in the lower level subprogram that depends
on ℎ(𝑥, 𝑦). Therefore, this is an implicitly optimal prob-
lem that is difficult to solve using traditional optimization
theories such as the gradient descent method, Newton’s
method, and the conjugate gradient method because most
of thesemethods require the gradient of the objective func-
tion. However, as the objective function in our study is in

an implicit form, it is difficult to mathematically derive its
gradient. Although the gradient can be computed numeri-
cally, the corresponding computational cost for a fine grid
will be very high. Therefore, simulated annealing (SA) is
proposed to solve the upper level subprogram.
The SA algorithm, which was first introduced by

Metropolis et al. (1953), is among the most popular heuris-
tic algorithms. Subsequently, according to the similarity
between the solid matter annealing process in physics and
general combinatorial optimization problems, Kirkpatrick
et al. (1983) successfully introduced the concept of anneal-
ing to the field of combinatorial optimization. In fact,
this algorithm is a general stochastic optimization algo-
rithm based on a Monte Carlo iterative solution strategy.
Thus, SA is a probabilistic technique for approximating
the global optimum of a given function. This technique
can be used for very complex computational optimization
problems for which exact algorithms fail. Although it can
usually only achieve an approximate solution to the global
minimum, it is sufficient for many practical problems. It
has been used widely in engineering applications such as
very large-scale integration (VLSI), production scheduling,
control engineering, machine learning, neural networks,
and signal processing. The procedure of the SA algorithm
is as follows:

1. Given an initial temperature 𝑇, the maximum iteration
number 𝑘𝑚𝑎𝑥, and the ending temperature 𝑇0.

2. Set 𝑘 = 1, assume an initial additional housing alloca-
tion ℎ𝑘, and compute the health cost Υ𝑘.

3. Choose a new additional housing allocation, ℎ′, ran-
domly in the neighborhood of ℎ𝑘, and compute the
related health cost Υ′.

4. Compute ΔΥ = Υ′ − Υ𝑘. if ΔΥ < 0, then set ℎ𝑘+1 = ℎ′

and Υ𝑘+1 = Υ′; otherwise, compute 𝑃𝑘 =
1

1+𝑒−ΔΥ∕𝑇
, and

choose a random number 𝑃𝑟 in the interval (0,1). If
𝑃𝑟 < 𝑃𝑘, then set ℎ𝑘+1 = ℎ′ and Υ𝑘+1 = Υ′; otherwise,
ℎ𝑘+1 = ℎ𝑘 and Υ𝑘+1 = Υ𝑘.

5. If 𝑘 ≥ 𝑘𝑚𝑎𝑥, go to Step 6; otherwise, set 𝑘 = 𝑘 + 1. Go to
Step 3.

6. If 𝑇 < 𝑇0, stop; otherwise, set 𝑇 = 𝑜𝑇, then go to Step 2.

4 NUMERICAL EXPERIMENTS

In Figure 2, a modeling region (length, 35 km; width,
25 km) with a single CBD is considered. The center of
this compact CBD (area, 2 km × 2 km) is located at
(6 km, 10 km). This study considers vehicular travel to
and from the CBD during a complete day. For simplic-
ity, it is assumed that vehicles travel to the CBD in the
morning and back to the travelers’ homes in the evening.
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2586 YANG et al.

F IGURE 2 The rectangular modeling region. Abbreviations:
CBD, central business district.

Other travel behaviors are ignored. The dispersion of
vehicle exhaust is modeled in the 3D space Ω× [0, 1].
This numerical experiment assumes a lack of travelers

at the beginning and a cost of zero to enter or leave the
CBD (i.e., 𝜌(𝑥, 𝑦, 0) = 0, and 𝜙𝐶𝐵𝐷 = 0). This paper consid-
ers traffic flow and the related vehicle exhaust’s dispersion
within the modeling domain from 6:00 a.m. on the first
day to 6:00 a.m. on the following day. Thus, the model-
ing period is 𝑇 = [0, 24 h], with the first subperiod ranging
from 6:00 a.m. to 5:00 p.m. (i.e., 𝑇1 = [0, 11 h]) and the
second from 5:00 p.m. to 6:00 a.m. on the following day
(i.e., 𝑇2 = [11, 24 h]). In the speed function (Equation 2),
the free-flow speed, 𝑉𝑓 , is given by the following function:

𝑉𝑓 (𝑥, 𝑦) = 𝑉max [1 + 𝛾3𝑑 (𝑥, 𝑦)] (38)

where 𝑉max = 56 km∕h and 𝛾3 = 4 × 10−3km−1. In this
numerical example, the standard deviation of speed and
acceleration are both set at 0.2 (i.e., 𝜎𝑉 = 𝜎𝑎 = 0.2),
and the local travel cost function is set at 𝑐(𝑥, 𝑦) =

90(
1

𝑉
+ 10−8𝜌2). When considering travelers to or from

the CBD, this study assumes that all travelers have the
same desired arrival time as they travel to or return from
the CBD. Therefore, this numerical example defines the
desired arrival (period 1) and departure times (period
2) as {𝑡1∗ , 𝑡2∗ } = {2.8h, 12.5 h}. In the schedule-delay cost
function (Equation 15), the parameters 𝛾1, 𝛾2, and ∇

are set at 48 $∕h, 108 $∕h, and 0.2 h, respectively. The
total perceived CBD cost (Equation 6) comprises biased,
demand-related, and travel cost components. The biased
cost is a constant, 𝜃 = 12, and the demand-related cost
is defined as 𝑆(𝑄) = 8 × 10−11(𝑄 − 100, 000)2, where 𝑄 is
the total travel demand in the whole city and is set at
200,000. The other emission rate is taken as 𝜚(𝑥, 𝑦, 𝑡) =
(𝐿(𝑡))∕𝑄(kg∕(km2h)) in the CBD; here, 𝐿(𝑡) denotes the
cumulative number of vehicles in the CBD at time 𝑡.

In this numerical example, the convergence threshold
for the lower level subprogram is set at 𝜀1 = 0.005, 𝜀2 =

10−9, and 𝜀 = 0.01 (see Yang et al., 2022). The disper-
sion of pollutants is modeled within the 1 km space
over the rectangular modeling region (i.e., Ω̂ = [0, 35] ×

[0, 25] × [0, 1]). The model assumes that the wind veloc-
ity 𝐮𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (10, 0, 0) and eddy diffusivity are both
0.01 km2∕h (i.e.,𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 = 0.01). The travelers’ sen-
sitivity to the housing utility (�̂�) and air quality (𝜉) are set
at 0.0015 and 10, respectively. For the housing rent func-
tion, 𝑟(𝑥, 𝑦), the related parameters 𝛼(𝑥, 𝑦)) and 𝛽(𝑥, 𝑦)

are, respectively, set at 5 and 8. The existing housing pro-
vision, ℎ0(𝑥, 𝑦), is set at 300 unit∕km2 and the maximum
housing supply, ℎmax , is taken as 350 unit∕km2. The bud-
get,𝐵, is set at 1 billion dollars. Accordingly, the cost for the
unit housing supply, 𝐺(𝑥, 𝑦), is defined by

𝐺 (𝑥, 𝑦) = 𝐺0

⎛⎜⎜⎜⎝1 +
0.01√

(𝑥 − 6)
2
+ (𝑦 − 10)

2

⎞⎟⎟⎟⎠ (39)

where the basic cost 𝐺0 = 10000. In this numerical exam-
ple, the settings in Equation (35) are𝑀 = 3,𝑁 = 1. In the
SA algorithm, the initial temperature𝑇 = 350, ending tem-
perature 𝑇0 = 10, maximum iteration number 𝑘max = 50,
and frozen coefficient 𝑜 = 0.9. In our model, the housing
location choices are determined by the lower level model,
travel costs, and flow patterns under a fixed housing allo-
cation. The self-adaptive method of successive averages
(MSA) (Du et al., 2013) is used to solve a lower level sub-
program, of which a detailed discussion can be found in
Yang et al. (2022).
Two grids (Grid 1: 35 × 25 × 50; Grid 2: 70 × 50 × 100)

are tested to consider convergence. The computational
time is approximately 36 h for the first grid and approxi-
mately 240 h for the second. In this paper, the number of
iterations is more than 1500, and the frozen coefficient is
taken as 0.9. The initial temperature is set as 350, and at
each temperature, the maximum iteration is set as 50. It is
believed that these parameters are sufficient to derive the
desired solution.
In this study, a conventional genetic algorithm (GA) is

also adopted to solve this bilevel problem, to provide a
comparison with the performance of our SA algorithm.
Figure 3 shows the convergence curves of the SA algorithm
and those for GA1 andGA2. The latter are two forms of GA;
inGA1, the initial solution set is randomly chosen,whereas
in GA2, the initial solution set is chosen such that it is close
to the optimal solution obtained by the SAalgorithm. It can
be seen that the convergence rate of the GA ismuch slower
than that of the SA algorithm, especially when the initial
solution is randomly chosen (i.e., for GA1). Over a given
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YANG et al. 2587

F IGURE 3 Convergence curve of the simulated annealing
algorithm and genetic algorithms.

number of iterations, the SA algorithm has a lower health
cost than GA1 and GA2. In addition, over 1500 iterations,
these algorithms’ computational times for a 35 × 25 × 50
grid are 36 h, 60 h, and 57 h, respectively. Taken together,
these results show that the SAalgorithmhas a high compu-
tational efficiency. Thus, the SA algorithm is used to solve
our bilevel problem.
Furthermore, the convergence curve of the SA algo-

rithm in Figure 3 shows that although there are initially
some fluctuations in the value of the objective function,
the overall trend is decreasing as the number of itera-
tions increases (e.g., to 1000). As the number of iterations
increases beyond 1000, the objective value stabilizes and
the optimal solution is found. This result is consistent with
the expectation of the SA and demonstrates the high prob-
ability of aminimized value being obtained. The additional
housing allocation is assumed to be nonnegative (i.e., ℎ ≥
0) in the constraint of the upper level subprogram (Equa-
tion 34), so the initial solution (i.e., ℎ = 0) is a good choice.
This confirms that the initial solution influences the num-
ber of iterations needed to achieve convergence. Figure 4
depicts a clear grid convergence and thus a 35 × 25 × 50
grid is selected for further discussions.
The plot of the optimal additional housing allocation

with a minimized health cost Υ is shown in Figure 5. First,
a positive relationship is observed between an additional
housing allocation and the distance to the central CBD.
In other words, the allocation of additional housing units
increases as the distance from the CBD increases. This
result can be explained by lower rents and better air qual-
ity in locations distant from the CBD, despite the high
traffic-related cost. This study assumes that the air qual-
ity is an important determinant of the housing location.
Therefore, more people will choose to live in a location
far from the CBD despite a smaller utility function. As
our object function is integrated by the product of the

travel demand and air quality, this value will decrease as
more people choose housing locations far from the CBD.
Second, under our assumption, the additional housing
allocation is also dependent on the direction of the CBD.
Figure 5 demonstrates that the northeast region of the
CBD has fewer allocated additional housing units than
the southwest region. Possibly, more people already live in
the region northeast of the CBD, and therefore this region
will be more congested throughout the day. Apart from
the high traffic-related cost, this region also has poorer
air quality due to the eastward wind direction. Third, in
contrast to Yin et al. (2013), who observed the highest
additional housing allocation around the CBD, this study
demonstrates the lowest allocation of additional housing
units to be around the CBD because of the adoption of
the health cost, a product of the air pollutant concentra-
tion and demand at a location, as the objective housing
allocation problem (upper level subprogram). This leads
to the allocation of housing units to locations with less air
pollution (or traffic).
Under the optimal dynamic departure time principle,

travelers may choose the best departure time to travel to
or return from the CBD, such that their total travel cost
is minimized. Figure 6 shows temporal variations in the
travel demand and the total travel cost (6:00 a.m. to 6:00
a.m.+1) incurred by travelers at different points within the
modeling region when traveling to and from the CBD.
Here, the peak travel demand always corresponds to the
time when the total travel cost is lowest, thus satisfying
the dynamic user-optimal condition principle. Therefore,
all travelers will choose a departure time to minimize and
equalize their total travel cost. As shown in each subfigure
of Figure 6, the total travel cost decreases (or increases) lin-
early with time during the beginning (or ending) period,
when the whole city is noncongested. Accordingly, the
actual travel cost should be unchanging during this period.
Therefore, changes in the total travel cost depend only
on the schedule-delay cost (i.e., early- and late-arrival
penalty), which has a linear relationship with the depar-
ture timewith respect to the value of an early or late arrival
time.
Figure 7 depicts the city-wide distribution of best depar-

ture times during the first period 𝑇1 and that of the best
arrival time during the second period 𝑇2. Figure 7a shows
that as the desired arrival time interval is [8:36 a.m., 9:00
a.m.], the departure time of all travelers is earlier than 8:36
a.m., and travelers who reside close to the CBD have later
departure times. Figure 7b shows that the desired depar-
ture time interval from the CBD is [6:18 p.m., 6:42 p.m.].
Thus, all travelers arrive later than 6:42 p.m., and travelers
who reside farther from the CBD have later arrival times.
Figure 8 shows the distributions of the density (𝜌),

travel cost (𝜙), and vehicle exhaust concentration (C) for
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2588 YANG et al.

F IGURE 4 The grid convergence of additional housing allocation.

F IGURE 5 Distribution of the optimal additional housing
allocation.

travelers traveling to the CBD. As shown in the left col-
umn, no travelers are in the city at 8:00 a.m., which is too
early for travel to the CBD andwould incur an early arrival
penalty. At 8:24 a.m., all travelers are located in the east-
ern region because travelers who reside near the CBD have
not yet departed, while those who reside further away and
had departed earlier have arrived. At 8:48 a.m., all trav-

elers are concentrated around the CBD, in other words,
the travelers are approaching or have entered the CBD. At
9:12 a.m., all travelers have entered the CBD and left the
transportation system. In the middle column, the travel
cost contours at 8:00 and 9:12 a.m. appear as series of con-
centric circles about the CBD because the vehicle is rare
(see the left column). At 8:24 and 8:48 a.m., the travel cost
contours become denser (i.e., the local cost of a moving
unit distance increases) because as the travelers gradually
depart for the CBD, the density increases within the city
and the travel cost increases accordingly. By comparing
the distributions of the density and travel cost (i.e., the left
and middle columns), high-density locations are shown to
have denser travel cost contours. The right column depicts
a positive relationship of the pollutant concentration with
density. The influence of wind is demonstrated by a higher
pollutant concentration in the downwind region (i.e., east
of the CBD) than the upwind region.
Figure 9 shows the distributions of the density (𝜌), travel

cost (𝜙), and vehicle exhaust concentration (𝐶) for the trav-
elers returning from the CBD. In the left column, there are
no travelers in the city at 6:00 p.m. At 6:24 and 6:36 p.m.,
the travelers then concentrate gradually around the CBD,
especially the northeast region. This pattern is explained
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YANG et al. 2589

F IGURE 6 Analysis of travel demand and
total travel cost. Left, vehicles traveling to the
central business district (CBD); right, vehicles
traveling back from the CBD.

F IGURE 7 Distribution of the (a) best departure times for a
traveler traveling to the central business district (CBD) and (b) best
arrival times for returning from the CBD.

by the travelers’ desired departure period of 6:18 to 6:42
p.m. In this period, travelers leave the CBD gradually,
resulting in a high density around this region. At 6:48
p.m., this high-density region moves away from the CBD
because the travelers who reside far away from the CBD
have not yet arrived at home. In the middle column, the
travel cost contours at 6:00 and 6:48 p.m. are series of
concentric circles because the vehicle is rare (see the left
column). At 6:24 and 6:36 p.m., the travel cost contours
become denser (i.e., the local cost of moving a unit dis-
tance increases) because the density increases within the
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2590 YANG et al.

F IGURE 8 Distributions of density (left column in veh∕km2), travel cost (right column in $), and pollutant concentration (right column
in kg∕km3) corresponding to travel to the central business district (CBD).

travel cost increases. By comparing the distributions of
density and travel cost (i.e., the left and middle columns),
high-density locations are shown to have denser travel cost
contours. In the right column, the pollutant concentra-
tion is shown to be positively associated with density. The
downwind region (i.e., east of the CBD) is more polluted
than the upwind region because of the influence of wind.
The actual traffic flow over the whole modeling region

at different times is considered, defined as

𝐹 (𝑡) = ∫
Ω

𝜌 (𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦 (40)

Figure 10 shows the plot of total traffic flow over the
whole area versus time t. In the first period (6:00 a.m. ∼
5:00 p.m.), the total traffic flow accumulates quickly from
8:00 a.m. and reaches a peak at 8:36 a.m.After 8:36 a.m., the
total flow decreases as travelers gradually enter the CBD.
Eventually, as all travelers enter the CBD, the total traffic
flow equals zero. The total traffic flow for the second period
(5:00 p.m.∼ 6:00+1 a.m.) is similar to that in the first period
but in reverse.
Figure 11 depicts the distributions of the average travel

cost, housing rent, and average pollutant concentration.
In Figure 11a, the average travel cost increases with the
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YANG et al. 2591

F IGURE 9 Distributions of density (left column in veh∕km2), travel cost (right column in $), and pollutant concentration (right column
in kg∕km3) corresponding to the return from the central business district (CBD).

distance to the CBD. This cost is lower in the southwest
region than in the northeast region. The travel cost is lower
in the southwest region due to the shorter travel distance
and because the increase in cost is slower (as indicated by
more sparse contour lines) in the southwest region than
in the northeast region due to the reduced traffic from the
west (there is less congestion). In Figure 11b, the housing
rent decreases with the distance to the CBD. Housing rent
is very high in the region near the CBD because of the lim-

ited housing provision and high travel demand (and low
travel-related cost). In Figure 11c, the downwind region
is much more polluted than the upwind region. Particu-
larly, the northeast region is highly polluted because of the
heavy traffic and higher number of travelers who live in
this region.
Figure 12a, b show that when moving from the CBD to

the outer boundary of the city, the travel demand increases
with the distance to CBD to a maximum value, after
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2592 YANG et al.

F IGURE 10 Total traffic flow across the whole modeling
region.

which the travel demand decreases with increasing dis-
tance to the CBD. This result can be explained by the
nature of a traveler’s housing location choice as a trade-off
between the travel-related cost, housing rent, and air qual-
ity. Regions far from the CBD have low housing rents and
good air quality, but high travel-related costs. In contrast,
regions close to the CBD have low travel-related costs, but
poor air quality and extremely high housing rents. Under
these three factors, the travel demand will reach a peak at
a certain distance from the CBD. A further comparison of
Figure 12a and b reveals that the travel demands west of
the CBD increase because most of the allocated housing is
added in that region.
Figure 13 demonstrates the sensitivity of the health

cost (Υ) with respect to the available budget (𝐵). In gen-
eral, the health cost Υ decreases as the budget increases
because the latter enables the provision of more housing
units. Therefore, an additional housing pattern that would
attract travelers to reside in certain locations or would fur-
ther reduce the health cost could enable greater flexibility.
However, the health cost is more sensitive to a budget
increase when the budget is small (e.g., $0.2 ∼ 0.6 billion),
but is less sensitive when the budget exceeds $1.4 billion.
Figure 13 shows that the budgeted funds are used when

F IGURE 11 The determining factors of housing location. (a) Travel cost distribution ($); (b) housing rent distribution ($); (c) average
pollutant concentration (kg∕km3).

F IGURE 1 2 The distribution of the travel demand before and
after the additional housing allocation.

F IGURE 13 Sensitivity of the health cost to budget B.

the total budget is less than $1.4 billion, whereas a surplus
occurs with larger budgets. In other words, an increase in
investment can effectively decrease the health cost to a cer-
tain point (up to $1.4 billion in this case). Planners must
determine this point during the planning process.
Figure 14 demonstrates the sensitivity of the health cost

(Υ) with respect to the maximum additional housing sup-
ply ℎmax . In general, the health cost Υ decreases as the
maximum additional housing supply increases because
the latter enables the provision of more housing units at
the same location. Thus, the provision of an additional
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YANG et al. 2593

F IGURE 14 Sensitivity of the health cost to the maximum
additional housing supply, ℎmax .

F IGURE 15 Sensitivity of the health cost to the basic supply
cost, 𝐺0.

housing pattern to reduce the health cost would provide
more flexibility. However, the health cost is more sensitive
to an increase in an initially small maximum additional
housing supply (e.g., 0 ∼ 150 unit∕km2), but becomes less
sensitive when the maximum additional housing supply
exceeds 320 unit∕km2. Figure 14 also demonstrates a bud-
get surplus when themaximum additional housing supply
is less than 320 unit∕km2, whereas all funds are used
when the maximum additional housing supply exceeds

F IGURE 16 Distribution of the travel demand at different values of 𝜉.

320 unit∕km2. Accordingly, an increase in the maximum
additional housing supply is also a valid way to reduce the
health cost to a certain point (e.g., up to 320 unit∕km2 in
this case, with budgetary limitations). Thus, it is impor-
tant to determine the link between the health cost and
maximum additional housing supply in land use.
Figure 15 shows the sensitivity of the health cost (Υ) to

the basic supply cost,𝐺0. Here, the health cost,Υ, increases
as the basic supply cost increases. Consequently, the sup-
ply cost,𝐺, will also increase, thus reducing the number of
provided housing units. Ultimately, it would be more diffi-
cult to provide an additional housing pattern that would
attract travelers to reside in locations that could further
increase the health cost. However, the health cost is more
sensitive to an increase in the budgetwhen the basic supply
cost is high (e.g., $15000–25000), but becomes less sensitive
when the basic supply costs less than $10,000. As shown in
Figure 15, all budgeted funds are used when the basic sup-
ply cost exceeds $10,000, whereas a surplus remains when
the budget is less than $10,000. In other words, reducing
the basic cost or increasing the budget are effective ways
to decrease the health cost. Planners must determine this
value during the planning process.
Figure 16 shows the distribution of the travel demand at

different values of 𝜉, a measure of the sensitivity of travel-
ers to the concentration of pollutants with respect to the
housing utility function (see Equations 28 and 29). As 𝜉
increases, the influence of the air quality on the choice of
housing location becomes stronger. In Figure 16a, when
𝜉 = 0, the housing allocation only depends on the rent
and travel cost, and therefore the contours form concen-
tric circles around the center of the CBD. In contrast, 𝜉
is not zero in Figure 16b and c, and the travel demands
are influenced by the air quality. For example, the travel
demands are lower in locations downwind of the CBD (i.e.,
east side) because the pollutants emitted around the CBD
are dispersed by wind in this direction.

5 CONCLUSION

In this study, a bilevel model was proposed to study a hous-
ing allocation problem while considering traffic-related
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2594 YANG et al.

emissions in a dynamic continuum transportation system.
For the lower level, the PDUO-C model with a combined
departure time and route choice was adopted to model
the traffic flows and the travelers’ housing location choice,
which depends on the traffic-related cost, housing rent,
and air quality, for a given housing allocation. The lower
level subprogram was formulated as a fixed-point prob-
lem, a Lax–Friedrichs scheme and fast-sweeping method
are used as the solution algorithm. At the upper level,
the health cost, which depends on the concentration of
pollutants and the number of residents, was minimized
by optimizing the housing additional allocation pattern.
An SA algorithm was adopted to solve this optimization
problem. A numerical example was then completed to
demonstrate the effect of consideration of the health cost
in the optimal design of the housing allocation. Sensi-
tivity analyses were also conducted to demonstrate the
influences of various factors (e.g., budget, cost of housing
supply) on the optimized health cost and travel demand
pattern.
This study considered only a unidirectional wind. In

reality, however, a multidirectional wind is more com-
mon and should be considered in a future study. In this
study, an SA algorithm, a nature-inspired optimization
algorithm, is adopted to solve the upper level subpro-
gram. This algorithm has enormous computational time
and cost requirements for solving the devised bilevel
housing allocation problem. Therefore, to ensure that the
upper level subprogram can be solved in a fast and effec-
tive manner, other advanced nature-inspired optimization
algorithms and related techniques—such as the harmony
search algorithm (Siddique&Adeli, 2015), water drop algo-
rithms (Siddique & Adeli, 2014), the gravitational search
algorithm (Siddique & Adeli, 2016), the bacteria foraging
algorithm (Wang et al., 2018), spider monkey optimiza-
tion (Akhand et al., 2020), and meta-heuristic multi- and
many-objective optimization techniques (Rodrigues et al.,
2017)—will be considered and evaluated in future research.
In this paper, only trips from travelers’ home locations to
the CBD or from the CBD back to their home locations are
considered. Other trips (e.g., trips between the home loca-
tions of different travelers) are ignored. In future studies,
asymmetric and overlapping demand will be investigated.
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