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Abstract—Building-level load forecasting is becoming increas-
ingly crucial since it forms the foundation for better building
energy management, which will lower energy consumption and
reduce CO> emissions. However, building-level load forecasting
faces the challenges of high load volatility and heterogeneous
consumption behaviors. Simple regression models may fail to fit
the complex load curves, whereas sophisticated models are prone
to overfitting due to the limited data of an individual building.
To this end, we develop a novel forecasting model that integrates
federated learning (FL), the differentiable architecture search
(DARTS) technique, and a two-stage personalization approach.
Specifically, buildings are first grouped according to the model
architectures, and for each building cluster, a global model
is designed and trained in a federated manner. Then, a local
fine-tuning approach is used to adapt the cluster global model
to each individual building. In this way, data resources from
multiple buildings can be utilized to construct high-performance
forecasting models while protecting each building’s data privacy.
Furthermore, personalized models with specific architectures can
be trained for heterogeneous buildings. Extensive experiments
on a publicly available dataset are conducted to validate the
superiority of the proposed method.

Index Terms—Building-level load forecasting, federated learn-
ing, differentiable neural architecture search, privacy-preserving,
personalization.
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Y The model forecasting output

Y The true value of the load

«a The model architecture parameter

a The global model architecture parameter
w The model weight parameter

w The global model weight parameter

o(»7)  The operation between node i and j

Na The learning rate for updating «

Nw The learning rate for updating w

13 The learning rate for a single update step in approx-
imated optimization

f The features of each timestep

hs The hidden state

The cell state
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9 The intermediate state

T The output of input gate

F The output of forget gate

@ The output of output gate

K The set of buildings

K The number of buildings

C The set of building clusters

C The number of building clusters

Di The local dataset of the kth building

N The total sample number of all buildings

Ny The sample number of Dy

Ep,re  The number of local pre-search iterations

E¢ The number of local finetune iterations

Rgeqren The number of federated search communication
rounds

Rirain The number of federated train communication
rounds

N, The patience of early-stop

P The complete set of restricted permutation matrices
for calculating the adjusted error

P The permutation matrix for calculating the adjusted
error

d The permitted displacement magnitude in calculat-

ing the adjusted error

I. INTRODUCTION
A. Backgrounds and Motivations

Buildings are responsible for a growing amount of energy
consumption and COy emissions due to rapid urbanization.
According to [1], the electricity consumed by buildings ac-
counts for nearly 50% of all electricity consumed worldwide,
35% of energy used globally, and 38% of all energy-related
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CO; emissions in 2019. Building load forecasting, as a basis
for building energy management, is therefore becoming crucial
in an effort to promote renewable energy accommodation
and reduce CO, emissions. Building load forecasting is a
challenging task due to high load volatility and heterogeneous
consumption behaviors [2].

When dealing with high load volatility, we are in a dilemma.
Simple regression models may fail to sufficiently capture the
characteristics of volatile load curves. If complex models are
applied instead, there is a significant overfitting risk because of
a shortage of data from the individual building itself. A possi-
ble solution is to make full use of data from multiple buildings.
However, these methods all assume that individuals’ data can
be freely collected without taking privacy into consideration,
which may not be the case in the real world. Governments all
over the world have passed legislation governing the gathering
and processing of data to preserve privacy. A comprehensive
set of laws, stringent guidelines for data processing, and
harsh penalties for infractions have been developed in Europe
under the General Data Protection Regulation (GDPR) [3]. In
China, data collection, storage, use, processing, transportation,
provision, and disclosure are all regulated by the Data Security
Law of the People’s Republic of China [4]. A Voluntary Code
of Conduct (VCC) was released in the US to address privacy
issues with smart grid technologies [5]. To address the privacy
issue, federated learning (FL) as a distributed machine learning
technique can be applied [6], where participants’ data will be
kept in situ, preserving their privacy while allowing for the
cooperative training of a high-performance global model to
handle highly volatile time series.

To tackle the issue of heterogeneous consumption behavior,
we need to develop adaptive models for various buildings. Re-
cently, substantial advancements in autonomous model design
have been made through auto-machine learning (AutoML).
Differentiable ARchiTecture Search (DARTS) [7]] is gaining
popularity due to its ease of implementation and effectiveness
in determining the appropriate neural network architecture to
adapt to various datasets. DARTS thus opens up the possibil-
ity of adaptively constructing forecasting models for various
individual buildings.

Therefore, this paper is focused on answering one question:
How to construct effective models for individual buildings with
high load volatility and heterogeneous consumption patterns?
We are inspired to answer this question by leveraging the
strengths of FL and DARTS and propose a personalized
and privacy-preserving load forecasting model for individual
buildings.

B. Literature Review

Extensive work has been done for building-level load fore-
casting, which can be roughly divided into two categories.
The first category is statistics-based methods, such as [8],
which employed the autoregressive integrated moving average
(ARIMA) model for peak load forecasting of university build-
ings. [9]] analyzed building load characteristics and performed
short-term forecasting using three methods: direct curve fitting,
similar day, and multiple linear regression. The second cate-
gory is machine learning-based approaches. A long short term

memory (LSTM) recurrent neural network was used in [[10],
and its prediction accuracy was confirmed to be superior to that
of several other forecasting models (including multilayer per-
ceptron, k-nearest neighbor model, extreme learning machine,
and naive prediction method). In [11]], a graph neural network
was built for residential short-term load forecasting that con-
sidered both temporal and spatial information. According to
[12], an improved deep residual neural network framework
was created, and a two-stage ensemble approach was used
to increase prediction accuracy. In [13]], a conditional prob-
ability density function-based probabilistic residential load
forecasting model was created. [14]] suggested a multi-kernel
transfer method to help buildings with limited data construct
effective forecasting models. Actually, there are mainly two
approaches to utilizing individuals’ data. One is to improve
the forecasting accuracy at the aggregated level by considering
individual loads as subprofiles. [15] proposed to enhance
aggregated residential load forecasting by adopting the practice
theory in subprofiles modeling. [16] suggested ensemble the
forecasting on subprofiles to improve the accuracy. The other
one is to facilitate individual forecasting by incorporating
data resources. [[17] proposed pooling-based deep recurrent
neural networks to address the overfitting issue as well as the
high load volatility problem in household load forecasting by
gathering historical data from multiple neighboring consumers.
[18] suggested a clustering-based pooling method to avoid
overfitting and proposed a multitask Bayesian deep learning
approach to capture the uncertainty of household load.
Despite the effectiveness of the aforementioned techniques,
two aspects can be investigated to improve building load
forecasting performance even more. One is that the majority of
works create forecasting models for each building but neglect
the opportunity for cooperation among various buildings to
fully utilize various data resources. FL is receiving a lot of
attention these days as a distributed method that effectively
protects privacy. Actually, the energy industry has employed
several FL-based applications. Such as [19]] proposed a fed-
erated Bayesian neural network for probabilistic behind-the-
meter solar generation decomposition. [20] introduced FL to
building heating load forecasting. [21] combined FL with
clustering methods for electricity consumption pattern extrac-
tion. [22] investigated a distributed voltage control strategy for
distribution networks using federated reinforcement learning.
[23] achieved privacy-preserving voltage forecasting by inte-
grating FL. with differential privacy. The main challenge in
the application of FL is the heterogeneous data distribution
problem. [24] proposed FedProx which includes a proximal
term in the objective to mitigate the heterogeneity issues. [25]]
suggested training the personalized model by adopting a global
and local bi-level optimization approach. A meta-learning ap-
proach was proposed by [26] to construct the global model and
adapt it to the local dataset to account for the heterogeneous
distribution. [27]] considered the heterogeneity of clients and
proposed a heterogeneous FL approach by constructing global
models for different client clusters and integrating transfer
learning techniques. [28]] proposed a gradient-based clustered
federated multitask learning framework to handle incongruent
client data distributions. We take inspiration from these works
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to incorporate FL into individual building load forecasting
and investigate how buildings’ heterogeneous consumption
patterns will affect the performance of FL approaches.

Another issue is that current machine learning-based load
forecasting models are built with a fixed structure, making
them inflexible when dealing with heterogeneous consumer
behaviors. DARTS, as a powerful AutoML technique, can
design model architectures for a variety of tasks or datasets [/7]].
DARTS has gained great success in various fields. For exam-
ple, [29] adopted DARTS to adaptively design model architec-
ture for named entity recognition. [[30] proposed DARTS-based
AutoCTS, which supports multi-granularity for architectural
search. Li et al. introduced ST-DARTS+ in [31]] to adaptively
decompose the spatial and temporal functionalities of the brain
network. Even though many effective DARTS-related methods
have been proposed in the field of computer vision, very few
works integrate DARTS with load forecasting. To the best of
our knowledge, only one work considered DARTS for load
forecasting but with a limited analysis [32]. DARTS still has
a lot of untapped potentials to adaptively design models for
individual building load forecasting.

C. Contributions and Paper Organization

To address the aforementioned research gaps, this paper
proposes an improved DARTS model and integrates it with
FL as well as a two-stage personalization strategy to achieve
privacy-preserving and personalized individual building load
forecasting.

The contributions of this paper are threefold:

1) New method: Propose a novel Personalized Federated-
DARTS (PFedDARTS) framework for building electricity
load forecasting that integrates DARTS with FL, as
well as a two-stage personalization strategy. Three major
benefits can be achieved: (1) several high-performance
model architectures are automatically generated for build-
ing clusters with diverse consumption patterns; (2) data
resources from multiple buildings can be utilized to con-
struct high-performance forecasting models in a privacy-
preserving way; (3) personalized models can be effec-
tively constructed from the perspective of both model
architecture and weight parameters.

2) New perspective: Take privacy concerns into consid-
eration throughout the whole procedure for building
electricity load forecasting. The proposed architecture-
based clustering method enables clustering without the
requirement of ground-truth data from buildings. Fur-
thermore, the clustered federated protocols to orchestra
the collaborations of buildings for architecture search and
model update are well designed to protect privacy.

3) New findings: Provide findings that the high load volatil-
ity and heterogeneous consumption patterns challenges
can be effectively addressed by combing the architecture-
based clustered federated approach with local model fine-
tuning, which will balance the global modeling and the
local modeling approach to capture both the universal
load characteristics and the unique load characteristics of
buildings with diverse consumption patterns. The exper-

imental results show that the proposed method can sig-
nificantly outperform the local approach or the standard
FL model and have superior performance in a large-scale
scenario.

The rest of the paper is structured as follows. Section II
defines the problem to be solved. Section III elaborates the
methodologies, including the overall framework and imple-
mentation details. Section IV reports experimental results and
analysis. Section V draws the conclusions.

II. PROBLEM STATEMENT

As building loads are highly volatile and various buildings
have heterogeneous consumption patterns, a strong and per-
sonalized forecasting model for each individual building is
required. Besides, each building owns a limited amount of
data, necessitating the use of data resources from multiple
buildings while maintaining data privacy.

Assuming there exists a group of buildings, also denoted
as clients, need to construct a personalized privacy-preserving
load forecasting model with the help of a server. Each client
owns historical local load profiles, which are chronologically
split into three parts for training, validation, and testing
separately. In order to design a personalized model, the task
can be defined in the following two subtasks:

In the first subtask, the aim is to design model neural
architecture « and the objective can be defined as:

min L4 (W* (a),a) (1
s.t. w* (o) = arg ming, Lirgin (w, ) 2)

where L4 and Ly,4;n is the training loss and validation loss
respectively. The goal is to search optimal architecture o*
that minimizes the loss on the validation set L, (w*, a*),
where w* is optimized under the associated architecture. The
approximation and solution for such a bi-level optimization
problem will be detailed in the next section.

After the optimal model architecture is searched, the second
subtask is to train the model by gradient descent as the usual
machine learning approach. The objective is to minimize the
loss function on the training dataset:

HEH Etrain (Y ‘fw (X) ) (3)

Regarding privacy, buildings will not share their local data
with others, but only model parameters can be shared.

III. METHODOLOGY

This section will present the overall framework of the pro-
posed forecasting model, followed by implementation details
of the improved DARTS model, Federated-DARTS model, and
two-stage personalization strategy.

A. Proposed Framework

Fig. [I] depicts the overall framework of the proposed
Personalized Federated-DARTS model with the indication of
information flow. Several buildings of various types, including
industry, lodging, education, and so on, have requested the
construction of a personalized load forecasting model. First,
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Weight parameters w, interaction between buildings
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The proposed Personalized Federated-DARTS framework. Firstly, each building will locally search the model architecture for a few epochs in the

pre-search stage. Then, the architectural parameters of the buildings should be uploaded to the server, and several building clusters can be formed based on
the similarity of the model architecture. After the architecture-based clustering stage, buildings within each cluster will collaboratively search for a cluster
global architecture and update the cluster global model in a federated manner by iteratively exchanging the architectural parameters and weight parameters
with the cluster server. Finally, the cluster global model will be finetuned with local data to create a personalized model for each individual building.

an improved DARTS model called DARTS* is proposed,
which enables each building to use its data to search a
model architecture locally. Buildings can then be divided into
various building clusters using an architecture-based clustering
algorithm based on the similarity of their model architectures.
By continuously exchanging training parameters, buildings
within a cluster will then cooperatively search for an ideal
cluster global model architecture. Based on the searched global
architecture, buildings inside that cluster will then federatedly
retrain the model and update models’ inner weights parame-
ters, resulting in the final cluster global model. Finally, each
building can locally finetune the global model to create a
personalized forecasting model.

B. Improved Differentiable Architecture Search

This section will first introduce the origin DARTS, then
discuss its shortcomings and recommend improved DARTS.

1) DARTS: Liu et al. introduced DARTS to relax the search
space to be continuous and search by gradient descent
in order to effectively search neural architectures. A cell
architecture to be searched is defined by a directed acyclic
graph with a series of N representation nodes x(*), and
edges o(»7) that represents operations connecting nodes z(*)
to 2U). Each representation node is associated with all the
predecessors and can be calculated as: z(9) = 3 o(#9) (x(l)).

i<j
calculates the outputjby averaging
out _ 1 Z $(l)
N

And final output node z°%“
all of the preceding nodes x

Define the set O to be the candidates of operation o (-)(for
recurrent neural cell, this would be tanh, relu, sigmoid, iden-
tity, and none), and the architecture can then be defined by
the selection of o(*7). A softmax relaxation method is used to
convert the search space from discrete to continuous. A mix
operation 5(*7) which takes into account the contributions of
all operation candidates, is defined as:

exp ( (i J))
25y (o)

where architectural parameter ag 9) is a vector of weight

parameters for each candidate of o(/). Consequently, the
architecture search task is reduced to determine «, which is
continuous and can be updated by gradient descent.

An alternative gradient descent method is utilized to solve
the objective function (T). Architectural parameters o is up-
dated by descending 74V 4Lyar (W* (a), ), weights w is
updated by descending 7,V Lirain (W, @), Where 74, 1, is
the corresponding learning rate. An approximation is applied
while computing the gradient of the architectural parameter:

* (a) ,Oé) ~ vowcval (w - ngﬁtrain (wa Oé) ,Ol)
&)
where the inner optimization term w* («) is approximated
by a single update step w — Vi Lirgin (w, ) with the
learning rate £. After the search of «, the final discrete
architecture is derived by substituting the mixed operation

5(27]) O(i,j)

“4)

voucval (w
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ol"9) of edge (i,j) with the highest weighted operation
olhd) = arg maxoe@aow).

2) Improved DARTS: Despite the effectiveness of DARTS
in NAS, there exist three main drawbacks. Firstly, as noted
by [33]], transforming the mixed architecture into a discrete
one will result in a discretization gap, which will cause
performance to collapse. This is due to the fact that the
discretization of architecture will exaggerate the importance
of a single operation while ignoring others that are just
as significant but have slightly less weight. Additionally,
the discretization process will eliminate the operation none,
which stands for not performing any operation between two
nodes. As a result, the connectivity information in the neural
architecture is lost. Secondly, DARTS focuses on the tasks of
computer vision and natural language processing. However,
a dedicated DARTS approach for time series forecasting is
lacking. Thirdly, a number of studies have noted that DARTS
suffers from overfitting during the searching process [33]] [|34].

Thus, we proposed an improved version of DARTS, denoted
as DARTS*. The strategy can be summarized as:

(i) Design a DARTS* search space specifically for load
Jorecasting task: LSTM is a well-developed recurrent neural
network, which shows great efficacy in time series forecasting
[35]. We leverage the strength of LSTM and design DARTS*
with LSTM-block as the operation candidate, which can be
defined as:

Ty = sigmoid( :;‘Fix(t) + W]Eh(t—l) + bi) (6)
Fiey = sigmoid (W a4y + Wilsh_1) + by) (7)
O = sigmoid (Wgogc(t) + W;z;h(t71) + bo) (8)

9wy = 0 (Wagzwy + Wigh(—1) + by) )
¢y = F) @ ce—1) T L) @ ge) (10)
Yy = hiy = Oy @0 (cy) (1

where the inputs at a specific timestep are input z(;), hidden
state h(;—1) and cell state c_;) from the previous timestep.
The intermediate state is calculated as g(;), and output is ;).
Z, F, O denotes input gate, forget gate, and output gate
respectively, and ® denotes Hadamard product. W,;, Wy,
Weo, Wy are weights related to @, Wiy, Wiy, Who, Wiy
are weights related to h, and b;, by, b,, by are corresponding
bias terms. o € {sigmoid, tanh, relu, gelu, identity, none} is the
operation to be searched, then the edge (i,j) in DARTS*
is defined by LSTM-block with different operations, and
relaxation of every edge by Eq. forms the continuous
search space.

(ii) Retain the mixing architecture and connectivity in-
Jormation: In order to prevent discretization gaps and per-
formance collapse, we retain the mix operation 053 which
weights the contributions of all operation candidates, includ-
ing the operation none, which indicates connectivity in the
architecture.

(iii) Adopt a practice of early-stopping in the searching
stage: Zela et al. suggest an eigenvalue-based early-stopping
technique to address the overfitting issue [33]. However, their
approach calls for the calculation of a Hessian matrix, which
involves more computation and increases the search time.

Algorithm 1: Improved DARTS (DARTS*)

1 function DARTS*(1q, N, & E, Np):

2 Generate LSTM block-based search space;

3 | Generate 6(7) parameterized by a*7) for each

edge (i,7):

4 for each search epoch i € E do

Q<= a— nava[’val (w - ngﬁtrain (w7 O() ,Oé)
(¢ = 0 if first-order approximation);

6 w4 w — N VuLlirain (W, a);

7 if L, doesn’t decrease for N, epochs then

8 | break

9 return o, w

In this paper, we suggest directly undertaking early-stopping
of searching in accordance with L,,;. The experiment find-
ings support this straightforward but efficient strategy, which
doesn’t necessitate heavy additional computing.

Algorithm [1] elaborates the implementation of DARTS*,
and the comparison of DARTS and DARTS* network struc-
ture is shown in Fig. 2] The original DARTS search at the
micro-level, which designs DARTS-RNN cell architecture and
sequentially stacks the copies of the designed cell to form the
network. In contrast, DARTS* searches at the macro-level,
which designs the network architecture with the LSTM block.

C. Federated-DARTS Model

As aforementioned, FL enables effective collaboration
among several clients while protecting privacy. Motivated by
this, we propose Federated-DARTS (FedDARTS), which is a
decentralized scheme for DARTS*.

Assume K buildings, denoted as a set K, participate in the
FL scheme, each building owns local dataset D; with Ny
samples, and the total number of data samples from all the
buildings is N = 215:1 Nj. The objective functions are
then transform into:

min ,;_1 %EZ (w* (a), ) (12)
N
* : k ok
s.t. w* (o) = arg min,, — L (w, 13
(@) =argming 322 ) (09

With the coordination of a server, which is a trust-worthy
third party, the problem can be solved by Algorithm [2
Firstly, initial architectural parameters g and weights wy
will be shared across all the clients. Next, at each fed-
erated communication round r € Rgeqren, €ach client k
will parallel update their model ay, wy by local data and
predefined hyperparameters (including learning rate 7., 7.,
&, and number of local search epochs E) by Algorithm
After local updating, each client will return updated model
parameters and the outcome of local validation result £F ; to
the server. Then, the server conducts parameters aggregation
a+ >y %ak, InREDY %wk as global update and distributes
to every client. The server will compute a global validation
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Fig. 2. The structure comparison of DARTS with DARTS*. Left: DARTS, which has a discrete architecture. Right: DARTS*, which is based on LSTM-block

and retains the mixing architecture.

Algorithm 2: Federated-DARTS.

1 function FedDARTS(1)a, Nw, & E, Np, Rscarch, K):

2 Initialize: K + «g, wo;
3 for each round r € Rgeqren, do
4 for each client k € K do
5 o, Wi < DARTS*(Nq, Nw, &, E, Np);
6 Compute £, on validation set;
7 Return ay, wg, £F, to Server;
a3 Neqy;
W=y R JG[’“ W
10 Parameters distribute: K < a, @;
11 L+ >N Negk
12 if £ doesn t decrease for N, epochs then
13 | break

14 return o, @

loss £ < Y XLk 1f the early-stop criteria are met, which
can be deﬁned as the global validation loss £ not decreasing
over a predetermined number of rounds, the procedure will
be stopped and obtain the optimal global model architecture.
Each client should preserve this searched architecture, then
retrain their models by only updating the weights parameters.
Clients can retrain the model in a federated fashion under
the privacy-preservation scenario using Algorithm 2] only to
communicate and update weights wy.

The privacy issue can be addressed by the suggested
Federated-DARTS approach, which enables many buildings to
cooperatively explore a high-performance neural architecture
by merely exchanging the intermediate parameters without
disclosing the raw data of the buildings.

D. Two-Stage Personalization

Federated-DARTS can search a global model architecture,
but the ultimate objective is to develop a customized fore-
casting model for every single building. In order to develop a
personalized model from the perspective of both architecture
and inner weights parameters, we offer a two-stage personal-
ization method, which is elaborated as follows:

Architecture-based clustering: The model architecture can
be represented by the architectural parameters « after exe-
cuting DARTS. Buildings can then be organized into groups
depending on the similarity of their architectural features. We
advise utilizing the k-means++ algorithm [36] because of its
strong qualities in terms of robustness and convergence (note
that the clustering method is not constrained, other approaches
like k-means, and hierarchical clustering can also be taken).
The number of clusters can be determined by the grid-search
strategy, and the candidate with the best performance on the
validation set is chosen.

Consider buildings are grouped into C' clusters, denoted as
set C. Buildings in the cluster ¢ are denoted as K. Different
clusters will conduct Federated-DARTS, and C' distinct global
model architectures &, will be searched. Model weights of
each cluster will also be updated federatedly after each clus-
ter’s model architecture has been searched. For each building
cluster, a cluster global model with parameters &, and . will
be created by the end of the process.

The proposed architecture-based clustering method just
needs the communication of architectural parameters that will
not breach privacy, as opposed to requiring ground-truth data
from buildings. The buildings can then be divided into various
groups, and personalized models can be constructed for each
building group. In contrast to [21]], which suggests federated-
clustering, our architecture-based approach offers novel sug-
gestions for privacy-preserving clustering without requiring the
computational-expensive federated clustering process.
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Local model fine-tuning: Despite the fact that global mod-
els are personalized for each building cluster, each building in
the cluster has the same model. We recommend a local model
fine-tuning method that enables the model to be even more
individually personalized to each building.

After receiving the clustered global model, clients within
the cluster can utilize their data to locally fine-tune the model
weights parameters by gradient descent. Only a small number
of training epochs will be conducted for the fine-tuning phase
to avoid creating a big difference between the local and global
models, which could nullify the learning from the federated
process. As a result, this fine-tuning strategy only requires
a small amount of additional computation but exhibits high
effectiveness that is supported by experiments.

E. Full Algorithm

There are three questions being considered when we design
the full algorithm: (1) How to construct effective model
architectures and train high-performance models through the
collaboration of multiple buildings without violation of pri-
vacy? (2) How to construct effective global models in sce-
narios with heterogeneous consumption patterns? (3) How to
conduct the personalization to account for individual building’s
specific load characteristics? We tackle the above challenges
by integrating the two-stage personalization technique into
the Federated-DARTS model and propose the Personalized
Federated-DARTS model (PFedDARTS), which enables the
construction of cluster-level personalized model architecture
and individual-level personalized model while preserving pri-
vacy. First, all model parameters for clients are initialized.
Then, during a certain number of pre-search epochs FE,,.,
each client will locally search the model architecture (see
Algorithm [I). By obtaining information of each client’s
architectural parameters oy, the server can then cluster all of
the clients using an architecture-based clustering method. After
the clusters C are formed, each cluster can run Federated-
DARTS (see Algorithm [2) concurrently to find the best model
architecture to serve as the cluster’s global architecture for
clients. Subsequently, the architecture will then be maintained
and every client will federatedly re-update their weight pa-
rameters. After the early-stop mechanism stops the federated
training process, clients will use their local data to finetune
the global model and personalize it to individuals.

The FL approach and the improved DARTS are well in-
tegrated into the full algorithm to enhance each other. On
the one hand, the model architecture information obtained
by DARTS allows for the construction of several building
clusters, and the global model for each building cluster can
then be better constructed by applying the clustered federated
learning approach as opposed to a vanilla global federated
learning method. On the other hand, the federated learning
framework enables multiple buildings to collaboratively design
a more appropriate model architecture and train a better model
than the local approach. Furthermore, the integration of the
local finetuning approach enables the model to adapt to the
local data distribution and capture individual building’s load
characteristics. The implementation details of the proposed
PFedDARTS can be found in Algorithm [3]

Algorithm 3: Personalized Federated-DARTS.

1 function PFedDARTS(Ma, N, & E, Epre, Et, Np,
Rsearch’ Rtrainr K, C):

2 Initialize: K < g, wo;

3 Local pre-search:

4 for each client k € K do

5 O, Wi < DARTS*(Na, N, & Epre, Np)

6 Return oy, wy to Server;

7 C < ArchBasedCluster (K, a, C);

8 for each cluster ¢ € C do

9 Qe, We — FedDARTS(o, Nw, &, E, Ny,
Rscarch» Ke)

10 Recompile: K, « a., wo;

1 for each round r € Ry, do

12 for each client k € K. do

13 Wi wi — NuVuLley (WE, &c);

14 Compute £1’fal on validation set;

15 Return wy, £1’fal to Server;

16 We > %—fw,g;

17 Parameters distribute: K. < @,;

18 L+ %—fﬁ’;al;

19 if £ does not decrease for N, epochs then

20 Local fine-tune:

21 for each client k € K. do

22 for each fine-tune epoch i € Ey; do

23 L L w§ + w§ — NV Ly (WE, &)

24 break

IV. CASE STUDIES

In this section, we use an open dataset BDG2 [37] to test
our model for 24-hour-ahead electricity load forecasting of
individual buildings. Two case studies are involved in this
section. In the first case study, an experiment including 10
buildings, with two of each type of usage, is carried out to
evaluate the effectiveness of the PFedDARTS model on each
individual building. In the second case study, an experiment
including 42 buildings of 6 different usage categories (at
least 3 buildings of each type) is conducted to examine the
scalability of the PFedDARTS model and its performance in
scenarios with more heterogeneous consumption behaviors.

A. Experimental Setups

1) Data Description: The open dataset BDG2 is used for
the case study. This dataset collects energy consumption data
from 3,053 smart meters installed in 1,636 different types
of buildings across North America and Europe, as well as
weather data such as temperature, humidity, and precipitation.
The dataset spans two years (from January 1, 2016, to De-
cember 31, 2017), with data sampled every hour. Negative
outliers, large outliers, duplicates, and continuous vacancies
are removed from the dataset.

In the first case study, ten buildings of five different types
are chosen at random, as shown in Table [ The last month of
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TABLE I
THE SELECTED BUILDINGS
Location Type Dataset
Bessie
Office Napoleon
. Rachael
Education Madge
USA Industry Joanne
Jeremy
. Ora
Lodging Shanti
. Gerard
Public Crystal

the dataset is designated as the test set, while the rest dataset
is divided into training and validation sets with a ratio of 1:1
in the searching stage, and 8:2 in the training stage.

2) Evaluation Metrics: Firstly, three commonly used mea-
sures are used to assess the individual building load forecasting
accuracy: mean absolute error (MAE), root mean square error
(RMSE), and absolute mean percentage error (MAPE).

In addition, as suggested in [38]], it is important to predict
the load peak around the correct times in building-level
forecasting. Therefore, we adopted an adjusted p-norm error
Eg shown as , where P is a permutation matrix allowing
the displacement of the forecasting values in time. We restrict
the displacement magnitude by setting P;; = 0 for |i — j| > d.
Specifically, we set d = 1 and use 2-norm to calculate the
adjusted error, which permits displacement of the forecasts by
one hour ahead or delay of the original forecast time. Thus,
the adjusted error is calculated by solving the minimization
problem over the complete set of restricted permutations P.
The adjusted error is computed for every 24-hour forecasting,
and the average adjusted error over the whole forecasting time
range is computed as the final metric.

1 n
MAE = — i — Ui 14
; ; lvi — il (14)
(15)
100% <= |vi — Ui

mapE = 200 g~ v =7 (16)

o= Y

d __ . Y

Ep = min[|Y — PY], (17)

3) Model Setups: Tables|[[l|and Table [[TI] show the setups of
local models and federated models, respectively, where local
models only use local data for training.

All the models have the same feature engineering, where
input X = [ i fo fﬂ is a series of timesteps
containing a week of historical data ahead of the fore-
casting point. Each timestep is a vector of factors f =
[Cal Env Holi Hist], where calendar information is en-
coded as Cal = [month weekday day hour], environmen-
tal factor Env represents air temperature (which is substantially
influential to building loads), Holi is the one-hot encoding of
whether it is a holiday, and Hist is the historical load record.

To eliminate the effect of model performance randomness
on the fair comparison, the experiments are repeated ten times
and the average results are presented.

B. Comparative Studies

Table present the performance comparison in terms
of MAE, RMSE, MAPE, and the adjusted error respectively.
The local models that only use local data, including benchmark
LSTM, origin DARTS, and proposed DARTS*, are compared
in the table’s left half. The table’s right half compares local
LSTM, Federated-LSTM (FedLSTM), and PFedDARTS. The
proposed PFedDARTS model’s performance improvement is
highlighted in bold, and the average performance across all
buildings is displayed in italics. Besides, Table displays
a comparison of the personalization strategies. Each building’s
top performance is displayed in bold, while the average
performance is displayed in italics.

1) Effectiveness of DARTS*: Comparing DARTS* to the
benchmark LSTM, the experiments show that DARTS* gen-
erally outperforms LSTM on each individual building in all
metrics. In terms of MAE, RMSE, MAPE, and the adjusted
error, DARTS* outperforms LSTM by 1.97%, 0.86%, 3.93%,
and 1.39%, on average. However, DARTS* shows a minor
degradation on some specific buildings, such as Joanne and
Shanti, because architecture search requires extensive data,
and individual buildings own limited local data, which may be
insufficient for designing an appropriate model architecture.

The results also show that DARTS* outperforms the orig-
inal DARTS, proving the efficacy of the strategies used to
build DARTS*. Furthermore, the early-stop mechanism allows
DARTS* to find optimal architecture more robustly and in less
time than the origin DARTS.

Fig. |3| shows the forecasting result of Napoleon, which
is an office building. Despite incorrect forecasting during
the Christmas holiday due to a lack of relative historical
data for model training, the DARTS* model performs better
in capturing time-series characteristics, particularly peak and
valley values. The superiority of DARTS* in forecasting can
also be found on other buildings.

2) Effectiveness of Federated Approach: In order to com-
pare the performance of federated models fairly, we also
incorporate a local fine-tuning personalization strategy into the
FedLSTM model.

The experiments show that the PFedDARTS model largely
outperforms the local LSTM model by an average improve-
ment of 6.33%, 3.12%, 10.22%, and 6.14% in MAE, RMSE,
MAPE, and the adjusted error respectively. It is worth not-
ing that after implementing PFedDARTS, the aforementioned
underperforming buildings Joanne and Shanti can have compa-
rable or even better performance than the local LSTM model,
demonstrating the effectiveness of the proposed method in
enabling the collaboration of multiple buildings in constructing
models with better performance.

When compared to the FedLSTM model, PFedDARTS
achieves an average performance of 7.81%, 3.41%, 7.93%,
and 6.02% in MAE, RMSE, MAPE, and the adjusted error
respectively. It can be observed that even though a local fine-
tuning personalization strategy is applied with FedLSTM, the
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TABLE II
LocAL MODEL PARAMETERS

Model Architecture Parameters Training Parameters
. hidden | DARTS | architecture search train .
architecture . . optimizer
units nodes discrete epochs epochs
LSTM 3 LSTM layers + 1 Dense layer NA NA NA 150(early stop)
DARTS Search space: 10 yes 150 150 adam
DARTS* | {none, sigmoid, tanh, relu, gelu, identity} no 150(early stop) | 150(early stop)
TABLE III
FEDERATED MODEL PARAMETERS
Model Architecture Parameters Training Parameters
. hidden | DARTS | architecture | pre-search fed search | fed train finetune .
architecture . . clusters optimizer
units | nodes discrete epochs rounds rounds epochs
FedLSTM 3 LSTM layers NA NA NA NA NA 150 150
+ 1 Dense layer 10 (early stop) | (early stop) adam
Search space: 150 y stop ¥ stop
PFedDARTS | {none, sigmoid, tanh, 3 no 15 3 arly st
relu, gelu, identity} (early stop)
TABLE IV
MODEL PERFORMANCE IN TERMS OF MAE
Local Model Federated Model
Dataset MAE | . DARTS* MAE | PFedDARTS
| mprovement | Improvement
) Vs Vs Vs Vs
LSTM  DARTS DARTS* : LSTM  DARTS FedLSTM  PFedDARTS : LSTM  FedLSTM
Bessie 5.073 5.212 4988 I 1.68% 4.30% 4.596 4.806 I 5.28% -4.56%
Napoleon | 11.148 10.366 9876 ! 1141%  4.73% 12.077 9.016 1 19.12% 25.34%
Rachael 6.257 5.862 5630 ' 10.02%  3.96% 6.281 5.513 ' 11.90% 12.23%
Madge 9.919 10.188 9.810 : 1.09% 3.71% 11.657 8.818 : 11.10% 24.36%
Joanne 13.255 14.046 14.032 | -5.86% 0.10% 12.633 12.519 | 5.55% 0.90%
Jeremy 4.641 4.908 4760 | -2.56% 3.02% 5.799 4.595 ; 1.01% 20.77%
Ora 12.834 13.042 12.668 | 1.29% 2.86% 14.368 12.030 | 6.27% 16.28%
Shanti 24.310 24.428 24898 | -242%  -1.93% 24.851 24.262 I 0.20% 2.37%
Gerard 4.550 3.739 3740 1 17.81%  -0.01% 3.655 3.404 I 25.19% 6.88%
Crystal 16.755 17.069 16.194 1 3.35% 5.13% 14.574 16.900 I -0.87% -15.96%
Average 10.874 10.886 10.660 T 1.97% 2.08% 11.049 10.186 " 6.33% 7.81%

highly non-iid data from various buildings causes performance
degradation of the federated approach. In contrast, by imple-
menting the proposed two-stage personalization strategy, the
issue of heterogeneous data can be addressed, and nearly all
buildings can benefit from PFedDARTS, and an example of
forecasting on an office building is shown in Fig. {4} It can be
seen that the local LSTM model can only represent a rough
prediction and fails to capture load volatility. The PFedDARTS
model, on the other hand, can deal with load volatility better.
This is due to the fact that the PFedDARTS approach uses
multiple data resources for model training, which effectively
improves the model’s forecasting ability. Furthermore, the
two-personalization strategy enables the model to accurately
capture the specific characteristics of this building load.

3) Effectiveness of Personalization Approach: In order to
further explore the effectiveness of each part of the personal-
ization strategy, we compare the FedDARTS model with four
different personalization configurations: 1) without clustering
and local fine-tuning 2) with clustering but without local fine-
tuning 3) without clustering but with local fine-tuning 4)
with both clustering and local fine-tuning. The performance
comparison can be found in Table [VIII|

The results show that the FedDARTS model performs
poorly when no personalization strategy is used. FedDARTS

performance can be greatly improved by implementing one
of the two personalization strategies, with the full two-stage
personalization strategy providing the best results. In terms of
model performance improvement, the local fine-tuning strategy
outperforms the architecture-based clustering strategy. How-
ever, because only a small number of buildings are considered
in this case study, the efficacy of the clustering strategy may
be greater demonstrated in a scenario involving a large number
of buildings, which will be shown in the second case study.

The performance of FedDARTS with different personaliza-
tion strategies on building Napoleon is shown in Fig. 5} When
no fine-tuning is adopted, it can be observed that the model can
not perform well, especially during the peak load period. In
comparison, the load curves can be better fitted if a fine-tuning
strategy is adopted. In particular, when combing clustering and
fine-tuning, the model performs well not only during the peak
and valley periods but also during the transition period. This
indicates the suggested two-stage personalization strategy is
both necessary and effective.

C. Scalability Studies

We examine the model performance in a larger-scale sce-
nario with more buildings included in order to investigate the
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TABLE V

MODEL PERFORMANCE IN TERMS OF RMSE

Local Model Federated Model
T % T
Dataset RMSE | . DARTS RMSE PFedDARTS
| mprovement | Improvement
v 'S \'A | VS VS
LSTM  DARTS DARTS* . LSTM  DARTS FedLSTM  PFedDARTS . LSTM FedL.STM
Bessie 7.174 7.510 7.028 1 2.03% 6.42% 6.744 6.834 I 4.73% -1.34%
Napoleon | 14.780 14.803 14250 ' 3.59% 3.74% 15.430 12.620 I 14.62% 18.21%
Rachael 8.057 8.061 7873 ' 228% 2.33% 8.264 7.781 ' 3.43% 5.85%
Madge 13.018 12.944 12.819 : 1.53% 0.97% 14.488 11.389 : 12.51% 21.39%
Joanne 20.745 21.084 21.053 | -1.49% 0.15% 20.525 20.482 . 127% 0.21%
Jeremy 8.681 8.628 8579 | 117% 0.57% 9.261 8.518 . 1.87% 8.02%
Ora 17.197 17.501 16979 | 1.27% 2.98% 18.237 16.186 | 5.88% 11.25%
Shanti 33.719 34.334 34.806 1 -3.22% -1.37% 35.721 35.698 I -5.87% 0.06%
Gerard 5.833 4.792 4869 1 16.54%  -1.60% 4.640 4.663 I 20.06% -0.49%
Crystal 27.050 26.504 26.653 | 1.47% -0.56% 23.418 27.209 I -0.59% -16.19%
Average 15.625 15.616 15.491 ‘ 0.86% 0.80% 15.673 15.138 ‘ 3.12% 3.41%
TABLE VI
MODEL PERFORMANCE IN TERMS OF MAPE
Local Model Federated Model
T 5 T
Dataset MAPE | DARTS MAPE | PFedDARTS
| Improvement | Improvement
| \A) \'A | VS VS
LSTM  DARTS DARTS* . LSTM  DARTS FedLSTM  PFedDARTS . LSTM FedL.STM
Bessie 8.107 8.475 7.882 1 2.77% 7.00% 7.230 7.769 I 4.16% -7.46%
Napoleon 8.592 8.090 7.739 ! 9.93% 4.34% 9.154 6.980 I 18.77% 23.75%
Rachael 12.722 11.801 11241 ' 11.64% 4.75% 12.665 10.906 ' 14.27% 13.89 %
Madge | 10.727 10919  10.460 : 249%  421% 12.391 9.198 : 1425%  25.77%
Joanne 9.905 10.437 10462 | -5.63% -0.24% 8.948 8.773 | 11.42% 1.96 %
Jeremy 11.525 11.862 11.927 | -3.49% -0.55% 11.925 11.441 . 0.74% 4.06%
Ora 6.033 5.895 5.860 | 2.85% 0.58% 6.502 5.476 1 9.23% 15.77 %
Shanti 8.754 8.768 8920 1 -1.89% -1.73% 8.445 8.638 I 1.33% -2.29%
Gerard 10.097 8.693 8.401 1 16.79% 3.35% 7.988 7.479 I 25.92% 6.37%
Crystal 7.833 8.034 7.692 | 1.80% 4.26% 6.707 8.001 I -2.14% -19.28%
Average 9.429 9.297 9.058 ‘ 3.93% 2.57% 9.196 8.466 ‘ 10.22% 7.93%
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Fig. 3. The forecasting performance comparison of three local models: LSTM, DARTS, and DARTS* on building Napoleon (office).

scalability of the proposed approach. After removing buildings
with a high percentage of invalid data, we included a total of
42 buildings in one site of various types in this case study, the
statistics are shown in Table [X]

1) Model Performance: The average performance over 42
buildings is investigated, and the performance comparison
of the PFedDARTS model with the local LSTM model is
shown in Table The results show that the PFedDARTS
model outperforms the local LSTM model by an improvement
of 12.64%, 9.55%, 7.23%, and 15.58% in MAE, RMSE,
MAPE, and the adjusted error respectively. Such significant

improvements indicate that the PFedDARTS model is more
capable of handling heterogeneous consumption patterns than
the local modeling approach. An improvement of 15.58% in
terms of the adjusted error demonstrates the superior ability
of the PFedDARTS in capturing the volatility of building load
patterns.

The performance comparison of the local LSTM model and
the PFedDARTS on individual buildings of different types
can be visualized in Fig. where the x-axis and the y-
axis represent the performance of each model in terms of
RMSE respectively. The dashed line in the figure denotes that
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TABLE VII
MODEL PERFORMANCE IN TERMS OF ADJUSTED ERROR

Local Model Federated Model
: = :
Dataset Adjusted Error I DARTS Adjusted Error I PFedDARTS
| Improvement | Improvement
| Vs \'A | \'A VS
LSTM  DARTS DARTS* , LSTM  DARTS FedLSTM  PFedDARTS | LSTM FedLSTM
Bessie 6.146 5.977 6.123 1 0.37% -2.44% 5.612 5.828 I 5.16% -3.86%
Napoleon | 12.969 12.459 11.568 | 10.80% 7.16% 13.584 10.052 I 22.49% 26.00%
Rachael 7.060 6.683 6.531 ' 7.49% 2.27% 7.048 6.400 ' 9349 9.19%
Madge 11.566 11.371 11.208 : 3.10% 1.43% 13.043 10.152 : 12.23% 22.17%
Joanne 18.942 19.311 19.495 | -2.92% -0.96% 18.231 18.371 | 3.01% -0.76%
Jeremy 7.682 7.799 7716 | -043% 1.07% 8.532 7.633 . 0.64% 10.54 %
Ora 14.948 15.736 14701 | 1.66% 6.58% 16.533 14.412 1 3.59% 12.83%
Shanti 28.362  27.732 29.800 1 -5.07% -7.46% 28.550 27.651 I 2.51% 3.15%
Gerard 5.519 4.489 4572 1 17.16%  -1.86% 4.432 4.336 I 21.44% 2.15%
Crystal 20.649  20.871 20.265 | 1.86% 2.90% 18.101 20.789 I -0.67% -14.85%
Average 13.384 13.243 13.198 ‘ 1.39% 0.34% 13.367 12.562 ‘ 6.14% 6.02%
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Fig. 4. The forecasting performance comparison of three models: Local-LSTM, FedLSTM, and PFedDARTS on building Napoleon (office).

TABLE VIII
COMPARISON OF FEDERATED-DARTS MODEL WITH DIFFERENT
PERSONALIZATION CONFIGURATIONS

RMSE
Dataset 0/0 c/o o/f c/t
Bessie 9.807 8.216 7.559 6.834
Napoleon | 13.066 13.334  12.752  12.620
Rachael 8.420 8.600 7.647 7.781
Madge 10.529 10314 11.175  11.389
Joanne 21.587  25.149  21.588  20.482
Jeremy 9.460 8.981 8.692 8.518
Ora 22274 16717 15189  16.186
Shanti 31.114 32334 36.133  35.698
Gerard 6.152 5.704 5.790 4.663
Crystal 26.093 25291 24.873 27.209
Average 15.850 15464 15.140 15.138
o/o : without clustering and fine-tuning.
2 ¢/o : with clustering but without fine-tuning.
3 o/f : without clustering but with fine-tuning.

4 ¢/f : with clustering and fine-tuning.

both models perform equally well. Buildings on which the
PFedDARTS model performs better than the local LSTM
model are indicated by the points below the dashed line.
The fact that most of the points are below the dashed line,
with some of them much below, implies that the PFedDARTS
model can perform well on the majority of buildings and
achieve significant improvement on a few of them.

2) Model Convergence: After the architecture-based clus-
tering, a total of 5 building clusters are constructed in this case

200

—— True

~—— PFedDARTS (0/0)
—— PFedDARTS (c/0)
~—— PFedDARTS (o/f)
—— PFedDARTS (c/f)

<
175
]

s
~ 150

25
-

100 ) :
15 20

10
Time (h)

Fig. 5. The comparison of personalization strategies, including PFed-
DARTS(0/0) without clustering and fine-tuning, PFedDARTS(c/0) with clus-
tering but without fine-tuning, PFedDARTS(o/f) without clustering but with
fine-tuning, and PFedDARTS(c/f) with both clustering and fine-tuning, on
building Napoleon(office).

TABLE IX
BUILDINGS STATISTICS

Location Type Number
Assembly
Education
Industrial
Lodging
Office
Public

Hog

|
B S| B w

study. Buildings within the cluster collaboratively search for
the cluster’s global architecture and update it in a federated
manner, which requires a number of communication rounds
to reach the model convergence. We investigate the conver-
gence process of building clusters in the federated search
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(a) Federated search loss.

TABLE X
COMPARISON OF PFEDDARTS WITH LOCAL LSTM IN A LARGE-SCALE
SCENARIO
Local LSTM  PFedDARTS | Improvement
MAE 15.28 13.35 12.64%
RMSE 20.58 18.62 9.55%
MAPE 18.18 16.87 7.23%
Adjust Error 18.07 15.26 15.58%
e Assembly e
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Fig. 6. Comparison of Local-LSTM and PFedDARTS in terms of RMSE. The
performance of the Local-LSTM model is indicated by the x-axis, and that
of the PFedDARTS model is indicated by the y-axis. Buildings on which the
PFedDARTS model performs better than the Local-LSTM model are indicated
by the points below the dashed line.

and federated train stage as shown in Fig. [} The federated
process will be early stopped to prevent overfitting, and it
can be observed that the model can almost converge after
approximately 35 communication rounds. The federated search
process has a higher federated loss and requires slightly more
communication rounds due to the complexity of finding an
appropriate model architecture.

3) Computation Cost: The average time consumption in
four stages of the proposed method is shown in Fig. [§
The computing expense is mainly concentrated in the cluster
federated search and federated train stages as compared to
the local pre-search and local finetune stages. However, in
practical implementation, multiple building clusters can carry
out federated procedures concurrently, which will be more effi-
cient and reduce computing time. Additionally, be aware that
the proposed architecture-based clustering approach may be
completed quickly on the server side and does not involve any
federation procedures. In conclusion, the proposed approach is
feasible and can be implemented with a tolerable computing
time.

V. CONCLUSIONS

This paper proposes the Personalized Federated DARTS
(PFedDARTS) model to improve load forecasting accuracy
on individual buildings. Extensive experiments have been
conducted to test the proposed model, and the findings indicate
that our model outperforms other local or federated models
and greatly improves the forecasting accuracy on various in-
dividual buildings. Results suggest that our proposed DARTS*
improves upon the original DARTS in terms of robustness and
search speed in automatically constructing efficient model ar-
chitectures. Furthermore, the proposed PFedDARTS enhances
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Fig. 7. Convergence in cluster federated stage. (a) The Federated search loss
of each building cluster. (b) The Federated train loss of each building cluster.
(c) The convergence process of one building cluster.
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Fig. 8. Average time consumption in four stages, including Local Pre-Search
stage, Cluster Fed-Search stage, Cluster Fed-Train stage, and Local Finetune
stage.

the local DARTS* model by making use of data resources
from various buildings for better architecture design and model
training. Buildings can benefit from the PFedDARTS approach
if they fail to design effective models locally. Additionally,
the PFedDARTS model is able to better handle load volatility
thanks to the two-stage personalization strategy, which ef-
fectively captures the heterogeneous load patterns of various
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individual buildings. The results of the scalability studies also
indicate that the PFedDARTS model can successfully tackle
the heterogeneous consumption challenges for a large number
of buildings with a good convergence quality as well as
tolerable computation cost.
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