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Abstract
Infusing deep learning with structural engineering has received widespread
attention for both forward problems (structural simulation) and inverse prob-
lems (structural health monitoring). Based on Fourier neural operator, this
study proposes VINO (Vehicle–Bridge Interaction Neural Operator) to serve
as a surrogate model of bridge structures. VINO learns mappings between
structural response fields and damage fields. In this study, vehicle–bridge inter-
action (VBI)–finite element (FE) data set was established by running parametric
FE simulations of the VBI system, considering a random distribution of the
structural initial damage field. Subsequently, vehicle-bridge interaction (VB)–
experimental (EXP) dataset was produced by conducting an experimental study
under four damage scenarios. After VINO was pretrained by VBI-FE and fine-
tuned by VBI-EXP from the bridge at the healthy state, the model achieved
the following two improvements. First, forward VINO can predict structural
responses from damage field inputs more accurately than the FEmodel. Second,
inverse VINO can determine, localize, and quantify damages in all scenarios,
validating the accuracy and efficiency of data-driven approaches.

1 INTRODUCTION

Because of the combination of repeated external loads,
environmental degradation, earthquakes, and other dis-
asters, the structural performance may decrease. Struc-
tural health monitoring (SHM) has become an important
discipline in civil engineering, which aims to identify
anomalies and detect structural degradation to mitigate
deterioration or even collapses of structures in both
inland and offshore (Brownjohn, 2006; Pezeshki et al.,
2023). In transportation systems, bridges widely experi-
ence increased usage due to loads of growing traffic, wind,
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temperature, earthquake, or other environmental effects.
Therefore, bridge health monitoring (BHM) has gained
growing attention for maintenance purposes (Kot et al.,
2021; Rizzo & Enshaeian, 2021).
Visual inspection and vibration-based BHM are two

research topics in evaluating the performance of exist-
ing bridge structures. Conventional visual inspections are
typically based on human visual inspections, while the
computer vision–based inspection of bridges has also been
developed recently. The visual inspections focus on detect-
ing concrete cracking, concrete crushing, steel corrosion,
and steel fracture of visible components. Conventional
visual inspections are labor intensive, time-consuming,
traffic interfering, and high cost (Flah et al., 2022; Hou
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& Xia, 2021). In addition, the visual inspection results
may be subjective to inspectors’ judgments (An et al.,
2019). The vibration-based BHM adopts a data acquisition
system to obtain vibration signals (i.e., displacement, rota-
tion angle, acceleration, and strain) of the bridge through
various sensors, including displacement sensors, gyro sen-
sors, accelerometers, and strain gauges. Vibration-based
BHM can detect the damage in bridge structures including
both visible and invisible components. The advancements
in data acquisition software and hardware have driven
vibration-based BHM to become a promising solution for
investigators, project managers, and infrastructure opera-
tors at the industrial level (Gharehbaghi et al., 2021). In
BHM, the damage detectionmay be classified into four lev-
els: Level 1 determines the existence of damage on a bridge;
Level 2 localizes the damage along the span of the bridge;
Level 3 quantifies the damage severity either globally or
locally; and Level 4 predicts the remaining operation lifes-
pan of the bridge. Most of the research focuses on the first
three identification levels (Gharehbaghi et al., 2021; Hou&
Xia, 2021).
BHM algorithmsmay be divided into model-driven (i.e.,

physics-informed) algorithms and data-driven algorithms.
The BHM algorithms may also be divided into time-
domain algorithms and frequency-domain algorithms.
The frequency-domain algorithms generally identify the
changes in modal parameters (i.e., frequency and modal
shape) induced by damages and predict the damage distri-
bution based on modal parameters. A number of research
works have reported successful identifications of modal
parameters through model updating or signal processing.
For instance, Kankanamge et al. (2020) implemented var-
ious wavelet transofrm algorithms in BHM to identify
modal parameters and to achieve damage detection of var-
ious bridges. Other research (Abeykoon et al., 2018; Cao
et al., 2017) analyzed the damping coefficient from accel-
eration responses and classified undamaged and damaged
structures by the differences in the coefficient. Yuen and
Huang (2018) proposed an improved Bayesian substruc-
ture identification approach to model boundary forces of
substructures and constraints to increase the identifiabil-
ity of the inverse problem in terms of probability and its
uncertainty level. Furthermore, Yuen et al. (2019) proposed
self-calibration and Bayesian framework to estimate sys-
tem state and identify the anomalies of bridge sections
in real time. Li et al. (2016) applied a method to obtain
modal parameters using wavelet and Hilbert transforms
and verified it on Lotte World Tower. The study suggested
a promising feasibility in the implementation on large
real-life structures. Chang and Kim (2016) identified fre-
quencies and modal damping ratios of each mode using
multivariate autoregressive (MAR) model and detected
the damages by Mahalanobis distance of collected modal

parameters. However, the frequency-domain algorithms
maynot fully utilize themeasured data in the time domain.
In addition, the modal parameters may be too sensitive
to environmental effects and it may be hard to infer the
damage distribution based on the identification results of
modal parameters (An et al., 2019; Kot et al., 2021; Yang &
Lin, 2005).
Recent years have seen the accelerated development of

artificial intelligence (AI) and its application to technol-
ogy, science, and engineering (Hassanpour et al., 2019;
Martins et al., 2020). Adeli and Kim (2001) employed the
neural dynamic model to update design variables, evalu-
ate cost, and analyze a structure for optimizing the cost
of composition beams of concrete, steel beam, and shear
studs. Rafiei and Adeli (2017a) utilized machine learn-
ing classification and neural dynamic optimization model
to define the threshold of an earthquake and its location
for an early warning system. Rafiei et al. (2017) applied
Restricted Boltzmann Machine with deep belief to pre-
dict a 28-day compressive strength of concrete aggregates.
Inputs of the model are the amount of seven composi-
tions, and the model was able to achieve 98% in accuracy.
The machine learning and deep learning approaches also
gained more attention in the structural monitoring and
damage detection fields. Oh et al. (2017) developed the evo-
lutionary radial basis function neural network (ERBFN) to
learn the relationship between wind and strain of build-
ing columns and verified the approach by data from wind
tunnel test. Based on the results, ERBFN was capable of
estimating the strain of columns for wind speed and direc-
tion, which helps evaluate the safety of a structure. Wang
et al. (2022) compared and suggested that DeepLabv3+
with the ResNet101 backbone showed the greatest perfor-
mance among all five state-of-the-art architectures and
three backbones on the Crackv1 data set in crack detection
for bridge monitoring purposes. In vibration-based SHM,
many works provided a justification between undamaged
and damaged states of a bridge through frameworks that
integrate machine learning and the critical index for dam-
ages (Dackermann et al., 2010; Entezami et al., 2022;
Fernandez-Navamuel et al., 2022). Rafiei and Adeli (2017b)
compared machine learning classifications in detecting
damage levels from inputs of transformed denoised accel-
eration responses. Perez-Ramirez et al. (2019) proposed a
framework using empirical mode decomposition (EMD)
to filter responses, mutual information (MI) to determine
an optimal neural network, and Bayesian regularization to
train a model to predict damage from different earthquake
levels on a scaled bridge. Goi and Kim (2017) applied prin-
cipal component analysis (PCA) on a vector autoregressive
(VAR) model to extract features for the proposed damage
index based on the hypothesis test. Bao et al. (2019) con-
verted time-series responses into images and applied deep
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neural network (DNN) to classify seven anomaly patterns
(normal, missing, minor, outlier, square, trend, and drift),
achieving 87% accuracy on the test set. Luo et al. (2019)
applied window frame on long-term time-series data and
classified impulse responses by deep auto-encoder (DAE),
then indicated deterioration process by bridge health
index. Iannelli et al. (2022) simulated spacecraft struc-
ture and added damages to generate structural responses.
Then, the Long Short-TermMemory (LSTM) network was
utilized to predict the damage scenario at the numeri-
cal level. Avci et al. (2021) reviewed the work conducted
in the domain, which mainly employed artificial, fuzzy,
and convolution neural networks (ANN, FNN, and CNN)
with feature extraction and data processing to detect and
localize damages; although most of the reviewed work
reached over 90% accuracy, all required training data from
both healthy structure and damaged structure. In addi-
tion, machine learning algorithms may be divided into
supervised learning and unsupervised learning. The unsu-
pervised learning models are more convenient to apply
but difficult to determine the sensitivities, limitations, and
practicality. The supervised models currently encounter
difficulty in developing well-established data sets with
labels of damage and are mostly validated only based
on numerical data sets instead of experimental data sets
(Gomez-Cabrera & Escamilla-Ambrosio, 2022). The super-
vised learning models may need training data of damaged
structures, which may be impractical for BHM application
(Azimi et al., 2020; Gordan et al., 2022; Malekloo et al.,
2021; Toh & Park, 2020).
In response to the aforementioned challenges in BHM,

this paper proposes the Vehicle–Bridge Interaction Neu-
ral Operator (VINO) framework for data-driven SHM and
structural simulation. VINO adopts the Fourier neural
operator (FNO; Li et al., 2020) architecture and is trained
on the vehicle–bridge interaction (VBI) data set for the
damage detection problem. As a new benchmark of deep
learning architecture in solving partial differential equa-
tions, FNO is an encoder-decoded–based model, which is
able to learn function mapping (Kovachki et al., 2021; Li
et al., 2020). Two VBI data sets are generated in this study,
including the numerical VBI data set based on finite ele-
ment (FE) analysis (VBI-FE) and the experimental VBI
data set based on laboratory experiments (VBI-EXP) on a
scaled bridge. The fine-tuning approach is used to achieve
damage detection of the scaled bridge. The pretrained
model from the VBI-FE data set was fine-tuned only by
experimental data from a healthy bridge (in VBI-EXP data
set) to predict the data on the bridge at the damaged state.
Therefore, the contributions are as follows:

1. This study introduces the VINO,which is an end-to-end
framework to detect damage directly from the structural

response and predict structural response directly from
damage distribution. The VINO can be more accurate
and faster than the FE model in predicting structural
responses.

2. This study achieves a real-time all-in-one damage deter-
mination, localization, and quantification model by
mapping between the structural damage field and the
structural response field. The inverse VINO model
map from the structural damage field to the structural
response field.

3. This study predicts damages on a bridge at damaged
states with only experimental data of healthy bridges
using the fine-tuning method on the pretrained model.

In this paper, Section 2 describes the methodologies
of VBI, FNO, and transfer learning in the proposed
framework VINO. Then, Section 3 reveals the numeri-
cal (VBI-FE) and experimental (VBI-EXP) data sets for
training, testing, fine-tuning, and validating VINO mod-
els. The numerical results of forward and inverse VINO for
structural simulation and SHM are discussed in Section 4,
and the performances on experimental data are reported
in Section 5. Lastly, Section 6 summarizes the contribu-
tion of work and provides suggested future work for more
practical data-driven research in bridge and structural
engineering.

2 METHODOLOGIES

2.1 Background of VBI

VBImeans the interaction between amoving vehicle and a
bridge. To simulate the VBI effect, models typically consist
of three main input components: bridge, vehicle, and road
profile, which influence the outputs differently. The out-
puts from the simulation are the responses of the bridge
and vehicle (displacement, velocity, and acceleration) at
distinct time steps (Clough & Penzien, 1993; Kim et al.,
2005; Yang & Lin, 2005).
For the bridge, researchers apply different types of

bridge models in an FE model for specific applications,
including beam element models, shell element models,
solid elementmodels, and hybridmodels. In this study, the
Euler–Bernoulli beamwith simple support is considered to
generate the output formachine learning applications. The
parameters of the input bridge include the span length,
number of beam elements, bridge mass per unit length,
damping coefficient, elastic modulus, andmoment of iner-
tia. For damage detection purposes, a damage field (the
distribution of damage along bridge length) can be added
to the parameters to obtain a simulation of the damaged
bridge.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13105, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 KAEWNURATCHADASORN et al.

F IGURE 1 Vehicle–bridge interaction system consisting of a
half-car model, element-segmented bridge, and road profile.

Various complexities of vehicle models have been
seen in past studies. Vehicle models range from a simple
single-vehicle force, which refers to a constant force
moving on a bridge, to more complicated car models.
Options in car models include quarter-car, half-car, and
full-car, with different degrees of freedom. Therefore, the
required parameters in the vehicle model include mass,
the moment of inertia, the damping constant, the stiffness
constant, the distance between axles, and vehicle speeds.
Indeed, each component has a particular effect on bridge
and vehicle responses in the simulation.
The road profiles (often referred to as road surface

roughness) affect the dynamic responses of bridges and
vehicles. ISO 8680 classified road profiles into eight classes
from A to H (best to poorest). The profile is derived as a
representative function of road surface roughness 𝑟(𝑥) as
written in Equation (1) (ISO 8608, 2016).

𝑟 (𝑥) =
∑
𝑖

𝑑𝑖 cos (𝑛𝑖𝑥 + 𝜃𝑖) (1)

where 𝑥 is the position along the bridge span; 𝑛𝑖 denotes
the 𝑖th spatial frequency; 𝑑𝑖 and 𝜃𝑖 represent the roughness
amplitude and phase angle, respectively. The roughness
amplitude is determined for each class.
Figure 1 demonstrates the interaction of vehicle and

bridge. The governing equations for the two-degree-of-
freedom half-car model are shown in Equation (2) and
Equation (3) to describe the system. In Figure 1, 𝑚𝑣 and
𝑙𝑣 stand for mass and moment of inertia of the vehicle; 𝑑1
and 𝑑2 are the space distance between the center of mass
to the first and second axle, orderly; and 𝑘𝑣1 and 𝑘𝑣2 sym-
bolize the spring constant of the axles; 𝑐𝑣1 and 𝑐𝑣2 denote
the damping constant of the axles; 𝑥𝑣1 and 𝑥𝑣2 are the
locations of the axles on the bridge; 𝑧𝑣(𝑡) represents the
displacement of the vehicle in z-axis direction; 𝑟(𝑥) speci-
fies roughness at position 𝑥; and 𝐿 designates bridge span
length.

0 = 𝑚𝑣 �̈� (𝑡)

+𝑐𝑣1

[
�̇�𝑣 (𝑡) + 𝑑1�̇�𝑣 (𝑡) −

{
𝐈𝑏
(
𝑥𝑣1

)}𝑇 {
�̇�𝑏 (𝑡) + 𝑣𝑟′

(
𝑥𝑣1

)} ]

+ 𝑐𝑣2

[
�̇�𝑣 (𝑡) + 𝑑2�̇�𝑣 (𝑡) −

{
𝐈𝑏
(
𝑥𝑣2

)}𝑇 {
�̇�𝑏 (𝑡) + 𝑣𝑟′

(
𝑥𝑣2

)} ]

+ 𝑘𝑣1

[
𝑧𝑣 (𝑡) + 𝑑1𝜃𝑣 (𝑡) −

{
𝐈𝑏
(
𝑥𝑣1

)}𝑇 {
𝐙𝑏 (𝑡) + 𝑟

(
𝑥𝑣1

)} ]

+𝑘𝑣2
[
𝑧𝑣 (𝑡) + 𝑑2𝜃𝑣 (𝑡) −

{
𝐈𝑏
(
𝑥𝑣2

)}
𝑇
{
𝐙𝑏 (𝑡) + 𝑟

(
𝑥𝑣2

)} ]

(2)

0 = 𝐼𝑣 �̈�𝑣 (𝑡)

+𝑑1𝑐𝑣1

[
�̇�𝑣 (𝑡) + 𝑑1�̇�𝑣 (𝑡) −

{
𝐈𝑏

(
𝑥𝑣1

)}𝑇 {
�̇�𝑏 (𝑡) + 𝑣𝑟′

(
𝑥𝑣1

)} ]

+ 𝑐𝑣2

[
�̇�𝑣 (𝑡) + 𝑑2�̇�𝑣 (𝑡) − {𝐈𝑏(𝑥𝑣2 }

𝑇 {
�̇�𝑏 (𝑡) + 𝑣𝑟′

(
𝑥𝑣2

)} ]

+ 𝑘𝑣1

[
𝑧𝑣 (𝑡) + 𝑑1𝜃𝑣 (𝑡) − {𝐈𝑏(𝑥𝑣1 }

𝑇 {
𝐙𝑏 (𝑡) + 𝑟

(
𝑥𝑣1

)} ]

+𝑘𝑣2

[
𝑧𝑣 (𝑡) + 𝑑2𝜃𝑣 (𝑡) − {𝐈𝑏(𝑥𝑣2 }

𝑇 {
𝐙𝑏 (𝑡) + 𝑟

(
𝑥𝑣2

)} ]

(3)

where 𝐙𝑏 (𝑡) = { 𝑍𝑏1
(𝑡), 𝑍𝑏2

(𝑡), … , 𝑍𝑏𝑛
(𝑡)} is the vector of

displacement each node from 1 to 𝑛𝑏 on the bridge sys-
tem. 𝐥𝑏(𝑥𝑣1) designates the vector that contains polynomial
interpolation functions for the displacement of the bridge
system observed at the contact point of the 𝑖th axle. The
over-dot and prime symbolize the derivative with respect
to time and space, respectively.
The dynamic equation of motion of the bridge can be

expressed inEquation (4)wheremass, stiffness, and damp-
ing matrices [𝐌𝑏]2𝑛𝑏×2𝑛𝑏

, [𝐊𝑏]2𝑛𝑏×2𝑛𝑏
, [𝐂𝑏]2𝑛𝑏×2𝑛𝑏

can be
constructed from the bridge parameters.

[𝐌𝑏]
{
�̈�𝑏 (𝑡)

}
+ [𝐂𝑏]

{
�̇�𝑏 (𝑡)

}
+ [𝐊𝑏] {𝐙𝑏 (𝑡)}

+
{
𝐥𝑏
(
𝑥𝑣1

)}
𝑅1 (𝑡) +

{
𝐥𝑏
(
𝑥𝑣2

)}
𝑅2 (𝑡) = 0

(4)

where𝑅1(𝑡) and𝑅2(𝑡) are the contact forces at axle position
𝑥𝑣1 and 𝑥𝑣2 . The contact forces at each time step can be cal-
culated at the time-step. The combination of all equations
becomes a dynamic coupling equation that represents the
whole vehicle–bridge system in Figure 1. The equation
can be solved by Newmark-β method for implicit time
integration. The method solves the displacement, veloc-
ity, and acceleration at 𝑡 + Δ𝑡 from the current stage 𝑡

and known information at 𝑡 + Δ𝑡. The 𝛾 and 𝛽 constant
parameters of the Newmark-β method are 0.5 and 0.25,
respectively.
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F IGURE 2 Fourier neural operator architecture in inverse problems, which is composed of three main parts: lifting, Fourier, and
projecting layers. In a Fourier layer, the Fourier transform (𝐹), linear transform with lower Fourier-mode filtering (𝑅), inverse Fourier
transform (𝐹−1), and convolution transform (𝐶) are applied (Li et al., 2020). Herein for inverse problems, the inputs are structural response,
and the output is the damage field.

2.2 Fourier neural operator

T. Chen and Chen (1995) first proved the Universal Rep-
resentation Theory of neural operators in 1995, that neu-
ral networks could be trained to fit arbitrary operators.
Recently, neural operators have been rapidly developed
to learn the mapping from the input field to the output
field of partial differential equations (Kovachki et al., 2021).
The architectures of the neural operator enhance the abil-
ity to map between functions with infinite-dimensional
space (Kovachki et al., 2021; Li et al., 2020). FNO is a type
of neural operator architecture that utilizes Fourier trans-
form in the layers. FNO was reported to achieve the best
performance among existing neural operators for solving
complex partial differential equations as per Li et al. (2020).
In this section, the framework and transfer learning for
FNO are explained to be applied in the forward and inverse
problems in SHM.
FNO architecture comprises three main components,

which are lifting, iterative kernel operator, and project-
ing, as demonstrated in Figure 2. In the lifting section,
the inputs of the model are lifted into the dimension of
the iterative kernel operator through one fully connected
or linear layer. After the dimensional trajectory shift, the
iterative kernel operator is a branch of connected Fourier-
layer blocks. The input in each block passes along two path
functions. In the first path, the input undergoes a Fourier
transform. Then, the linear layer (𝑅 in Figure 2) filters out
high Fourier modes (higher than 16) before the inverse
Fourier transform operates the data to another function.
The first path can be expressed in Equation (7). In the sec-
ond path, the input passes through a convolution layer.
Subsequently, two paths merge to create layer output and
become an input of the next layer. The last layer connects to
the third part of the components—projection. The data are
projected to the same dimension as the input to the model
through two linear layers in the projection at the end of the

architecture. Therefore, the inputs and outputs will always
need to be the same dimensions.
In an iterative kernel operator, the integral operator

in Equation (5) in neural operator was transformed into
Fourier operator in Equation (6) as described in the
FNO architecture based on the convolution theorem in
Equation (7).

(𝐾𝑡 (𝑣𝑡)) (𝑥)≔∫
𝐷
𝜅 (𝑥, 𝑦) 𝑣𝑡 (𝑦) 𝑑𝑦 (5)

∫
𝐷
𝜅 (𝑥 − 𝑦) 𝑣𝑡 (𝑦) 𝑑𝑦 = 𝐹−1 (𝐹 (𝜅 (𝑥 − 𝑦))) ∗𝐹 (𝑣𝑡 (𝑦))

(6)

(𝐾 (𝜙) 𝑣𝑡) (𝑥)≔𝐹−1
(
𝑅𝜙 ⋅

(
𝐹𝑣𝑡

))
(𝑥) (7)

where 𝜅 is a kernel function. 𝑅𝜙 is the Fourier transform of
a kernel function with periodic variation 𝜅. 𝑅𝜙 is a written
representation of a layer of neural network parameterized
by 𝜙 and 𝑅𝜙 = 𝐹(𝜅); 𝐹 and 𝐹−1 are defined as Fourier
and inverse Fourier transform, written in Equation (8) and
Equation (9).

(𝐹𝑓)𝑗 (𝑘) = ∫
𝐷
𝑓𝑗 (𝑥) 𝑒

−2𝑖𝜋⟨𝑥,𝑘⟩𝑑𝑥 (8)

(
𝐹−1𝑓

)
𝑗
(𝑥) = ∫

𝐷
𝑓𝑗 (𝑘) 𝑒

2𝑖𝜋⟨𝑥,𝑘⟩𝑑𝑘 (9)

2.3 Transfer learning

Transfer learning refers to a technique that utilizes the
weights of a neural network or neural operator learned
from an existing larger data set to a new unseen data set
or to a similar problem. The approach not only reduced
the training time on the new data set but benefited when
the new data set was insufficiently large. Recent years have
seen an increase in the application of transfer learning for
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6 KAEWNURATCHADASORN et al.

deep learning models in many fields. Fine-tuning is one
of the transfer learning methods, which trains pretrained
models on a new data set. Since the pretrained models
usually consist of many layers, fine-tuning can be con-
ducted in only some layers in the models; and typically,
a few last layers are trained while the rest of the model
is frozen (Chamangard et al., 2022; W. Chen et al., 2021;
Reyes-Carmenaty & Pérez, 2022).
In civil engineering, transfer learning approaches have

also been vastly adapted for the purposes of learning
adoptions and reducing training time. Reyes-Carmenaty
and Pérez (2022) utilized a computer vision-oriented pre-
trained model named ResNet34 and fine-tuned it on Com-
plex Frequency Domain Assurance Criterion (CFDAC)
matrix to detect alteration in stiffness. In addition, the
CNN-based models such as VGG, ResNet, and AlexNet
were mostly utilized in vision-based crack detection tasks
as the models were pretrained on images (Wang et al.,
2022). However, Chamangard et al. (2022) also applied
CNN-based acceleration responses with transfer learning
to obtain highly accurate damage detection on insufficient
data. Although the data set was not big, the pretrained
models were also fine-tuned with damage data on the
Tianjin Yonghe Bridge at the detection level.
Transfer learningmostly uses in cases of limited data for

a specific task. Therefore, in the BHM field, transfer learn-
ing will benefit when experimental data are limited. The
numerical data could be used to train the model, then we
can use experimental data to train the pretrained model
as suggested in the framework of this paper. In this study,
we trained a neural operator (VINO) to understand a rela-
tionship between a damage field and response fields for
the numerical data set, in both forward and inverse mean-
ings. Then, the trainedmodel again learns the relationship
between a damage field and response fields for the experi-
mental data set. This is considered transfer learning in the
context that the model used the knowledge learned from
the numerical data set in the experimental data set, and
boosted the performance of the model.
In VINO developed in this study, only the projection lay-

ers (i.e., the last two layers) of the pretrained FNO model
were fine-tuned based on an experimental data set of the
healthy bridge. The weights in the lifting and iterative
kernel operator componentswere not fine-tuned. The fine-
tuning data set was only the responses from the health
bridge obtained from experimental data. In the last two
layers of the architecture, a total of 8449 out of 549,633
parameters were trainable in VBI system. The fine-tuning
approach is feasible for real-world structures because field
vibration tests on the new bridge can be conducted to
serve as a data set for fine-tuning, while future vibration
responses of structures can be fed to FNO to detect damage
distribution.

2.4 The proposed framework

Figure 3 illustrates the proposed framework to use the
VBI information to pretrain and fine-tune the FNO. The
framework consists of two main stages, which are VBI-FE
data set preparation (stage 1) and the machine learn-
ing approach (stage 2). As previously mentioned, stage 1
adopted the VBI-FE model to generate a data set of dam-
age fields and structural response fields. Stage 2 focused
on the model training, testing, fine-tuning, and validat-
ing where both VBI-FE and VBI-EXP data sets are used
to train, verify, fine-tune, and validate the model. It is
important to emphasize that in the framework, only the
responses from the bridge at the healthy state were used
to fine-tune in order to predict damages on the bridge at
the damaged state in the same system of VBI. Addition-
ally, this framework can serve both forward and inverse
problems, depending on the inputs and outputs of the FNO
model. In stage 2 of Figure 3, the inputs are the structural
responses while the outputs are the damage field, which
can be referred to as the inverse problem for BHM.

3 DATA SET ACQUISITION

3.1 Numerical simulation setup for
VBI-FE data set

This section explains the setup of the simulation for
training the VINO model. First, this section will explain
the model parameters in numerical simulation based on
the governing equations of VBI. Then, the generation of
the data set for model training will be described by the
variation of damage input to the numerical model.

3.1.1 The numerical bridge model

The bridge parameters came from measurements and
calculations on the laboratory bridge, summarized in
Table 1. The parameters were obtained from the previous
research of Kim et al. (2016). The Rayleigh Damping (𝑐) is

TABLE 1 Bridge parameters.

Parameters Values Units
Speed 1.35 m/s
Space between axles 0.3 M
Sprung mass 15.38 kg
Suspension stiffness (axle 1 and
axle 2)

1,666 N/m

Suspension damping (axle 1 and
axle 2)

45.28 Ns/m

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13105, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KAEWNURATCHADASORN et al. 7

F IGURE 3 The overall proposed data-driven framework and procedures.

written in the form of fractions of mass (𝑀) and stiffness
(𝐾) with two coefficients as shown in Equation (10). The
mass coefficient (𝛼𝑑𝑀) and the stiffness coefficient (𝛽𝑑𝐾)
are formulated based on the first and second frequency
and damping ratios.

𝑐 = 𝛼𝑑𝑀 𝑀 + 𝛽𝑑𝐾𝐾 (10)

where the damping ratios are equal to 0.007 according to
the in-house experiment described in Section 3.2.

3.1.2 The numerical vehicle model

The half-car model is adopted to simulate the VBI sys-
tem. Table 2 summarized the parameters of the vehicle
measured in the in-house experiment. The speed of the
vehicle on the laboratory bridge (𝑣 = 0.55 m∕s) is equiv-
alently converted to the vehicle speed on the real bridge
(𝑣 = 10 km∕h), using the speed parameter shown in
Equation (11). It is noted that the equivalent vehicle weight
is 18,000 kg. The equivalent vehicle length is 2.4m.

𝛾 =
𝑣

2 ⋅ 𝑓1 ⋅ 𝐿
(11)

where 𝛾 denotes the speed parameter; 𝑣 refers to the speed
of the vehicle on the bridge with the first mode frequency
(𝑓1) and length (𝐿).

TABLE 2 Vehicle parameters.

Parameters Values Units
Element 512
Length 5.4 m
Mass per unit length 53.47 kg/m
Young’s modulus 2.1 × 1011 Pa
Moment of inertia 5.49 × 10−7 m4

Frequencies (1st and 2nd
modes)

3.64, 14.56 Hz

Rayleigh damping coefficient
(𝛼𝑑𝑀, 𝛽𝑑𝐾)

0.2562, 1.22 × 10−4 1/s,s

Moreover, suspension damping was calculated based on
the mass and stiffness of the vehicle.

𝑐 = 𝑐𝑐 × 𝜁𝑣 (12)

where 𝜁𝑣 is the damping ratio obtained from free vibration
tests of the same bridge (Cantero et al., 2019; McGetrick
et al., 2015). 𝑐𝑐 indicates the critical damping, which equals
to 2

√
𝑚𝑎𝑘𝑎. In the calculation, the mass of each axle (𝑚𝑎)

was assumed to be half of the total mass of the vehi-
cle (𝑚𝑣). Thus, the damping ratio of the two axles was
45.28 Ns∕m.
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8 KAEWNURATCHADASORN et al.

F IGURE 4 Road profile on the laboratory bridge.

3.1.3 The road profile

The road irregularity profile was obtained from measure-
ments under a path of a tyre on the experimental bridge,
plotted in Figure 4. As classifying the roadway roughness
using the Power Spectral Density (PSD) of the roadway
roughness based on ISO 8608, a condition of a roughness
profile is representative of the entire bridge width (ISO
8608, 2016).

3.1.4 The numerical VBI-FE data set

The data set stands as the most influential component in
the machine learning model. In damage detection, data
sets must be considered and prepared as carefully as possi-
ble regarding accuracy and practicality. Since in machine
learning application research, the models are trained on
the training set and tested on the testing set, it is always
possible that a training set does not provide the coverage
of all possible cases, resulting in an impractical model.
In VINO, FE simulation of a VBI system is first adopted

to generate a numerical data set VBI-FE based on the
random damage possibility of every element on the 512-
sectioned bridge. The Gaussian random field is utilized to
generate continuous random damage fields according to
the distribution field,

𝑁
(
𝜇, 𝜎2

[(
−Δ + 𝜏2𝐼

)]−𝛾)

where the mean (𝜇) is 0.2, the variance (𝜎2) is 49, the
nugget effect (𝜏) is 7, and the scaled parameter (𝛾) is 2.5 for
the data set generation. Furthermore, the range of random
distribution was from 0% to 95% of stiffness reduction to
ensure the physical meaning of the obtained damage field.
The random continuous stiffness reduction or damage
level for each element, thus, generates a random damage
field.
The data set was prepared from simulation runs inMAT-

LAB software on the computer spec Intel(R) Core(TM)
i9-10850KCPU@3.6GHzwithNVIDIAGeForceRTX3090

at the laboratory within 24 h with a single CPU thread.
In total, the training and testing sets of VBI-FE include
1200 independent FE simulations. This study obtained the
acceleration of all 514 nodes of bridge elements and the
vehicle for 844 time steps in the VBI-FE data set. Then
the data set was divided into 1000 and 200 simulations of
responses for training and testing the FNO, respectively.

3.2 Experimental setup for VBI-EXP
data set

The actual experiments were conducted in the laboratory
at Kyoto University to collect real-world data in order to
provide validation and justification to the FNO models in
both forward and inverse problems. The model bridge and
model vehicle are measured and calculated for physical
properties as the same values in Tables 1 and 2.
As schematically illustrated in Figure 5, the model

bridge has an I-section, and the weak axis is loaded in
the test. The total span length is 5.4 m. The boundary
conditions of the bridge are the pin and roller supports
on two ends. DMG1 (on the right) and DMG2 (on the left)
were depicted in the schematic view in Figures 5a and 5b
(Yokoyama et al., 2022). In this paper, the detachable rein-
forcements for DMG1 in Figure 5d and DMG2 in Figure 5e
were considered as no damage. The bridge with two
reinforcements is an intact case (INT), and the removal
of reinforcement refers to a specific damage case. All sce-
narios are conducted on one bridge specimen, and DMG1
and DMG2 were estimated to be 16% and 13% reduction of
the flexural rigidity by stiffness calculations. As previously
mentioned, four damage scenarios (INT, DMG1, DMG2,
and DMG3) were assumed and corresponded to intact,
damage 1, damage 2, and damage 3 conditions, whereas
DMG3 is the combination of the existence of DMG1 and
DMG2.
The dynamic response data of the bridge were collected

from sensors placed on and under the bridge. The actual
setup is shown in Figure 5c where three displacement
transducers (CDP-50 mm) and three wired accelerometers
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KAEWNURATCHADASORN et al. 9

F IGURE 5 Experimental setups.

(M-A552AC10) were installed at the quarter, mid, and
three-quarter spans along the bridge. Two optical sensors
(NPN PZ-G52N) were located at two ends in order to track
the entry and exit of the vehicle in the system. The details
of the vehicle were summarized in Table 2. Two wireless
accelerometers were also attached on top of the vehicle to
monitor the acceleration of the vehicle during the exper-
iment. All sensors were connected to the central control
panel, namely, DC-7204 Dynamic Strain Recorder mea-
surement software. A small triggering force was applied

to the bridge to asynchronously set the start of one testing
round for all sensors and transducers for data processing.

4 PERFORMANCE OF VINO ON
VBI-FE NUMERICAL DATA SET

This section provides the numerical verification of VINO
for forward and inverse problems. As shown in the
framework of Figure 3, the numerical data set was divided
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10 KAEWNURATCHADASORN et al.

into the training set and testing set. In this section, the
performance of VINO on the testing set is reported to
discuss the efficiency of the VINO. For the structural
simulation problem, the forward VINO aims to generate
structural responses from the input of a particular damage
distribution curve, which is similar to FE simulation. For
the SHM problem, the inverse VINO is validated by the
accuracy in predicting damage fields from the structural
responses at several sensor locations.

4.1 Forward VINO for structural
simulation

Structural simulation is considered a forward problem due
to the fact that it solves differential equations to obtain the
responses of bridge and vehicle. The conventional model
applies the FEmethod, as explained in Section 2.1, and the
proposed VINO model is a data-driven architecture that
learns from the VBI-FE data set.
VINO and the FE model should be compared to assess

which is more effective, taking into account errors and
computational time. Therefore, this verification aims to
discuss a more efficient model for further forward prob-
lem purposes. This paper provided numerical verification
for VINO models trained to generate displacement, rota-
tional angle, and acceleration from a random damage field
in Figure 6.
To obtain displacement response, VINO was trained to

predict a single channel of displacement measurement
data. Therefore, three VINO models were trained to cap-
ture the response from three locations (1/4 span,mid-span,
and 3/4 span). After being trained on the 1000 training
data in the VBI-FE data set, VINO models are capable of
generating the same output as the FE simulation results.
Figure 6a shows the damage field input to both models,
while responses in Figure 6b are the output of the mod-
els. In Figure 6a, damage level is the percentage of stiffness
reduction at each element. As observed in Figure 6b, each
displacement responsewas obtained from eachVINOwith
an error below 40 μm. In addition, the FE simulation
time is 66 s to obtain response at 1028 nodes on average
based on a single core of Intel(R) Core(TM) i9-10850KCPU
@3.6 GHz with NVIDIA GeForce RTX 3090. In compar-
ison, after the training process is complete, the inference
time of VINO is only 3.4 𝑚𝑠 to obtain one response based
on a single Nvidia V100 GPU. This implies that for the
full simulations, FNO will be 19 times faster than the FE
model once it is trained. For a specific task that requires
only selected nodes, VINO will achieve notably higher
computational efficiency in structural response prediction
because of the efficient utilization of parallel computing
resources of GPU accelerators, and there is no need to form

a stiffness matrix or matrix solver in VINO. Therefore, the
result can be concluded for the excellent performance of
the VINO in learning to map the damage field to the dis-
placement at an arbitrary node,which is at least as accurate
as the FE model. It is noted that the training is specific to
a data set of a road profile, a response type, a vehicle type,
and a bridge type.
Figure 6c shows the performance of VINO in fitting the

rotation angle of the bridge. Similar to the displacement
responses, the rotational angles of bridge responses from
VINO were considerably close to those obtained from the
FE model. The maximum error of rotation angle is less
than 10−5 degrees observed at the bottom of Figure 6c.
The inference time of VINO is similar to that of the dis-
placement prediction model and is notably faster than the
FE model. This suggests that VINO could reproduce FE
simulation results of rotational angle.
The acceleration response data vary and fluctuate over

time domain and are more sensitive to FE modeling
parameters such as damping ratio. In Figure 6d, the
acceleration responses of the quarter-span generated from
VINO and FE simulation were shown. Although higher
errors were observed in acceleration prediction, the gen-
eral trend of acceleration obtained from FE simulation is
replicated by the VINO model. The error between VINO
and FE simulation was lower than 1 mm ⋅ s−2. After the
training process is complete, like displacement and rota-
tional angle, the acceleration response at each node was
inferred within 3.5 ms, suggesting a higher efficiency
than the FE model. The Fourier mode in the Fourier
layers of VINO was 16 as applied to approximate the one-
dimensional field in Li et al. (2020), which was discussed
to be sufficient in the approximation. Although the current
progress of this study does not aim to investigate the most
efficient Fourier mode, it should be noted that an anal-
ysis of the Fourier mode may be needed to optimize the
computational time and accuracy.
As a result, all three numerical verifications concluded

that VINO has the competence to simulate the deflec-
tion, rotational angle, and acceleration responses as the
FE model created in the forward problem at the quarter,
mid, and three-quarter span locations. This further sug-
gests the ability to generate other structural responses of
the other nodes on the bridge in the data set. From the
results, an apparent advantage of the VINO over the FE
simulation is the inference time, which is almost 2000%
faster than the FEmodel for a full simulation. Another sug-
gestion for the full operation is the two-dimensional VINO
to predict the displacement field as a function of coordinate
(𝑥) and time (𝑡), which should be investigated for appli-
cations in forward VBI problems. It is believed that if the
two-dimensional model provides high accuracy, it can be a
great benefit to future VBI research.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13105, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KAEWNURATCHADASORN et al. 11

F IGURE 6 Numerical results of Vehicle–Bridge Interaction Neural Operator (VINO) on the forward problem. (a) Damage field input,
which represents damage level or the stiffness reduction at each position on the bridge; (b) deflection responses and their differences between
two models; (c) rotational angle responses and their differences between two models; (d) acceleration responses and their differences between
two models.

4.2 Inverse VINO for SHM

As mentioned in Section 1, damage detection in BHM is
considered an inverse problem because the approach aims
to find the causal parameter (damage distribution) from
the detected vibration responses. In this case, the damage
on the bridge is the parameter that causes the difference
in the measurement of structural responses. This section
presents the results of the VINO that maps from the struc-
tural responses field to the damage field. The inputs of
VINO are structural responses at the quarter, mid, and
three-quarter spans on a numerical bridge, and the out-
put is the damage field. In this paper, only two responses,
as shown in Figure 7—displacement and accelerations—
were investigated because these can be easily measured
with displacement sensors and accelerometers.

To predict damage fields from displacement responses,
the VINO was trained, in which the inputs were an array
of the displacement responses (Figure 7a) at three nodes,
including quarter, half, and three-quarter spans, and the
output was the damage field (Figure 7b). In Figure 7b,
the black line depicts the theoretical damage field, which
is an input to the FE model to generate the structural
responses, and the red line represents the damage field
predicted by VINO. Therefore, numerical results from
Figure 7b showed the considerably accurate prediction
of VINO in mapping between displacement and dam-
age fields, suggesting the capability to predict damage
along the bridge span. The inaccurate prediction can be
seen at the bridge’s start and end because the structural
response is not sensitive to the possible damage at the
beam end.
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12 KAEWNURATCHADASORN et al.

F IGURE 7 Numerical results of Vehicle–Bridge Interaction Neural Operator (VINO) on the inverse problem. (a) Deflection responses at
the quarter, half, and three-quarter span; (b) theoretical and predicted damage fields by VINO; (c) acceleration responses at the quarter, half,
and three-quarter span; (d) theoretical and predicted damage fields by VINO.

Although acceleration responses have more high-
frequency components compared to the deflection, as
shown in Figure 7c, the damage fields in Figure 7d pre-
dicted by VINO trained by the acceleration inputs showed
results similar to the damage fields predicted from the
displacement inputs. Three acceleration responses at the
quarter, mid, and three-quarter nodes were the inputs of
the VINO model, which was able to predict an accurate
damage field in the numerical verification. This suggested
investigations of VINO for the experimental data with only
sensors at the three locations.
Observations from the simulation data–based investiga-

tion demonstrated that it is sufficient to draw a conclusion
that VINO is an excellent candidate in damage detec-
tion for determination, localization, and quantification.
Because the encoder-based architecturemaps between two
function spaces, the machine learning model can pre-
dict the damage field from displacement or acceleration
responses discussed above in Figure 7. Similar to several
other research, these numerical verifications, in fact, do
not provide sufficient justification for the practicality of
themodel. To overcome the challenges of data-driven SHM
mentioned in review articles (Avci et al., 2021; Azimi et al.,
2020; Gordan et al., 2022;Malekloo et al., 2021; Toh& Park,
2020), the numerically verified FNOwill be validated with
the experimental data in Section 5 as mentioned in the

framework (Figure 3). In addition, it is believed that the
one-dimensional FNO suits better with this inverse prob-
lem in comparison to the two-dimensional FNO because
the inputs can be detected responses from as many sen-
sors as necessary and the output is a damage field, which is
strictly one dimension. However, if the problem goes up to
the three-dimensional structure, it is suggested to further
develop the higher dimensional VINO models.

5 PERFORMANCE OF FINE-TUNED
VINO ON THE VBI-EXP DATA SET

In this section, the experimental validation for VINO was
reported for both forward and inverse problems. In the
forward problem of structural simulation, this validation
aims to provide a justification that after transfer learn-
ing, VINO can generate more reliable structural responses
than the conventional FE model. For the inverse problem,
validation is provided to demonstrate data-driven BHM.
During the fine-tuning process, we obtained the

dynamic responses of the intact case (INT), in which the
damage level of the dynamic responses is expected to be
zero along the damage field. Then, we train the pretrained
VINO to obtain the zero along the damage field, which is
now called fine-tuning. After that, the fine-tuned VINO
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KAEWNURATCHADASORN et al. 13

is tested with dynamic responses of DMG1, DMG2, and
DMG3 and compared for the results.
To approach those goals as a practical approach in the

forward and inverse problems, themodelmust be validated
by the data of the actual bridge at the damage state (not the
numerical data) inwhich themodel ismaking a prediction.
This means the model will be pretrained on the VBI-FE
data set and fine-tuned on the VBI-EXP data set or the real
experimental data from the bridge only at the healthy state
by transfer learning. Subsequently, VINO can predict the
damage fields on the bridge when the damages appear.

5.1 Fine-tuned forward VINO for
structural simulation

In VBI problems, it is still a challenging problem to
generate the exact responses as the experiments, even
though the numerical and experimental setups are identi-
cal due to the fact that the numerical models (FE method)
have some assumptions (elastic material, Rayleigh damp-
ing model, etc.). In machine learning–based approaches,
transfer learning approaches are applied to a model to
utilize an understanding of the pattern or function of a
specific task.
In the structural simulation problems, the forward

VINO was fine-tuned to simulate displacement responses
only. After the VINO model was pretrained on the VBI-
FE data set of 1000 simulations and validated in Section 4,
it was then fine-tuned on the VBI-EXP data set obtained
from experiments on the laboratory bridge. As mentioned
in previous sections, only the responses from the bridge
at the healthy state (INT scenario) were adopted to train
the last two layers of the VINO model, while other lay-
ers in the model were frozen. After that, the fine-tuned
VINO model was further validated by three damage sce-
narios as prepared in the VBI-EXP data set: DMG1, DMG2,
and DMG3 as reported in the experimental setup in
Section 3.1.
Figure 8 showed the comparison between the collected

experimental data in the VBI-EXP data set, FE simula-
tion, and the VINO model trained on the VBI-FE data
set and fine-tuned on the VBI-EXP data set in simulat-
ing the displacement responses of the bridge. Figure 8a
is the result on the healthy bridge (i.e., training set in
the VBI-EXP data set). The difference between the actual
experimental responses and the FE model of the healthy
bridge is around 1.25 mm at the maximum experimental
displacement (3.4 mm), equivalent to a relative error of
37%. However, the error between the VINO and experi-
mental results is approximately 0.3mm along the response
field. As the pretrained VINOwas fine-tuned with the INT
scenario, a small error was expected. A similar trend was

shown in Figure 8b for the DMG1 scenario. Compared to
experimental data, the FE model and VINO showed max-
imum errors of nearly 1.1 mm and 0.5 mm, respectively.
The performance of the FE model for simulating displace-
ment responses underDMG2 andDMG3 in Figure 8c and d
showed a larger error compared to VINO. The maximum
error of the FEmodelwas still above 0.65mm along the dis-
placement responses. In comparison, the fine-tuned VINO
model reduced the displacement error to less than 0.55mm

along the span of the bridge. It is evident in DMG1, DMG2,
and DMG3 that it was difficult for VINO to predict the
response at the start and the end as the error was always
one of the largest errors along the span. This error may
come from the data processing during the synchronization
of optical and three displacement sensors.
Therefore, it is concluded that the fine-tuned VINO

showed better performance compared to the FE model in
the forward problem (i.e., structural simulation problem).
The maximum error between test and simulation results
was reduced in VINO, and the oscillation of the actual
displacement responses was also predicted by the VINO
model. This may be attributed to the Rayleigh damping
model adopted in FE simulation, which may dampen out
high-frequency responses beyond the second frequency
of the bridge structure. The fine-tuned VINO model was
able to generate high-frequency component displacement
responses, as shown in Figure 8.

5.2 Fine-tuned inverse VINO for SHM

The transfer learning of the inverse problem for BHM
shows the practical application of VINO. In this section,
the validation will be reported to illustrate that the
proposed model VINO is able to predict DMG1, DMG2,
and DMG3 after conducting the fine-tuning approach
only with responses of the healthy bridge in the VBI-EXP
data set. In this paper, both displacement and acceleration
responses at the 1/4-span, mid-span, and 3/4-span are
used to investigate the practical application of the VINO
with displacement data or acceleration data.
Figure 9 shows the experimental deflection curve mea-

sured by displacement sensors and the predicted damage
distribution of VINO compared to the theoretical damage
distribution. Figure 9 clearly demonstrates that VINO is
capable of predicting all the expected damage scenarios
on the laboratory bridge. In the training set, the damaged
responses did not appear after fine-tuning. In the test set,
the model understood damage 1 and 2 in the DMG1 and
DMG2 scenarios. VINO predicts the accurate combination
of damage 1 and 2 in damage 3 of the DMG3 scenario. The
small damages in Figure 9b, d, f, and h are considered the
errors at the current stage as they are considerably small
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14 KAEWNURATCHADASORN et al.

F IGURE 8 Experimental validation of Fourier neural operator on the forward problem. This compares the deflection responses of (a)
INT, (b) DMG1, (c) DMG2, and (d) DMG3 scenarios.

(less than 5%) compared to the expected damage (over 15%).
In addition, as observed in the figures, the spatial resolu-
tion of the damage field of VINO cannot precisely obtain
the real damage field, which may be attributed to the lim-
ited number of sensors in this study. This could be the
effect of both the sensors and the limited size of the training
set in the VBI-FE data set, where the damage distribution
generated was very smooth, and this particular shape of
damage as a piecewise function was not observed. How-
ever, the results can determine the excellent performance
of VINO.
For the acceleration responses, the results of the inves-

tigation are shown in Figure 10. The accelerations in the
time domain include high-frequency signals. Compared
to the VINO trained by displacement data, the fine-tuned

VINO achieved prediction of the damage field with higher
errors as shown in Figure 10b, d, f, and h. It was observed
that the VINO model for acceleration was able to pre-
dict damage 1, damage 2, and damage 3 in the DMG1,
DMG2, and DMG3 scenarios to a certain level. The pre-
dictions of DMG1 and DMG2 were better than that of
DMG3. The main source of error may originate from a
larger noise of the signal. This suggested conducting fur-
ther studies to obtain a larger experimental data set for
fine-tuning VINO models. Compared to conventional FE
model updating algorithms in BHM in the time domain
or frequency domain conducted by Lin et al. (2021), VINO
achieved end-to-end damage detection without the need
for model updating, which notably reduced the time in
damage detection.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13105, W
iley O

nline L
ibrary on [03/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KAEWNURATCHADASORN et al. 15

F IGURE 9 Experimental validation of fine-tuned inverse Vehicle–Bridge Interaction Neural Operator (VINO) for structural health
monitoring. These are comparison of predicted damage fields for INT, DMG1, DMG2, and DMG3 scenarios from displacement fields.

6 CONCLUSION

This paper proposed theVINO framework that can serve as
a surrogate model of bridge structures with the VBI effect.
Learning function mappings from VBI-FE and VBI-EXP

data sets, theVINO framework contributes to the following
breakthroughs of data-driven SHM.

1. VINOmodel is end-to-end, fast, and accurate in forward
(structural simulation) and inverse (SHM) problems.
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16 KAEWNURATCHADASORN et al.

F IGURE 10 Experimental validation of fine-tuned inverse Vehicle–Bridge Interaction Neural Operator (VINO) for structural health
monitoring. These are comparisons of predicted damage fields for INT, DMG1, DMG2, and DMG3 scenarios from acceleration fields.

2. For the forward problem, the FE simulation results of
bridge response can be captured by the VINO model
with over 19x faster inference speeds.

3. For the forward problem, after fine-tuning from the
healthy bridge data, the VINO achieved better displace-

ment response prediction of a structure compared to FE
simulation results.

4. For the inverse problem, the VINO model can achieve
the all-in-one damage determination, localization, and
quantification model.
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5. For the inverse problem, the VINO model, which was
fine-tuned from the healthy bridge data, efficiently
predicted damages on the test bridge.

While the VINO model showed remarkable results,
the limitations of the model include three conditions.
First, the VINO model requires establishing numerical
and experimental data sets as there is a strong need to
develop high-fidelity data sets to train state-of-the-artmod-
els. Second, more parameters may need to be added to
VINO architecture for more generalization in the appli-
cation. Third, the current VINO model is a data-driven
approach. More physics constraints can be added to VINO
to achieve physics-informed neural networks in the future.
This may improve the performance of VINO and reduce
the requirement for a big data set.
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