

1 Coupled Adsorption and Surface-Bound Radical-Mediated Oxidation on
2 Biomass-Derived Porous Carbon: A Selective Approach for
3 Sulfamethoxazole Removal

4 Yu Li ^{a, b}, Jingdong Yang ^{a, b}, Min Zhang ^{a, b}, Zequn Yang ^c, Kaimin Shih ^d, Guang-Guo
5 Ying ^{a, b}, Yong Feng ^{a, b, *}

6 ^a SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of
7 Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical
8 Chemistry of Environment, South China Normal University, Guangzhou 510006,
9 China

10 ^b School of Environment, South China Normal University, University Town,
11 Guangzhou 510006, China

12 ^c School of Energy Science and Engineering, Central South University, Changsha
13 410083, China

14 ^d Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong
15 Kong, China

16

17

18

19

20

21 *** Corresponding author:**

22 Dr. Yong Feng

23 Phone: (+86) 020-84721549

24 Fax: (+86) 020-85213484

25 E-mail: fengy@scnu.edu.cn

26 **ABSTRACT**

27 The development of selective oxidation processes is significant for the efficient removal
28 of organic micropollutants from aqueous streams. Here, we propose a novel catalytic
29 system that involves highly efficient adsorption followed by surface radical-mediated
30 oxidation via conjunction of biomass-derived porous carbon (BPC) and peroxydisulfate
31 (PDS). A series of BPC samples were prepared via pyrolyzing biomass at different
32 temperatures (600°C, 700°C, 800°C). BPC800 had the best reactivity for
33 sulfamethoxazole removal: The maximum adsorption capacity of BPC800 was 529.3
34 mg/g, which is more than four times that of activated carbon (125.4 mg/g). The co-
35 presence of PDS changed the major removing mechanism from adsorption to
36 degradation. Mechanistic studies using quenching tests, electrochemical
37 characterization, and fluorescence microscopy showed that surface-bound radicals
38 were the dominant reactive species. Efficient performance was also achieved during the
39 treatment of real wastewater and several other micropollutants. The results suggest a
40 novel approach for highly-efficient selective removal of micropollutants from polluted
41 wastewater and offer new insights into the generation of reactive species during the
42 activation of PDS by carbonaceous materials.

43

44 **Keywords:** Micropollutants; peroxydisulfate; porous carbon; sulfamethoxazole;
45 surface-bound radicals

46

47 **1. Introduction**

48 Antibiotics are emerging contaminants and have aroused worldwide concern due to
49 their broad presence in the environment with potential harm to human health [1, 2].
50 Advanced oxidation processes (AOPs) are a widely studied technology for the removal
51 of antibiotics from water and wastewater via highly oxidative radicals, e.g., hydroxyl
52 radicals ($\cdot\text{OH}$) and sulfate radicals ($\text{SO}_4^{\cdot-}$). However, these radical species, particularly
53 $\cdot\text{OH}$, are non-selective and short-lived ($t_{\text{half-lives}}(\text{SO}_4^{\cdot-}) = 30\text{--}40\ \mu\text{s}$, $t_{\text{half-lives}}(\cdot\text{OH}) = 20\text{--}30\ \text{ns}$) [3]. Many common water constituents such as chloride ions (Cl^- ; $k_{\text{Cl}^-, \cdot\text{OH}} = (4.2 \pm 0.2) \times 10^9\ \text{M}^{-1}\ \text{s}^{-1}$, $k_{\text{Cl}^-, \text{SO}_4^{\cdot-}} = 3.1 \times 10^8\ \text{M}^{-1}\ \text{s}^{-1}$) [4, 5], bicarbonate ions (HCO_3^- ; $k_{\text{HCO}_3^-, \cdot\text{OH}} = 8.5 \times 10^6\ \text{M}^{-1}\ \text{s}^{-1}$, $k_{\text{HCO}_3^-, \text{SO}_4^{\cdot-}} = (9.1 \pm 0.4) \times 10^6\ \text{M}^{-1}\ \text{s}^{-1}$) [4, 6], and natural
55 organic matters (NOMs, $k_{\text{NOMs}, \cdot\text{OH}} = (2.3 \pm 0.77) \times 10^4\ \text{L mgC}^{-1}\ \text{s}^{-1}$, $k_{\text{NOMs}, \text{SO}_4^{\cdot-}} = (1.53\text{--}3.50) \times 10^3\ \text{L mgC}^{-1}\ \text{s}^{-1}$) [7, 8] react rapidly with these radicals and transform
56 some of them to relatively lower oxidizing species. Antibiotics are micropollutants in
57 natural water environments with typical concentrations of ng/L to $\mu\text{g/L}$ [9]. These are
58 one-thousandth the concentrations of the common water constituents mentioned above.
59 Consequently, AOPs usually suffer from significant scavenging effects when used to
60 remove micropollutants from real water matrices.

64

65 Selective oxidation processes are of great interest to environmental scientists because
66 these technologies can effectively degrade target contaminants by greatly mitigating
67 the scavenging effects of common anions and NOMs [10-12]. Of the several selective
68 oxidation systems reported, the activation of persulfates using carbonaceous materials
69 is highly promising with applications in practical water and wastewater remediation.
70 As oxidant precursors, persulfates including peroxydisulfate (PDS) and

71 peroxyomonosulfate (PMS) have remarkable merits such as easy activation, convenience
72 in transport and storage, and a wide effective pH range [13-15]. Importantly, these
73 oxidants can be activated in a nonradical way and have shown great effectiveness in the
74 selective degradation of a variety of organic contaminants such as chlorophenols [16,
75 17], endocrine disruptors [3, 18], and sulfonamide antibiotics [19, 20]. The nonradical
76 mechanism reported here via the activation of either PDS or PMS by carbonaceous
77 materials generally includes singlet oxygen ($^1\text{O}_2$)-dominated oxidation [17, 21, 22] and
78 catalyst (electron shuttle)-mediated indirect electron transfer (IET) [16, 23, 24].
79 Although $^1\text{O}_2$ was reported to have a high reactivity toward some electron-rich organic
80 compounds, there is still a lack of direct evidence on the participation of $^1\text{O}_2$ in the
81 degradation of contaminants. Water scavenges $^1\text{O}_2$ rapidly ($2.5 \times 10^5 \text{ s}^{-1}$) [25], and there
82 is limited information currently available regarding the transformation of organic
83 pollutants by $^1\text{O}_2$ (e.g., attacking mechanisms and degradation pathways). In the IET-
84 mediated oxidation, electron-rich contaminants could be readily attacked, but the
85 accumulation of the transformation products that lack electron-donating groups is a
86 major concern.

87
88 Here, we propose a catalytic system to selectively remove emerging micropollutants
89 from wastewater. This system involves highly efficient adsorption followed by surface
90 radical-mediated oxidation via conjunction of biomass-derived porous carbon (BPC)
91 and PDS. Biomass was used to prepare PC because of its obvious advantages, such as
92 low cost, easy availability, and environmentally friendly nature. BPC could selectively
93 adsorb micropollutants, and surface-bound radicals are comparable to free radicals in
94 terms of oxidizing capability, but the former is more selective [33]. PC samples were
95 prepared by pyrolyzing biomass at different temperatures followed by comprehensive

96 characterization.

97

98 The adsorption and catalytic reactivity of this BPC was investigated using
99 sulfamethoxazole (SMX) and several other widely detected micropollutants as the
100 target contaminants ([Table S1](#)). The reactive species and mechanisms for the activation
101 and degradation were systematically explored using electron paramagnetic resonance,
102 classical quenching tests, electrochemical analysis, fluorescence microscopy, and *in*
103 *situ* spectroscopy. The contribution of surface radical-mediated oxidation was
104 evaluated by conducting desorption experiments and exploring the transformation
105 pathways of SMX. Finally, the selectivity and tolerance of BPC–PDS oxidation were
106 evaluated by investigating the effects of common radical scavengers and purifying real
107 wastewater.

108

109 **2. Experimental Section**

110 **2.1 Chemicals and materials**

111 All chemicals were reagent-grade and used as received. A complete list of chemicals is
112 shown in [Note S1](#). The effluent from Liede Wastewater Treatment Plant (WWTP,
113 Guangzhou, China) was collected and used to test the potential matrices effect. The
114 quality parameters are listed in [Table S2](#).

115

116 **2.2 Preparation of BPC and BC**

117 A series of BPC were prepared by pyrolyzing waste coffee grounds at different
118 temperatures (600°C, 700°C, and 800°C). The synthesized BPC samples with KOH
119 activation were denoted as BPC_x, where x represents the pyrolysis temperature. For
120 comparison, the biomass-derived carbon material prepared via the pyrolysis of coffee

121 grounds at 800°C without KOH activation was named BC. Detailed preparation steps
122 are found in [Note S2](#).

123

124 2.3 Characterization of carbonaceous materials

125 The materials were characterized by various surface-sensitive techniques with details
126 in [Note S3](#).

127

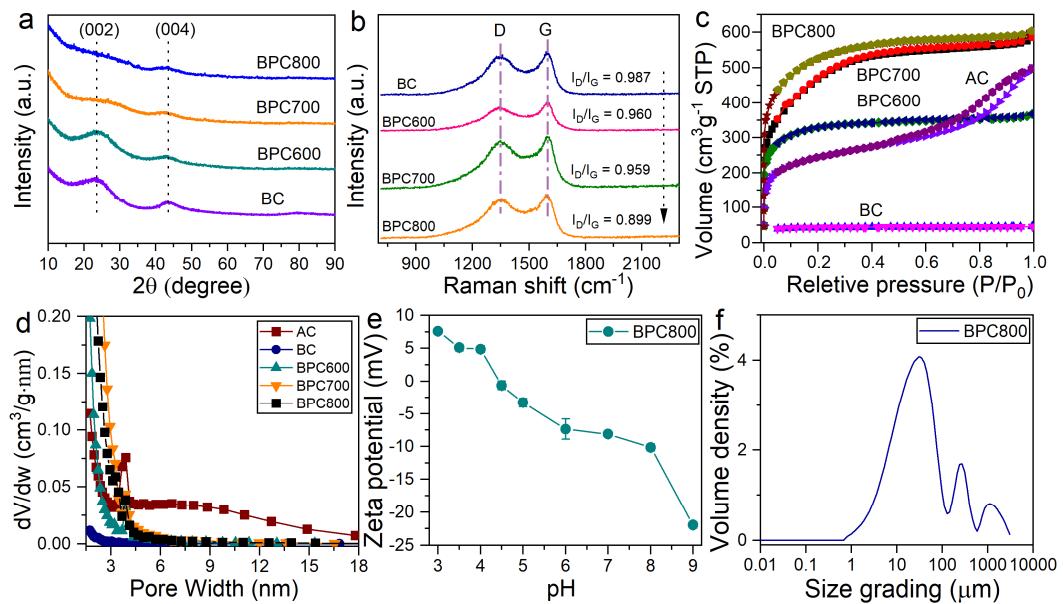
128 2.4 Adsorption and catalytic degradation

129 Unless specified, both the adsorption and catalytic experiments were conducted in 200-
130 mL glass reactors at room temperature. A solution (100 mL) that contained 5 mg/L
131 SMX and 0.5 mM PDS (for the catalytic experiments only) was transferred to the glass
132 reactor, and its pH value was adjusted to the desired value with 0.1 M H₂SO₄ or 0.1 M
133 NaOH. Carbonaceous material was added to the reactor to launch the adsorption or
134 catalytic reaction. A magnetic stirrer (400 rpm) was used to keep the suspension of
135 solids in the reactor. Aqueous samples (1 mL) were periodically withdrawn, filtered
136 with 0.22-μm PTFE membranes, and mixed with excess sodium thiosulfate to terminate
137 the further degradation of SMX (for the catalytic experiments only). Desorption
138 experiments were conducted to quantify the contribution of catalytic oxidation; see
139 details in [Note S4](#).

140

141 2.5 Chemical analysis

142 SMX and the other selected pollutants were quantified by high-performance liquid
143 chromatography (Agilent 1260 Infinity II) equipped with an Agilent Poroshell EC-C18
144 column (2.7 μm, 4.6 mm × 100 mm) and a DAD detector. Analytical details are listed
145 in [Table S3](#). The iodometric method was adopted to measure the residual PDS [34].


146 The total organic carbon (TOC) of water samples was monitored using a TOC analyzer
147 (Shimadzu TOC-V CPH, Kyoto, Japan). Common inorganic anions including Cl^- and
148 CO_3^{2-} were detected using a Dionex Aquion RFC ion chromatograph (Thermo Fisher)
149 with an AS11-HC column (4 × 250 mm). The electrochemical experiments were
150 performed on a CHI660E electrochemical workstation (CH Instruments, Shanghai,
151 China) with a conventional three-electrode system ([Note S5](#)). The degradation products
152 of SMX were analyzed using a Waters Acquity ultra-performance liquid
153 chromatograph (UPLC) H-class system with a Xevo G2-XS triple quadrupole mass
154 spectrometer (MS/MS). An Acquity UPLC BEH Shield RP C18 column (2.1 × 150 mm,
155 1.7 μm) was used for the separation. Detailed analytical conditions of UPLC and MS
156 are listed [Table S4](#) and [Note S6](#), respectively.

157

158 Surface-bound radicals were characterized using fluorescence spectroscopy
159 (PerkinElmer FL6500, UK) and fluorescence microscopy (Nikon ECLIPSE Ts2R,
160 Japan) [33]. The 7-hydroxycoumarin (7-HC) was monitored as the marker of both free
161 and surface-bound radicals, and coumarin was used as the radical probe. Details are
162 described in [Note S7](#) and [Fig. S1](#).

163 **3. Results and Discussion**

164 **3.1 Characterization of BPC and BC**

165
166 **Figure 1.** (a) XRD patterns, (b) Raman spectra, (c) N_2 sorption isotherms, (d) Barret-
167 Joyner-Halenda (BJH) pore distribution, (e) zeta potential, and (f) particle size
168 distribution of BPC.

169

170 The XRD diffraction patterns of different carbonaceous materials are shown in [Fig. 1a](#).

171 Two broad diffraction peaks at 23.4° and 43.2° were observed in the XRD patterns of
172 BC and BPC600, and these peaks were indexed to the (0 0 2) and (0 0 4) planes of
173 graphitic carbon. With increasing pyrolysis temperature, the diffraction peaks tend to
174 be flat with an obviously decreased intensity: This suggests that the graphitization
175 degree was significantly weakened, and the amorphous form was the dominant
176 component in BPC, particularly in BPC800.

177

178 The Raman spectra of BC and BPC were investigated to further reveal the degree of
179 graphitization ([Fig. 1b](#)). Two bands at a Raman shift 1350 and 1600 cm^{-1} were recorded
180 and attributed to the characteristic D band (C atoms of defects or disordered structure)
181 and G band (graphitic C structure), respectively. The intensity ratio of I_D/I_G is an

182 important parameter that reflects the defect degree in the structure of carbonaceous
183 materials. These values were estimated to be 0.987, 0.960, 0.959, and 0.899 for BC,
184 BPC600, BPC700, and BPC800, respectively, which suggests that the content of sp^2 -
185 hybridized carbon was increased with the enhanced pyrolysis temperature.

186

187 The N_2 sorption isotherms and specific surface area (SSA) are shown in [Fig. 1c](#) and
188 [Table 1](#), respectively; BC had the smallest SSA of $133.6\text{ m}^2/\text{g}$. After activation using
189 KOH, the SSA of BPC was greatly increased to $1041.5\text{ m}^2/\text{g}$, and this value was greater
190 than that of activated carbon (AC, $800.6\text{ m}^2/\text{g}$). In addition, the pyrolysis temperature
191 had a positive effect on the SSA of BPC; the SSA of BPC600, BPC700, and BPC800
192 was 1041.5, 1622.5, and $1704.8\text{ m}^2/\text{g}$, respectively. Consistent with the SSA results, no
193 obvious pores existed on the surface of BC ($0.069\text{ cm}^3/\text{g}$) ([Fig. 1d](#) and [Table 1](#)). After
194 treatment using KOH, the total pore volumes of BPC were significantly increased from
195 0.069 to $0.913\text{ cm}^3/\text{g}$. The zeta potentials of BPC at different pH values were measured
196 ([Fig. 1e](#)). Positive potentials were recorded when the pH value was below 4.0, but the
197 potential became negative when the pH was higher than 4.5. This suggests that the
198 isoelectric point (pH_{iep}) of BPC was 4.0–4.5. In addition, particle size analysis showed
199 that the diameter of most BPC800 in aqueous solution ranged from 1 to $100\text{ }\mu\text{m}$ ([Fig.](#)
200 [1f](#)).

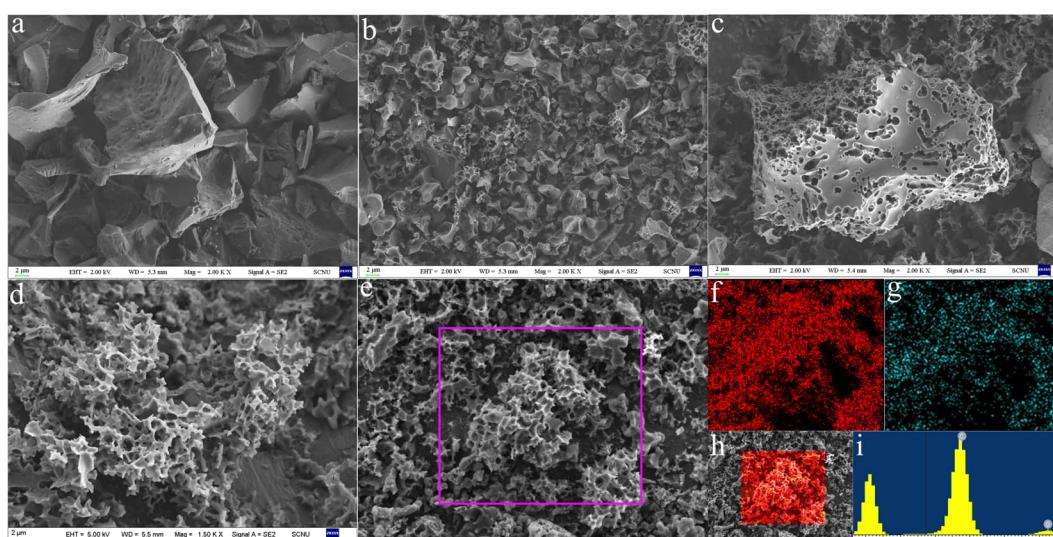
201

202

203

204

205


206

207 **Table 1. Physicochemical properties of carbonaceous materials.**

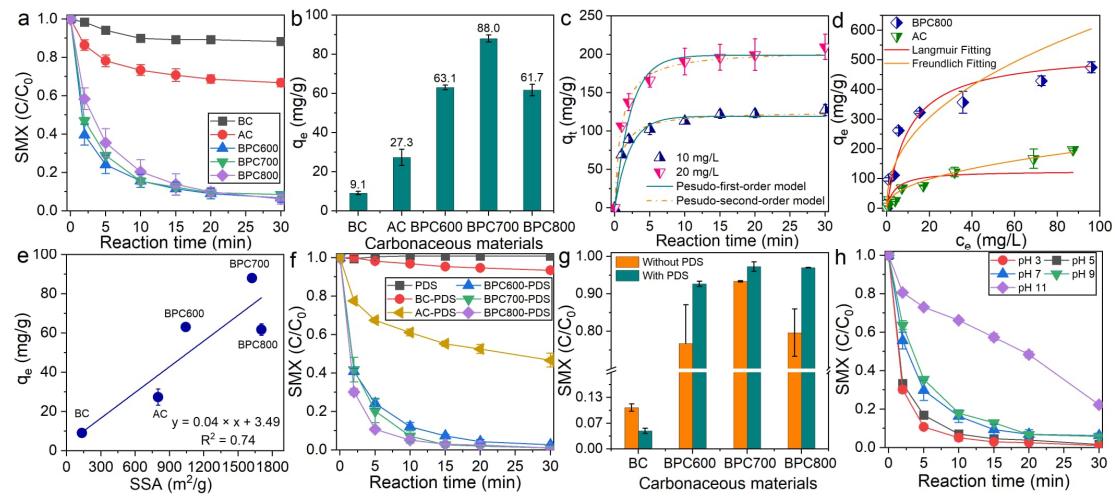
Carbonaceous material	C (at%)	N (at%)	O (at%)	SSA (m ² /g)	Total pore volume (cm ³ /g)	Average pore size (nm)
AC	89.7	0.6	9.7	800.6	0.726	3.63
BC	88.6	1.8	9.2	133.6	0.069	2.07
BPC600	92.1	1.9	5.7	1041.5	0.555	2.13
BPC700	92.5	2.5	4.7	1622.5	0.882	2.18
BPC800	92.4	0.7	6.7	1704.8	0.913	2.15

Data resource: XPS analysis and N₂ adsorption-desorption isotherm.

208

209

210 **Figure 2. SEM images of (a) BC, (b) BPC600, (c) BPC700, and (d, e, h) BPC800;**
211 **distribution of (f) C and (g) O elements in the area selected in (e); (i) EDS spectrum of**
212 **the area selected in (h).**


213

214 The morphology of the synthesized BPC samples was analyzed by scanning electron
215 microscopy. BC had a smooth planar structure with no obvious pores (Fig. 2a). After
216 activation with KOH, obvious porous structures were seen on the surface of all BPC
217 samples (Figs. 2b–2d), which is consistent with the N₂ sorption results (Table 1)
218 suggesting that the activation had a remarkable effect on the morphology of BPC.
219 Pyrolysis temperature was found to influence the microstructure of BPC. A higher
220 pyrolysis temperature implied the more intense pores on the surface of BPC (Figs. 2b–

221 2d). This observation is consistent with variations in the pore volume of different BPC
 222 samples. The elements on the surface of BPC were investigated by EDS. The C and O
 223 were distributed uniformly on the surface of BPC (Figs. 2f and 2g); these are the only
 224 elements that were detected by EDS (Fig. 2i).

225

226 3.2 Catalytic removal of SMX

227
 228 Figure 3. (a) Adsorption of SMX onto different carbonaceous materials in the absence
 229 of PDS; (b) absorption capacity of different carbonaceous materials toward SMX; (c)
 230 adsorption kinetics of SMX onto BPC800; (d) adsorption isotherms of SMX onto AC
 231 and BPC800; (e) correlation between q_e and SSA of different carbonaceous materials;
 232 (f) catalytic removal of SMX by PDS in the presence of different carbonaceous
 233 materials; (g) the removal of SMX with/without PDS; (h) effect of pH values on the
 234 catalytic removal of SMX by BPC800-PDS. Conditions: $[SMX] = 5 \text{ mg/L}$, $[PDS] =$
 235 0.5 mM , $[\text{carbonaceous materials}] = 50 \text{ mg/L}$, and $pH = 3.0$.

236

237 The removal of SMX by different carbonaceous materials was also studied. Fewer than
 238 12% of the SMX was removed by BC after reaction for 30 min (Fig. 3a), which suggests
 239 that BC had limited reactivity. However, an overall removal rate over 90% was
 240 achieved when BPC (BPC600, BPC700, BPC800) was used as the adsorbent. This
 241 removal rate was significantly greater than that achieved by AC (33.3%). After reaching
 242 equilibrium, the absorption capacities of BC, AC, BPC600, BPC700, and BPC800

243 toward SMX were 9.1, 27.3, 63.1, 88.0, and 61.7 mg/g (Fig. 3b), respectively. The
244 adsorption capacities of BPCs were seven-fold greater than that of BC and more than
245 twice that of AC, which demonstrates that BPC had much greater reactivity in the
246 removal of SMX than the latter two adsorbents. This conclusion is consistent with the
247 great difference in the SSA between BC and BPC—the larger pores after activation
248 using KOH greatly improved the adsorption. However, the adsorption capacities of
249 modified BPC samples at different pyrolysis temperatures for SMX were close to each
250 other suggesting that the adsorption capacity was not only influenced by SSA and pore
251 structure.

252

253 The kinetics for the removal of SMX was studies next. Equilibrium was reached within
254 15 min during the adsorption of SMX onto BPC (Fig. 3c). The pseudo-first-order law
255 and pseudo-second-order law were used to model the adsorption of SMX (Note S8). As
256 suggested by the fitting coefficients (R^2) (Table S5), the pseudo-first-order law and
257 pseudo-second-order law performed equally well in modelling the adsorption of SMX
258 onto BPC, which suggests that both chemisorption and physisorption contributed to the
259 removal of SMX.

260

261 The Langmuir and Freundlich equations, two typical non-linear models, were selected
262 to fit the experimental data (Note S8). The Freundlich model was more suitable than
263 the Langmuir model for the adsorption of SMX onto AC (Fig. 3d and Table S6), thus
264 implying that multilayer adsorption played a leading role. However, both models
265 achieved identical good results when BPC was the adsorbent, which suggests that
266 multilayer and monolayer adsorption co-existed during the adsorption of SMX onto
267 BPC. The Langmuir isotherm indicates that the maximum adsorption capacities (q_{\max} ,

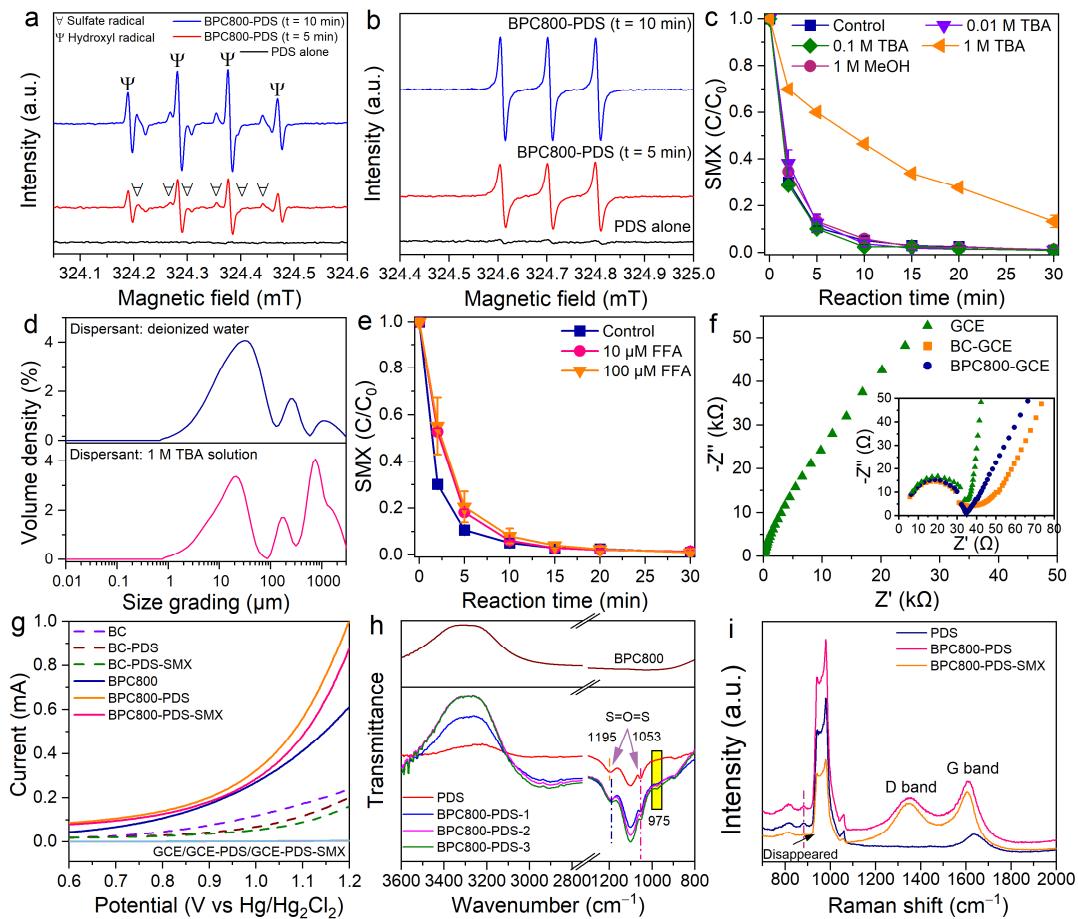
268 mg/g) of BPC800 and AC for SMX were 529.34 and 125.36 mg/g (Table S6),
269 respectively. q_{\max} of BPC800 is more than four-fold that of AC. Physisorption is mainly
270 influenced by the pore structure and SSA of adsorbents—a much greater adsorption
271 capacity of BPC relative to BC underscores the role of physisorption. To further
272 evaluate the contribution of physisorption, the relationship between SSA and its
273 corresponding q_e was explored. A positive correlation ($R^2 = 0.74$) was observed among
274 the prepared adsorbents (Fig. 3e), suggesting that physisorption was involved during
275 the removal of SMX. However, the poor linear relationship and some mismatched data
276 (for example, BPC800 with the largest SSA exhibited a lower adsorption capacity than
277 BPC600) indicate that physisorption was not the only mechanism for the removal of
278 SMX by BPC.

279

280 To improve the removal of SMX, the potential synergy between BPC and PDS was
281 explored. PDS alone could not degrade SMX after reaction for 30 min (Fig. 3f); only
282 10% of the SMX was removed when BC was used to activate PDS. However, a
283 remarkable increase in the removal of SMX was observed when BPC instead of BC
284 and AC was co-present with PDS: Nearly complete removal of SMX was obtained
285 within 15 min, and a removal rate of around 90% was achieved by BPC800–PDS after
286 only 5 min of reaction. Except for the experiment with BC, the addition of PDS to the
287 adsorption systems with BPC improved the removal of SMX (Fig. 3g), which reveals
288 the synergy between PDS and BPC in the removal of SMX. The decrease in the removal
289 rate of SMX by BC after the addition of PDS was probably due to the competitive
290 adsorption on the surface of BC. Although AC could also activate PDS to degrade SMX,
291 the removal kinetics of SMX by AC–PDS was significantly slower than that by BPC–
292 PDS.

293

294 To comprehensively explore the catalytic reactivity of BPC, the removal of SMX by
295 BPC800-PDS under different pH conditions (3–9) was investigated (Fig. 3h). As shown,
296 the overall removal rate of SMX at all investigated pH values was 93.3–99.0% with
297 only a slight decrease in the removal kinetics when the pH value increased in this range.
298 However, there was a significant decrease in the catalytic removal of SMX when the
299 pH was further increased to 11.0. The evolution of pH values during the removal of
300 SMX by BPC800–PDS was monitored. After reaction for 10 min, the pH of the reaction
301 media with initial pH values in the range of 3 to 9 was below the pK_{a2} of SMX (5.7)
302 (Fig. S2), which suggests that SMX mainly presented in a neutral form in these reaction
303 media. However, only a slight decrease in the pH value was observed when the initial
304 value was 11.0. As the pH was much higher than the pK_{a2} of SMX, SMX was expected
305 to present in a completely dissociated form. Meanwhile, BPC800 has a pH_{iep} value of
306 4.0–4.5 (Fig. 1e), and thus this material was also negatively charged at pH 11.0.
307 Therefore, the decrease in the removal kinetics of SMX could be probably ascribed to
308 the electrostatic repulsion between BPC800 and SMX.


309

310 To further reveal the relative contributions of adsorption and catalytic oxidation to the
311 removal of SMX, desorption experiments were carried out and the amounts of SMX on
312 the surface of reacted BPC800 were quantified. Around 76.0% and 5.6% of the SMX
313 were present on the BPC800 after adsorption and catalytic degradation experiments
314 (Fig. S3), respectively. The percentage of the SMX degraded by BPC800–PDS was
315 estimated to be 83.8% after considering the recovery rate (~92%) and residual SMX in
316 the reaction solutions. The reutilization capability of BPC800 was explored. Around
317 87.4% of the SMX could still be removed in the third consecutive catalytic cycle by

318 BPC800–PDS (Fig. S4), which suggests that BPC800 can be reused to activate PDS for
 319 contaminant degradation.

320

321 3.3 Activation and degradation mechanisms

322

323 Figure 4. EPR spectra of BPC–PDS with (a) DMPO and (b) TEMP as the trapping
 324 agents; the effects of (c) MeOH, (c) TBA, and (e) FFA on the removal of SMX by
 325 BPC800–PDS; (d) effect of TBA on the size distribution of BPC800 in aqueous
 326 solutions; (f) AC impedance spectra (inside is a partially enlarged view) of BC and
 327 BPC800; (g) linear sweep voltammetry of different reaction systems; (h) ATR-FTIR
 328 spectra, and (i) Raman spectra of PDS, BPC800, and BPC800–PDS oxidation. Three
 329 parallel samples of BPC800–PDS oxidation were measured for the ATR-FTIR analysis.
 330 Conditions: [SMX] = 5 mg/L, [PDS] = 0.5 mM, [BPC800] = 50 mg/L, and pH = 3.0.

331

332 $\text{SO}_4^{\cdot-}$, $\cdot\text{OH}$, and ${}^1\text{O}_2$ are the typical reactive oxygen species (ROS) generated during the

333 activation of PDS. Therefore, EPR was used to explore the generation of these ROSSs.
334 Figs. 4a and 4b show no obvious signal when PDS existed alone. By contrast, the
335 characteristic signals of DMPO-OH (Fig. 4a), DMPO-SO₄⁻ (Fig. 4a), and TEMPO (Fig.
336 4b) were successfully recorded when BPC800 was co-present with PDS. These results
337 suggest that the ROS including SO₄⁻, ·OH, and ¹O₂ were probably formed during the
338 interaction between BPC800 and PDS. To assess the contribution of these ROS in the
339 removal of SMX, quenching experiments using different alcohols including MeOH,
340 TBA, and FFA were performed. These substances react actively with the ROS
341 mentioned above (Table S7) and are widely used as scavengers in AOPs. Fig. 4c shows
342 that MeOH with strong quenching ability for both SO₄⁻ and ·OH had no obvious
343 inhibition on the removal of SMX even though its concentration was as high as 1 M
344 ([MeOH]/[SMX] = 50,000). TBA actively interacts with ·OH only and exhibited a
345 similar negligible effect to MeOH when presented at relatively low concentrations
346 (≤ 0.1 M). The absence of an inhibitory effect from both MeOH and TBA suggests that
347 free radicals (·OH_f, SO_{4,f}⁻) were not involved during the removal of SMX by BPC800–
348 PDS.

349
350 A significant suppression effect was observed when the concentration of TBA was
351 increased to 1 M (Fig. 4c). TBA is a hydrophobic solvent, and the strong inhibitory
352 effect of 1 M TBA was probably due to the reduced adsorption of SMX. On the one
353 hand, the presence of TBA was expected to influence the partition behavior of SMX
354 decrease its adsorption onto BPC800 (Note S9). On the other hand, TBA accelerated
355 the aggregation of BPC800, which was detrimental to the adsorption of SMX. The
356 removal of SMX in the presence of TBA was studied to verify this explanation. The
357 removal rate of SMX by BPC800 with TBA was 21.3% lower than that without TBA

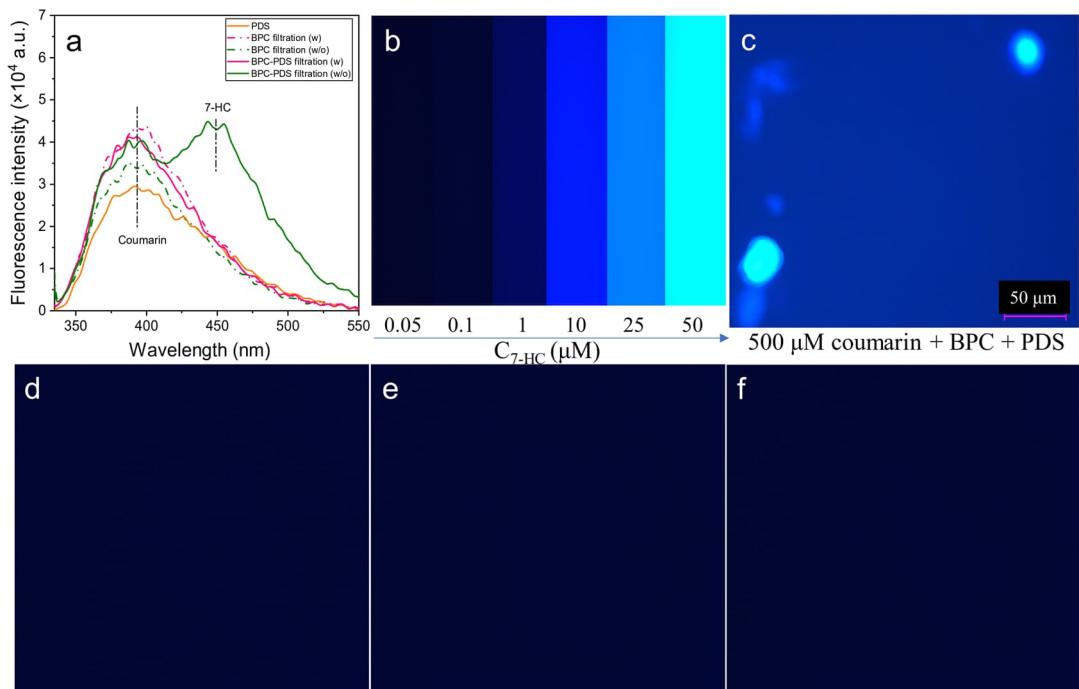
358 (Fig. S5). Meanwhile, significant aggregation of BPC800 was observed when TBA was
359 present (Fig. S6). Furthermore, the size grading of BPC800 with the highest volume
360 density in water changed from 30 to 750 μm after the addition of 1 M TBA (Fig. 4d).
361 In addition to BPC, we investigated the behavior of a series of common AOP catalysts
362 in the presence of TBA and similar phenomena were observed (Figs. S7 and S8).
363 Besides MeOH and TBA, FFA with a concentration that was five times that of SMX
364 had no obvious scavenging effect (Fig. 4e), which excludes the involvement of $^1\text{O}_2$
365 during the catalytic degradation. MeOH and TBA are hydrophilic radical scavengers
366 and cannot quench surface-adsorbed radicals [37-39]. Considering that both $\text{SO}_4^{\cdot-}$ and
367 $\cdot\text{OH}$ were successfully recorded by EPR (Fig. 4a), these ROS were probably in surface-
368 bound states ($\text{SO}_4^{\cdot-}$, $\cdot\text{OH}_s$) and oxidized the SMX that was pre-adsorbed to the surface
369 of BPC800.

370
371 In addition to scavenging tests, we also studied the contribution of catalyst-mediated
372 indirect electron transfer (IET). Here, a metastable complex between the catalyst and
373 persulfate forms and withdraws electrons from the organic pollutant [23]. IET is a
374 common pathway proposed for the nonradical degradation of pollutants by
375 carbonaceous material-activated persulfates—particularly PDS [16, 40, 41]. BPC has
376 abundant functional groups, large specific surface area, and strong electron
377 conductivity. It is readily available as an electron shuttle to facilitate IET. To evaluate
378 the conductivity of the prepared materials, the electrochemical impedance spectroscopy
379 (EIS) of BC and BPC800 was measured (Fig. 4f). Compared to a bare glassy carbon
380 electrode (GCE) with excellent conductivity, the Nyquist plots of BC and BPC800 have
381 smaller semicircle diameters in the high frequency region, suggesting that both BC and
382 BPC800 had a lower impedance and had faster electron transfer than GCE. The

383 diameters of the Nyquist plots of BC and BPC800 were almost identical indicating that
384 the activation with KOH had only a slight effect on the conductivity of these samples.

385

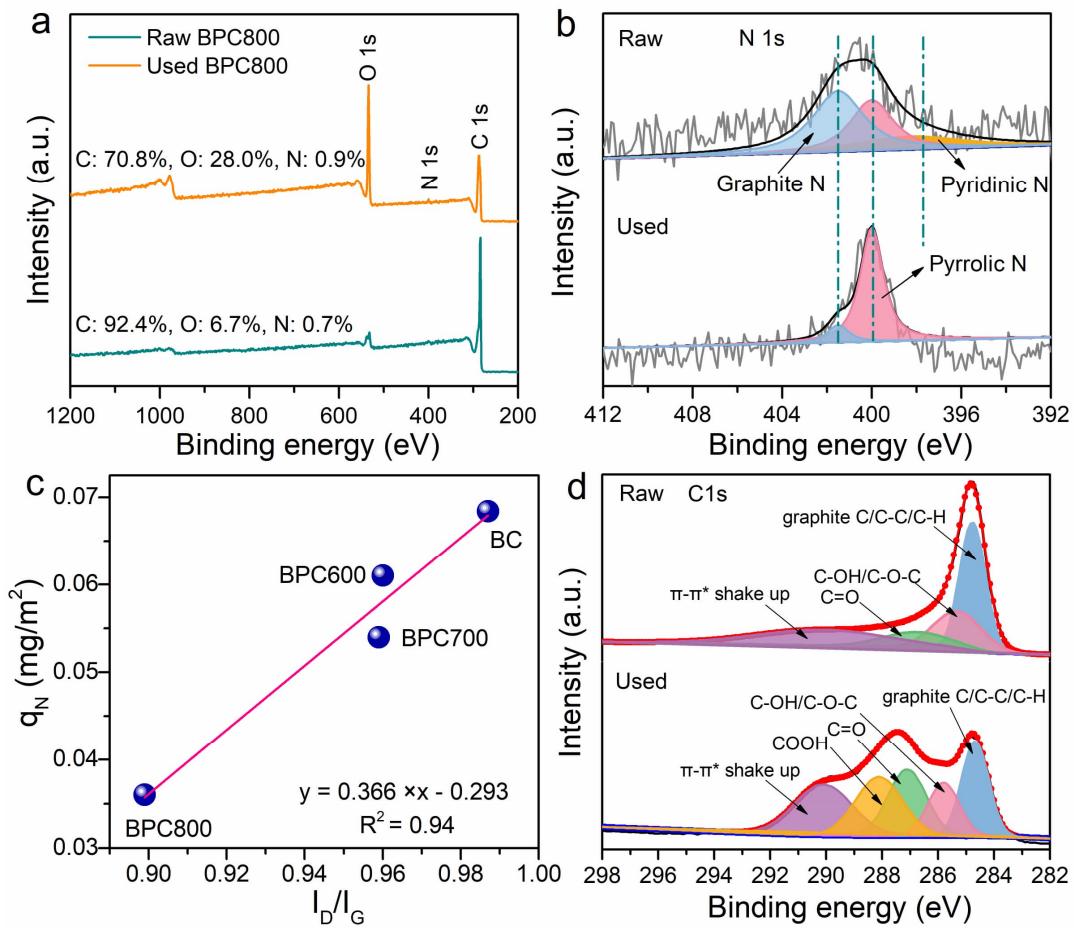
386 Linear sweep voltammetry was used to investigate the electron transfer process (Fig.
387 4g). When bare GCE was used as the working electrode, there was no apparent current
388 response before or after the addition of PDS or SMX, thus suggesting that there was no
389 electron transfer in the GCE–PDS–SMX system. A weak current (~0.23 mA) was
390 observed when GCE was modified with BC (BC/GCE electrode). However, the current
391 was decreased when PDS and SMX were added, which indicates that electron transfer
392 was also absent in the BC–PDS–SMX system. The BPC800/GCE had a higher current
393 (~0.61 mA) than BC/GCE. Meanwhile, the addition of PDS increased the current, thus
394 suggesting that electron transfer existed between BPC and PDS, and a complex ([BPC–
395 PDS]*) probably formed [20, 24]. The adsorption of BPC800 toward PDS was seen by
396 the significant removal of PDS by BPC800 alone and the strong competitive adsorption
397 effect of SMX. Around 68.0% of the PDS was removed after interacting with BPC800
398 for 30 min, and the overall removal rate of PDS was decreased to 45.6% when 50 mg/L
399 SMX was added (Fig. S9).


400

401 ATR-FTIR spectra were recorded to further study the interaction between BPC and
402 PDS (Fig. 4h). Versus BPC800 alone, the spectra of BPC800–PDS showed adsorption
403 peaks at 1195, 1053, and 1100 cm^{-1} , corresponding to the symmetric and asymmetric
404 vibrations of S=O=S in the sulfonate group as well as S–O stretching vibration [24, 42,
405 43], respectively. In the presence of BPC800, a slight redshift of 7 cm^{-1} in the
406 symmetric peak was observed, which indicates that the electron density of S=O=S was
407 weakened due to the bonding effects between BPC800 and PDS [44]. Moreover, a new

408 peak located at 975 cm⁻¹ emerged in the BPC800–PDS system, which suggests the
409 formation of [BPC–PDS]* complex.

410

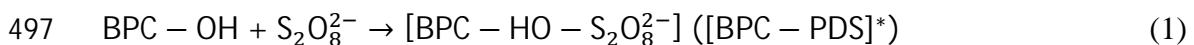

411 If there was electron transfer between [BPC–PDS]* and SMX, then the addition of the
412 latter substance was expected to increase the current intensity. However, the presence
413 of SMX decreased the current intensity instead (Fig. 4g), which indicates that there was
414 no electron transfer between [BPC–PDS]* and SMX. Rather, direct electron transfer
415 (DET) between BPC and PDS in [BPC–PDS]* probably occurred and generated SO_{4,s}²⁻
416 and ·OH_s. In the IET-mediated persulfate activation, the metastable complexes formed
417 between activators and persulfate could be recorded by Raman spectrometry [45]. In
418 this study, no such complexes were observed in the Raman spectrum (Fig. 4i), which is
419 attributed to the presence of DET, which made [BPC–PDS]* much less stable.
420 Meanwhile, the Raman analysis showed that the decomposition of PDS was enhanced
421 by the addition of SMX (Fig. 4i), which explains the slight acceleration in the removal
422 of PDS by BPC800 when 5 mg/L SMX was present (Fig. S9). In addition, the
423 characteristic triple signal of TEMPO (Fig. 4b) could probably be attributed to the
424 electrophilic attack of [BPC–PDS]* toward TEMP. In such reactions, TEMP lost an
425 electron to form TEMP^{·+}, which reacted with dissolved molecular oxygen to generate
426 TEMPO [16, 46, 47].

427
428 **Figure 5.** (a) Generation of 7-HC in different reaction systems; (b) colorimetric
429 references of 7-HC solutions (0.05–50 μM), and (c–f) fluorescence microscopy images
430 of the coumarin solutions after being exposed to different reaction systems. Conditions:
431 $[\text{PDS}] = 0.5 \text{ mM}$, $[\text{BPC800}] = 100 \text{ mg/L}$, $[\text{coumarin}] = 500 \mu\text{M}$, and $\text{pH} = 3.0$.
432

433 Fluorescence analysis was used to understand the surface-bound radicals. Here, 7-HC
434 was only generated when PDS and BPC800 were simultaneously present (Fig. 5a). No
435 7-HC was detected when the sample withdrawn from the BPC800–PDS system was
436 filtered before mixing with the coumarin solution. These observations consistently
437 suggest that radicals were formed and are presented on the surface of BPC800. As
438 shown in Fig. 5b, 7-HC solutions of 0.1–50 μM are visually discernible. Fluorescence
439 microscopy images of the coumarin solutions after being exposed to different reaction
440 systems were recorded. The fluorescence microscopy images of BPC800-coumarin or
441 PDS-coumarin were similar to coumarin alone (Figs. 5c–5e), thus suggesting that no 7-
442 HC was formed. When BPC800 and PDS were co-present, the surface of BPC800 was
443 a cyan color, and the color changed sharply to blue in the solid–liquid interphase and

444 bulk solution (Fig. 5f). These data suggest that high levels of radicals were formed and
 445 are presented on the surface of BPC800. These surface radicals resulted in the formation
 446 of 7-HC by reacting with coumarin.

447
 448 Figure 6. (a) XPS survey spectra, high-resolution (b) N 1s, and (d) C 1s XPS spectra of
 449 raw and used BPC800; (c) correlation between I_D/I_G and q_N of different carbonaceous
 450 materials.

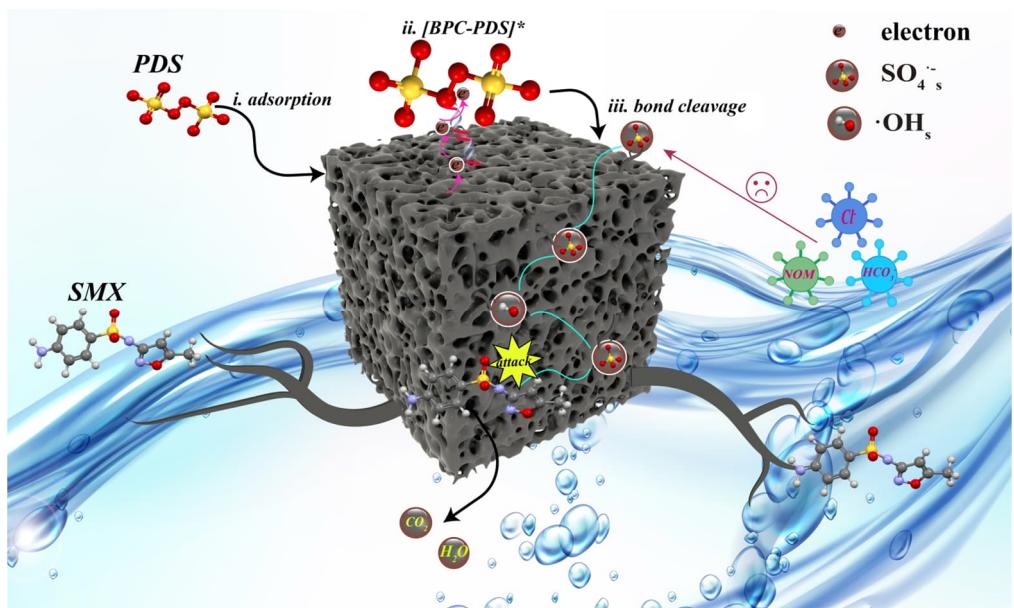


451
 452 Both adsorption and catalytic degradation (SO_4^{2-} , $^{\cdot}OH$) contributed to the removal of
 453 SMX and the adsorption involves physisorption and chemisorption. However, the
 454 adsorption mechanism, particularly regarding the active site for chemisorption, is still
 455 unknown. Therefore, the XPS spectra of BPC800 before and after the reaction were
 456 investigated. Compared with raw BPC800, the N content of used BPC800 increased
 457 from 0.70% to 0.99% (Fig. S10a), suggesting that SMX was exactly adsorbed onto the

458 surface of BPC800. Moreover, the content of C–OH functional group after the
459 adsorption decreased by 1.22% (Fig. S10b), which indicates that the C–OH may act as
460 active sites for SMX adsorption. As for BPC800-PDS system, the full-scan XPS spectra
461 show that the surface composition of BPC800 changed during the reaction, and the
462 proportion of O content increased remarkably from 6.7% to 28.0% (Fig. 6a).
463 Meanwhile, N on the fresh BPC800 was detected with an atomic ratio of 0.72% and
464 consisted of pyridinic, pyrrolic, and graphitic N with percentage ratios of 28.3%, 31.5%,
465 and 40.2% (Fig. 6b), respectively. After the activation reaction, pyridinic N disappeared
466 and the percentages of pyrrolic and graphitic N changed to 87.5% and 12.5%,
467 respectively. Pyrrolic N could act as an electron donor to combine with organic
468 substrates (electron accepter) via an “donor–accepter complex” mechanism [29, 49].
469 Therefore, pyrrolic N was a chemisorption site and formed “donor–accepter complexes”
470 with SMX. To exclude the influence of surface area, the adsorption capacity was
471 normalized by SSA and defined as q_N (Table S8). Fig. 6c shows the good linear
472 relationship ($R^2 = 0.94$) between I_D/I_G and q_N of different biochar samples, thus
473 indicating that the defect sites or amorphous carbon might also play an important role
474 in the chemisorption of SMX.

475

476 Here, the C 1s XPS spectrum of pristine BPC800 was fitted into four groups including
477 C=C/C–C/C–H, C–OH/C–O–C, C=O, and a π – π^* mixture (Fig. 6d) (Table 2). The C
478 1s XPS spectrum of used BPC800 changed significantly after the catalytic reaction. The
479 spectrum was divided into five groups including C=C/C–C/C–H, C–OH/C–O–C, C=O,
480 COOH, and π – π^* mixture. As shown by their percentages, COOH was newly formed
481 during the catalytic reaction and both C=C/C–C/C–H and C–OH/C–O–C were
482 transferred to the other groups. Carbonyl groups (C=O) might disturb the conjugated π

483 system due to its strong electron-withdrawing ability, while hydroxyl groups (C–OH)
484 as an electron-donating group could reinforce the electron density of the conjugated π
485 system [50]. Therefore, the C–OH groups are likely the major active sites for PDS
486 adsorption and activation while C=O had a limited contribution. Upon consumption of
487 these active sites, the catalytic reactivity of BPC800 gradually decreased, which
488 explains the slight decline in the removal of SMX over consecutive catalytic cycles (Fig.
489 S4). To further confirm the presence of C–OH groups on BPC800, Boehm titration and
490 FTIR analysis were performed (Note S10). Abundant acidic sites including phenolic,
491 lactone, and carboxylic were detected on the surface of BPCs (Table S10). In all BPCs,
492 phenolic groups were the leading acidic site, which indicates that numerous C–OH
493 groups were situated on BPCs. On the contrary, no basic site was detected. Meanwhile,
494 two broad peaks at the wavenumbers of 3600–3800 and 1450–1600 cm^{-1} were observed
495 (Fig. S11), which correspond to the bonded O–H and C=C groups, respectively. These
496 results verify the presence of C–OH groups.


500 Based on the discussion above, a tentative mechanism was proposed for the activation
501 PDS and degradation of SMX (Fig. 7). First, SMX and PDS were adsorbed onto the
502 surface of BPC800 via both physisorption and chemisorption. Second, the adsorbed
503 PDS interacted with the surface functional groups of BPC800 (e.g., C–OH) and formed
504 a complex ($[\text{BPC} - \text{PDS}]^*$) (Eq. 1). Third, DET within the $[\text{BPC} - \text{PDS}]^*$ complex
505 instead of the IET between $[\text{BPC} - \text{PDS}]^*$ and SMX occurred to generate $\text{SO}_{4,\text{s}}^{\cdot-}$ (Eq. 2),
506 which then interacted with the H_2O ($\leq 5 \times 10^2 \text{ s}^{-1}$) [51] and OH^- ($4.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$) [4]
507 on the surface of BPC800 to form $\cdot\text{OH}_\text{s}$ (Eq. 3). Finally, the resulting ROS attacked the

508 adsorbed SMX and degraded this contaminant.

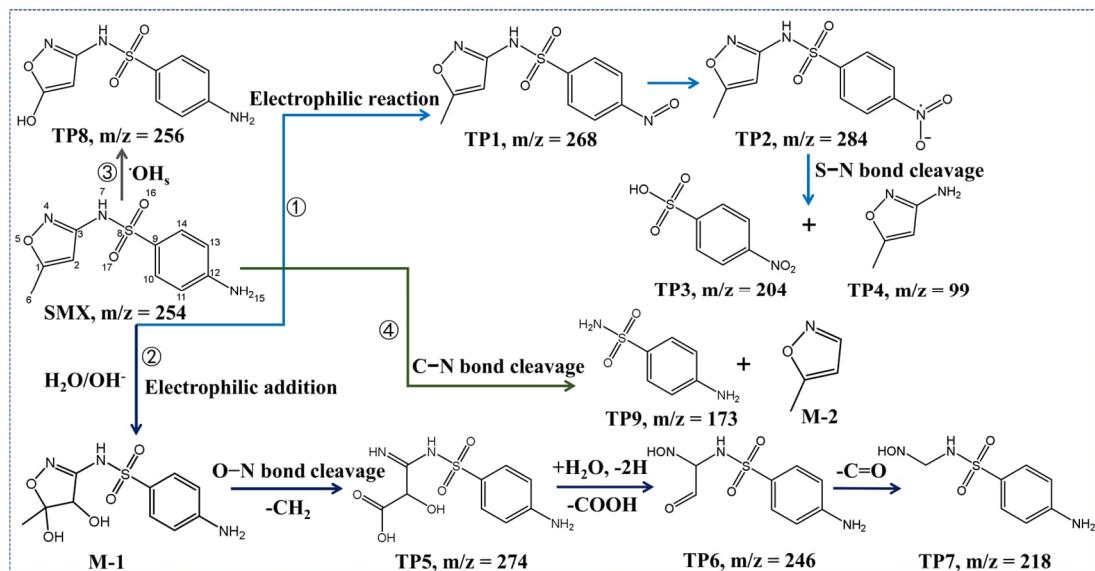
509 **Table 2. Surface functional groups of raw and used BPC800.**

C 1s	Binding energy (eV)	Raw (%)	Used (%)
Graphite C/C–C/C–H	284.8	39.66	20.70
C–OH/C–O–C	285.3	22.09	13.36
C=O	286.7	13.12	20.46
π – π^*	290.0	25.13	23.44
COOH	288.1	0	22.04

510

511
512 **Figure 7. Proposed mechanisms for the removal of SMX by BPC800–PDS oxidation.**
513

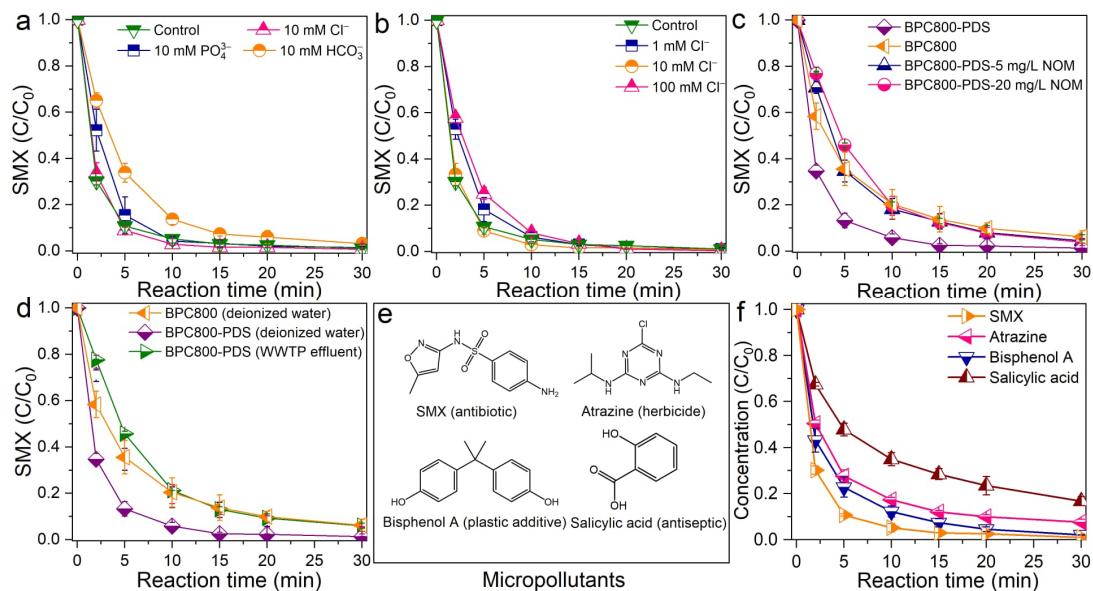
514 To clarify the fate of degraded SMX, its transformation products (TP) were identified
515 using UPLC-MS/MS. Nine intermediates from TP1 to TP9 were detected (Table S11).
516 On the basis of these TPs, four pathways were proposed for the degradation of SMX
517 (Fig. 8). The electron-rich nature of SMX facilitated electrophilic reaction. In pathway
518 1, the amine group on the benzene ring was attacked by SO_4^- and $\cdot\text{OH}_s$, which
519 generated TP1 (Figs. S12 and S13). The nitroso group in TP1 readily interacted with
520 radicals to form TP2 (Fig. S14) [52, 53]. The N–S bond in TP2 easily cleaved under the
521 attack of radicals [54, 55], thus generating TP3 (Fig. S15) and TP4 (Fig. S15). Similarly,


522 the electrophilic addition of C=C bond on the isoxazole ring also occurred in the
523 presence of ·OH_s, thus leading to the formation of M-1 [56]. Although M-1 was not
524 detected, the successful detection of TP5 (Fig. S16) suggests that this compound was
525 involved during the degradation of SMX (pathway 2). The hydroxylation of the
526 isoxazole ring rendered it more susceptible to cleavage, thus leading to the formation
527 of isoxazole ring-opening products [57].

528

529 Here, similar isoxazole ring-opening products including TP5, TP6 (Fig. S17), and TP7
530 (Fig. S18) were also detected. The possible explanation was that the N–O bond on the
531 isoxazole ring in M-1 was attacked, and a methyl group was released, which led to the
532 formation of the carboxyl group in TP5. Subsequently, the carboxyl group in TP5 was
533 released followed by electron rearrangement, finally resulting in the aldehyde moiety
534 in TP6. The aldehyde moiety in TP6 was released under further radical attack, which
535 produced TP7. Pathway 2 was consistent Guan et al. [58].

536


537 In pathway 3, the C1 in the structure of SMX was attacked by ·OH_s leading to the
538 formation of TP8 (Fig. S19) [59]. Moreover, the C–N (C3–N7) bond could also cleave
539 under radical attack [60]. The detection of TP9 (Fig. S20) confirmed the cleavage of
540 the C–N bond (pathway 4). Unfortunately, another bond-broken intermediate (M-2)
541 was not found, which might be attributed its unstable nature in the presence of highly
542 oxidizing species.

543
544 Figure 8. Proposed pathways for the degradation of SMX by BPC800–PDS oxidation.

545

546 3.4 Effects of water matrices and applications

547
548 Figure 9. Effects of (a) common anions, (b) different levels of Cl^- , (c) NOMs, and (d)
549 real water matrices on the removal of SMX by BPC800–PDS; (e) a list of
550 micropollutants and (f) removal of these pollutants by BPC800–PDS. Conditions:
551 $[\text{SMX}] = 5 \text{ mg/L}$, (f) $[\text{atrazine}] = [\text{bisphenol A}] = [\text{salicylic acid}] = 5 \text{ mg/L}$, $[\text{PDS}] =$
552 0.5 mM , $[\text{BPC800}] = 50 \text{ mg/L}$, and $\text{pH} = 3.0$.

553

554 The inorganic anions in aquatic environments could act as radical scavengers in AOPs
555 because of their high reaction rates with free radicals [61]. Although both $\cdot\text{OH}_s$ and

556 $\text{SO}_4^{\cdot-}$ are currently poorly understood, some previous reports have shown that these
557 oxidizing species are more selective than their free counterparts [37, 62]. To evaluate
558 the practical applicability of BPC800–PDS, the catalytic removal of SMX in the
559 presence of different anions was investigated. As shown in [Fig. 9a](#), anions including
560 chloride ions (Cl^-) and phosphate ions (PO_4^{3-}) up to 10 mM had no obvious scavenging
561 effect on the removal of SMX. The presence of bicarbonate ions ($\text{HCO}_3^-/\text{CO}_3^{2-}$) slightly
562 reduced the removal kinetics of SMX in the first 10 min, but their influence on the
563 overall removal rate of SMX was negligible. A similar negligible effect was noticed
564 when the concentration of Cl^- was further increased to 100 mM ([Fig. 9b](#)). The absence
565 of an obvious inhibitory effect from these common anions indicates that the BPC800–
566 PDS system has a high selectivity.

567

568 In addition to these anions, the effect of NOMs was also explored. [Fig. 9c](#) shows a
569 decrease in the removal kinetics of SMX when NOMs (5, 10 mg/L) were added to the
570 catalytic system, which was probably related to the competitive adsorption of NOMs.
571 However, an overall removal rate up to 93.4%–95.2% was still achieved by BPC800–
572 PDS in the presence of either 5 or 10 mg/L NOMs. Efficient removal of SMX was also
573 obtained when the reaction media was changed from deionized water to the WWTP
574 effluent ([Fig. 9d](#)). The TOC value (19.6 mg/L) ([Table S2](#)) shows that this effluent
575 contained high levels of organic contaminants. The limited matrix effects consistently
576 reveal that the catalytic combination of BPC800 with PDS had great stability and
577 tolerance in the removal of SMX from real water samples.

578

579 A list of compounds other than SMX including salicylic acid, atrazine, and bisphenol
580 A was selected and used to test the reactivity of BPC800–PDS ([Fig. 9e](#)). These

581 substances have wide applications (e.g., herbicide and plastic additive) and are
582 representative of micropollutants. The pK_a values of these pollutants vary widely (Table
583 S1), and thus they were expected to be present with different charges at pH 3.0. Fig. 9f
584 shows that the overall removal rates of 83.2%, 92.3%, and 98.1% were achieved for
585 salicylic acid, atrazine, and bisphenol A, respectively, after reaction for 30 min. The
586 removal of the latter two contaminants by BPC800–PDS was very close to that of SMX,
587 which suggests that this catalytic oxidation had high reactivity in the decontamination
588 of micropollutants. The relatively slower kinetics in the removal of salicylic acid was
589 probably because of its much greater initial molar concentration (36.2 μ M) over other
590 substances (19.7–23.2 μ M).

591

592 **4. Conclusions**

593 In summary, a series of biomass-derived highly porous carbon materials were
594 synthesized and used to catalytically remove representative micropollutants via the
595 activation of PDS. Among them, the combination of BPC800 with PDS had the best
596 performance for SMX removal. BPC800–PDS oxidation had a wide range of pH values
597 from 3.0 to 9.0. Although both adsorption and oxidation contributed to the removal of
598 SMX by BPC800–PDS, catalytic oxidation was the major removing mechanism.
599 During the catalytic oxidation, free radicals and BPC800-mediated IET were not
600 involved. Rather, BPC800 was found to form a complex with PDS ([BPC–PDS] *), and
601 DET occurred in the complex, generating $\text{SO}_{4,s}^-$ and $\cdot\text{OH}_s$ as the primary oxidizing
602 species. The surface-bound state of radicals was evidenced by fluorescence microscopy.
603 Four pathways were proposed for the degradation of SMX by these radicals. Common
604 water constituents including Cl^- , PO_4^{3-} , $\text{HCO}_3^-/\text{CO}_3^{2-}$, and NOM had no obvious
605 influence on the degradation of SMX by BPC800–PDS. Only a slight matrix effect was

606 observed when the degradation tests were performed in the WWTP effluent, which
607 demonstrates the great potential of BPC800–PDS oxidation for practical water
608 remediation. Although we preliminarily show the selectivity of BPC800–PDS
609 oxidation in this study, the nature of surface-bound radicals and their interactions with
610 catalyst surfaces remain largely unclear and require further study.

611

612 **Declaration of Competing Interest**

613 The authors declare that they have no known competing financial interests or personal
614 relationships that could have appeared to influence the work reported in this paper.

615

616 **Acknowledgements**

617 This study was funded by the National Natural Science Foundation of China (52000080
618 and 42077340) and Guangdong Basic and Applied Basic Research Foundation
619 (2019A1515110988 and 2019A1515110131). The authors gratefully acknowledge the
620 support of 2022 Guangdong-Hong Kong-Macao Greater Bay Area Exchange Programs
621 of SCNU.

622 **References**

623 [1] Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation
624 of antibiotics emission and fate in the river basins of China: Source analysis,
625 multimedia modeling, and linkage to bacterial resistance, *Environmental Science &*
626 *Technology*, 49 (2015) 6772-6782.

627 [2] M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Emerging contaminants of
628 high concern and their enzyme-assisted biodegradation - A review, *Environment*
629 *International*, 124 (2019) 336-353.

630 [3] K.Z. Huang, H. Zhang, Direct electron-transfer-based peroxymonosulfate activation
631 by iron-doped manganese oxide ($\delta\text{-MnO}_2$) and the development of galvanic
632 oxidation processes (GOPs), *Environmental Science & Technology*, 53 (2019) 12610-
633 12620.

634 [4] A.B. Ross, P. Neta, Rate constants for reactions of inorganic radicals in aqueous
635 solution, US Department of Commerce, National Bureau of Standards Washington D.
636 C, 1979.

637 [5] X.Y. Yu, Critical evaluation of rate constants and equilibrium constants of hydrogen
638 peroxide photolysis in acidic aqueous solutions containing chloride ions, *Journal of*
639 *Physical and Chemical Reference Data*, 33 (2004) 747-763.

640 [6] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate
641 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
642 ($\cdot\text{OH}/\cdot\text{O}^-$) in aqueous solution, *Journal of Physical and Chemical Reference Data*, 17
643 (1988) 513-886.

644 [7] P.L. Brezonik, J. Fulkerson-Brekken, Nitrate-induced photolysis in natural waters:
645 Controls on concentrations of hydroxyl radical photo-intermediates by natural
646 scavenging agents, *Environmental Science & Technology*, 32 (1998) 3004-3010.

647 [8] L. Zhou, M. Sleiman, C. Ferronato, J.-M. Chovelon, C. Richard, Reactivity of
648 sulfate radicals with natural organic matters, *Environmental Chemistry Letters*, 15
649 (2017) 733-737.

650 [9] Z. Li, M. Li, Z. Zhang, P. Li, Y. Zang, X. Liu, Antibiotics in aquatic environments
651 of China: A review and meta-analysis, *Ecotoxicology and Environmental Safety*, 199
652 (2020) 110668.

653 [10] Z. Yang, J. Qian, A. Yu, B. Pan, Singlet oxygen mediated iron-based Fenton-like
654 catalysis under nanoconfinement, *Proceedings of the National Academy of Sciences*,

655 116 (2019) 6659-6664.

656 [11] Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu, L.P. Yuan, Activation
657 of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process,
658 Environmental Science & Technology, 49 (2015) 12941-12950.

659 [12] Z. Yang, J. Qian, C. Shan, H. Li, Y. Yin, B. Pan, Toward selective oxidation of
660 contaminants in aqueous systems, Environmental Science & Technology, 55 (2021)
661 14494-14514.

662 [13] S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou,
663 Chemistry of persulfates in water and wastewater treatment: A review, Chemical
664 Engineering Journal, 330 (2017) 44-62.

665 [14] Y. Zong, X. Guan, J. Xu, Y. Feng, Y. Mao, L. Xu, H. Chu, D. Wu, Unraveling the
666 overlooked involvement of high-valent cobalt-oxo species generated from the
667 cobalt(II)-activated peroxymonosulfate process, Environmental Science & Technology,
668 54 (2020) 16231-16239.

669 [15] N. Chen, G. Fang, C. Zhu, S. Wu, G. Liu, D.D. Dionysiou, X. Wang, J. Gao, D.
670 Zhou, Surface-bound radical control rapid organic contaminant degradation through
671 peroxymonosulfate activation by reduced Fe-bearing smectite clays, Journal of
672 Hazardous Materials, 389 (2020) 121819.

673 [16] E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee, Identifying the nonradical
674 mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus
675 mediated electron transfer, Environmental Science & Technology, 52 (2018) 7032-
676 7042.

677 [17] P.H. Shao, J.Y. Tian, F. Yang, X.G. Duan, S.S. Gao, W.X. Shi, X.B. Luo, F.Y.
678 Cui, S.L. Luo, S.B. Wang, Identification and regulation of active sites on nanodiamonds:
679 Establishing a highly efficient catalytic system for oxidation of organic contaminants,
680 Advanced Functional Materials., 28 (2018) 8.

681 [18] C.H. Chu, J. Yang, D.H. Huang, J.F. Li, A.Q. Wang, P.J.J. Alvarez, J.H. Kim,
682 Cooperative pollutant adsorption and persulfate-driven oxidation on hierarchically
683 ordered porous carbon, Environmental Science & Technology, 53 (2019) 10352-10360.

684 [19] S. Zhu, C. Jin, X. Duan, S. Wang, S.-H. Ho, Nonradical oxidation in persulfate
685 activation by graphene-like nanosheets (GNS): Differentiating the contributions of
686 singlet oxygen (${}^1\text{O}_2$) and sorption-dependent electron transfer, Chemical Engineering
687 Journal, 393 (2020) 124725.

688 [20] H.Z. Wang, W.Q. Guo, B.H. Liu, Q.L. Wu, H.C. Luo, Q. Zhao, Q.S. Si, F. Sseguya,
689 N.Q. Ren, Edge-nitrogenated biochar for efficient peroxydisulfate activation: An
690 electron transfer mechanism, *Water Research*, 160 (2019) 405-414.

691 [21] P. Sun, H. Liu, M. Feng, Z. Zhai, Y. Fang, X. Zhang, V.K. Sharma, Strategic
692 combination of N-doped graphene and g-C₃N₄: Efficient catalytic peroxymonosulfate-
693 based oxidation of organic pollutants by non-radical-dominated processes, *Applied
694 Catalysis B: Environmental*, 272 (2020) 119005.

695 [22] Y. Hu, D. Chen, R. Zhang, Y. Ding, Z. Ren, M. Fu, X. Cao, G. Zeng, Singlet
696 oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived
697 biochar for catalytic degradation of tetracycline through a non-radical oxidation
698 pathway, *Journal of Hazardous Materials*, 419 (2021) 126495.

699 [23] Y. Feng, Y. Li, G.G. Ying, Micro-interface electron transfer oxidation based on
700 persulfate activation, *Progress in Chemistry*, 33 (2021) 2138-2149.

701 [24] H. Lee, H.-i. Kim, S. Weon, W. Choi, Y.S. Hwang, J. Seo, C. Lee, J.-H. Kim,
702 Activation of persulfates by graphitized nanodiamonds for removal of organic
703 compounds, *Environmental Science & Technology*, 50 (2016) 10134-10142.

704 [25] Y. Yang, G. Banerjee, G.W. Brudvig, J.H. Kim, J.J. Pignatello, Oxidation of
705 organic compounds in water by unactivated peroxymonosulfate, *Environmental
706 Science & Technology*, 52 (2018) 5911-5919.

707 [26] J. Chen, D. Zhang, H. Zhang, S. Ghosh, B. Pan, Fast and slow adsorption of
708 carbamazepine on biochar as affected by carbon structure and mineral composition,
709 *Science of The Total Environment*, 579 (2017) 598-605.

710 [27] S. Zhu, X. Huang, F. Ma, L. Wang, X. Duan, S. Wang, Catalytic removal of
711 aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and
712 nonradical mechanisms, *Environmental Science & Technology*, 52 (2018) 8649-8658.

713 [28] H. Wang, W. Guo, B. Liu, Q. Wu, H. Luo, Q. Zhao, Q. Si, F. Sseguya, N. Ren,
714 Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer
715 mechanism, *Water Research*, 160 (2019) 405-414.

716 [29] X. Li, X. Huang, S. Xi, S. Miao, J. Ding, W. Cai, S. Liu, X. Yang, H. Yang, J. Gao,
717 J. Wang, Y. Huang, T. Zhang, B. Liu, Single cobalt atoms anchored on porous N-doped
718 graphene with dual reaction sites for efficient Fenton-like catalysis, *Journal of
719 American Chemical Society*, 140 (2018) 12469-12475.

720 [30] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma, Fast adsorption of BPA with high capacity

721 based on π - π electron donor-acceptor and hydrophobicity mechanism using an in-situ
722 sp₂ C dominant N-doped carbon, Chemical Engineering Journal, 381 (2020).

723 [31] C.H. Wang, W.C. Wen, H.C. Hsu, B.Y. Yao, High-capacitance KOH-activated
724 nitrogen-containing porous carbon material from waste coffee grounds in
725 supercapacitor, Advanced Powder Technology, 27 (2016) 1387-1395.

726 [32] C. Chu, J. Yang, D. Huang, J. Li, A. Wang, P.J.J. Alvarez, J.H. Kim, Cooperative
727 pollutant adsorption and persulfate-driven oxidation on hierarchically ordered porous
728 carbon, Environmental Science & Technology, 53 (2019) 10352-10360.

729 [33] S. Zhang, X. Quan, J.F. Zheng, D. Wang, Probing the interphase “HO zone”
730 originated by carbon nanotube during catalytic ozonation, Water Research, 122 (2017)
731 86-95.

732 [34] C. Liang, C.F. Huang, N. Mohanty, R.M. Kurakalva, A rapid spectrophotometric
733 determination of persulfate anion in ISCO, Chemosphere, 73 (2008) 1540-1543.

734 [35] C. Liang, Y.T. Lin, W.H. Shih, Treatment of trichloroethylene by adsorption and
735 persulfate oxidation in batch studies, Industrial & Engineering Chemistry Research, 48
736 (2009) 8373-8380.

737 [36] A.L. Boreen, W.A. Arnold, K. McNeill, Photochemical fate of sulfa drugs in the
738 aquatic environment: sulfa drugs containing five-membered heterocyclic groups,
739 Environmental Science & Technology, 38 (2004) 3933-3940.

740 [37] J.M. Barazesh, C. Prasse, D.L. Sedlak, Electrochemical transformation of trace
741 organic contaminants in the presence of halide and carbonate ions, Environmental
742 Science & Technology, 50 (2016) 10143-10152.

743 [38] P. Chen, Y. Mu, Y. Chen, L. Tian, X.H. Jiang, J.P. Zou, S.L. Luo, Shifts of surface-
744 bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation
745 for enhanced degradation of hydrophilic aromatic compounds, Chemosphere, 291
746 (2022) 132817.

747 [39] H.R. Song, L.X. Yan, J. Jiang, J. Ma, Z.X. Zhang, J.M. Zhang, P.X. Liu, T. Yang,
748 Electrochemical activation of persulfates at BDD anode: Radical or nonradical
749 oxidation?, Water Research, 128 (2018) 393-401.

750 [40] J. He, Y. Xiao, J. Tang, H. Chen, H. Sun, Persulfate activation with sawdust
751 biochar in aqueous solution by enhanced electron donor-transfer effect, Science of The
752 Total Environment, 690 (2019) 768-777.

753 [41] J. Qin, L. Dai, P. Shi, J. Fan, Y. Min, Q. Xu, Rational design of efficient metal-

754 free catalysts for peroxymonosulfate activation: Selective degradation of organic
755 contaminants via a dual nonradical reaction pathway, *Journal of Hazardous Materials*,
756 398 (2020) 122808.

757 [42] J. Gonzalez, M. Torrent-Sucarrat, J.M. Anglada, The reactions of SO_3 with HO_2
758 radical and $\text{H}_2\text{O}\cdots\text{HO}_2$ radical complex. Theoretical study on the atmospheric
759 formation of HSO_5 and H_2SO_4 , *Physical Chemistry Chemical Physics*, 12 (2010) 2116-
760 2125.

761 [43] T. Zhang, H. Zhu, J.-P. Croué, Production of sulfate radical from
762 peroxymonosulfate induced by a magnetically separable CuFe_2O_4 spinel in water:
763 efficiency, stability, and mechanism, *Environmental Science & Technology*, 47 (2013)
764 2784-2791.

765 [44] J. Liu, Z. Zhao, P. Shao, F. Cui, Activation of peroxymonosulfate with magnetic
766 $\text{Fe}_3\text{O}_4\text{-MnO}_2$ core-shell nanocomposites for 4-chlorophenol degradation, *Chemical
767 Engineering Journal*, 262 (2015) 854-861.

768 [45] W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang, X. Duan, S. Wang, Activation of
769 peroxydisulfate on carbon nanotubes: Electron-transfer mechanism, *Environmental
770 Science & Technology*, 53 (2019) 14595-14603.

771 [46] M.M. Mian, G. Liu, B. Fu, Y. Song, Facile synthesis of sludge-derived $\text{MnO}_x\text{-N}$ -
772 biochar as an efficient catalyst for peroxymonosulfate activation, *Applied Catalysis B:
773 Environmental*, 255 (2019) 117765.

774 [47] G. Nardi, I. Manet, S. Monti, M.A. Miranda, V. Lhiaubet-Vallet, Scope and
775 limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading
776 role of electron transfer, *Free Radical Biology and Medicine*, 77 (2014) 64-70.

777 [48] S. Zhang, X. Quan, J.F. Zheng, D. Wang, Probing the interphase "HO zone"
778 originated by carbon nanotube during catalytic ozonation, *Water Research*, 122 (2017)
779 86-95.

780 [49] S. Cai, Q. Zhang, Z. Wang, S. Hua, D. Ding, T. Cai, R. Zhang, Pyrrolic N-rich
781 biochar without exogenous nitrogen doping as a functional material for bisphenol A
782 removal: Performance and mechanism, *Applied Catalysis B: Environmental*, 291
783 (2021).

784 [50] W. Ren, L. Xiong, G. Nie, H. Zhang, X. Duan, S. Wang, Insights into the electron-
785 transfer regime of peroxydisulfate activation on carbon nanotubes: The Role of oxygen
786 functional groups, *Environmental Science & Technology*, 54 (2019) 1267-1275.

787 [51] W. McElroy, S. Waygood, Kinetics of the reactions of the SO_4^- radical with SO_4^- ,
788 $\text{S}_2\text{O}_8^{2-}$, H_2O and Fe^{2+} , Journal of the Chemical Society, Faraday Transactions, 86 (1990)
789 2557-2564.

790 [52] Y. Yang, X. Lu, J. Jiang, J. Ma, G. Liu, Y. Cao, W. Liu, J. Li, S. Pang, X. Kong,
791 C. Luo, Degradation of sulfamethoxazole by UV, UV/ H_2O_2 and UV/persulfate (PDS):
792 Formation of oxidation products and effect of bicarbonate, Water Research, 118 (2017)
793 196-207.

794 [53] M. Abellán, W. Gebhardt, H.F. Schröder, Detection and identification of
795 degradation products of sulfamethoxazole by means of LC/MS and- MSn after ozone
796 treatment, Water Science and Technology, 58 (2008) 1803-1812.

797 [54] Y. Ji, Y. Fan, K. Liu, D. Kong, J. Lu, Thermo activated persulfate oxidation of
798 antibiotic sulfamethoxazole and structurally related compounds, Water Research, 87
799 (2015) 1-9.

800 [55] S. Wang, W. Xu, J. Wu, Q. Gong, P. Xie, Improved sulfamethoxazole degradation
801 by the addition of MoS_2 into the Fe^{2+} /peroxymonosulfate process, Separation and
802 Purification Technology, 235 (2020).

803 [56] J. Du, W. Guo, D. Che, N. Ren, Weak magnetic field for enhanced oxidation of
804 sulfamethoxazole by $\text{Fe}^0/\text{H}_2\text{O}_2$ and Fe^0 /persulfate: Performance, mechanisms, and
805 degradation pathways, Chemical Engineering Journal, 351 (2018) 532-539.

806 [57] L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole
807 and related antimicrobial agents by TiO_2 photocatalysis, Water Research, 41 (2007)
808 2612-2626.

809 [58] C. Guan, J. Jiang, S. Pang, J. Ma, X. Chen, T.T. Lim, Nonradical transformation
810 of sulfamethoxazole by carbon nanotube activated peroxydisulfate: Kinetics,
811 mechanism and product toxicity, Chemical Engineering Journal, 378 (2019).

812 [59] J. Yan, J. Li, J. Peng, H. Zhang, Y. Zhang, B. Lai, Efficient degradation of
813 sulfamethoxazole by the $\text{CuO}@\text{Al}_2\text{O}_3$ (EPC) coupled PMS system: Optimization,
814 degradation pathways and toxicity evaluation, Chemical Engineering Journal, 359
815 (2019) 1097-1110.

816 [60] R. Guo, Y. Wang, J. Li, X. Cheng, D.D. Dionysiou, Sulfamethoxazole degradation
817 by visible light assisted peroxymonosulfate process based on nanohybrid manganese
818 dioxide incorporating ferric oxide, Applied Catalysis B: Environmental, 278 (2020).

819 [61] H.V. Lutze, N. Kerlin, T.C. Schmidt, Sulfate radical-based water treatment in

820 presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into
821 hydroxyl radicals and influence of bicarbonate, *Water Research*, 72 (2015) 349-360.

822 [62] Y. Feng, W. Qing, L. Kong, H. Li, D. Wu, Y. Fan, P.H. Lee, K. Shih, Factors and
823 mechanisms that influence the reactivity of trivalent copper: A novel oxidant for
824 selective degradation of antibiotics, *Water Research*, 149 (2019) 1-8.

825