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the “memory wall” problem where signifi-
cant energy cost and wire delay are caused 
by frequent data flow between the central 
processing unit and the memory.[6–8] In 
contrast, the human brain is very efficient 
with an average power consumption of 
only 20  W.[9] Therefore, the neuromorphic 
spiking neural network (SNN) that mimics 
the working mode of human brain has 
attracted significant interest. To effectively 
implement neuromorphic SNN directly in 
hardware, two basic electronic components 
must be developed: the artificial synapses 
and the artificial neurons. However, due 
to the lack of inherent dynamic character-
istics, lots of metal oxide semiconductor 
field effect transistors are used to construct 
a single synapse or neuron, thus increasing 
the complexity of neuronal and synaptic 
circuits, making it difficult to obtain large 
integration scale comparable with that of 
human brain.[10–12] Hence, developing novel 
electronic devices with intrinsic dynamic 
properties and scalability to construct effi-
cient neuromorphic machines has received 
extensive attention recently.

Memristors have the advantages of simple structure, scal-
ability, fast switching speed, fault tolerance, low power con-
sumption, and compatibility with complementary metal oxide 
semiconductor process, rendering them ideal hardware units 
to break the Von Neumann bottleneck and realize efficient 

For the first time, a configurable NbOx memristor is achieved that can be 
configured as an artificial synapse or neuron after fabrication by controlling 
the forming compliance current (FCC). When the FCC ≤ 2 mA, the memris-
tors exhibit the resistive-switching (RS) property, enabling multiple types of 
synaptic plasticity, including short-term potentiation, paired-pulse facilita-
tion, short-term memory, and long-term memory. When the FCC ≥ 3 mA, the 
memristors can be electroformed and exhibit the threshold switching (TS) 
property with excellent endurance (>1012), thus achieving various biological 
neuron characteristics, such as threshold-triggering, strength-modulation 
of spike frequency, and leaky integrate-and-fire. This enables the successful 
implementation of a spiking Pavlov’s dog that employs the spikes as infor-
mation carrier by connecting an RS NbOx memristor as artificial synapse 
and a TS memristor as artificial neuron in series. Furthermore, a fully NbOx 
memristors-based single-layer spiking neural network is simulated. It is first 
found that, due to the forgetting property of synapse, the recognition accu-
racy for the Modified National Institute of Standards and Technology hand-
written digits is increased from 85.49% to 91.45%. This study provides a solid 
foundation for the development of neuromorphic machines based on the 
principles of the human brain.

© 2023 The Authors. Advanced Electronic Materials published by 
Wiley-VCH GmbH. This is an open access article under the terms of the 
Creative Commons Attribution License, which permits use, distribution 
and reproduction in any medium, provided the original work is properly 
cited.
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1. Introduction

With the advent of the big data era, the amount of data has 
exploded, bringing huge computing demands.[1–5] The traditional 
Von Neumann computing architecture increasingly suffers from 
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neuromorphic computing.[13–16] Recently, multiple types of 
biological synaptic plasticity are realized by using resistive-
switching (RS) memristors,[17–19] and various biological neuronal 
functions have been achieved based on threshold-switching 
(TS) memristors.[20–22] However, most of the reported memris-
tors exhibit only RS or TS properties. If the switching properties 
of a memristor can be configured after the fabrication, the fab-
rication process of neuromorphic chip will be greatly simplified 
and the integration scale greatly enhanced. Due to the abun-
dance of chemical valence states of niobium (Nb), NbOx mem-
ristors can exhibit both RS and TS properties by controlling the 
oxygen contents.[19,23–26] Thus, it is highly possible to enable the 
simultaneous realization of various synaptic plasticity and neu-
ronal functions in a single NbOx memristor. For example, Liu 
et al. demonstrated a Pt/NbO2/Pt device for TS property and a 
Pt/Nb2O5/Pt device for RS and obtained a hybrid characteristic 
by connecting these two devices in series.[27] Luo et al. reported 
a 3D TiN/TiO2/NbOx/Pt device with RS and TS property before 
and after the forming process.[28] Although the reported devices 
exhibit the characteristics of RS and TS property, they do not 
possess the synaptic behaviors or neuronal properties.

In this work, a NbOx memristor with the structure of  
Ti/W/NbOx/Nb/Pt can be configured as the artificial synapse 
or artificial neuron by regulating compliance current during 
the forming process (forming compliance current (FCC)). The 

memristors have excellent consistency, low forming voltage 
(≈4.2 V), and good endurance (>1012). When the FCC ≤ 2 mA, 
the memristors exhibit multiple types of biological synaptic 
plasticity, including short-term potentiation (STP), paired-pulse 
facilitation (PPF), short-term memory (STM), and long-term 
memory (LTM). Meanwhile, when the FCC ≥ 3 mA, the mem-
ristors show various biological neuronal behaviors, such as 
threshold-triggering, strength-modulation of spike frequency, 
leaky integrate-and-fire (LIF), and refractory period. Based on 
the artificial synapses and neurons implemented by the config-
urable NbOx memristors, employing the spikes as information 
carrier, a spiking Pavlov’s dog was successfully implemented 
in hardware and a fully connected single-layer SNN was set up 
to recognize the Modified National Institute of Standards and 
Technology (MNIST) handwritten digits with the recognition 
accuracy of 91.45% by simulation, thus providing a solid foun-
dation for the realization of neuromorphic machines.

2. Results and Discussion

2.1. Characterization of NbOx Memristors

As shown in Figure  1a,b, the memristors were fabricated 
on SiO2/Si wafer, employing a via-hole (≈10  µm) structure of 

Figure 1.  a) Optical micrograph, b) schematic diagram, and c) cross-section TEM image of the fabricated NbOx memristor. d) Forming processes of 
11 devices under different FCCs and the inset is the distribution of the forming voltage (VF).
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Ti/W/NbOx/Nb/Pt crossbar. The cross-section transmission 
electron microscope (TEM) images of the memristor are shown 
in Figure 1c and Figure S1a in the Supporting Information. The 
as-deposited NbOx is amorphous as determined by the electron 
diffraction pattern (see Figure S1d, Supporting Information).

As shown in Figure  1d, when the FCC ≤ 2  mA, the cur-
rents of the NbOx memristors have large hysteresis windows 
without abrupt change during the forming process, exhibiting 
RS property, thus the devices are configured as artificial syn-
apses whose conductance can be modulated by applied voltage 
pulses. Meanwhile, when the FCC ≥ 3  mA, the currents of 
the memristors change abruptly and the memristors are elec-
troformed, showing the TS property, thus the devices are con-
figured as the artificial neurons that can generate oscillating 
spikes under proper driven current or voltage. As shown in the 
inset of Figure 1d, the forming voltages of eight devices (FCC ≥  
3  mA) are all distributed around 4.2  V, indicating the good  
consistency of forming process.

2.2. Synaptic Plasticity of the Configured Artificial Synapse

As shown in Figure  2a and Figure S2a–c in the Supporting 
Information, when the device is configured as the artificial 
synapse with the FCC ≤ 2  mA, the backward current of the 
memristor gradually decreases and forward current gradually 
increases as the cycle number of the positive DC voltage sweeps 
increased, thus the hysteresis window gradually decreases, 
suggesting that the conductance of the memristor can be 

gradually modulated under voltage pulses. Then, the devices 
were measured under different voltage pulses as shown in the 
inset of Figure 2b. Under 30 positive voltage pulses (4.5 V/0.1 s 
set, 0.5  V/0.1 s read, ICC  = 2  mA, the set compliance current 
during pulse measurement), the conductance of the memris-
tors gradually decreases, and under 30 negative voltage pulses 
(−4.0 V/0.1 s reset, 0.5 V/0.1 s read, ICC = 2 mA), the conduct-
ance gradually increases to the initial highest conductance 
state. The conductance of the memristor can be repeatedly 
increased or decreased by applying positive or negative pulse 
trains, thus successfully simulating the depression and potenti-
ation plasticity of biological synapse. The variations in the con-
ductance of different synaptic devices are shown in Figure S2d 
in the Supporting Information, indicating that the configured 
artificial synapses have good consistency.

To construct an SNN, multiple types of synaptic plasticity, 
including STP, PPF, STM, and LTM[29,30] are emulated by using 
the configured artificial synapses. As shown in Figure 2c, when 
a single presynaptic voltage pulse (4.5  V/0.1 s, ICC  = 2  mA) is 
applied, a sharp increase in current (excitatory postsynaptic 
current, EPSC) is observed, but then the EPSC rapidly drops 
back to its initial value after the removal of the applied voltage 
pulse, thus realizing the STP. When two paired voltage pulses 
(4.5 V/0.1 s, interval of 0.5 s, ICC = 2 mA) are applied, the EPSC 
of the second voltage pulse (A2) is higher than that of the first 
pulse (A1), hence the device exhibits the PPF with the strength 
A2/A1 of 1.7 (Figure 2d). As shown in Figure 3, the transition 
from STM to LTM can be achieved by applying consecutive 
voltage pulses. When a few pulses (−4.0  V/0.2 s, ICC  = 2  mA) 

Figure 2.  a) 25 I–V curves under repeated positive DC voltage sweeps with FCC = 2 mA for a typical device. b) Depression and potentiation plasticity 
of NbOx memristors. Inset is the conductance plasticity under 30 positive and 30 negative pulses, respectively, and the corresponding applied voltage 
pulses. c) STP. d) PPF.
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applied, the conductance of artificial synapse quickly decreases 
to its initial state after the removal of the applied pulse(s), 
which is the forgetting property of the artificial synapse. 
The good endurance of the forgetting property is shown in 
Figure S3 in the Supporting Information. With the number of 
applied pulses increased, the conductance gradually increases 
and remains at high level for long time after removal of applied 
pulses (see Figure 3a), indicating that the transition from STM 
to LTM is successfully achieved. More details on retention time 
of synaptic weights are shown in Figure S4 in the Supporting 
Information.

In order to accurately describe the forgetting property of the 
configured artificial synapses, the relation between the relaxa-
tion time constant (τ) that evaluates the forgetting speed of the 
artificial synapse and synaptic weight (G) can be obtained by 
fitting the retention curve with the modified Kohlrausch equa-
tion,[31] expressed by

G t G A texp /0 τ( )( ) = + − 	 (1)

where G(t) and G0 are the synaptic weights retained at the time 
of t and at the stabilized state, respectively, and A is the pre-
exponential factor. As shown in Figure 3b, with the number of 
pulses increased, the τ gradually increases, suggesting that the 
synaptic weight can be maintained at high level for long time.

2.3. Artificial Neuron Achieved by the NbOx Memristor

When the FCC is set at 5  mA, the as-fabricated NbOx mem-
ristors were electroformed and successfully configured as TS 
memristor as shown in Figure S5 in the Supporting Informa-
tion. The compliance current during pulse measurement (ICC) 
is set to 1 mA. Figure S6 in the Supporting Information shows 
a distinct region of negative differential resistance during DC 
current sweeping after forming process. The forming processes 
of 15 devices are shown in Figure S7 in the Supporting Infor-
mation, illustrating that the devices have good consistency of 
device-to-device variation. The current–voltage (I–V) curves of 
50 DC voltage sweeps after forming process were characterized 
as shown in Figure 4a. The I–V curves of different sweeps nearly 
overlap with each other, and Vth changes slightly with the cycles 

while the Vhold is fixed, indicating the good cycle-to-cycle vari-
ation. As shown in Figure S8 in the Supporting Information, 
after 104 back-and-forth DC voltage sweeps, the I–V curves of 
NbOx memristor after forming process nearly show no change, 
and through the oscillation test shown in the inset in Figure S9a 
in the Supporting Information, the memristor operated at least 
1012 times in 106 s, proving that the devices have good endur-
ance. Thanks to the TS characteristics of NbOx memristors, an 
artificial neuron (leaky integrate-and-fire neuron) is realized as 
shown in the inset of Figure  4b. When an input voltage (Vin) 
of 6 V is applied, output spikes can be obtained at VC (VO) as 
shown by the blue (red) curve in Figure  4b. When the Vin is 
below 4.0  V, the no output spikes are observed. After the Vin 
increased to 4.5  V, output spikes are generated at VC (VO), 
resembling to the threshold-triggering properties of biological 
neurons[32] (see Figure  4c). When the Vin is increased from 
4.5 to 8.0 V, the frequency of output spikes at VC (VO) is linearly 
increased, which bears a resemblance to the strength modula-
tion of spike frequency of biological neurons, i.e., the output 
spike frequency of neurons increases with the increase of input 
stimulation.[33,34] The endurance of the strength modulation of 
the spike frequency function of the NbOx neurons is shown in 
Figure S10 in the Supporting Information.

The LIF model of a single neuron greatly simplifies the 
neural activity to a combination of two mechanisms: “integrate” 
and “fire,” which catches the primary properties of biological 
neurons. An LIF neuron can be achieved by using the TS NbOx 
memristor. When the voltage pulses with constant amplitude 
(8 V/0.03 s, interval of 0.02 s) are applied, the capacitor (C) will 
be charged, and the voltage at VC is gradually accumulated (inte-
grate or summation) as shown by the blue curve in Figure 4d. 
When the voltage at VC reaches the Vth of NbOx memristor, the 
resistance state of the memristor changes from the high resist-
ance state (HRS) to the low resistance state (LRS), and thus a 
spike is generated at VO (fire). When outputting a spike, the 
TS NbOx memristor is in the LRS, so the C cannot be charged 
(refractory period). When the Vin is removed, the charge on C 
will gradually leak through the resistor (Rm) (leaky). Thus, an 
LIF neuron is obtained, whose behavior is similar to that of bio-
logical neurons. The relationship between the spikes firing fre-
quency of the LIF neuron and amplitude/duration of the input 
voltage pulse is shown in Figures S11 and S12 in the Supporting 

Figure 3.  a) Experimental (symbols) and fitted (solid lines) retention property of the NbOx memristor device after subjected to different voltage pulse 
cycles. Inset is the applied voltage pulse trains (ICC = 2 mA). b) Relationship between the τ and the pulse cycles.
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Information, respectively. With the increase of amplitude/dura-
tion of the input voltage pulse, the spiking frequency gradually 
increases. Therefore, an artificial neuron based on the configur-
able NbOx memristor is successfully constructed for the SNN.

2.4. Spiking Pavlov’s Dog

The associative learning, an important type of learning process 
generally existing in biology, refers to that two stimuli happen 
very close and finally form a connection in the brain, such as 
the famous classical conditioning Pavlov’s dog experiment[35] as 
shown in Figure 5a. Here, the Pavlov’s dog experiment is suc-
cessfully implemented by the configurable NbOx memristors as 
artificial synapse and neuron (see Figure 5c) with the learning 
and testing conditions illustrated in Figure  5b. As shown in 
Figure  5d, before learning, the RS NbOx memristor (artificial 
synapse) was in HRS, and VO had no spikes output when 6 V 
voltage pulse as input. After the artificial synapse was trained 
by using 30 voltage pulses (−4 V/0.2 s, ICC = 2 mA), the artifi-
cial synapse is in LRS, and when the voltage pulse (6 V, ICC = 
2 mA) is used as input again, spikes can be generated by the TS 
NbOx memristor (artificial neuron) at the VO (see Figure  5e), 
thus realizing the associative learning.

2.5. Working Mechanism of the Configurable NbOx Memristors

The conductance of NbOx can be modulated by the ratio of 
Nb/O (the lower the Nb/O, the worse the conductivity of 

NbOx).[36] The possible working mechanism of NbOx mem-
ristor is shown in Figure  6a,b. When FCC ≤ 2  mA, we can 
see that the devices cannot be electroformed from the I–V 
curves (Figures  1d and  2a), and there is no change in the TE 
of device before and after voltage sweep (see Figure S13a, Sup-
porting Information). Therefore, we can safely conclude that 
the drift of oxygen vacancies in NbOx under the electric field 
leads to the change of its resistance state due to the change 
of Nb/O ratio,[28] thus realizing the artificial synapses. When 
FCC ≥ 3  mA, the device is electroformed with an abrupt cur-
rent change (see Figure 1d) and a distinct “black spot” appears 
on the TE of device (see Figure S13b, Supporting Information), 
proving that a NbO2 conductive filament (CF) is formed locally 
in NbOx due to the high temperature during the electroforming 
process, results in the abrupt change of the resistance state 
as illustrated in Figure  6c,d. The NbO2 filament undergoes 
the Mott insulator-metal transition under applied voltage and 
is switched between the insulator phase (i.e., HRS) and metal 
phase (i.e., LRS),[37] thus enabling the realization of the oscil-
lating neurons.

To verify the working mechanism of the NbOx memristors, 
the reduction of synaptic weight for the NbOx synapse and vari-
ation of I–V curves for the NbOx TS memristor under different 
temperatures were measured as shown in Figure 7. As shown in 
Figure 7a, the higher the temperature is, the worse the memory 
of the NbOx synapses. This is consistent with the fact that the 
speed of oxygen vacancy migration in the NbOx increased with 
the temperature increased. Therefore, the realization of the 
synaptic plasticity is mainly attributed to the oxygen vacancy 
migration in the NbOx. As shown in Figure 7b, the resistance 

Figure 4.  a) 50 cycles of DC sweeps of the NbOx TS memristor after forming process. Inset is the distribution of Vth and Vhold over the 50 cycles. 
b) Oscillating spikes obtained at the VC (blue) and VO (red). Inset is the oscillation circuit based on NbOx memristor. c) Relationship between oscil-
lating spikes rate and Vin. Inset is the spiking frequency versus Vin. d) Voltage variation of VC and VO under voltage pulses input. Circuit for testing is 
the same as inset in (b), but the capacitance is changed to 100 µF. Inset is enlarge view of one spike.
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of HRS and LRS decreases and the memory window (Vth−Vhold) 
shrunk with the temperature increased. The resistance of Mott 
memristor depends on the temperature with an abrupt change 
at the transition temperature, therefore, with the ambient tem-
perature rising, the resistance of HRS and LRS decreases, and 
the required Joule heat generated from the applied voltage to 
reach the transition temperature of NbO2 decreases, thus the 
I–V curve of the NbOx TS memristors shifts to the left. In sum, 
the temperature-related study reveals that the synaptic memory 
properties of configured artificial synapse is attributed to the 

drift of oxygen vacancies in NbOx under the electric field, and 
the threshold switching property of the electroformed NbOx 
memristors results from the locally formed NbO2 CF, enabling 
the various neuronal functions of TS NbOx memristors.

2.6. SNN based on the Configurable NbOx Memristors

Recently, Pickett and Williams developed a coupled electro-
thermal physical model to accurately describe the steady-state 

Figure 6.  Working mechanism of the NbOx memristors. a,b) Schematic diagrams of ion migration under the electric field for FCC ≤ 2 mA. c,d) Schematic 
diagrams of Mott phase transition after forming process.

Figure 5.  Spiking Pavlov’s dog. a) Schematic of the training process for Pavlov’s dog. b) Learning and testing conditions. c) Electric circuit with the 
NbOx memristors to demonstrate the associative learning. Outputs of VO d) before and e) after learning.

Adv. Electron. Mater. 2023, 9, 2300018
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I–V relationships and dynamic switching features observed in 
nanoscale NbO2.[38] Based on the work, the neuron behavior 
of the NbOx memristors was modeled using SPICE. The 
modeling process and parameters we used are shown in 
Equations (S1)–(S5) and Table S1 in the Supporting Informa-
tion. As shown in Figure S14 in the Supporting Information, 
the simulated I–V curve fits well with the experimentally meas-
ured data, thus providing a guarantee for the construction of 
NbOx memristor-based SNN.

A single-layer fully connected SNN can be achieved for the 
MNIST handwritten digit recognition by using the synapse array 
based on RS NbOx memristors and neurons based on TS NbOx 
memristors as shown in Figure  8a (more details are referred 

to the Note S1, Supporting Information). The synapse array is 
trained offline using 900 MNIST handwritten digits by Python 
simulator and the training results are shown in Figure S15 in 
the Supporting Information. The trained positive and negative 
synaptic weights in hardware are achieved by additional ampli-
fiers (conversion circuits) and the neurons are constructed by 
connecting a TS memristor with a capacitor and a resistor as 
shown in Figure  8a. The simulated recognition accuracy of 
MNIST handwritten digits gradually increases as the number of 
training epoch increases (see Figure 8c). After 100 epochs, the 
recognition accuracy can reach 85.49%, assuming that synaptic 
weights do not change over time during training, i.e., without 
synaptic forgetting training. Considering that NbOx memristors 

Figure 7.  a) Reduction of synaptic weight under different temperatures for NbOx synapses. b) I–V curves of the electroformed NbOx TS memristors 
under different temperatures.

Figure 8.  Training and testing on the MNIST handwritten digit recognition by simulation. a) A single-layer fully connected SNN based on NbOx 
memristors. b) Recognition process of a typical handwritten digit “8” from the MNIST database. c) Recognition accuracy of the MNIST handwritten 
digits with and without the synaptic forgetting property. d) Relationship between recognition accuracy and degradation of synaptic weights over time.
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used as artificial synapses have the forgetting property, the 
simulated recognition accuracy is revealed to be increased to 
91.45% after 100 epochs, i.e., synaptic forgetting training (see 
Figure  8c). The increase of recognition accuracy is attributed 
to that the synaptic array quickly forgets unimportant weights, 
thus making larger weights more important. As a result, the 
recognition accuracy of SNN is significantly increased when the 
forgetting characteristics of synapses is considered in the SNN. 
Figure 8d shows the relationship between recognition accuracy 
and degradation of synaptic weights over time. Assuming that 
all synaptic weights degenerate over time at the same rate after 
the training, when the synaptic weights lost 50%, the recogni-
tion accuracy of SNN with/without forgetting property does not 
change, but when the synaptic weights lost 90%, the recogni-
tion accuracy of SNN with the forgetting property dramatically 
decreases. The simulation results demonstrate that the intro-
duction of the forgetting property can greatly improve the rec-
ognition accuracy, at the same time degrade the stability of the 
SNN over time.

3. Conclusion

In conclusion, the functions of biological synapse and neuron 
are realized by controlling FCC of the memristor with the 
structure of Ti/W/NbOx/Nb/Pt. The memristors have good 
consistency and low forming voltages. When FCC ≤ 2  mA, 
the memristors exhibit multiple types of biological synaptic 
plasticity, including STP, PPF, STM, and LTM. Meanwhile, 
when the FCC ≥ 3 mA, the memristors show various biological 
neuronal behaviors, including threshold triggering, strength-
modulated spike frequency, and LIF property. Based on the 
artificial synapses and neurons implemented by the NbOx 
memristors, the Pavlov’s dog experiment was successfully real-
ized and an SNN was set up to recognize the MNIST hand-
written digits with the recognition accuracy of 91.45%, hence, 
providing a solid foundation for the realization of neuromor-
phic machines.

4. Experimental Section
Device Fabrication: The fabrication process was as follows. First, 

the Ti/W (≈10  nm/80  nm) bottom electrode (BE) was deposited by 
a radio frequency magnetron sputterer and then patterned by using 
the lift-off process. After that, the Al2O3 (≈30  nm) as isolation layer 
was prepared and patterned. Finally, the NbOx (≈50 nm) as switching 
layer, and Nb/Pt (≈50  nm/100  nm) as top electrode (TE) were also 
sputtered and then patterned by using the lift-off process. The 
detailed parameters of magnetron sputtering for each layer are as 
listed in Table 1.

Measurement: All the electrical measurements were conducted in 
air at room temperature by an Agilent 4155C semiconductor parameter 
analyzer and a Keysight B2901A precision source/measure unit. The DC 
bias was applied to the TE while the BE was grounded.

SNN Simulation: The single-layer fully connected SNN for the 
handwritten digit recognition was built in Python based on experimental 
results using SpikingJelly.[39] The synapse array was trained offline using 
surrogate gradient method. The simulated SNN was composed of 
784 input, 7840 synapses, and 10 output neurons which corresponded to 
10 handwritten digits (from 0 to 9). TS NbOx devices were used as LIF 
neurons of SNN where the parameters were extracted from experimental 

data. The main parameters of the LIF neuron used in the simulation are 
Vth (1.2 V), Vhold (0.8 V), and neuronal membrane potential decay time 
constant (τ  = 100). Surrogate gradient method was used to train the 
neural network online. Here, the relaxation time constant τsynapse = 35. 
7840*2 RS NbOx devices could be used to store synaptic weights in 
hardware. The probability of spikes could be calculated in each time step 
by comparing the spiking frequency with the length of the simulation 
time step. The higher the frequency was, the greater the probability 
of spiking at each time step. The index of the most frequently spiking 
neuron was taken as a prediction result. Other parameters used in this 
simulation were batch size = 100, timesteps = 200, SNN learning rate = 
1e-3, and training epoch = 100.
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Table 1.  The detailed parameters of magnetron sputtering for each layer.

Layer Target Sputtering 
pressure

Sputtering ambiance Thickness

Al2O3 Al2O3 0.8 Pa Ar/O2: 24/1 sccm 30 nm

Ti Ti 0.8 Pa Ar: 24 sccm 10 nm

W W 0.8 Pa Ar: 24 sccm 80 nm

NbOx Nb 0.8 Pa Ar/O2: 30/2 sccm 50 nm

Nb Nb 0.8 Pa Ar: 24 sccm 50 nm

Pt Pt 0.8 Pa Ar: 24 sccm 100 nm
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