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We propose to realize two-dimensional superstructures of chiral topological superconductors based
on marginally twisted bilayers of transition metal dichalcogenides in proximity to a conventional
s�wave superconductor. Majorana Fermions arise at domain boundaries of the AB and A0B0

stacking domains as a result of the sign flip across the domain wall in the Rashba spin-orbit coupling
coefficient at the valence band edge. Unlike previous models that only allow for one Majorana per
boundary, each domain wall can host two helical Majorana edge states with the same Majorana
polarization, preventing hybridization. This offers a promising new platform for studying Majorana
physics.

I. INTRODUCTION

Nowadays a central focus in condensed matter physics
is the search for topological states of matter [1–3]. Sim-
ilar to the well-known quantum Hall state, a chiral
topological superconductor with Bogoliubov-de-Gennes
(BdG) Chern number N has a full pairing bulk gap
and holds N topologically protected chiral Majorana
Fermions on the boundaries [4]. For the |N | = 1 case,
the Majorana edge state has only half the degrees of
freedom of usual chiral Fermions, and a Majorana zero
mode in the vortex core[5] would obey non-Abelian statis-
tics [6, 7], which makes it potentially valuable for the re-
alization of topological quantum computing [8]. Intensive
efforts have been made to search for the chiral topolog-
ical superconductor in one- and two-dimension. Making
use of the proximity effect of a conventional s�wave su-
perconductor, many different artificial designs to realize
topological superconductor have been proposed and ex-
perimentally studied during past years [9–18]. While ex-
perimental results have not always been conclusive, the
solid theoretical foundations of the field have driven con-
tinued progress [19, 20].

Due to the interlayer hybridization and the moiré su-
perlattice effects, layered assembly of two-dimensional
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materials has provided versatile possibilities to engi-
neer material properties [21]. In marginally twisted bi-
layer transition metal dichalcogenides (TMDs) of the
nearly parallel stacking, it has been shown both theo-
retically [22–24] and experimentally [25–27] that lattice
reconstruction can take place and lead to the formation
of alternating AB or A0

B
0 stacking domains (Fig. 1b), as

the energy gain from the expanded areas can overcome
the energy cost of domain walls, up to a critical angle
⇠ 2.5�. [28]. With the inversion and mirror symmetry
breaking, bilayer TMDs of the AB and A

0
B

0 stacking
configurations are known to feature out-of-plane electri-
cal polarization and Rashba spin-orbit coupling at the
valence band edge at the � point [29]. AB and A

0
B

0 do-
mains have opposite signs for both the electrical polariza-
tion and Rashba coefficient, as illustrated in Fig. 1a. This
suggests an intriguing possibility to extend the scenario
first proposed by Sau et al. [11], where the combination of
Rashba spin-orbit coupling, magnetic field and s�wave
superconducting gap effectively make itself a chiral topo-
logical p�wave superconductor. With the alternating
signs of the Rashba coefficient between the AB and A

0
B

0

domains in the marginally twisted bilayer TMDs, , bring-
ing it in proximity to a conventional superconductor and
under a magnetic field can lead to superstructures of
topological superconductors. We show that this gives the
opportunity to engineer Majorana Fermions on the do-
main wall between AB and A

0
B

0 stacking domains. Addi-
tionally, we have also studied a similar setup but with do-
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Figure 1. (a) The top and side views of the AB and A0B0

stacking configurations of TMD. P indicate the direction of
the out out-of-plane electrical polarization arising from in-
version and mirror symmetry breaking. (b) Illustration of
marginally twisted bilayer transition metal dichalcogenides,
where the triangular shape domains of AB/A0B0 stacking
formed due to lattice reconstruction. (c) Band structures of
the AB and A0B0 stacking configurations calculated from our
tight-binding model with different sign of the Rashba coeffi-
cients ↵R, where the color green/brown indicate the sign +/�
of the spin �y of the eigenstates.

main walls between reversed magnetic fields, which could
be achieved by placing a ferromagnetic monolayer on an
antiferromagnetic substrate [30]. However, as our results
show, the chiral edge states in this case are not of the
Majorana type.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the effective model
and parameters we used to simulate the systems. Sec. III
provides discussion on the mechanism that prevents the
two Majoranas on one domain wall from hybridizing.
Sec. IV presents the effects on moiré superlattice. And
the last Sec. V concludes the manuscript and gives an
outlook.

II. MODEL

The bands in the vicinity of the Fermi energy mainly
originate from the d�orbitals of the metal atoms. Mono-
layer TMD has a quasi-2D layered structure consisting
of stacked units of metal atoms on a triangular lattice
sandwiched between chalcogen elements. But due to the
complexity of the structure and the small twisted angle

required, a detailed microscopic description of systems
becomes unmanageable. Fortunately the essential fea-
tures of topological superconductivity are insensitive to
the specifics of the model and rely solely on the particle-
hole symmetry. Therefore we employ a low-energy phe-
nomenological model to describe the domain wall of a
marginally twisted bilayer TMD covered by a conven-
tional superconductor and on a magnetic insulator or
subjected to an external magnetic field, in which the
Zeeman effect and the superconductivity are introduced.
We use a 2D tight-binding Hamiltonian, which corre-
sponds to a discretization of the continuous model [11]
on a triangular lattice with primitive vectors �!a1 = (a, 0),
�!
a2 = (a2 ,

p
3a
2 ), and lattice constant a = 1.
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Here c
†
i� is the creation operator on site i at location

(xi, yi) with spin �. tij is to the hopping amplitudes
between site i and site j. µ is the chemical potential.
↵R(i) and Vz(i) are the Rashba spin-orbit coupling and
the Zeeman splitting given by the magnetic field, which
can both be spatial-dependent in the discussion below.
xij and yij are the displacement along each direction
when hopping from nearest neighborhood hi, ji. � is the
induced s�wave superconducting pairing. The Kwant
package [31] were adopted in part of the numerical calcu-
lations performed. Here we note that a model similar to
Eq. 1 were used in Ref. [32] to successfully describe the
topological superconductivity experimentally discovered
in ferromagnet/superconductor heterostructure.

Eq. 1 can actually be mapped to two sets of spinless
p ± ip�wave superconductors [33]. Consider a ribbon
geometry and take �e = ↵�

|VZ | , µe = |VZ | �
p

µ2 +�2.
Assuming µe = �µ0 is a negative constant for x < 0
and µe = +µ0 is a positive constant for x > 0, then one
can follow the steps for p±ip�wave superconductors [34]
to find the the Jackiw-Rebbi solution on the emergence
of Majorana edge states for this Hamiltonian near the �
point:

�� py (x, y)
↵
= e

ipyy exp

✓
�

1

2|�e|

Z x

0
µe (x

0) dx0
◆
|�0i

(2)
with a constant spinor |�0i = 1/

p
2
�
1 1

�T acting on
one set the effective p�wave basis, and the eigenenergy
E(py) = �2|�e|py showing a gapless, linear and chiral
dispersion of the Majorana Fermion. The chirality is de-
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Figure 2. (a) The phase diagram showing the bulk spectrum gap �spec of the model for different sets of (µ, Vz) and the
associated BdG Chern number N for each region. The red star indicate the parameters adopted in for the rest of discussion.
(b) Spectrum of ribbon with Majorana on boundaries and fused Fermion on domain wall. The color represents the bands are
particle-like (blue), hole-like (red) or charge-neutral (grey)(c) Energy of the eigenstates during the process of fusion. The inset
shows the profile of the chemical potential domain wall. The solid orange circles represent well established Majoranas while
the hollow circles represent fused Fermions.(d) The profile of Rashba domain wall. (e) Zero energy local density of states of
the inversed Rashba ribbon. (f) Spectrum of ribbon with domain wall of inversed Rashba coefficient. (g)(h) General Majorana
polarization of the two lowest energy states in the inversed Rashba ribbon.

termined by the sign of the BdG Chern number:

N =
1

2⇡

ZZ

BZ
⌦(k) · dS (3)

where ⌦(k) = i
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Ei
is

the Berry curvature.
Though the exact value of each parameter in the model

is material dependent, the topological nature does not
rely on the fine tuned numbers. As shown in Fig. 1c, we
plot the bulk spectrum of our model with t1 = �0.03,
t2 = �0.1, t3 = �0.01, which correspond to the near-
est, second nearest and third nearest neighbor hopping
respectively, and µ = 1.0, ↵R = 0.1 (all energy scales are
in the unit of eV ) to mimic the valence band calculated
in Ref. [29] of bilayer TMD with Rashba spin-orbit cou-
pling. It should be noted that this tight-bingding model
is not able to recover the whole bands calculated by us-
ing density functional theory (DFT), but still sufficient
to describe the band near the � point.

For the heterostructure, in which takes the supercon-
ducting gap and the Zeeman splitting into account, we
plot the bulk spectrum gap �spec in Fig. 2a for different
Vz and µ, normalized by � = 0.2 and labeled N of each
region which is calculated by the numerical method ef-
ficiently [35]. Here we note that this exaggerated value
of � employed here is to reduce the computational com-

plexity (See Appendix A for details). The gap close, as-
sociated with change of N , indicating a topological phase
transition. Unlike most of the previous models, here the
vanishing of Rashba spin-orbit coupling at M and K

points leads to additional gap closing, so that |N | can
take values greater than 1. Detailed discussions about it
and the experimental realization of |N | = 3 case can be
found in Ref. [32].Here we mainly focused on effects of
spatial varying and the inversion of Rashba ↵R on Majo-
rana edge states. We adopt Vz = 0.3 (corresponding to
the red star in Fig. 2a) for the rest discussion so that the
Majorana Fermions can emerge due to the band inversion
at � point.

III. MAJORANAS ON THE DOMAIN WALL

In this section, we investigate the influence of the in-
version of Rashba spin-orbit coupling between AB and
A

0
B

0 stacking domains in marginally twisted TMD by
introducing spatially-dependent parameters. Recall that
the Majorana bound states always comes in pairs and
two Majorana modes can fuse to a fermionic mode when
bringing them close. This process is illustrated in Fig. 2c
where we manually insert a chemical potential domain
wall (corresponding to the N = 0 region) in the center of
a topological ribbon geometry with translational invari-
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ant along y direction and finite length L = 60 along x

direction. As the width of the domain wall wd decreas-
ing, the energy (when ky = 0) of the Majorana pair at
outer sides c0 = 1p

2
(�a + i�d) remains zero while the

energy of the Majorana pair located at the domain wall
c1 = 1p

2
(�b + i�c) increases and eventually merges into

the bulk. Fig. 2b shows a typical spectrum corresponding
to the blue star in Fig. 2c, where the color represents the
bands are particle-like (blue) , hole-like (red) or charge-
neutral (grey). The hybridized fermionic mode and its
particle-hole partner with small energy is also referred as
quasi-Majoranas [19].

When the lattice reconstruction take place in the
marginally twisted TMD, the moiré supercell is filled
by the favored AB and A

0
B

0 stacking domains with ex-
tremely thin domain walls. For simplicity here we use a
step function ↵R(x) = 0.1(x < L/2),�0.1(x > L/2) to
imitate the domain wall with opposite Rashba coefficient
on each side as shown in Fig. 2d. The zero energy lo-
cal density of states (LDOS) of the ribbon with periodic
boundaries along the y-direction and open boundaries
along the x-direction is calculated using the kernel poly-
nomial method [36]. Fig. 2e reveals the emergence of
zero energy Majoranas not only on the vertical bound-
aries but also at the center of the domain wall.

The spectrum of such a ribbon was plotted in Fig. 2f,
where we can find one pair of Majorana modes with mod-
ified dispersion in addition to the original Majorana pair
at boundaries possessing linear dispersion. It is worth
mentioning that, unlike the more commonly observed
chiral Majoranas on the boundaries, the Majorana pair
on one domain wall is helical in our scenario, due to
the chirality remaining unchanged with the sign flip of
the Rashba coefficient, which is verified by calculating
N (↵R = ±0.1) = �1. Helical Majorana modes can also
be accomplished in other platforms like Ref. [16] but in
which fine tuned parameters were required.

Trying to illustrate the Majorana nature of these
states, we adopt the generalized Majorana polariza-
tion [37] (GMP) to visualize the local properties of dif-
ferent edge states appeared in different scenarios. In

the Nambu basis Ci =
⇣
ci", ci#, c

†
i#,�c

†
i"

⌘T
, we can

write down the anti-unitary particle-hole operator as
P = �y⌧yK̂, where we use �l=x,y,z to denote the Pauli
matrices in the spin subspace, ⌧l=x,y,z in the particle-hole
subspace, and K̂ is the complex-conjugation operator. A
Majorana by definition should satisfy P� = � up to an
arbitrary phase. Then one can project the operator on
site i , Pi = P r̂i, and calculate

h |Pi| i = �2
X

�

�ui�vi� (4)

to characterize local distribution of the GMP for an
eigenstate  = (u", u#, v#, v")T . Note that the expec-
tation values of an anti-unitary operator are in vectors
in the complex plane and not gauge invariant so that
can not be used to compare between different states as

also mentioned in Ref. [37]. Fig. 2g and Fig. 2h plotted
the general Majorana polarization of the two degenerate
zero energy bound states forming by the four Majoranas,
where we can see the GMP on the domain wall are al-
ways along the same direction. In a hybridized fermionic
mode, the two Majoranas should always have opposite
polarization. This is because we can always regard one
of them serves as real part and the other serves as imag-
inary part, in other words there is a ⇡/2 phase difference
between them. This leads to a ⇡ phase difference in the
complex plane after we applied P to the states. The in-
versed ↵R leads to the inversion of Majorana polarization
so that even though the two Majoranas on the domain
wall are spatially strong overlapped, they can maintain
the Majorana nature.

An intuitive picture of the emergence of a pair of he-
lical Majorana domain wall can also be seen from the
point of stacking one-dimensional topological chains to
construct a two-dimensional topological system. Similar
to the relation between one-dimensional spinless chains
and quantum (anomalous) hall [2], the Hamiltonian for
two-dimensional topological superconductor can also be
constructed by stacking one-dimensional chains appropri-
ately. When the sign of Rashba flipped, one can always
expect ↵R effectively equals to zero at the domain wall.
Since �e = ↵�

|VZ | , the inter-chain pairing also vanishes,
leaving a pair of Majoranas on the wall. We provide a
more detailed description and visualization in Appendix
B.

In contrast, if we inspect the domain wall with inversed
Zeeman field on each side, the bound states exhibit a
different behavior. The dispersion is plotted in Fig. 3a
with enlarged center part shown in Fig. 3b. The BdG
Chern number N (VZ = ±0.3) = ⌥1. So that in this case
the two Majorana modes on the domain wall would have
the same chirality and fuse into a chiral Fermion due to
the spatial overlapping (the blue and red lines with a
negative group velocity), while the other two Majorana
edge states remain degenerate as illustrated in Fig. 3c.

Again we calculated the LDOS of the ribbon. As
shown in Fig. 3d and Fig. 3e, the zero energy states only
distributed on the boundaries, while the small energy
fermionic bound state (E = 2.5meV and its particle-hole
partner) concentrated on the center domain wall. We
also calculated and plotted the GMP for the lowest and
second-lowest states in this case. Aside from the energy,
what differs from previous case is that the direction of the
Majorana polarization flipped across the domain wall as
shown in Fig. 3g. This is consistent with the hybridized
fermionic mode we described before.

One may wonder what would happen if we simultane-
ously invert Rashba and Zeeman fields. Here we note be-
cause one can always diagonalize the Hamiltonian Eq. 1
into two blocks with spin + and �, where one block is
always trivial and the other can be tuned into topolog-
ical [38]. In the case of simultaneously inversed Rashba
and Zeeman, it is just to make the left half of system
spin + topological and the right half of the system spin
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Figure 3. (a) Spectrum of ribbon with domain wall of in-
versed Zeeman coefficient. (b) Enlarged center part of (a)
where a pair of fermionic modes with negative group velocity
can be seen clearly. (c) The profile of Zeeman domain wall.
(d)(e) Local density of states of the inversed Zeeman ribbon
at energy E = 0 and E = 2.5meV . (f)(g) General Majorana
polarization of the two lowest energy states in the inversed
Zeeman ribbon.

� topological. Then we have Majorana pair appear on
the domain wall, but nothing distinctive would occur.

IV. MAJORANAS ON SUPERLATTICE

Now we investigate the Majorana features on the su-
perlattice in this section. We calculated the dispersion of
the one-dimensional superlattice along x direction with
the period L corresponding to the previous sections. This
setup of superlattice formed by domain walls could be
accomplished experimentally by a uniaxial tensile strain

Figure 4. The superlattice dispersion along x direction with
(a) homogenous, (b) non inversed step, (c) linearly varying
Rashba and (d) sinusoidal Rashba coefficients. (e) The local
density of states of a moiré supercell at zero energy.

on one layer of bilayer TMD to adjust the lattice mis-
match [39]. Besides, applying an electric field out-of-
plane tends to increase the area of AB or A

0
B

0 stack-
ing regions, which is of intensive current interest in the
context of sliding ferroelectricity [40]. This implies op-
portunities for electrical control on the geometry of the
Majorana networks.

In addition, we applied different profile of ↵R(x), arti-
ficially constructed, to confirm that the Majorana bound
states are coming from the inversion of the sign of
Rashba.

As one can see in Fig. 4a and Fig. 4b, where we set
homogeneous Rashba ↵R(x) = 0.1 and non inversed step
Rashba ↵R(x) = 0.1(x < L/2), 0.3(x > L/2), no Majo-
rana are present in the gap of mini Brillouin zone. This
helps to confirm that the inversion of Rashba coefficient
is the key to harvest Majorana Fermions in our model.

For different varying behavior, as shown in Fig. 4c
and Fig. 4d, we set linearly varying Rashba ↵R(x) =
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�0.4x/L + 0.1(x < L/2), 0.4(x � L)/L + 0.1(x > L/2)
and sinusoidal Rashba ↵R(x) = 0.1 sin(2⇡x/L). In these
cases, every supercell consists of two domain walls (from
positive ↵R to negative and vice versa) so that two pairs
of Majoranas would emerge. And as expected we can see
four degenerate Majorana bound states in these two cases
(we have checked the four-fold degeneracy of the zero en-
ergy states from the numerical data). The Majoranas are
dispersionless in this case since they are bounded to the
domain wall of Rashba. Comparing the results of these
subplots of Fig. 4, we are safe to say the details of profile
of ↵R(x) has a very limited impact on the topological
nature of the emergency of Majoranas.

In Fig. 4e we plot the zero energy local density of
states for a (extended) moiré supercell to simulate the
marginally twisted TMD. Similar to the ribbon in pre-
vious section, the Majoranas concentrate on every do-
main wall around the triangular AB or A

0
B

0 stacking
domain as the Rashba coefficient change its sign across
the regions. At the crossing points where three identical
domain walls intersect, since the domain walls possess
the C3 rotation symmetry, the GMP resided on the do-
main wall (not always perpendicular to the wall) are also
related to each other by C3 rotation. So that they can-
cel each other at the crossing points, and we expect no
corner states here. We note that if one could introduce
a mass term with different signs for the domain walls
crossing at one point, the Majorana edge states would be
gapped out and Majorana zero modes could survive in
the corner [41]. When the triangle size is finite, similar
to previous studies on topological states, hybridization
would appear. As long as the system size is much larger
than the localization length (⇠ 1

|�e| ) the energy resulted
from hybridization is exponentially small[42].

V. CONCLUSION AND DISCUSSION

The spatial varying and inversed Rashba spin-orbit
coupling features in the marginally twisted TMD. In this
manuscript, we extended the well-established model and
suggested to realize this new platform on the hybrid sys-
tem. We have shown that in case of inversed Rashba,
the domain wall can host one pair of helical Majorana
Fermions when the bulk of the system is in the topolog-
ical phase. On the contrary, in the case of domain wall
with inversed Zeeman or simply a thin topological trivial
wall, the associated bound states fused into Fermions.

We also pointed out that the inversion of the Rashba
spin-orbit coupling results in the Majorana polarization
being the same on both sides, preventing their hybridiza-
tion. There is a similar analogy in one dimensional
nanowires [43], where the so-called Majorana character
can save multiple Majorana zero modes at ends of wires.
However, it should be noted that the Majorana polariza-
tion is not solely determined by the Rashba spin-orbit
coupling but is also affected by other parameters such as
the phase of the superconducting pairing gap and even

the Zeeman field, with complex behavior.
For a realistic system containing a large number of

moiré supercells as shown before, the Majorana modes at
boundaries would couple to form a network. The shapes
of stacking domains, meanwhile the shapes of the net-
work, are not always triangular and can be modified by
external factors such as strain or electric fields. In other
systems like topological insulator and magnetic topolog-
ical insulators [39, 44], the interplay between topologi-
cal edge states and the moiré effects have been carefully
studied. Besides edge states, the interplay of the vortices
in this scenario may also show a different phenomenon.
There are still unfinished works to unveil the manifesta-
tion of Majoranas in this context.
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Appendix A: Effect of � Scaling

In the realm of experimental observations, the con-
ventional superconducting pairing gap typically exhibits
a magnitude of a few millielectronvolts, significantly
smaller in comparison to other pertinent parameters in
our model. In order to achieve an energy resolution ca-
pable of discerning details within a few percent of the
pairing gap, the computational lattice must possess a
linear dimension on the order of thousands sites, which
makes the diagonalization process becomes computation-
ally intensive. To address this issue, it is common prac-
tice to employ exaggerated values of the pairing gap and
assess the reliability of this approach by examining the
scaling behavior of the results [32]. Notably, we have
verified through calculations performed on larger scales
that our findings obtained using exaggerated values in-
deed faithfully represent the outcomes that would be ob-
tained with a realistic, smaller value of the pairing gap.
This seemingly counterintuitive observation aligns with
similar findings in one-dimensional systems, where the lo-
calization length remains unaffected by variations in the
superconducting gap [45].

As demonstrated in Fig. 5, we present the results of
scaling down the pairing gap � and calculating the spec-
trum and LDOS for the inversed Rashba ribbon with a
linear dimension of L=1000, considering both � = 0.05
and � = 0.005. These outcomes generally support previ-
ous conclusions; however, noticeable irregular oscillations
and blurring are observed in the latter case. Employing
smaller values of� necessitates larger systems and higher
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Figure 5. Spectrum of L = 1000 ribbon with domain wall of
inversed Rashba coefficient and the zero energy local density
of states, where � = 0.05 in (a)(c) and � = 0.005 in (b)(d).
All the other parameters are the same as Fig. 2f.

Figure 6. (a) A direct stacking of one-dimensional chains at
topological transition point into two-dimensional system. (b)
The two-dimensional system can be topological, by setting
the inter-chain coupling appropriately. (c) The inter-chain
coupling vanishes at Rashba domain wall so that a pair of
uncoupled Majoranas are left on the domain wall.

numerical accuracy, which in turn require increased com-
putational resources. Consequently, in the main body of
this manuscript, an exaggerated value of � is adopted.

Appendix B: Illustration of the Stacking Picture

As we mentioned in Sec. III, similar to the case of
quantum hall [2], the two-dimensional topological su-
perconductor can constructed from a stacking of one-
dimensional spinless chains but with a different in-
terpretation. In the context of superconductor, the
one-dimensional spinless chain is the famous Kitaev
chain [46]. When the Kitaev chain is at the topological
transition point, it possesses a pair of gapless left moving
and right moving modes. One can always stack a bunch
of chains to make a two dimensional system. By appro-
priately choosing the inter-chain coupling terms, one can
pair them up into the bulk and left only one mode at
each edge. These edge states are protected by the bulk
gap and the spatial separation. By doing this, we would
obtain the Hamiltonian topological equivalent to the two-
dimensional topological superconductor. This process is
illustrated in Fig. 6a and Fig. 6b.

Note that the effective pairing term in the model of
this manuscript �e =

↵�
|VZ | is proportional to the Rashba

coefficient. At the domain wall with flipped ↵R, one can
always find a place at the domain wall with ↵R = 0
regardless of the detailed profile of the varying ↵R, which
leads to the inter-chain coupling vanishes there. So that
we can find a pair of helical Majoranas at the domain
wall as shown in Fig. 6c.
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