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Optimal control of connected autonomous vehicles
in a mixed traffic corridor
Wenbo Sun, Fangni Zhang, Wei Liu, and Qingying He

Abstract—This paper investigates the potential of improving
the overall traffic and energy efficiency by properly controlling
a proportion of controllable connected and autonomous vehicles
(CAVs) in a mixed traffic corridor. Specifically, we develop a
control framework that optimizes controllable CAV trajectories
taking into account other vehicles for simultaneously improving
traffic throughput and reducing the total energy consumption
of all vehicles. The property of the control framework is firstly
analytically examined in a simplified and tractable scenario where
a human-driven vehicle (HV) follows a CAV. We found that the
optimal acceleration is larger if one emphasizes more on improv-
ing travel distance within the optimization horizon, or smaller
when one emphasizes more on saving energy. The continuous-
time optimization model formulation is then discretized, which
is solved for real-time application in a model predictive control
(MPC) fashion. In numerical studies, the proposed method is
tested in various scenarios, e.g., with/without an intersection,
under different proportions of controllable CAVs, possible vehicle
permutations, and varying overall traffic intensities. Numerical
results show that the normalized energy consumption can be
reduced by up to 45% and the average travel time reduced by
65%, showing a significant improvement in the road throughput.
Notably, even with a limited number of controllable CAVs, the
proposed method can achieve a promising performance, e.g.,
about 20% controllable CAVs can achieve half the benefits of
a fully controllable CAV environment.

Index Terms—Connected and autonomous vehicle (CAV),
Mixed traffic, Traffic throughput, Energy consumption, Trajec-
tory optimization.

I. INTRODUCTION

CONNECTED and autonomous vehicles (CAVs) have
drawn a lot of attention in recent decades [1]. Many

studies have shown that CAVs have a great potential of im-
proving traffic efficiency [1], reducing energy consumption [2],
and alleviating parking congestion [3]. It is also expected
that there will be a transition period where CAVs share the
road with traditional human-driven vehicles (HVs) in the near
future. Even if all vehicles are replaced by CAVs, some
vehicles might not be fully controllable by one centralized
controller due to privacy concerns or other issues. Recently,
many studies suggested that CAVs with distributed control can
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achieve significant benefits in energy consumption by driving
proactively in response to traffic states in a traffic corridor [4],
[5]. However, little attention was paid to the potential benefits
of controlling a limited number of CAVs in a mixed traffic
flow.

In this context, this study investigates the potential of
improving the overall traffic and energy efficiency by only
controlling a proportion of vehicles, i.e., controllable CAVs.
Particularly, this paper develops a control framework to opti-
mize controllable CAVs’ trajectories in a mixed traffic corridor.
Other vehicles, including uncontrollable CAVs and human-
driven vehicles (HVs), are not controllable by the controller.
According to the level of automation and the class of co-
operation defined by [6], CAVs in this paper refer to those
with at least automation level 3, i.e., having automated driving
capacity in specific conditions. Meanwhile, CAVs are in coop-
eration class C or above so that they can drive proactively in
coordination with other road users, which include other CAVs
and HVs.

Many studies examined the CAV trajectory control in a
fully CAV environment [7], [8]. However, a transition period
with mixed CAVs and HVs is expected before a fully CAV
environment can be achieved and there is an imperative need
to come up with effective control strategies to cope with the
mixed traffic during the transition. In the mixed traffic context,
the model predictive control (MPC) framework can be adopted
to optimize CAV trajectories according to predicted traffic
states.1 In particular, the interactions between CAVs and HVs
and the responses of HVs to CAVs are important consider-
ations. Along this line, some studies adopted car-following
models such as the intelligent driver model (IDM) [11] and the
optimal velocity model [12] to model the interactions between
individual vehicles [13]. The HV trajectories were predicted
by a shooting heuristic method in the optimization of CAVs’
trajectories in [14].

Most studies on CAV trajectory optimization in the mixed
traffic context aim at minimizing the cost of target CAV(s).
Very few considered the cost of other vehicles in the mixed
traffic flow. The understanding of the system-wide effects of
CAVs on the whole traffic flow remains limited. Although
some studies have shown that optimized CAVs can smooth
traffic and potentially benefit the following vehicles [15], [16],
how to improve overall traffic efficiency and reduce energy

1In addition to trajectory control, the impacts of CAVs on network traffic
equilibrium have been investigated from different aspects, e.g., the design of
dedicated CAV lanes [9], CAV parking behavior [3], and the CAV routing
problem [10].
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consumption by controlling a limited number of CAVs is not
fully clear.

Existing studies of CAV trajectory control for traffic ef-
ficiency often assumed the formation of vehicle platoons.
Consequently, the traffic efficiency can be improved by ap-
propriately managing these platoons [2], [17]. Different types
of platoons have been examined. For example, Zhao et al. [12]
separated the mixed traffic flow into multiple platoons led by
CAVs, and the centralized controller controls the lead CAV
with the objective of minimizing the fuel consumption of the
platoon to pass a signalized intersection. Gong & Du [18] dealt
with a mixed-vehicle platoon, consisting of an HV platoon
sandwiched by two CAV platoons. Based on a mixed vehicle
platoon, Guo et al. [14] jointly optimized the CAV trajectories
and the Signal Phase and Timing (SPaT) at intersections
where HV trajectories are constructed by a shooting heuris-
tic method. Leveraging the traffic flow model, Piacentini et
al. [19] proposed to reduce the energy consumption of the
mixed traffic flow by controlling a CAV platoon as a moving
bottleneck. In [20], the mixed traffic flow is divided into
several sub-vehicle platoons consisting of a lead HV followed
by several CAVs. Each sub-vehicle platoon is optimized by a
deep reinforcement learning method. However, the ‘platoon-
based’ methods require a certain CAV penetration rate for
platoon formation, which may fail at low CAV penetration
rates, especially in a mixed traffic corridor or with limited
CAVs. Moreover, existing methods entail large computation
burdens, making them difficult to be implemented in real-time.

The main contributions of this paper can be summarized as
follows.

First, instead of controlling a single CAV, this study de-
velops a control framework to improve traffic and energy
efficiency by controlling a proportion of CAVs in a traffic cor-
ridor. The proposed method is implemented in an MPC fashion
that can handle uncertainties, where the optimized trajectory
keeps updating based on the current traffic information. In
particular, the proposed method does not rely on forming a
platoon and can be applied in various traffic scenarios with
different numbers of controllable CAVs.

Second, this is the first study in the literature that investi-
gates the analytical properties of the control method in a two-
vehicle scenario, where an HV follows a CAV. We derive and
analyze the optimal acceleration of the lead CAV under dif-
ferent conditions. Generally, the optimal acceleration increases
with weighting factors for travel distance, but decreases with
weighting factors for energy consumption.

Third, we develop solution approaches for the proposed
method and systematically evaluate it under various traffic sce-
narios. Numerical results show that the average travel time and
average energy cost of all vehicles can be significantly reduced
in different traffic conditions, even with a low proportion of
controllable CAVs. The promising results show the robustness
and effectiveness of the proposed method, and shed light on
the CAV cooperative control in mixed traffic corridors.

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed control framework as well as the
analytical solution to a simple scenario. Section III examined
the proposed method in different traffic scenarios/settings.

Fig. 1. Illustration of the control framework.

Section IV concludes the paper and discusses future work.

II. PROBLEM FORMULATION

This paper proposes a control method to improve traffic and
energy efficiency with a limited number of CAVs in a mixed
traffic corridor. As shown in Fig. 1, we consider a control
traffic corridor with a single lane starting from dstartc to dendc ,
in which a proportion of CAVs are controllable, i.e., the con-
trollable CAVs (in green). Other vehicles (in orange), including
uncontrollable CAVs and HVs, are randomly distributed and
drive in the control corridor without lane changing. The
control corridor is equipped with relevant devices (e.g., the
Dedicated Short Range Communication systems and road-
side detectors such as cameras, lidars, and radars) that collect
traffic information and inform the centralized controller of
the vehicle and SPaT status within the control corridor in
real-time. The control framework takes the traffic information
as the control input, and the output is the trajectories of
all controllable CAVs. Specifically, the centralized controller
optimizes the trajectories of controllable CAVs to reduce
the energy consumption of all vehicles and improve road
throughput. The trajectories of other vehicles are predicted
by the car-following models and serve as safety constraints
in the optimization problem. Considering a control traffic
stream led by the first controllable CAV, different prediction
models may be adopted for uncontrollable vehicles inside or
outside the control traffic stream to strike a balance between
prediction accuracy and computation efficiency. To deal with
potential uncertainties in the traffic flow, the proposed control
method is implemented in the MPC fashion, where we solve
and update the optimal decisions every TUD seconds (set as
1s in this paper). At each update instance, the optimization
problem is solved for the next TOH seconds, referred to as
the optimization horizon and TOH ≥ TUD.

A. Model formulation

As shown in Fig. 1, we consider a control traffic stream
starting with a controllable CAV. N(t), Nc(t), and Nh(t)
denote the sets of all vehicles, controllable CAVs, and other
vehicles, respectively, and N(t) = Nc(t)∪Nh(t). The vehicles
in N(t) are numbered from the downstream to the upstream
such that N(t) = {1, 2, 3, ..., n(t)− 1, n(t)}, where n(t)
denotes the number of vehicles in the control traffic stream
at time t. The main notations are listed in Appendix A.
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For any vehicle i ∈ N(t), di(t) and vi(t) represent its
location and speed at time t, respectively. The state of all
vehicles in a mixed traffic flow at time t is defined as:

x(t) =
[
d1(t), v1(t), ..., dn(t)(t), vn(t)(t)

]T
. (1)

The system dynamic equation is given by:

ẋ(t) =
dx(t)

dt
=
[
v1(t), a1(t), ..., vn(t)(t), an(t)(t)

]T
, (2)

where ẋ(t) is the changing rate of the state x(t) with respect
to time t; ai(t) is the acceleration of vehicle i at time t.

To minimize the total cost of all vehicles in the control
corridor, the objective function is defined as follows:

min
ai, i∈Nc(t0)

J = (−w1)Φ + w2

∫ tf

t0

L dt, (3a)

where Φ (x(tf )) =

n(t0)∑
i=1

di(tf ); (3b)

L (x(t),u(t), t) =

n(t0)∑
i=1

a2i (t). (3c)

The objective function (3a) consists of two terms: the
total travel distance of all vehicles, Φ, and the total energy
consumption of all vehicles,

∫ tf
t0

L dt, during the optimization
horizon. t0 and tf represent the start time and end time of the
optimization horizon, respectively; u(t) is the control input,
which is the acceleration of all controllable CAVs in (2).

The two terms are connected by weighting factors, (−w1)
and w2. Given that a longer total travel distance in the opti-
mization horizon means a larger traffic throughput, a negative
weighting factor is applied to the first term (total travel
distance) in the minimization problem (3a). The second term
defined in (3c) is the acceleration square of all vehicles, rep-
resenting the total energy consumption as well as the comfort
cost. Previous studies have shown that square-of-acceleration
can provide a good approximation of energy consumption
in optimizing trajectories [21], [22], and sharp acceleration
and deceleration may cause discomfort for passengers [23].
Moreover, this term allows for analytical tractability in the
simplified scenario, which is investigated in Section II-B.
The weighting factors are selected to normalize the two cost
terms in the objective function, whereas the numerical results
using different weighting factors are presented in Appendix B.
Specifically, we set w1 = 1/

∑n(t0)
i=1 (vi(t0) · (tf − t0)), where

the denominator is the travel distance of all vehicles trav-
eling at the initial speed during the optimization horizon;
w2 = 1/ (n(t0) · (tf − t0)), which means that each vehicle’s
speed may fluctuate with an acceleration rate of 1m/s2.
Other combinations of weighting factors can also be adopted
depending on the purpose of the centralized controller.

The optimization problem is subject to the following con-
straints.

1) Car-following model for uncontrollable vehicles:
Each vehicle should follow the system dynamics governed
by (2), which indicates that the accelerations determine the
trajectories of vehicles. In this paper, we consider that the ac-
celerations of controllable CAVs in the control corridor are op-
timized by the centralized controller. The accelerations of other

vehicles are modeled by the Gazis-Herman-Rothery (GHR)
car-following model in the optimization problem (3) [24]:

ai(t) = (vi-1(t)− vi(t)) /τ + si(t), ∀i ∈ Nh(t), (4)

where τ is the adaptation time which means the following
vehicle tends to reach the same speed as its preceding vehicle
in τ seconds. si(t) is a slack variable, which would be 0 unless
the GHR model cannot satisfy safety constraints (5). The GHR
model allows for analytical tractability where the analytical
properties of the model can be examined. Other more accurate
car-following models can be readily incorporated into the
proposed framework (e.g., IDM), however, the more complex
model will result in a large computation burden.

2) Safety constraints:
To ensure safe car-following distance, we have the following
constraints:

di−1(t)− di(t) ≥ h · vi(t) + hmin − li(t), ∀i ∈ N(t), (5)

where h is the time headway; hmin is the minimum following
distance when the vehicle is stationary; and li(t) is a positive
slack variable to allow slight violations near the constraint
boundary.

The safe time headway h may be different in different car-
following scenarios. In general, time headway consists of per-
ception time and reaction time [25]. It normally takes human
drivers 1s to 1.5s to take actions after perceiving the changes
of traffic conditions. Thanks to the sensitive sensors onboard,
CAVs can have smaller perception time [2]. Furthermore,
when a CAV follows a CAV, both perception time and reaction
time can be almost zero because the preceding CAV can
broadcast its intended trajectory to the CAV behind [26], which
means two CAVs can travel safely with a small following
distance. Thus, different h values are assigned to the scenarios
accordingly.

3) Signal constraints:
The proposed model intends to control CAVs in a general
traffic corridor regardless of the existence of a signalized in-
tersection. When there is an intersection inside the corridor, the
signal constraints need to be incorporated into the optimization
problem.

di(t) > dsig or di(t) < dsig,

∀i ∈ N(t) and all t {t : sig(t) = red},
(6)

where dsig is the location of the intersection; and sig(t)
represents the phase of the signal at time t, which can take the
value of either red or green. Overall, (6) says that when the
signal is red, all vehicles either passed the signal already or
stopped before the signal. Thus, (6) governs that vehicles can
only pass the intersection when the signal is not red. Notably,
in this paper, the yellow phase (if exists) is lumped with red
phases, and vehicles cannot pass the intersection with a yellow
signal to ensure safety.

4) Speed and acceleration bounds:
Neither the vehicle speed vi(t) nor acceleration ai(t) can
exceed the lower and upper bounds:

vmin ≤ vi(t) ≤ vmax, ∀i ∈ N(t), (7a)
amin ≤ ai(t) ≤ amax, ∀i ∈ N(t), (7b)
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where vmin, vmax, amin, amax denote the lower and upper
bounds of the vehicle speed and acceleration, respectively.

B. Analytical solutions and analysis

This section examines the analytical properties of the CAV
trajectory optimization problem defined above. The general
optimization problem is analytically intractable as it is highly
nonlinear with numerous decision variables and differentia-
tion/integration terms. In order to obtain the closed-form so-
lution and derive analytical insights, we consider a simplified
two-vehicle scenario, where an HV follows a CAV.

In the two-vehicle scenario, the objective function (3a)
becomes:

min
a1(t)

J2veh = −w11d1(tf )− w12d2(tf )

+

∫ tf

t0

(
w21a1(t)

2 + w22a2(t)
2
)
dt,

(8)

where d1(tf ) and d2(tf ) represent the travel distance during
the optimization horizon of the lead CAV and the following
HV, respectively; the control input is the acceleration of the
lead CAV, i.e., a1(t). To better illustrate the effects of different
cost components, we employ different weighting factors for
the two vehicles. w11 and w12 are the weighting factors for
the travel distance of the lead CAV and the following HV,
respectively. w21 and w22 are associated with the energy
consumption of the lead CAV and the following HV, respec-
tively. Without loss of generality, we set the start time of the
optimization horizon t0 = 0.

We solve this optimization problem using PMP [27]. The
Hamiltonian function H is defined as:

H (x, a1,λ, t) = λ1(t)v1(t) + λ2(t)a1(t) + λ3(t)v2(t)

+ λ4(t)a2(t) + w21a1(t)
2 + w22a2(t)

2,
(9)

where λ = [λ1, λ2, λ3, λ4]
T is the co-state vector. It represents

the shadow price of the associated state x = [d1, v1, d2, v2],
which reflects the additional cost incurred by an incremental
increase in the associated state x.

According to the PMP, the optimal control a∗1(t) must
satisfy:

H (x∗, a∗1,λ
∗, t) ≤ H (x∗, a1,λ

∗, t), ∀t ∈ [t0, tf ]. (10)

Specifically, (10) can be decomposed into the following nec-
essary conditions (for detailed derivations of these conditions,
interested readers can refer to [28] and the references therein):

(i)
∂H

∂a1
= 0, (ii) λ̇ = −∂H

∂x
, (iii) ẋ =

∂H

∂λ
, (11)

where (11)(i) provides the optimal condition; (11)(ii) is the
co-state equation; (11)(iii) characterizes the system dynamics.

(11)(i) can be rewritten as:

a1(t) = −λ2(t)/(2w21). (12)

The car-following behavior of the following HV, character-
ized by the GHR model, can be presented by:

a2(t) = (v1(t)− v2(t)) /τ. (13)

Substituting (13) into (11)(ii), we have:

λ̇1(t) = 0, (14)

λ̇2(t) = −λ1(t)− (λ4(t) + 2w22a2(t)) /τ, (15)

λ̇3(t) = 0, (16)

λ̇4(t) = −λ3(t) + (λ4(t) + 2w22a2(t)) /τ, (17)

Meanwhile, to enforce a desired final cost Φ (x(tf )), the co-
state λ at the final time tf should meet the following condition:

λ(tf ) =
∂Φ (x(tf ))

∂x(tf )
, (18)

Recall that a1(t) is proportional to λ2(t) according to (12).
Thus, solving for the optimal acceleration a1(t) is equivalent
to solving λ2(t) from (14)–(18). However, we cannot get a
general closed-form solution that simultaneously satisfies (15)
at the start time t0 (initial condition) and (18) (final condi-
tion).2 The literature often resorts to numerical solutions using
PMP, which solves the state x(t) forward in time according
to (2) and (12), and propagates the co-state equations (14)–
(17) backward in time. With iterations, total cost can converge
to its minimum [30].

To address this problem, in the following analysis, we
examine the analytical solutions under two specific conditions.

1) Analytical solution with w22 = 0:
To simplify the analysis, we firstly consider a special case
where the energy consumption of the following vehicle is not
included in the objective function, i.e., w22 = 0. We can derive
the optimal acceleration of the lead CAV as follows.

Proposition 1. If the lead CAV does not consider the energy
consumption of the following vehicle, i.e., w22 = 0, the optimal
acceleration of the lead CAV is:

a1(t) =
w11 + w12

2w21
(tf − t) +

τw12

2w21

(
e(t−tf )/τ − 1

)
. (19)

The optimal acceleration has the following properties:
(i) non-negative;
(ii) decreases monotonically over time t;
(iii) increases with w11 or w12, but decreases with w21.

Proof. See Appendix C.

As the optimal acceleration in (19) considers the travel
distance of two vehicles but the energy consumption of the
lead CAV only, the acceleration would be non-negative if
there are no safety constraints for the lead CAV during
the optimization horizon, i.e., Proposition 1(i). Meanwhile, a
larger acceleration at the beginning of the optimization horizon
can contribute more to the total travel distance of two vehicles.
Therefore, the optimal acceleration keeps decreasing to reduce
the energy consumption of the lead CAV, i.e., Proposition 1(ii).
Moreover, Proposition 1(iii) is straightforward because a larger
acceleration means a longer travel distance but more energy
consumption.

2Malikopoulos & Zhao [29] derived a closed-form analytical solution for
a single CAV, without considering following vehicles.
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2) Analytical solution with a1(t) = At+B + CeDt:
In this subsection, we examine a more general case where
the travel distance and energy consumption of both vehicles
are taken into account, i.e., the full objective function (8) is
minimized. Since the general solution cannot be obtained, we
seek to derive the closed-form solution with a specified form.
Inspired by the solution in Proposition 1, we assume the fol-
lowing composite form for the optimal acceleration of the lead
CAV, i.e., a combination of linear function and exponential
function with unspecified coefficients (A,B,C,D):

a1(t) = At+B + CeDt. (20)

According to (4) and (12)–(18), we can solve for the coeffi-
cients A,B,C,D without considering constraints and obtain
the following optimal solution (the detailed derivation process
is relayed to Appendix D):

a1(t) =
w11 + w12

2(w21 + w22)
(tf − t)

+
w12τ

2(w21 + w22)

(
e

√
w21+w22
τ2w21

(t−tf )
− 1

)
,

(21)

under the condition that the initial speeds satisfy:

(v1(0)− v2(0)) /τ = φ > 0, (22)

where v1(0) and v2(0) are the initial speeds of the lead CAV
and the following HV, respectively; φ =

τw11+(w11+w12)tf
2(w21+w22)

+

w12τ
2w22

e
−
√

w21+w22
τ2w21

tf
(√

w21

w21+w22
− w21

w21+w22

)
is a constant re-

lated to exogenous parameters.
In the optimal solution (21), the first term comes from

reducing the total cost of two vehicles without considering
car-following behaviors, which is non-negative. The second
term of (21) is associated with the car-following behavior of
the following vehicle characterized by the GHR model. Since
t ≤ tf , the second term is non-positive, which indicates that
when taking into account the following vehicle’s cost, the lead
CAV should apply a smaller acceleration. One can readily
verify that φ is always positive since 0 ≤ w21

w21+w22
≤ 1.

Thus, (22) prescribes that the initial speed of lead CAV is
larger than HV, i.e., v1(0) > v2(0). A smaller acceleration
considering the following HV in (21) can make a balance
between improving the total travel distance and reducing the
total energy consumption.

Noting that the optimal control (21) does not consider
constraints, we further integrate constraints into the optimal
control using the following lemma.

Lemma 1. If v1(0) ≥ v2(0) and a1(t) ≥ 0 for all t ∈ [0, tf ],
the following vehicle modeled by the GHR model will never
collide with the preceding CAV.

Proof. See Appendix E.

According to Lemma 1, safety constraints will not be
violated if the lead CAV has a larger initial speed and a non-
negative acceleration during the whole optimization horizon.
Moreover, non-negative acceleration will ensure the minimum
acceleration and speed. Therefore, the optimal acceleration

of the lead CAV will only be bounded by the maximum
acceleration and speed.

As (22) ensures a larger initial speed of the lead CAV, we
present the following condition that the optimal acceleration
of the lead CAV is always non-negative.

Remark 1. The optimal acceleration a1(t) in (21) is non-
negative if weighting factors satisfy:

√
w21+w22

w21
≤ w11+w12

w12
.

Proof. See Appendix F.

It is noteworthy that the optimal acceleration a1(t) will be
negative only under some extremely unbalanced settings of
weighting factors. For example, w22 ≫ w21, where the lead
CAV may decelerate considering the energy consumption of
the following vehicle. With reasonable weighting factors, the
optimal control a1(t) in (21) is non-negative, and has the
following properties.

Remark 2. If the optimal acceleration a1(t) in (21) is non-
negative, a1(t) will:

(i) increase with a larger w11, but decrease with a larger
w22;

(ii) increase firstly and then decrease with a larger w12;
(iii) may either decrease, or decrease firstly and then

increase with a larger w21;
(iv) decrease with a larger τ ;
(v) decrease when taking into account more following HVs.

Proof. See Appendix G.

Remark 2(i) is straightforward as a larger acceleration is
helpful to improve the travel distance but will result in more
energy consumption. As for Remark 2(ii), this is because a
larger acceleration of the lead CAV can contribute more to
the travel distance of the following HV. In the final stage
of the optimization horizon, the optimal acceleration would
decrease to save more energy consumption of the two vehicles.
Remark 2(iii) dictates that the acceleration would become
either smaller or smoother with a larger weighting factor for
the energy cost of the lead CAV, i.e., w21. Recall that τ is the
adaptation time in the GHR model, and a larger τ represents
a more conservative, or less sensitive driver of the following
vehicle. A more conservative driver tends to adopt a smaller
acceleration when following an accelerating vehicle. In this
case, the optimal acceleration of the lead CAV should decrease
to reduce the energy cost, i.e., Remark 2(iv). Remark 2(v)
is because the lead CAV has a larger initial speed than the
following HV(s). As a result, if the lead CAV considers the
cost of more following HVs, the optimal acceleration would
decrease to reduce the total energy consumption.

Notably, the analysis of a1(t) in Section II-B2 is derived
based on the GHR car-following model and it is governed
by condition (22). To investigate the relationship between
the optimal acceleration and optimization parameters in more
general settings, we conduct extensive numerical experiments
with varying parameters and other car-following models, e.g.,
Appendix B. Numerical results show that the optimal accel-
eration always increases when weighting factors for travel
distance increase or weighting factors for energy consumption
decrease, i.e., Remark 2(i)–(iii) always holds.
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C. Numerical solution approach

The previous section examined the analytical property of
the proposed control framework in a two-vehicle scenario.
This section proceeds to investigate the general optimization
problem in (3a) with constraints in (4)-(7). We firstly discretize
the proposed continuous-time optimization problem and then
present the solution approach to solve the problem in different
traffic scenarios.

The proposed optimization problem presented in Sec-
tion II-A is a quadratic programming problem with both linear
and nonlinear constraints. To reduce the computation burden,
the optimization problem is discretized by a time step dt.
Then, the proposed optimization problem is transformed into a
Mixed Integer Programming (MIP) problem that can be solved
efficiently using numerical solvers, such as Gurobi [31]. The
discretized optimization problem can be written as:

min
ai, i∈Nc(t0)

J = (−w1)

n(t0)∑
i=1

di(NOH)

+

n(t0)∑
i=1

NOH∑
k=1

[
w2a

2
i (k) + w3s

2
i (k) + w4l

2
i (k)

]
,

(23)

s.t.

di(k + 1) = di(k) + vi(k)dt+
1

2
ai(k)dt

2,∀i ∈ N(t0),

(24a)
vi(k + 1) = vi(k) + ai(k)dt, ∀i ∈ N(t0), (24b)
dsig − di(k) ≤ M · (1− pi), di(k)− dsig ≤ M · pi,
∀i ∈ N(t0) and all k{k : sig(k) = red}, (24c)
di(1) = di(t0), vi(1) = vi(t0), ∀i ∈ N(t0), (24d)
(4)–(5) and (7) (24e)

where NOH denotes the final time step in the optimization
horizon; dt is the discretization time step. Slack variables si
and li in (4)–(5) are penalized in the objective function with
positive weighting factors w3 and w4, respectively. (24a)–
(24b) are the discretized form of the system dynamic (2).
Signal constraint (6) is transformed to (24c) with the Big-M
method, where M is a sufficiently large value and pi ∈ {0, 1}
is the indicator variable of the vehicle i. Specifically, pi equals
one means that the vehicle i can pass the intersection during
the current green phase and zero otherwise. Besides, initial
states are constrained by (24d).

With the formulations in (23)-(24), the proposed optimiza-
tion problem can be solved efficiently by numerical solvers
in the MPC fashion. The optimization problem solves the
optimal control for the whole optimization horizon, e.g., 10s,
while only the optimized trajectories for the first 1s are
implemented on controllable CAVs in the control corridor. The
whole process updates every second according to the changing
traffic states. In this way, the proposed control method only
optimizes the trajectories of controllable CAVs inside the
control corridor, i.e., between dstart and dend.

To ensure computation efficiency while maintaining accu-
racy, the discretized time step in this paper is selected as one
second (dt = 1s). Therefore, the size of the optimization
problem depends on the optimization horizon TOH . A longer

optimization horizon may achieve better optimization results
but will lead to a longer computation time. To make a balance,
we design a varying optimization horizon for scenarios with a
signalized intersection, which is detailed below. For scenarios
without intersection, a fixed optimization horizon is adopted.

As vehicles are not allowed to pass an intersection during
red phases, improving the road throughput requires guiding
more vehicles to pass the intersection in green phases. To
improve the traffic throughput, we develop a varying opti-
mization horizon for signalized scenarios. Specifically, at each
optimization update, we set the optimization horizon to cover
the current (or the upcoming) green phase, if the current
phase is green (or red), respectively. For example, as shown
in Fig. 2(a), assuming the duration of the green phase is tg
seconds, the optimization horizon should be t1+ tg seconds if
the current red phase lasts for t1 seconds before changing to
green. Whereas the optimization horizon is set as t2 seconds
if the current green phase remains t2 seconds as in Fig. 2(b).

Fig. 2. Illustration of the varying optimization horizon.

The varying optimization horizon can maximize the number
of vehicles passing the intersection with minimum energy cost
in the current or upcoming green window. However, it only
considers one signal cycle and thus there is always a red
signal following the varying optimization horizon. A myopic
CAV near the intersection may decelerate sharply when the
signal turns from green to red. To avoid such unnecessary
deceleration, we propose a green window allocation algorithm
for each individual controllable CAV in the control corridor at
each update. The pseudo-code of the green window allocation
algorithm can be found in Appendix H.

Firstly, the proposed algorithm optimizes the trajectories of
all vehicles in N(t) for a varying optimization horizon tf . Let
{ai} denote the acceleration of vehicle i. Then the control out-
put U includes acceleration of controllable vehicles predicted
to pass the intersection. However, some controllable CAVs far
away from the intersection cannot pass the intersection in the
current optimization horizon. In this case, those CAVs will
be allocated to the next green window. Specifically, for all
vehicles that cannot pass the intersection, the algorithm will
re-optimize their trajectories considering an extra signal cycle,
i.e., t′f = tf +tr+tg , where tr and tg are durations of red and
green phases, respectively. Then we can obtain the optimal
control of all controllable CAVs by integrating the optimal
control in the re-optimization into U . Thanks to the green
window allocation algorithm, all controllable CAVs inside
the control corridor are assigned to a target green window,
avoiding sharp deceleration approaching an intersection due
to red signals.

III. NUMERICAL STUDIES

In this section, we evaluate the performance of the pro-
posed method. Specifically, as shown in Fig. 1, we consider
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a control corridor starting at 200m and ending at 1200m
(dstartc = 200m and dendc = 1200m), where randomly
distributed controllable CAVs and other vehicles drive east-
bound. Two scenarios are investigated in this section. In the
first scenario, we consider a traffic corridor with a signal at
the end of the corridor. We test the proposed method with
different proportions of controllable CAVs, possible vehicle
permutations, and various levels of traffic intensity. Then, the
proposed method is evaluated in a freeway scenario (without
a traffic signal) with high traffic demand where congestion is
likely to happen.

As mentioned in Section II, the GHR model leads to a small
computation burden in solving the optimization problem due
to its simplicity. However, it only considers the speeds of two
consecutive vehicles and is unable to avoid rear-end collisions.
In numerical studies, we simulate uncontrollable vehicles by
a more complex but more accurate car-following model, i.e.,
the well-known IDM [32]:

ai(t) = a

[
1−

(
vi(t)

v0

)δ

−
(
s∗(vi(t),∆vi(t))

s

)2
]
, (25)

where s∗(v,∆v) = s0+max

{
0, vTG+

v∆v
2
√
ab

}
; a and b are the

vehicle’s maximum acceleration and comfortable deceleration,
respectively; v0 is the desired speed; δ is the acceleration
exponent; s and ∆vi(t) are the following distance and the
speed difference between two adjacent vehicles, respectively;
s∗ is the desired distance; s0 is the minimum spacing; TG is the
safe time gap. Notably, the IDM can also model uncontrollable
vehicles’ behaviors in response to traffic signals by setting
a stationary vehicle at the stop line during the red signal.
The parameters for simulation listed in Table I are adopted
from [26], [32].

Thus, the more complex IDM is used to capture the driving
behavior of uncontrollable vehicles in the simulation. Whereas
the optimal control of controllable CAVs is solved using the
GHR model taking advantage of its simplicity and solution
efficiency. In Appendix I, we present the comparison of
using GHR model to approximate the car-following behavior
against the case where GHR model is used consistently in the
simulation and optimization.

In the simulation, we use the Monte Carlo method to ran-
domly generate controllable CAVs and other vehicles accord-
ing to the given percentage of controllable CAVs. Moreover,
mixed-autonomy traffic may exhibit varying complexities with
various traffic demands. In particular, vehicles’ arrival time at
the initial point (0m) is modeled by the Poisson distribution
related to the traffic demand [33]:

P (t = tenter) =
qtentere−q

tenter!
, (26)

where q = 1/Qdemand; Qdemand is the traffic demand
denoting the number of vehicles generated per hour; tenter
is the time step that a vehicle arrives at the zero point.

In the following numerical studies, a mixed traffic flow con-
sisting of 50 vehicles is generated. Specifically, the first vehicle
passes the zero point at 10m/s. Following preceding vehicles,

TABLE I
PARAMETERS FOR SIMULATIONS.

Variable Description Value
v0 Desired speed 20m/s

s0 Minimum spacing 2m

δ Acceleration exponent 4
a Maximum acceleration 1m/s2

b Comfortable deceleration 1.5m/s2

TG Time gap in the IDM 1s

L Vehicle length 5m

vmax Maximum speed 20m/s

vmin Minimum speed 0m/s

amax Maximum acceleration 1m/s2

amin Minimum acceleration −1.5m/s2

τ Adaptation time 4s

1s (HVs follows HVs or CAVs)
h Time headway 0.5s (CAVs follow HVs)

0.1s (CAVs follow CAVs)

other vehicles pass the zero point at the time determined
by (26) with the same speed as their immediate preceding
vehicles. All simulations are conducted using MATLAB on a
desktop computer with a Win-10 64-bit operating system and
Intel(R) Core(TM) i7-9700 CPU 3.00GHz, 32G RAM.

A. A scenario with signalized intersections

In this scenario, as shown in Fig. 1, a signalized intersection
locates at the end of the control corridor, i.e., 1200m. The
signal follows a fixed time schedule. Specifically, in this paper,
each signal cycle is 140s including 40s green phase and 100s
red phase. The yellow phase is lumped with the red phase
to ensure safety. Detailed SPaT settings are shown by red
and green thick lines in Fig. 3. Extensive numerical studies
are carried out under different traffic conditions, i.e., different
proportions of controllable CAVs, possible permutations, and
various traffic demands. The proposed method adopts the
varying optimization horizon and green window allocation
algorithm presented in Section II-C. The effects of incorpo-
rating these solution configurations are shown in Appendix I.
Notably, for all the numerical results, the travel time, as well
as the energy consumption, is calculated covering the whole
control corridor, i.e., from 200m to 1200m.

1) Different proportions of controllable CAVs:
In this section, we test the proposed method under different
percentages of controllable CAVs ranging from 0% to 100%,
with an interval of 5%. For each controllable CAV percentage,
we randomly generate 30 cases with 50 vehicles using the
Monte Carlo method and evaluate the average performance of
the proposed method. The traffic demand is set as 500 vehicles
per hour.

Fig. 3 shows the trajectories of vehicles in 4 represen-
tative cases under 0%, 10%, 50% and 100% controllable
CAVs. To clarify, the trajectories of controllable CAVs and
other vehicles are shown by dashed lines and solid lines,
respectively. As a baseline case, Fig. 3(a) shows trajectories
of vehicles without controllable CAVs. It is observed that
shockwaves form and propagate upstream during red signals.
As a comparison, Fig. 3(b) shows trajectories of vehicles
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Fig. 3. Trajectories of vehicles in the scenario with a signalized intersection.
(a) 0% controllable CAVs. (b) 10% controllable CAVs. (c) 50% controllable
CAVs. (d) 100% controllable CAVs.

with 10% controllable CAVs. Clearly, CAVs can smooth the
traffic flow when approaching the intersection because they
can avoid unnecessary acceleration and deceleration with the
SPaT information. Moreover, thanks to the allocation of green
windows, CAVs will target the next green phase if they cannot
pass the intersection during the current green phase (e.g.,
the CAV pointed by the orange arrow in Fig. 3(b)). Notably,
two vehicles cannot pass the intersection before 500s without
CAVs shown in Fig. 3(a). However, all vehicles can pass
the intersection guided by controlled CAVs, even with a low
proportion of controllable CAVs shown in Fig. 3(b). The fully
controllable CAV environment shown in Fig. 3(d) has the
largest road throughput because CAVs can drive within a safe
but short car-following distance.

Fig. 4 shows the box and whisker plot for the 30 simulated
cases under different proportions of controllable CAVs. Since
controllable CAVs and other vehicles are generated by the
Monte Carlo method according to the given proportion of
controllable CAVs, the actual number of CAVs may fluctuate
slightly at the same proportion. Meanwhile, even the number
of controllable CAVs is the same, the permutations of CAVs
may also affect the result, which is investigated in the fol-
lowing section. The legends in the box and whisker plots can
be explained as follows (the same explanation applies to all
box and whisker plots in this paper): the whiskers indicate the
maximum and the minimum values; the bottom and top edges
of the blue box indicate the 25th and 75th percentiles, respec-
tively; the red central mark indicates the median, whereas the

black star mark shows the average. Therefore, a larger box
and a longer whisker imply larger variations, indicating that
the number of controllable CAVs and the CAV permutations
would significantly affect the performance of the proposed
method.

Fig. 4(a) presents the average travel time in the control
corridor, which represents the traffic throughput (the first
term in the objective function). Fig. 4(b) shows the energy
consumption. Notably, as shown in Fig. 4(c), the average
speed of all vehicles leaving the control corridor may be
different, which may also affect energy consumption. For a fair
comparison, we calculate the normalized energy consumption
Enormal(x) (in MJ) as the sum of the tractive energy and
the kinetic energy gap [34], [35]. Specifically, as shown
in (27), Etractive(x) is the calibrated energy consumption
model presented in [5], which considers both the engine
speed and gear position. The kinetic energy gap ∆Ekinetic(x)
shown in (28) is the kinetic energy required to reach the free
speed v0 = 20m/s, where m = 2000kg is the weight of
vehicles; v(tf ) is leaving speed of the vehicle; η is engine
efficiency in transferring energy, which is set as 30% for
internal combustion engine vehicles.

Enormal(x) = Etractive(x) + ∆Ekinetic(x), (27)

with ∆Ekinetic(x) =
1

2
m
(
v20 − v(tf )

2
)
/η. (28)

The dashed line and dotted line in Fig. 4(b) show the
average tractive energy and average kinetic energy gap under
each percentage of controllable CAVs, respectively. Although
the tractive energy may increase at a higher percentage of
controllable CAVs, the normalized energy consumption al-
ways decreases with the increase of the controllable CAV
percentage. Meanwhile, the travel time shown in Fig. 4(a)
also decreases. Specifically, the travel time of all vehicles can
be reduced by about 13% with 20% controllable CAVs and
can be further reduced by 25% in a fully CAV environment.
According to Fig. 4(a-c), we can infer that the proposed
method can improve the throughput and simultaneously reduce
the energy consumption of the mixed traffic flow.

Based on the traffic settings of this section, we also test the
proposed method in a scenario with uncertainties. The relevant
numerical results are presented in Appendix J.

2) Different permutations of CAVs in mixed traffic flow:
As noted before, this section investigates how permutations of
controllable and uncontrollable vehicles in the mixed traffic
flow may affect the potential benefits. Fig. 5 shows the
trajectories of vehicles in 4 representative cases selected from
the total 30 simulated cases in Fig. 4 with 10% controllable
CAVs. In all cases, the index of the controllable CAV is shown
in the green box at the top of the figure. Accordingly, the
performance of four cases is listed in Table II.

It is observed that, although CAVs can smooth the traffic
flow in all cases, benefits in traffic and energy efficiency are
different due to different CAV permutations. For example,
there are 4 controllable CAVs in cases A–C, but Case A has the
longest travel time, largest energy consumption, and smallest
leaving speed. This is because a CAV (vehicle 10) in case
A passes the intersection at the end of the green window.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

Fig. 4. Numerical results with different percentages of controllable CAVs in the scenario with a signalized intersection.

Fig. 5. Trajectories of vehicles with 10% controllable CAVs (Indexes of
controllable CAVs are shown in the green boxes on the top). (a) Case A. (b)
Case B. (c) Case C. (d) Case D.

Therefore, it can only guide a limited number of following
vehicles to pass the intersections. Most following vehicles
have to stop at the intersection due to red signals, forming
a shockwave. When CAVs can lead more vehicles to pass
the intersection (vehicle 4 in case B and vehicle 1 in case
C), more benefits can be achieved, as shown in Fig. 5(b)–(c).
Furthermore, case D has the best performance among all 4
cases because there are 5 CAVs (one more CAV compared
with other cases) and CAVs pass the intersection at an earlier
position in the mixed traffic flow during each green window
compared with case C. The performance of individual vehicles
is presented in Appendix K. It is observed that controllable
CAVs may have small energy consumption and bring energy
benefits to their following vehicles. Controllable CAVs may

TABLE II
PERFORMANCE OF CASES A-D

Case name Travel Normalized energy Average leaving
time (s) (MJ) speed (m/s)

Case A 114.58 4.706 9.09
Case B 113.82 4.677 9.25
Case C 112.60 4.658 10.23
Case D 109.15 4.582 10.35

TABLE III
DIFFERENT PERMUTATIONS OF CAVS IN MIXED TRAFFIC.

Index Case name Case descriptions
1 50HV All 50 vehicles are uncontrollable
2 25HV-25ED Controllable CAVs are evenly dis-

tributed in the last 25 vehicles
3 25ED-25HV Controllable CAVs are evenly dis-

tributed in the first 25 vehicles
4 25HV-25CAV The last 25 vehicles are controllable
5 25CAV-25HV The first 25 vehicles are controllable
6 50ED 25 Controllable CAVs are evenly dis-

tributed in the 50 vehicles
7 50CAV All 50 vehicles are Controllable CAVs

also have higher energy consumption when guiding many
vehicles to pass the intersection, but the traffic and energy
efficiency of the traffic flow can be improved.

Moreover, to further investigate the effect of vehicle permu-
tations, we manually generate 7 cases with special controllable
CAV permutations shown in Table III, where controllable CAV
percentages are in ascending order.

Fig. 6 shows the performance of the proposed method in 7
cases. There are two findings regarding the CAV permutation.
Firstly, more CAVs being downstream leads to a smaller travel
time and a higher average leaving speed given the same
proportion of controllable CAVs, e.g., case 3 versus case 2
and case 5 versus cases 4 and 6, as shown in Fig. 6(a) and
(c). Secondly, evenly distributed CAVs in the mixed traffic
flow are helpful to reduce energy consumption. If we compare
cases 4-6 with 50% controllable CAVs in Fig.6(b), case 6 has
the largest energy benefits among them. Moreover, with evenly
distributed CAVs, the energy consumption cost can be reduced
by 17.6% when the percentage of controllable CAVs increases
from 0% to 50%, i.e., case 1 to case 6. If the controllable
CAVs percentage further increases from 50% to 100%, only
another 3% reduction can be achieved, comparing case 6 with
case 7. This implies that a half number of CAVs may achieve
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Fig. 6. Numerical results with different permutations of controllable CAVs in mixed traffic flow.

Fig. 7. Numerical results with different traffic demands in the scenario with a signalized intersection.

a similar performance in reducing energy consumption to a
fully controllable CAV environment.

3) Different traffic demands:
Previous sections evaluated the proposed method at a constant
traffic demand, i.e., 500 vehicles per hour. In the real world, the
traffic demand varies in a day. For example, the traffic demand
can be very high in rush hours, but low in off-peak periods.
Given that the saturation flow is about 1400 vehicles per
hour, this section investigates the performance of the proposed
method with three different traffic demands, i.e., 500, 1000 and
1500 vehicles per hour, which can represent different traffic
demand levels ranging from free to busy.

Fig. 7 shows the performance of the proposed method as
well as the average computation time under three different
traffic demands. In Fig. 7(a)–(c), the quantitative measure-
ments are represented by solid lines (left y-axis) and the
associated benefits compared with a 0% controllable CAV
environment are shown by dashed lines in the same color (right
y-axis). As shown in Fig. 7(a), with the proposed method, the
travel time is similar in a fully CAV environment regardless
of traffic demands. This is because CAVs can drive with a
small car-following distance, allowing more CAVs to pass
the intersection in the same green window. However, travel
time is longer at a higher traffic demand when all vehicles are
uncontrollable due to the limitation on throughput during green
signals. Similarly, as shown in Fig. 7(b), energy consumption
at 0% controllable CAVs is larger at higher traffic intensities,
but they are similar under different traffic demands when the
percentage of controllable CAVs is larger than 80%. It is also

observed that the proposed method can always achieve more
than 40% total benefits in energy consumption with only 20%
controllable CAVs. An additional 60% benefit can be achieved
when the CAV percentage increases to 100%. These results
show that significant benefits in traffic and energy efficiency
can be achieved with the proposed method under various traffic
demands.

Morevoer, as shown in Fig. 7(c), the average speed leaving
the control corridor keeps increasing with the controllable
CAV proportion. However, the average leaving speeds of all
vehicles appear to be similar under different traffic demands.
This is due to that vehicles need to stop at the intersection
because of red phases and do not accelerate until the signal
turns green. Moreover, as shown in Fig. 7(d), the average
computation time is always less than 0.5s. Since the pro-
posed method is evaluated on a personal desktop written in
MATLAB, the computation time can be further reduced by a
high-performance computer. Therefore, the proposed method
has the potential of being implemented in real-time.

B. A scenario without intersections

This section considers a traffic corridor on a freeway without
signalized intersections. To better show the performance of the
proposed method, the traffic demand is assumed to be 1500
vehicles per hour, which represents a high traffic demand.
The proposed method is evaluated in different proportions
of controllable CAVs. For each proportion, 30 random cases
with 50 vehicles are generated using the Monte Carlo method.
Notably, in all cases, the first vehicle is assumed to be an
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Fig. 8. Trajectories of vehicles in the scenario without intersections. (a) 0%
controllable CAVs. (b) 10% controllable CAVs. (c) 50% controllable CAVs.
(d) 100% controllable CAVs.

uncontrollable vehicle, which starts to decelerate for 20s at
a constant deceleration −1m/s2 as long as its speed reaches
20m/s. Moreover, as mentioned in Section II-C, the optimiza-
tion horizon in (23) is set fixed at 20s to make a balance
between the computation burden and seeking traffic and energy
efficiency. Different lengths of the optimization horizon are
compared in Appendix L.

Similar to Fig. 3, Fig. 8 shows the trajectories of all vehicles
in 4 representative cases with different proportions of control-
lable CAVs (0%, 10%, 50%, and 100%), where controllable
CAVs and other vehicles are presented by dashed lines and
solid lines, respectively. Clearly, due to the deceleration of
the first vehicle, the following vehicles have to decelerate to
avoid rear-end collisions, forming a shockwave in Fig. 8(a).
While CAVs upstream in Fig. 8(b) decelerate in advance
when approaching the downstream shockwave at around 80s.
A similar observation is found in Fig. 8(c) at around 60s,
showing that the shockwave can be better smoothed at a
larger proportion of controllable CAVs. When it comes to
a fully CAV environment, the shockwave can be smoothed
by the first few CAVs for two reasons. On the one hand,
CAVs can decelerate in advance approaching the estimated
shockwave. On the other hand, a controllable CAV adopts a
smaller following distance when it follows a preceding CAV,
which can absorb the shockwave.

Numerical results of the proposed method under various
proportions of controllable CAVs are shown in Fig. 9. As
shown in Fig. 9(a) and Fig. 9(c), with the increase of the

controllable CAV percentage, the average travel time keeps
decreasing. At the same time, the average leaving speed of all
vehicles keeps increasing, which implies a larger throughput
of the road. Specifically, a fully CAV environment can reduce
the travel time by about 22% and improve the average leaving
speed by more than 8%, as against a 0% CAV environment.
Meanwhile, Fig. 9(b) shows that the normalized energy con-
sumption keeps decreasing with the increase of the percentage
of controllable CAVs (both the tractive energy and the kinetic
energy gap decrease). Compared with a 0% CAV environment,
the energy consumption can be reduced by 23% when all ve-
hicles are controllable CAVs. Moreover, the proposed method
can achieve significant benefits in improving throughput and
reducing energy consumption even at a low controllable CAV
percentage. For example, when the percentage increases from
0% to 10%, the travel time and the energy consumption can
be reduced by 6% and 10%, respectively. Hence, the traffic
and energy efficiency is expected to be improved with limited
controllable CAVs in the near future.

IV. CONCLUSION

This study investigates the potential of controlling a limited
number of controllable CAVs in a mixed traffic corridor to
improve traffic and energy efficiency. An efficient control
method is developed to improve the overall traffic and energy
efficiency by optimizing CAVs’ trajectories without forming a
platoon. We examine the analytical property of the proposed
control method in an analytically tractable scenario with two
vehicles. The proposed method is extensively evaluated in
corridors with/without intersections under various conditions.

In a two-vehicle scenario where an HV follows a CAV,
this paper derives the analytical optimal acceleration of the
lead CAV under specific conditions. We find that the optimal
acceleration is related to the intention of the proposed method.
Generally, larger weighting factors for travel distance lead to
a larger optimal acceleration. The optimal acceleration will
decrease when more emphasis is put on reducing energy
consumption. Moreover, the optimal acceleration may decrease
if the following HV is more conservative or the lead CAV
considers more following HVs.

In numerical studies, we evaluate the proposed control
method in corridors with/without intersections, under different
controllable CAV proportions and permutations, and various
traffic demands. When the proportion of controllable CAVs
increases from 0% to 100%, the total energy consumption
can be reduced by around 45%, and at the same time the
average travel time by more than 65%. Meanwhile, the average
leaving speed of all vehicles is substantially enlarged, which
indicates an improved traffic throughput. The proposed method
can achieve significant benefits in traffic and energy efficiency
with a limited proportion of controllable CAVs. For example,
no more than 20% controllable CAVs can achieve half the
benefits of a fully CAV environment. Notably, permutations of
CAVs can affect the potential benefits of improving throughput
and reducing energy consumption. It is observed that, with
the proposed method, more benefits in traffic and energy
efficiency can be achieved when controllable CAVs guide
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Fig. 9. Numerical results with different percentages of controllable CAVs in the scenario without intersections.

following vehicles to pass a signalized intersection in a green
window. The traffic demand can significantly affect the travel
time and energy cost of all vehicles in a fully uncontrollable
environment. However, with the increase in the proportion of
controllable CAVs, the traffic and energy performance tends
to converge under different traffic demands. Regarding the
computation efficiency, the average computation time of the
proposed method is always below 0.5s, which can be further
reduced by the high-performance computer, showing the great
potential of the proposed method to be implemented in real-
time.

This study can be fruitfully extended in different directions.
Firstly, this study adopts the car-following models for human-
driven vehicles. Specifically, we adopt the GHR model in
the optimization problem and the IDM in the simulation.
However, all car-following models cannot fully capture the
behavior of human drivers in reality. Although numerical
results show that the proposed method can achieve satisfactory
performance in different traffic scenarios, more benefit is
expected by improving the prediction model, e.g., adopting
a more comprehensive car-following model with calibrated
parameters for uncontrollable vehicles.

Secondly, this paper assumes that all vehicles drive in
the same lane. Future studies may further integrate lane-
changing models to predict lane-changing behaviors [36] and
to optimize controllable CAVs’ trajectories coping with lane
changes [37]. The proposed framework may also be extended
to consider a corridor with multiple lanes or a traffic network.

Thirdly, the signal follows a fixed schedule in this pa-
per. As suggested by many studies [38], [39], traffic and
energy efficiency can be improved by optimizing SPaT at
intersections. To this end, it is expected that more benefits
can be achieved by co-optimizing CAVs’ trajectories and
traffic signals. Moreover, the proposed method can consider
optimizing CAVs’ trajectories in all directions at a signalized
intersection [8].

APPENDIX

Appendices A-L are accessible through link: https://github.
com/sunwb5050/Optimal-control-of-CAVs-in-mixed-traffic.
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