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Abstract

Phosphorus (P) has been predicted to possess many two-dimensional (2D)
allotropes, which have attracted intensive research attention due to their excellent
properties and application promises. While only 2D black P films have been
successfully obtained by the exfoliation method, fabrication of other phosphorus
structures by epitaxial growth remains challenging. Recently, the metal-phosphorus
network (MPhoN), a superstructure consisted of P and metal atoms has been realized,
which offers a wider platform to study P and related compounds. In this paper, we
report the observation of platinum-phosphorus networks (PtPhoNs) obtained by P
adsorption on Pt(111). Our findings not only enrich the diverse structures of the
MPhoN family but also provide insights into the formation mechanism of epitaxial P

and its interaction with the noble metal substrate.
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Introduction

Since the successful isolation of graphene, various layered two-dimensional (2D)
crystalline films have been obtained and under extensive research attentions. These
include transition-metal dichalcogenides[1-4], GaSe[5, 6], silicene[7, 8], tellurene[9,
10] and phosphorene[11-14]. The latter, i.e., black phosphorus monolayer, has drawn
particular attention due to its superior semiconducting properties for low-dimensional
optoelectronic devices[13-17]. Phosphorous (P) has five valence electrons and affords
diverse bonding configurations between P atoms[18]. Besides black-P, various 2D
phosphorus allotropes[18-21] make the system rich in properties and attractive for
scientific research. In order to obtain high-quality samples of the other 2D phosphorus
allotropes, molecular-beam epitaxy (MBE) growth on metal single crystals has been
studied extensively[22-27]. Due to the diversity of P-metal interaction, the structural
features of the deposits are dependent on the given metal substrates as well as the
experimental conditions. For example, phosphorus clusters dispersed on Cu(111)[23],
phosphorus nanobase arrays on Cu(110)[28], phosphorus pentamers[24], clusters[25]
and quasi-one-dimensional phosphorus chains[27] on Ag(111) under different
experimental conditions, and the gold-phosphorus network (AuPhoN) on Au(111)
surfaces[22, 26] have been observed. In particular, precious metal phosphide
constitutes a new catalyst platform owing to its multifunctional active site and novel
chemical properties[29-31]. Recent studies have shown that the AuPhoN can be
applied to selectively trap atoms or molecules, such as Sn[32], water[33], etc.
Moreover, AuPhoN could be used as a substrate to grow monolayer and multilayer
perylenetetracarboxylic dianhydride (PTCDA) films[34]. Thus, experimentally
realizing more metal-phosphorus networks (MPhoNs) becomes increasingly attractive
and important.

Platinum (Pt) is a catalytic material with excellent physical and chemical
properties and is a common substrate for epitaxial growth of two-dimensional
materials[35-38]. In this paper, we report the observation of platinum-phosphorus
network (PtPhoN) superstructures grown by MBE of P on Pt(111). By combining

experiments and density functional theory (DFT) calculations, we have deciphered the
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atomic structure and electronic characteristics of the PtPhoNs, enriching the family of
MPhoN surface superstructures. The findings provide valuable references for further

studies of MPhoN epitaxial growth and P-metal interaction.

Method

Phosphorus deposition and subsequent low-temperature scanning tunneling
microscopy and spectroscopy (LT-STM/S) measurements were conducted in a
Unisoku UHV system having the base pressure of <1 X 1071% Torr. Single-crystal
Pt(111) substrate was cleaned by successive Ar ion bombardment (1.5 kV, 5 x 107°
Torr) and annealing at ~700°C. It was held at temperatures in the range of 200~700°C
for P film deposition. Phosphorus flux was generated by decomposing InP in a
standard Knudsen cell at ~460°C and was estimated to be ~ 2.1 x 10!
molecules/cm?:s. Decomposing InP compound led to relatively low but more
controllable P fluxes than that using elemental P and yet it afforded relatively low
operating temperature than other compounds such as GaP. Under the UHV condition
of MBE, decomposing InP led to P vapor and indium liquid. Indium vapor, if any, was
further block from reaching the sample by a mechanical shutter or ‘diaphragm’ put in
front of the crucible, ensuring high purity of the deposit. After a coverage of
phosphorus was deposited, the sample was quenched transferred immediately to the
STM stage held at 77 K for surface characterizations. Constant-current mode of STM
measurements was adopted, and the tunneling current was set at 100 pA.

First-principles calculations were performed by using the Vienna ab initio
simulation package (VASP)[39, 40], based on density functional theory (DFT)[41, 42].
The projector augmented wave (PAW) method was employed to treat the core-valence
interactions[43-45]. The generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) formalism was used for structural optimization and
total energy calculations[46]. The force convergence criteria and kinetic-energy cutoff
were set at 0.02 eV/A and 400 eV respectively. A slab model with 5 layers of metal
atoms was adopted for the study, and the vacuum layer thickness was set to 15 A to

avoid interaction between two neighboring images. In the process of geometric
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optimization, the bottom two layers of the metal are fixed to simulate the bulk
structure.

To describe the stability of P-containing structures on Pt(111) substrate, the
formation energy (Ey) defined as[26, 47, 48]:

Ef = (Etotal — Esup — Npe X fpy — Ny X :up)/np
were compared, where E,;q; 1S the total energy of the system, and Ej,; is that of
the substrate; up, and u, are chemical potentials of Pt and P, which represent the
energies per Pt or P atom in the bulk phase, respectively; np; and n, are the
numbers of Pt atoms (if any) and P atoms in the epilayer. The other calculation details

are presented in the supplementary material.

Results and Discussion

Depositing a low coverage of P leads to the adsorption of P atoms on the Pt(111)
surface. Figure 1(a) captures a state in a STM micrograph of the surface that has
become fully covered by P adatoms. In the micrograph, each bright spot represents a P
atom and the nearest neighbor distance is ~0.56 nm, i.e., twice the lattice constant of
Pt(111). Low-energy electron diffraction (LEED) pattern shown in Figure 1(b)
reveals consistently a (2X2)-reconstructed surface, thus it has a P coverage of ~0.25
monolayers (MLs). Here 1 ML is defined as one P adatom per Pt(111) surface site.

DFT calculations are performed to compare the adsorption energies of P on
Pt(111) at three possible adsorption sites, i.e., the fcc, hcp, and the top sites (see
Figures 1(c)). The calculated results are -2.309 eV (fcc), -2.250 eV (hcp) and -0.234
eV (top), respectively, showing that the fcc site is the most favorable adsorption site
for P-on-Pt(111). Compared with the adsorption energy of P atom on Au(111) (-0.203
eV), the adsorption interaction of P atom on Pt(111) is much stronger. The
enhancement of adsorbate-substrate interaction for P-on-Pt is presumably related to
the partially filled d-orbitals of Pt whereas they are completely filled for Au[49].
Besides, our calculations of Bader charge, taking one P adatom on a 3%3 metal

supercell as an example, show 0.45e transfer from P to Pt on Pt(111), whereas it is
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only 0.26e from P to Au on Au(111). Since the 2D Au-P network has previously been
reported, the stronger Pt-P interaction would imply strong tendency of forming Pt-P
alloy with continuous depositions. Indeed, various superstructures have been observed
in subsequent growth, which will be introduced later.

To further understand the behavior of P atoms on Pt(111) surface, the interactions
between Pt and P atoms on Pt(111) have been investigated in more detail (see
supplementary material Figure S1). We note based on the strengths of possible
interactions that P atoms on Pt(111) surface tend to repel each other. Therefore, we
suggest that in the most stable P-Pt system, there should be no P-P bond in the alloy.

This general principle will guide our investigations of the following P-Pt structures.

Figure 1. The (2x2)-reconstructed surface on Pt(111). (a) STM image (size: 10 x 10
nm?; Vample = -0.4 V) showing a (2x2)-reconstructed surface. (b) A LEED pattern of
the (2x2)-reconstructed surface, where the 1x1 spots of Pt and P are marked by white
and purple circles respectively. The incident electron energy is 70 eV. (¢) A model of
the (2x2)-reconstructed surface. The circle highlights P atoms (purple and white)
adsorbed on the fcc (marked with f), hep (marked with h), and top (marked with t) site

of Pt(111) (gray) surface respectively.



Figure 2. Schematic diagram showing the formation of the Pt4P nanoblocks. (a) The
(2x2)-reconstructed surface. The pink and blue spheres are P and the surface Pt atoms,
where the gray spheres represent the Pt substrate. (b) The Pt4P nanoblocks connected
by P atoms on Pt(111). (c) STM image (size: 23 x 23 nm?; Vsampie = 1 V) of a sample
revealing bright lines near the edges of triangular voids, where the distance between

neighboring bright spots on the lines is about 0.7 nm (inset).

Further deposition of P atoms upon a surface that is almost completely covered
by adsorbed P atoms (Figure 1) at ~400°C for ~10 min results in a new structure
showing triangular voids embroidered by bright lines in STM as exemplified in
Figure 2(c). Large-scale and close-up STM images are presented in Figure S2. Such
a new structure forms likely due to the increased surface coverage of P by the
continuous deposition, or due to the prolonged ‘annealing’ of the sample at the
elevated temperature while maintaining surface P coverage. Close examinations of the
STM images reveal an ordered distorted-hexagon-ring structure in the triangular void,
which shows an apparent height that is lower than the surrounding (2x2)-adsorption
region by exactly that of the P adatom layer. The precise nature of this void region
remains unknown. On the other hand, the appearance of the embroidered bright lines
in the voids but close to the boundary with the (2Xx2)-adsorption region may evidence
alloying between P and Pt.

Figure 2(a) and (b) depict our conjectured atomic structures before and after the
alloying respectively, by adsorbing P atoms. Before alloying, P coverage of the

(2%2)-reconstructed surface was 0.25 ML (Figure 2(a)). By further depositing P
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and/or annealing, the P atoms will react and alloy with Pt in substrate, forming
interconnected Pt4P nanoblocks. Each Pt4P nanobloack consists of four Pt atoms
arranged in a square at the bottom and one P atom bonded to these Pt atoms at the top
(Figure 2(b)). We note that the measured distance between the bright spots on the
bright lines in the STM image is about 0.7 nm (see Figure 2(c) inset), which
corresponds exactly to the distance calculated between adjacent nanoblocks.

We use the Pt4P nanoblock structure as the basis for various splices and
combinations by the RG? code[50] (Figure S3) and find that the formation energies
for many structures are close, which can be explained by the similar local motifs in
these 2D allotropes. Among them, PtPhoN (see Figures 3 and S3(f)) and platinum
phosphorus chains (PtPhoC) (see Figures 4 and S3(h)) are experimentally observed.
These two superstructures can be obtained by continuous adsorption of P atoms (e.g.,
for ~ 10 min) on the surface of Figure 2(c) at temperatures between 200 and 700°C.
The coverage of these two superstructures becomes more dominant as the surface
temperature is higher. Indeed, at about 500~700°C, the sample surface can be fully
covered by PtPhoN/C, given enough deposition time. On the other hand, these latter
two superstructures were found to almost always co-exist, occupying different
terraces on the same substrate surface (see Figure 4(a)), suggesting the formation
energy degeneracy of the two structures (see below).

Figure 3(a) presents an STM image revealing the PtPhoN superstructure that is
most commonly seen. The morphology of this structure consists of hexagonal rings
with three bright spots at each corner, three additional but faint and irregularly
orientated spots inside the hexagonal ring. The distance between the centers of
adjacent rings is ~1.8 nm. This structure is believed to be the same as the one reported

previously by direct deposition of P on Pt(111)[51], where electron diffraction showed
the (4\/§ X 4\/§)R30° pattern (Figure 3(b)). Heikkinen et al. proposed a model

consisted of P13 or Pis clusters, where each P13/P14 cluster presents a corner in the
ring[51]. Our DFT calculations however point favorably to a different and more

viable model. In essence, as elaborated earlier, due to the strong interaction between P
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and Pt, P atoms preferably bond with Pt atoms forming a PtPhoN rather than being
bonded with each other forming pure P clusters. As depicted in Figure 3(c), the rings
in our model are consisted of Pt4P nanoblocks. Three PtsP nanoblocks form one
corner of the hexagonal ring, and adjacent nanoblocks share the same Pt atom. Two
adjacent corners in a hexagonal ring are connected by two P atoms located at the fcc
and hcp sites respectively (Figure S3(f)). Simulated STM images of this model are
seen to match well with the experimental observations (Figure 3(c)).

We have compared the formation energies of the different models proposed
previously, including the Pi4-cluster model (P13 model is unstable)[51], BlueP
monolayer, and different compositions of the platinum phosphorus alloys: PtsPs,
PtoP1s, Pt12P32, and Pt1sPso[52] (Figure S4). The results are summarized in Figure
3(d). Clearly, the PtPhoN model as proposed in Figure 3(c) is energetically more
favorable than the others, which is also the most stable one among all the candidates
we have examined.

As for the three additional spots inside the hexagonal ring observed in the
experiment, the previous study suggested that each of such spots represented an
unbonded P4 cluster trapped inside the ring[51]. We believe this is unlikely the case,
and P4 clusters would be inconsistent with the P-P repulsive nature of bonding on the
Pt(111) surface. These three faint bright spots could be alloy clusters or adsorbed P
atoms. If so, it would imply that the abundant rings in this PtPhoN can be useful to

trap other desired atoms or molecules, which invites further studies.
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Figure 3. The PtPhoN structure. (a) STM image revealing the structural details of the

(4V3 x 44/3)R30° surface (size: 20 x 20 nm?%; Vsample= 0.1 V). (b) LEED pattern of

the (43 X 4v/3)R30° surface (incident electron energy = 70 eV). (c) The calculated

structure of the PtPhoN model overlaid on the experiment image (left) and the
simulated STM image (right). (d) Comparison of formation energies of different
structural models. The Pis-clusters model and platinum phosphorus alloys are

respectively reported in Refs. [51] and [52].

Besides the PtPhoN structure described above, experimentally we discover a new
ordered structure of the P-Pt surface (the left panel of Figure 4(a)) that has not been
documented previously. It has a rectangular unit cell of size a = 0.7 nm, b = 1.2
nm, as labeled in Figure 4(b). Interestingly, although the symmetry is very different,
this structure appears to always co-exist with the PtPhoN. We propose that this new
structure, called the PtPhoC, is that as shown in Figure 4(b) top panel, in which the
Pt4P nanoblocks are simply linked into long chains by P atoms. The simulated STM
image of such a model again matches well with the experiment (see Figure 4(b)
bottom panel). At the same time, we suspect that there may be adsorbed P atoms
between the two chains at high concentrations. The formation energies of the PtPhoN

and PtPhoC are comparable (see Figure 3(c)), which explains why we usually
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observe these two structures at the same time in the experiment.

In addition to the PtPhoN and PtPhoC superstructures described above, there is
also a square-lattice structure that we have observed during the deposition process,
which corresponds to a higher P coverage. More details about this structure are
introduced in Figure S5. It may also belong to the Pt-P alloys, though its atomic

configuration remains to be identified.

PtPhoC

Figure 4. The PtPhoC structure. (a) STM image (size: 60 x 60 nm?; Veample = -1 V)
showing the co-existence of the PtPhoC structure (left) and the PtPhoN structure
(right), occupying different Pt terraces. (b) The proposed structural model of the
PtPhoC (top), experiment image (bottom left), and the simulated STM image (bottom
right). The pink and blue spheres are P and Pt atoms in the PtPhoC, where the gray

spheres represent the Pt substrate.

Conclusion

In summary, we have synthesized two new structures of the precious metal
phosphide by depositing P on the Pt(111) surface. Their morphologies and atomic
structures are carefully investigated by STM and DFT calculations. Moreover, we
investigated their formation mechanism, where strong interaction between P and
Pt(111) makes the adsorbed P atoms to alloy with Pt, forming the square Pt4P
nanoblocks. These Pt4P nanoblocks can be linked by P atoms to generate PtPhoN or
PtPhoC by sharing the Pt atoms in the nanoblocks. These findings have not only
enriched the MPhoN family but also provided new insights into the P-noble metal

interaction.
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