

Experimental and analytical study on steel-concrete-ECC composite frames with URSP-S connectors

Linli Duan^{a,b}, Xin Nie^{a*}, Jiaji Wang^c and Gaoqiao Wu^a

^a Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

^b School of Civil Engineering, Central South University, Changsha 410075, China

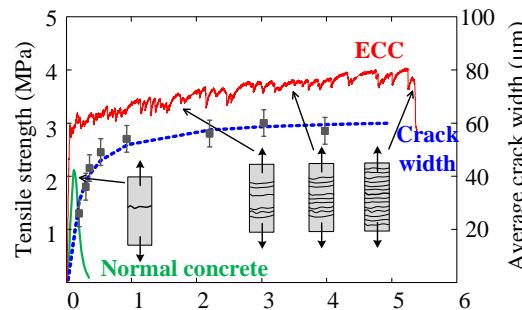
^c Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China

8 **Abstract:** To improve the slab crack resistance in the hogging moment region of steel-
9 concrete composite frames, this paper proposes using Engineered Cementitious Composite
10 (ECC) and Uplift-Restricted and Slip-Permitted Screw-type (URSP-S) connectors near the
11 columns of the frames, the structural behavior of the innovative steel-concrete-ECC
12 composite frames were experimentally and numerically investigated. Firstly, five 1/2-scaled
13 steel-concrete composite frames were experimentally studied under vertical uniform slab
14 loading and horizontal low cyclic loading. The failure mode and cracking, load-
15 displacement relationship, stiffness and strength degradation, energy dissipating, and strain
16 of composite frames with ECC and URSP-S connectors were analyzed, and good
17 cooperative behavior and overall seismic performance were found. Then, it was compared
18 with the results of the other four specimens with different slab materials and shear connector
19 types. The experimental results showed that the use of ECC and URSP-S connectors
20 improved slab crack resistance 55% in terms of crack width, and rarely influenced the
21 structural performance of the composite frames. ECC played a major role in controlling the
22 crack width while URSP-S connector played a major role in controlling the crack number.

* Corresponding author. E-mail: xinnie@tsinghua.edu.cn (X. Nie)

1 23 In addition, based on the test specimen with ECC and URSP-S connectors, an elaborate
2 24 finite element (FE) model was developed and validated by the test results in terms of cyclic
3 25 curves and failure mode. Moreover, supplementary modeling analyses with various
4 26 parameters on the influence of the frame capacity were performed, where steel beam height
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27 was the most influential parameter.


28 Keywords: Steel-concrete composite frame; Engineered Cementitious Composite (ECC);
29 Uplift-Restricted and Slip-Permitted Screw-type (URSP-S) connector; Seismic behavior;
30 Crack

31 **1. Introduction**

32 Since the steel-concrete composite frames take full advantage of the characteristics of
33 steel and concrete, it has excellent mechanical properties and natural assembly advantages,
34 providing a high-performance and sustainable structural form for the green and rapid
35 construction of building projects [1-3]. The concrete slab has both positive and negative
36 impacts on the steel-concrete composite frames. The spatial composite effect of the concrete
37 slab enhances the capacity and stiffness of the frames [4]. However, the cracking control of
38 the concrete slab under hogging moment becomes a crucial problem. It significantly
39 influences the performance of the structure, including strength, stiffness and durability [5,
40 6], especially for complex structures with large spans and under severe loads or extreme
41 environmental conditions. Therefore, efficient and reasonable control measures are urgently
42 needed to meet the demand for crack control in the hogging moment region of steel-concrete
43 composite structures.

44 The use of innovative materials is one of the effective ways to meliorate crack

45 resistance of structural components. Engineered Cementitious Composites (ECC), proposed
46 by Victor Li [7] according to micromechanics and fracture mechanics, possess high tensile
47 ductility, strain-hardening and multiple-cracking in tension, while directly softening after
48 cracking for normal concrete (see Fig. 1(a)). The crack width of ECC due to tensile force is
49 generally less than 100 microns [8, 9], and ECC was effective in delaying propagation of
50 cracks [10, 11]. Due to the unique properties, many researchers have gradually applied ECC
51 to the steel-concrete composite beams [12, 13], composite columns [14], composite steel
52 plate shear walls [15] and composite frames [16]. The application of ECC has been proved
53 to achieve an excellent crack resistance effect and improve the structural performance of the
54 structure under monotonic and low cyclic loading.

(a) ECC properties [8]

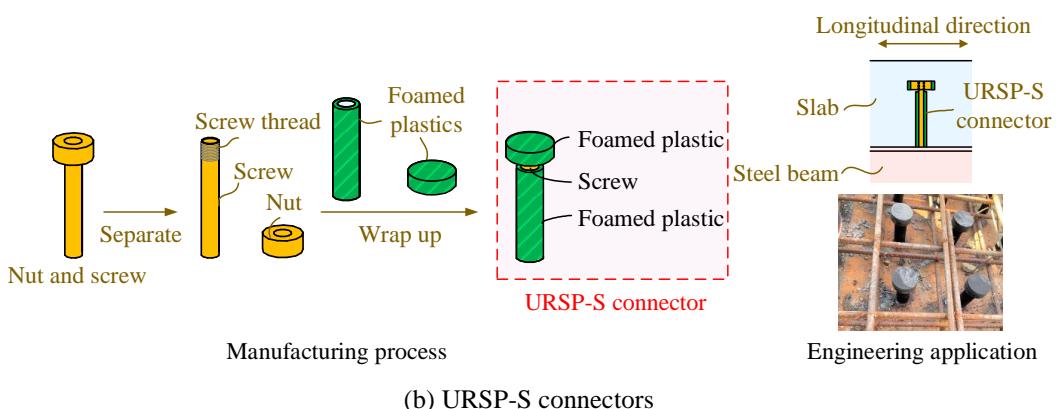


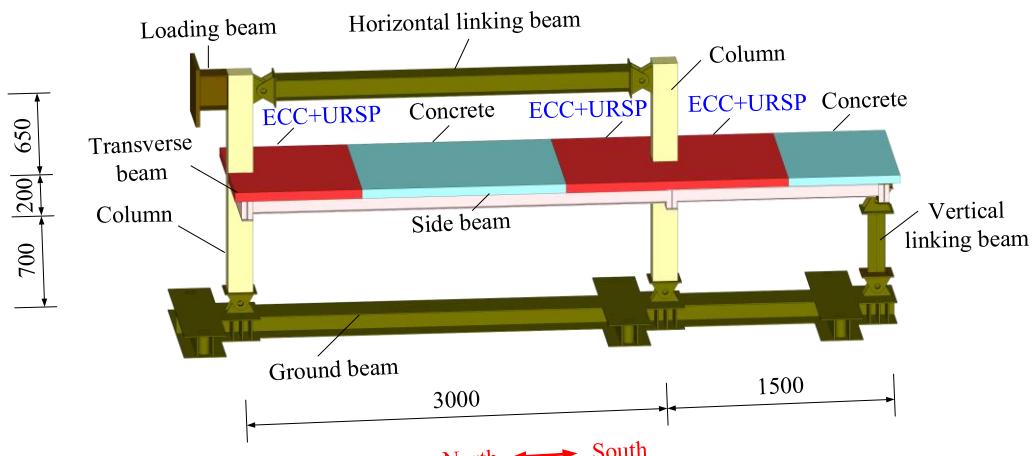
Fig. 1. ECC and URSP-S connectors.

55 The Uplift-Restricted and Slip-Permitted Screw-type (URSP-S) connector is a new

56 type of connector invented by Nie [17] to address the cracking problem. By wrapping with
57 a low elastic modulus material around screw and nut (see Fig. 1(b)), the URSP-S connectors
58 can release their shear resistance of interface to a certain extent in the longitudinal direction
59 while resisting the vertical separation between concrete and steel. Therefore, the tensile
60 stress of the concrete slab and the risk of cracking were reduced [17]. In recent years, some
61 theoretical, experimental and numerical researches have been completed on the URSP-S
62 connectors at the level of components and systems. The theoretical mechanism of the steel-
63 concrete composite beams arranged with this new type of connectors was explored [18],
64 experiments on steel-concrete composite beams [19], curved composite beams [20],
65 composite frames [21] with URSP-S connectors were carried out, and numerical analysis
66 on the composite frame joint with the consideration of constitutive model of URSP-S
67 connectors was conducted [22], design guidelines and construction suggestion in a
68 continuous composite bridge were also proposed [23]. The investigations and applications
69 of URSP-S connectors in the composite structure were proved to achieve a good crack
70 resistance effect and possess a simple construction and convenient material in engineering
71 applications.

Despite the advantage of crack resistance improvement of ECC and URSP-S connectors, few studies have focused on the steel-concrete composite frame with ECC and URSP-S connectors. Moreover, the structural behavior of the composite frame needs to be explored. Therefore, for this study, it is of interest to investigate the feasibility of applying ECC and URSP-S connectors together near columns in steel-concrete composite frame structures. The frame specimen with both ECC and URSP-S connectors with a 1/2 scale

78 was conducted under vertical and lateral loading, the failure modes and hysteretic behaviour
79 of the frame were revealed and compared with the results of the other four specimens with
80 various slab materials and shear connectors. Finiteelement simulation of the steel-concrete-
81 ECC composite frame with URSP-S connectors in MSC. Marc [24] was explored, which
82 were validated by the test results and further conducted under various parameter analyses.
83 The results obtained from this study will promote the use of ECC and URSP-S connectors
84 of composite frames on improving the structural performance under hogging moment.


85 2. Experimentation

86 2.1 Specimen details

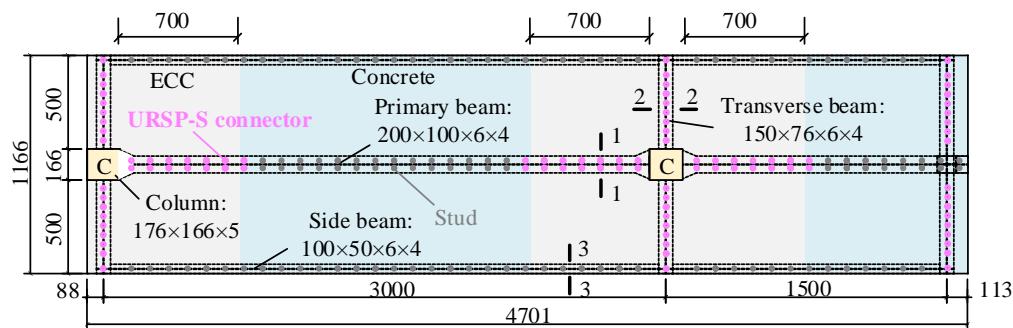
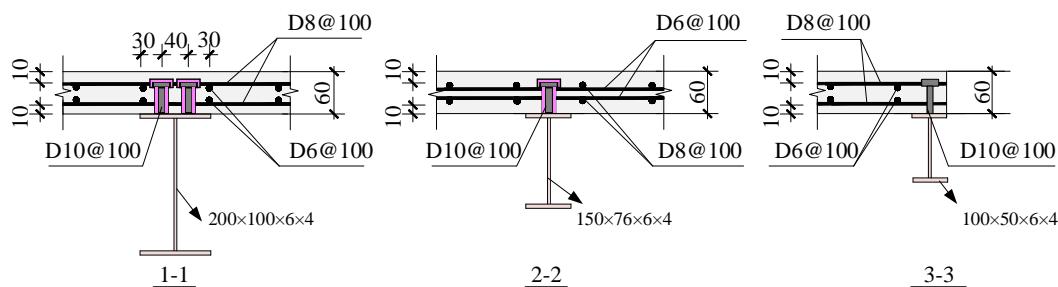
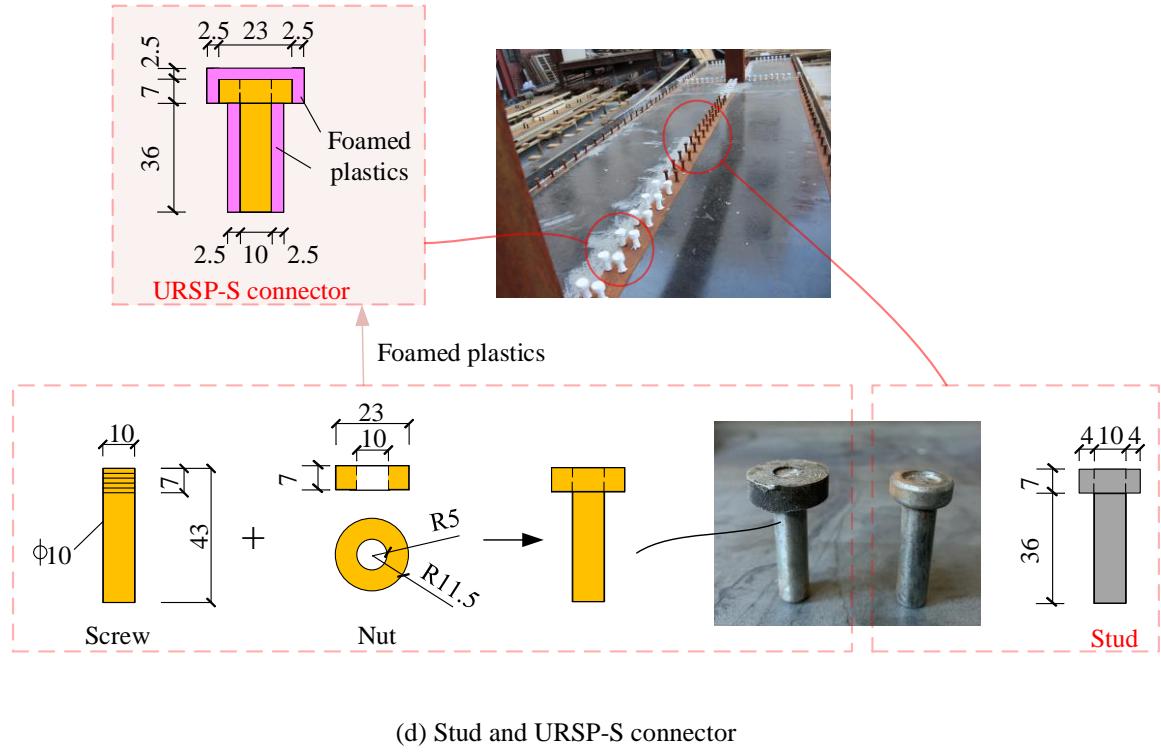

87 The test specimen was extracted from a high-rise prototype structure based on
88 inflection point and symmetry [21], and a large scale of 1/2 was used. Five frame specimens,
89 consisting of rectangular concrete-filled steel tubular (CFST) column and steel-
90 concrete/ECC composite beam with URSP-S/studs shear connectors, were designed and
91 experimented under various loads. As listed in Table 1, the test specimens include one
92 specimen with conventional stud and concrete (abbreviated as SC), two specimens with
93 different lengths of URSP-S connectors (abbreviated as SCU, SCU2) and one specimen
94 with ECC (abbreviated as SCE) arranged near the column, which have been reported by the
95 authors [16, 21], and one specimen with both URSP-S connectors and ECC (abbreviated as
96 SCUE) reported in this paper, whose structural configuration is detailed in Fig. 2.

Table 1 Details of the five test specimens.


Specimens	Material of Slab	Connectors in composite beams	Reported in
SC	Concrete	Studs	
SCU	Concrete	URSP-S connectors (near columns)+ studs	Ref. [21]
SCU2	Concrete	URSP-S connectors	
SCE	ECC (near columns)+Concrete	Studs	Ref. [16]
SCUE	ECC (near columns)+Concrete	URSP-S connectors (near columns)+ studs	This paper


(a) General view

(b) Detailed dimensions and configurations

(c) Sectional configurations

(d) Stud and URSP-S connector

Fig. 2. The structural configuration of test Specimen SCUE (in units of mm).

Fig. 2(a) gives the overview of the Specimen SCUE, whose length was 4500 mm and

the height was 1550 mm. The design of the specimen follows the requirements of the

Chinese codes JGJ 138-2016 and GB 50011-2010 [25, 26]. The slab had a width of 1166

mm and a thickness of 60 mm. CFST column had a dimension of 176×166×5 mm

(length×width×thickness), and 200×100×6×4 mm (height×width×flange thickness×web

thickness) for the primary steel beam, as depicted in Fig. 2(b). The composite joints adopted

the diagram-through joints, which were proved to perform well according to the previous

study [21]. Three key sectional configurations of composite beams are given in Fig. 2(c).

The diameters of longitudinal and transverse rebar were 6 mm and 8 mm, respectively, and

were employed with double layers in the slab. The spacings of the reinforcements were 100

mm. Fig. 2(c) and (d) show the detailed arrangement and dimensions of shear connectors,

respectively. The design of the nut and the foamed plastics of URSP-S connectors follow

110 the uplift requirement and the recommendation in Ref. [19, 21]. The design of the
111 conventional studs and screw of URSP-S connectors were same [21]. To provide full
112 composite action of the composite beam, the size was 43×10 mm (height×diameter), two
113 and a single row of connectors with a spacing of 100 mm were adopted on the primary steel
114 beam and secondary steel beams, respectively.

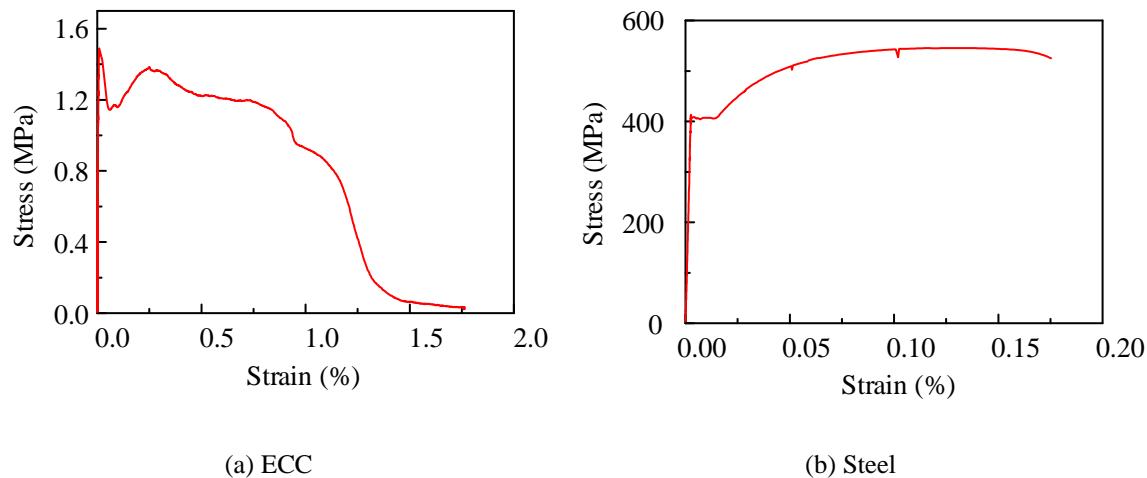
115 **2.2 Material properties**

116 The material properties of concrete and ECC were shown in Table 2, which were
117 obtained by the material tests concurrently as the loading of the frame specimens. The
118 compressive strengths of concrete and ECC were tested as per GB/T 50081-2019 [27], the
119 tensile test of ECC with dog-bone specimens reported in Ref. [16, 28] was adopted in this
120 study. A typical tensile stress–strain curve of ECC in the test is illustrated in Fig. 3(a). In
121 addition, the mix proportions of ECC used in the test are given in Table 3. The PVA fiber
122 used in ECC had a density of 1.2 g/cm³, a tensile strength of 1620 MPa and an elastic
123 modulus of 42.8 GPa. The diameter of PVA fiber was 0.039 mm and the length was 12 mm.
124 Table 4 gives the mechanical properties of steel plates and rebar as per GB/T228-2010 [29].
125 A typical tensile stress–strain curve of steel plate in the test is show in Fig. 3(b).

126 Table 2 Mechanical properties of concrete and ECC.

Material	Strength grade	f_c (MPa)	f_t (MPa)	ε
Concrete (slab)	C30	43.7	/	/
Concrete (column)	C40	48.4	/	/
ECC	/	57.1	1.8	0.6%

127 Note: f_c represents the cylindrical compressive strength; f_t and ε represent ultimate tensile strength and strain,
128 respectively.


129 Table 3 Mix proportions of 1 m³ ECC.

Ingredient	Cement	Superplasticizer	Sand	Water	Silica fume	Fly ash	Fiber	Expansive agent
Weight (kg)	782.5	6	360	420	60	240	20.4	120

130 Table 4 Mechanical properties of steel.

Type of steel	Strength grade	Thickness/Diameter (mm)	f_y (MPa)	f_u (MPa)
Steel plate	Q345	4	359	475
		5	376	521
		6	402	546
Reinforcement	HPB300	6	440	598
	HRB400	8	439	695

131 Note: f_y and f_u represent yielding and ultimate strength, respectively.

38 (a) ECC (b) Steel
39
40 Fig. 3. Typical tensile stress-strain curves of materials in the test.
41

42 2.3 Test procedure, set-up and instrumentation

43
44 133 Vertical uniform loads and lateral cyclic loads were applied successively in the test,
45
46
47 134 whose structural behavior under the slab loads and seismic loads were investigated, the
48
49
50 135 loading history is plotted in Fig. 4. Specifically, uniform loads were imposed by iron blocks
51
52 during the vertical loading cases, the loading slab was located at the length of 1950 mm of
53
54 136 the middle longer span. The final vertical weight on the slab was 5.82 t due to the limitation
55
56 137 of loading space and consideration of test safety. After the vertical loading, 0.5 t uniform
57
58 138 of loading space and consideration of test safety. After the vertical loading, 0.5 t uniform
59
60
61
62
63
64
65

1 load was retained, which was kept in the following loading step to simulate the common
 2 design load in engineering referring to GB 50009-2012 [30]. Then, axial forces transferred
 3 from the superstructure were simulated in the test to reflect the actual mechanical state of
 4 the columns in the real structure. Column compression forces were applied to the side and
 5 middle column, which were 150 kN and 300 kN, respectively (the axial compression ratio
 6 was 0.1, and 0.2 for the latter). Fig. 4 plots the cyclic loading protocol, which followed the
 7 force-displacement mixed control loading method [31].
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

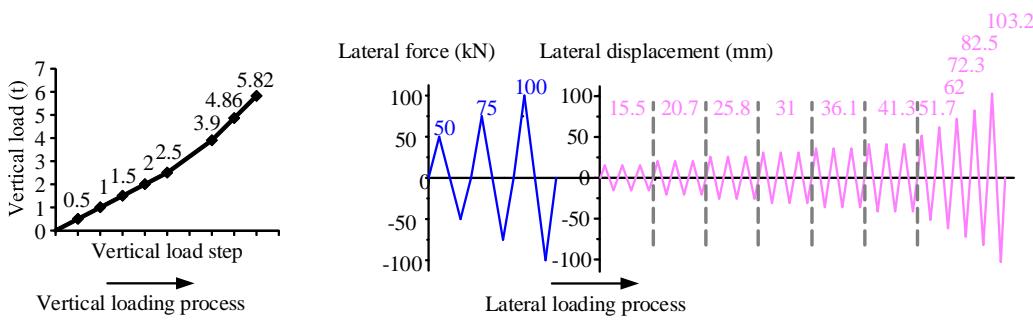


Fig. 4. Vertical and lateral loading history.

Fig. 5. Test set-up.

146 The test set-up is depicted in Fig. 5. The test was loaded by iron blocks, as well as the
 147 vertical and lateral jacks, which were connected with the counterforce frame and reaction
 148 wall, respectively. Two lateral braces were applied to avoid out-of-plane deformation of the
 149 specimen.
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165

150 Fig. 6 illustrates the measuring arrangement of the specimen. Displacement meters,
 151 strain gauges were instrumented to obtain test data mainly including the displacement,
 152 deflection, and strain. The displacement meter, which was connected with two guide bars
 153 attached to the concrete and steel beam respectively, was used to acquire the interface slip
 154 of composite beam. The inclinometers near the beam-column joints were installed to acquire
 155 the relative rotation data of the joints for future research. The cracks on the slab were
 156 observed and recorded by crack measuring devices after each loading level.

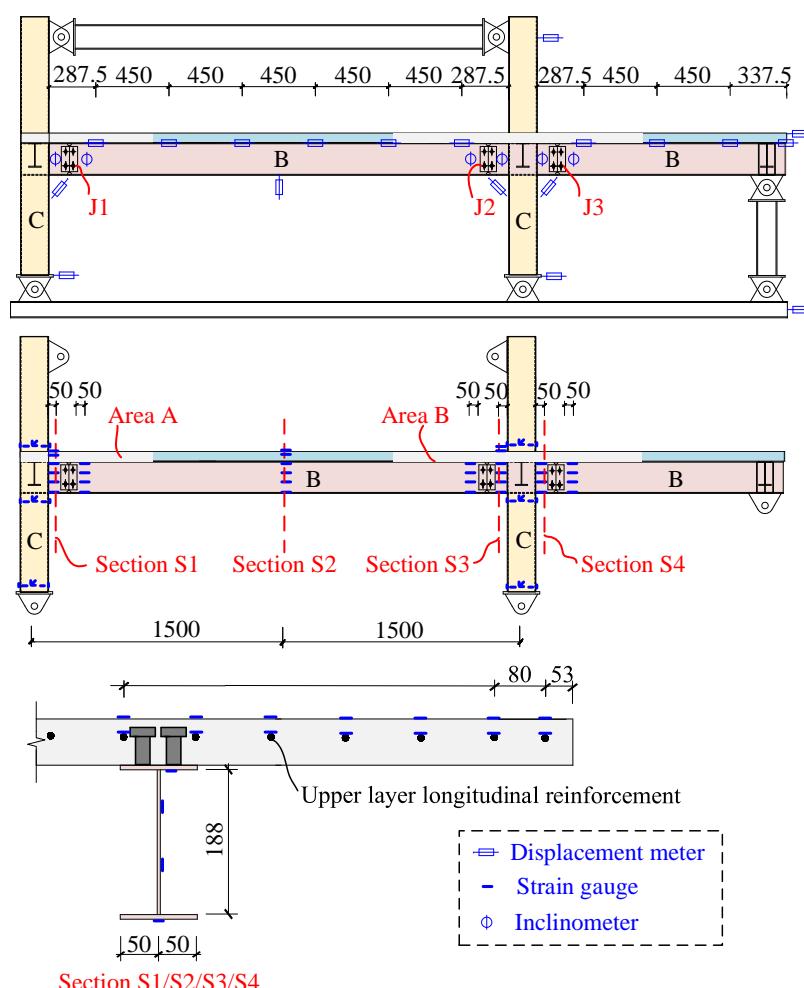


Fig. 6. Arrangement of measuring equipment (in units of mm).

1 157 **3. Test results and discussion**
2
3
4

5
6 158 **3.1 Failure modes of Specimen SCUE**
7
8
9

10 159 The test results of Specimen SCUE with ECC and URSP-S connectors near the column
11 160 are reported below. In the first cycle corresponding to a displacement level of 15.5 mm
12 161 (abbreviated as 15.5(1), similar abbreviations hereafter), an obvious sound could be heard.
13
14 162 In the positive loading of 25.8(1), the capacity has a drop point, and a large area of weld
15
16 163 cracking appeared at the bottom flange steel plate of the joint J1 (J1, is marked in Fig. 6, as
17
18 164 well as J2 and J3 hereafter) near the side column. In 25.8(2), accompanied by banging noise,
19
20 165 the weld at the bottom flange steel plate of J1 was completely ruptured, which is depicted
21
22 166 in Fig. 7(a). Similar welds ruptures could be observed at two bottom flange steel plates of
23
24 167 joints J2 and J3 near the middle column. The weld of J2 has partially pulled apart in negative
25
26 168 loading of 31(1) and completely fractured in negative loading of 31(3), which is shown in
27
28 169 Fig. 7(b). In the negative loading of 36.1, the bottom flange steel plate of J3 buckled and a
29
30 170 complete weld fracture happened in 41.3(2), which is depicted in Fig. 7(c). In the positive
31
32 171 loading of 72.3, substantial cracks including longitudinal cracks were found on the slab near
33
34 172 the north of the middle column. In the negative loading, substantial cracks including
35
36 173 longitudinal cracks were observed on the slab near the side column, and new cracks occurred
37
38 174 on the slab near the south of the middle column. After the test loading, as Fig. 7(d) and (e)
39
40 175 show, slight crush and cracking phenomena were observed on the slab near the columns,
41
42 176 demonstrating that the slab damage was controlled well with ECC and URSP-S connectors.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

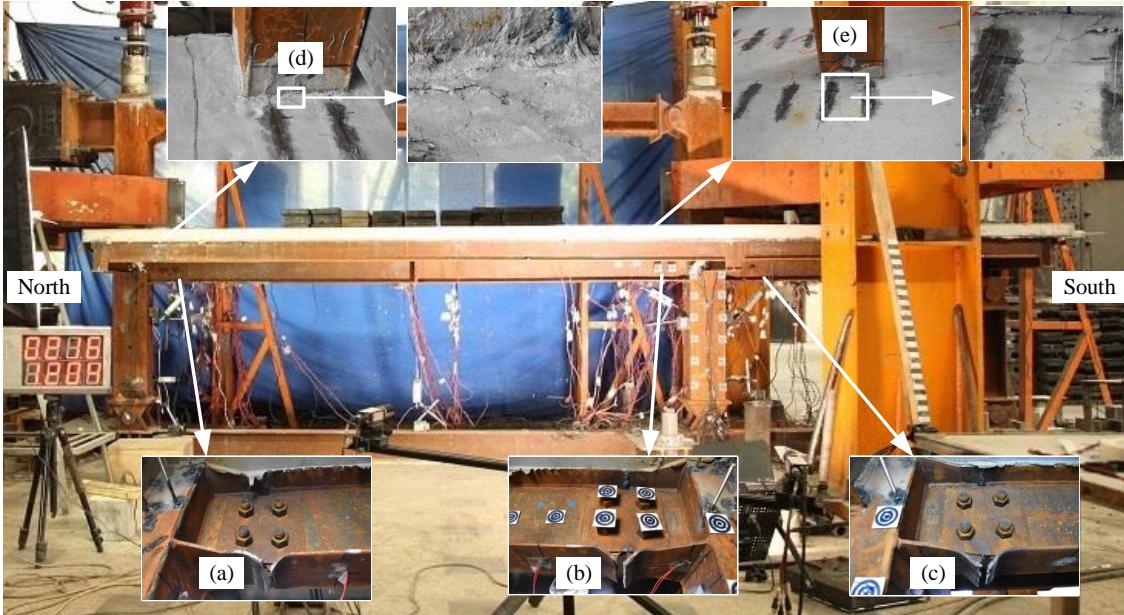
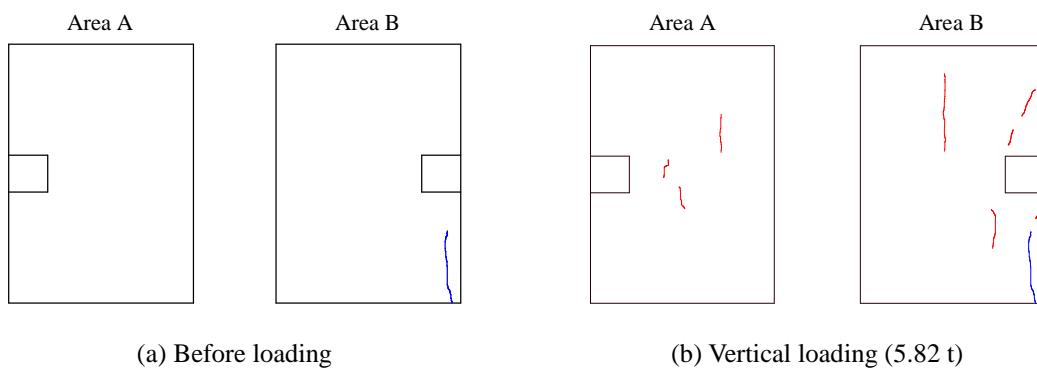


Fig. 7. Failure phenomenon of Specimen SCUE after the test.

177 Before loading, only one initial crack was observed on the slab (as shown in Fig. 8(a))


178 owing to the use of ECC and URSP-S connectors. Several cracks gradually appeared on the

179 slab during vertical loading cases. When vertical load was 5.82 t, the crack patterns were

180 plotted in Fig. 8(b). At the displacement of 25.8 mm, several transverse and oblique slab

181 cracks were found near the columns, while still few longitudinal cracks were emerged (as

182 shown in Fig. 8(c)).

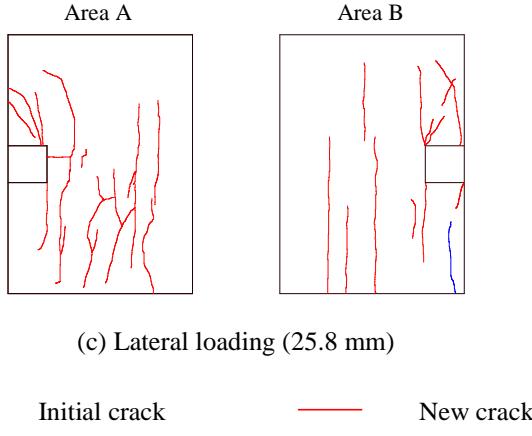


Fig. 8. Crack patterns of Specimen SCUE.

3.2 Hysteretic behavior of Specimen SCUE

The hysteresis and skeleton curve are depicted in Fig. 9. The skeleton curve is obtained through the connection of the peak load point of each displacement loading of the hysteresis curve. Welding fractures at beam-to-column connections caused a sharp decrease in the load capacity of the specimen. As the loading progressed, the force state of the specimen was gradually from elastic-plastic to the plastic stage since the slab had already cracked in the vertical loading cases.

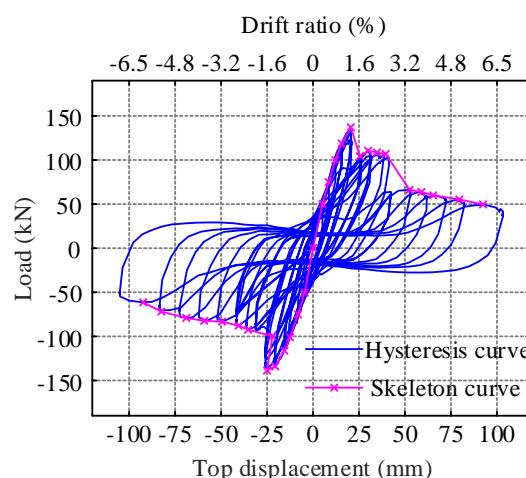
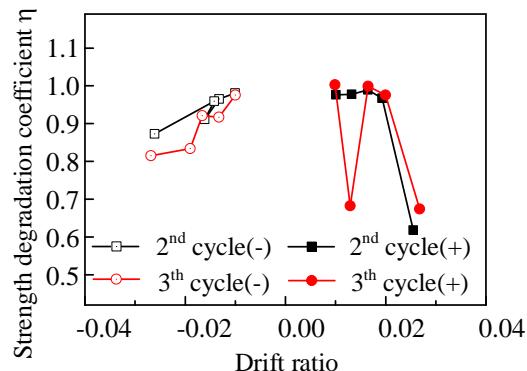


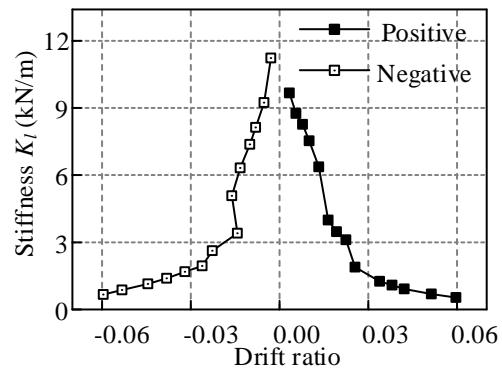
Fig. 9. Load-displacement curves of Specimen SCUE.

At a certain loading grade, the strength of the structure decreases with the number of loading cycles increasing. The strength degradation coefficient η (for a certain loading

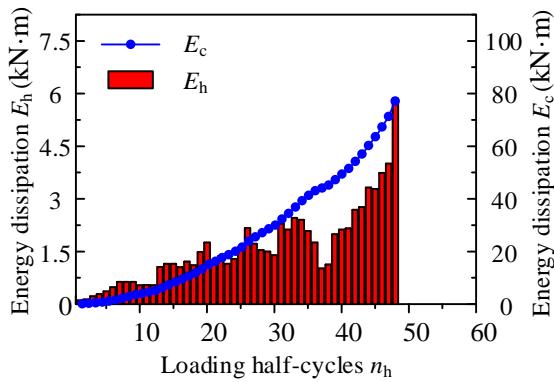
1 grade, the strength of the second/third cycle divided by the first cycle) is used to evaluate
2 the strength degradation. Fig. 10(a) plots the strength degradation coefficient of Specimen
3
4 SCUE under positive and negative loads. The results show sustained strength degradation,
5
6 and a plunge was observed when the fracture occurred at the steel plate of joints.
7
8

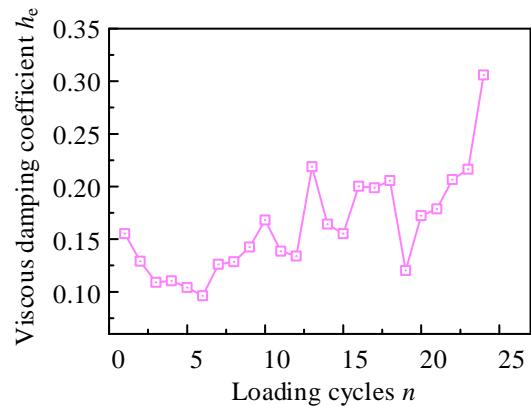

9
10 Under lateral cyclic loads, as the loading process increased, the stiffness of the structure
11 decreased. The looped stiffness k_l (for a certain loading grade, the sum of peak loads of three
12 cycles divided by the sum of displacements) is used to evaluate the stiffness degradation.
13
14 Fig. 10(b) gives the looped stiffness of each drift ratio of the Specimen SCUE. The results
15 indicate evident and steady stiffness degradation throughout the whole test.
16
17

18
19 The energy dissipation is defined as the area surrounded by the hysteresis loop and the
20 horizontal axis [16]. E_h , E_c denotes the energy dissipation of the loading half-cycles n_h and
21 the accumulation from starting point of loading to n_h , respectively. As the loading half-
22 cycles n_h increases, the development of E_h and E_c of the Specimen SCUE, as illustrated in
23 Fig. 10(c). The results show that the accumulation energy dissipation E_c increased steadily
24 throughout the whole load period, while the energy dissipation of the loading half-cycle E_h
25 decreased in the later loading stages, which was affected by the capacity of the specimen.
26
27


28 Viscous damping coefficient h_e , whose definition can refer to [16], is adopted to access
29 the energy dissipation. Fig. 10(d) plots the development curve of h_e with the increase of the
30 loading cycles n of the Specimen SCUE. The results show that h_e was between 0.1-0.3 and
31 decreased at the time of the steel plate fracture of joints in the test.
32
33

34 Generally, the stable strength, stiffness degradation and energy dissipation show that
35 the new structure with ECC and URSP-S used near the column has a good seismic
36
37


214 performance.


(a) Strength degradation

(b) Stiffness degradation

(c) Dissipated energy

(d) Viscous damping coefficient

Fig. 10. Stiffness, strength degradation and dissipated energy of Specimen SCUE.

3.3 Steel strain of Specimen SCUE

Under the vertical load cases, the strains of steel beam of key sections S1, S2 and S3 are gauged, as illustrated in Fig. 11. The location of the three key sections is marked in Fig. 5. The results of Fig. 11 indicate that the strains of the three sections of the steel beam were basically conformed with the plane section assumption. Moreover, the maximum steel strain under the vertical load condition was much smaller than the yield strain ($1743 \mu\epsilon$, $1951 \mu\epsilon$ for web and flange plate of steel beam, respectively). The strain of the steel beam was consistent with the structural force analysis result in terms that sections S1 and S3 bear negative bending moment while section S2 was under a positive moment. The results of Fig.

1 224 11 (c) show that all the steel strain of section S2 was tensile under the vertical stacking load.
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 225 This indicates that the neutral axis was located in the slab, which conformed to the
 226 theoretical analysis of the composite beam. From Fig. 11(a) and (b), it is found that the
 227 negative bending moment of section S1 was smaller than that of section S3 when subjected
 228 to vertical uniform loads, which was consistent with the force analysis of the frame beam
 229 with asymmetric boundary (see Ref. [21]).

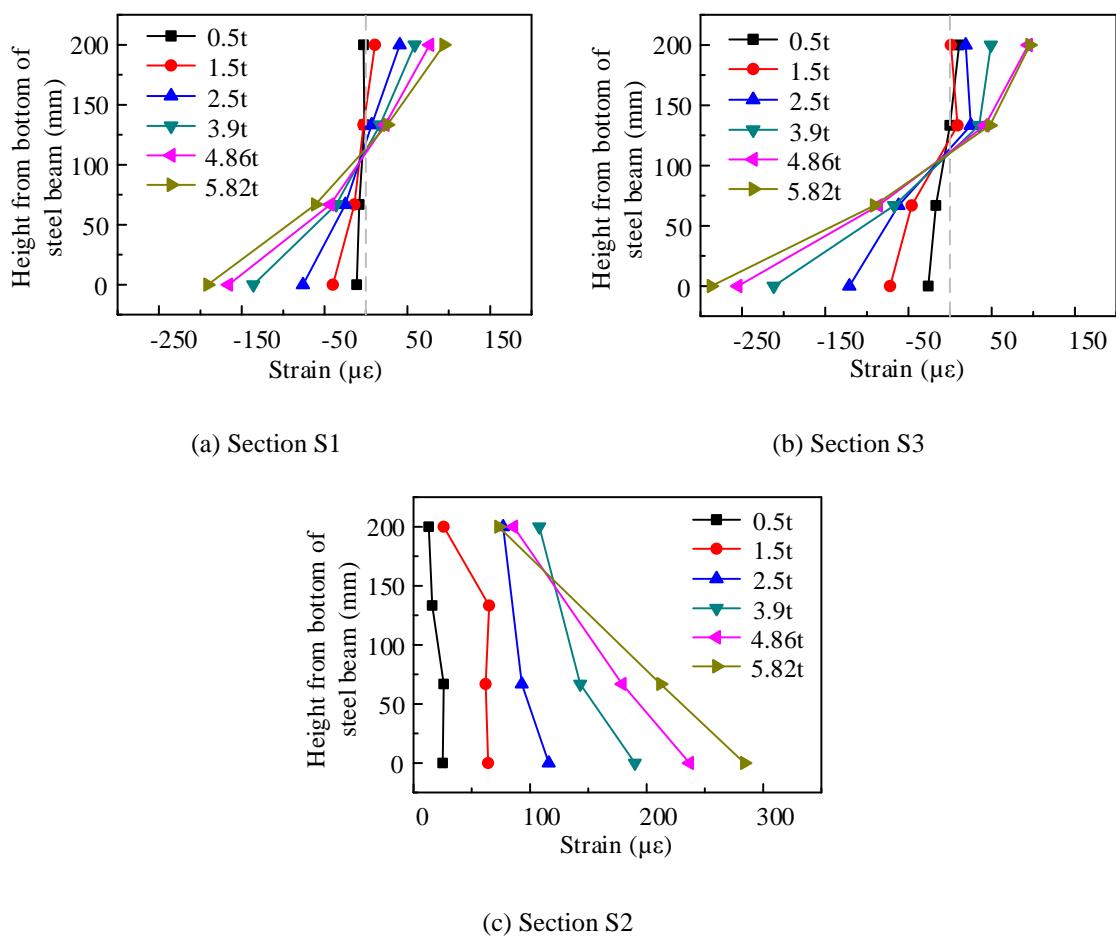
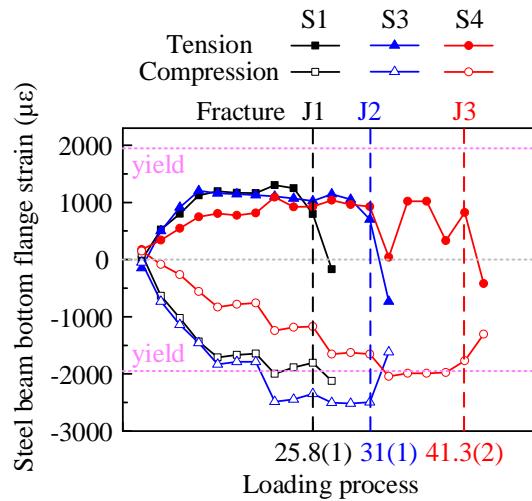



Fig. 11. Steel beam strain of three key sections of Specimen SCUE.

230 During the cyclic lateral loading, the strain of the steel beam bottom flange bore tension
 231 and compression cyclically in positive and negative directions, the strains of Sections S1,
 232 S3 and S4 are illustrated in Fig. 12. The loading displacement level corresponding to weld
 233 fracture of three joints J1, J2 and J3 are also marked in this figure. The results show that the

1 compressive strain had already exceeded yield before the weld fracture, which indicates that
 2 the poor weld quality did not affect the hogging moment capacity at the three sections. After
 3
 4 the weld fell apart, the tensile and compressive strains were both sharply decreased.
 5
 6
 7

27 Fig. 12. Strain development of steel beam bottom flange of Specimen SCUE.
 28

29
 30 When subjected to negative loading, Sections S1 and S4 were under hogging moment
 31
 32 and the rebar strains were tensile. The rebar tensile strain distribution along transverse
 33 direction is plotted in Fig. 13. As the distance from the centerline of the beam increased
 34
 35 from 150 to 550 mm, the rebar strain gradually decreased, demonstrating an obvious shear
 36
 37 lag effect of the ECC slab. It should be mentioned that lower strains were observed at a
 38
 39 distance of 50 mm in most loading cases possibly because of the fracture of the welding
 40
 41
 42
 43
 44
 45
 46 spot connecting the reinforcement and column.
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

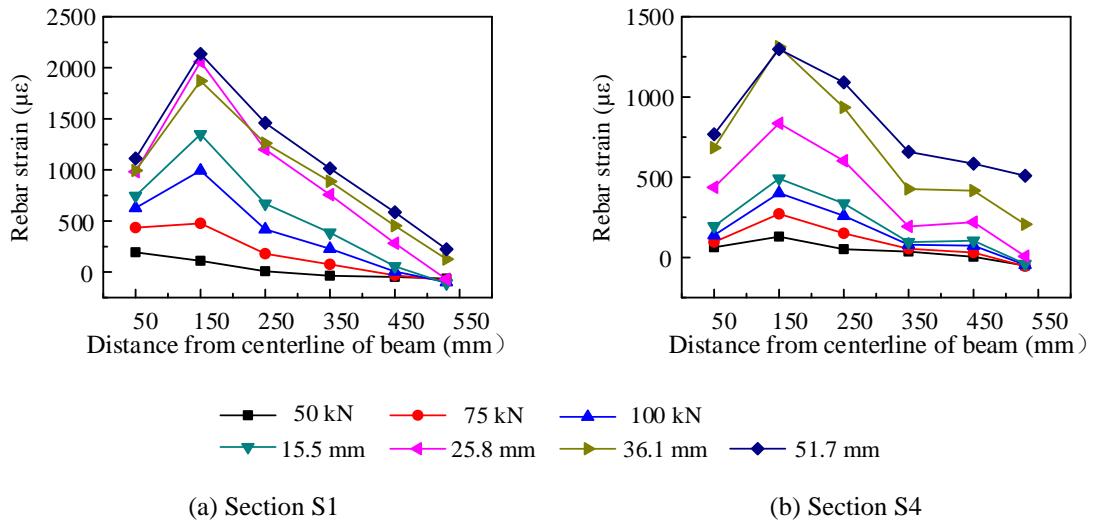


Fig. 13. Rebar strain distribution along transverse direction of Specimen SCUE.

3.4. Comparison of five specimens

3.4.1 Load-displacement hysteretic behavior

To investigate the influence of ECC and URSP-S connectors on the performance of frames, test results of five specimens were compared and analyzed. Fig. 14 illustrates the skeleton curves of five specimens. Table 5 gives several important indexes based on the skeleton curves. The yield load and displacement could be obtained by the graphical method [19, 32]. The ultimate capacities of specimens with ECC or URSP-S connectors were compared quantitatively with Specimen SC in Table 5. It turns out that the ultimate capacity of Specimen SCUE with ECC and URSP-S connectors was close to Specimen SC with concrete and conventional studs, where the difference was within 10%. Similar findings were observed for specimens with ECC or URSP-S connector only.

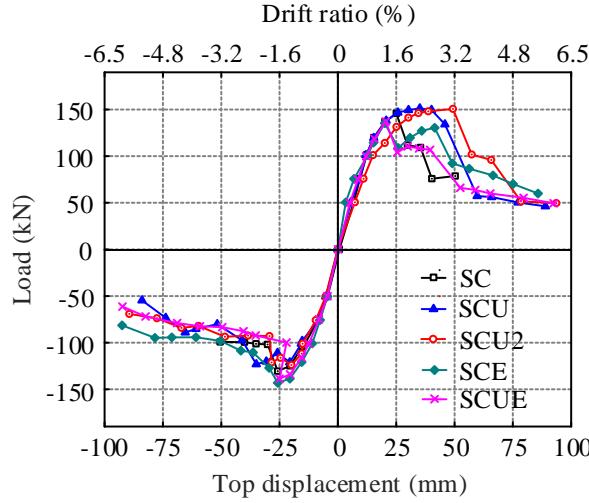


Fig. 14. Skeleton curves of five specimens.

255 Table 5 Summary of test results of five specimens.

	Specimen	Yield load P_y (kN)	Ultimate load P_u (kN)	$\frac{P_u}{P_{u,SC}}$	Yield displacement Δ_y (mm)	Ultimate displacement Δ_u (mm)	85% of ultimate displacement Δ_d (drift ratio)	$\frac{\Delta_d}{\Delta_y}$
28 SC	Positive	129.9	145.8	1	18.2	25.1	28.2(1.8%)	1.55
	Negative	115.4	130.1	1	18.1	25.8	28.8(1.9%)	1.59
30 SCU	Positive	131.2	151.2	1.04	18.7	35.1	46.9(3%)	2.51
	Negative	114.0	123.2	0.95	18.8	35.0	39.4(2.5%)	2.10
34 SCU2	Positive	135.0	150.8	1.03	26.2	49.3	53.0(3.4%)	2.02
	Negative	118.1	124.0	0.95	17.8	19.9	28.9(1.9%)	1.62
37 SCE	Positive	116.7	135.4	0.93	15.8	20.0	44.5(2.9%)	2.82
	Negative	129.6	143.1	1.10	18.0	25.8	31.7(2%)	1.76
40 SCUE	Positive	122.9	137.1	0.94	16.7	20.5	23.6(1.5%)	1.41
	Negative	133.5	138.7	1.07	20.4	25.0	23.4(1.5%)	1.15

42 256 3.4.2 Cracks width and numbers

43 257 Under vertical loads, the crack width and number on the slab of five specimens are
 44 258 shown in Fig. 15(a) and (b), respectively. (i) Crack width (see Fig. 15(a)). Compared with
 45 259 Specimen SC, the crack width of the other four specimens was less, indicating that ECC and
 53 260 URSP-S effectively decreased the crack width. Comparing Specimens SCU and SCE, it is
 54 261 found that ECC had a better control effect than URSP-S when applying the same half-span
 55 262 length. Among five specimens, the result of Specimen SCUE was the lowest, indicating that

1 using half-span ECC and URSP-S connectors simultaneously significantly diminished the
 2 crack width. Specifically, when the load was 5.82 t, corresponding crack width of Specimen
 3 SC, SCU, SCU2, SCE and SCUE were 0.22, 0.2, 0.2, 0.18 and 0.1 mm, respectively. The
 4 decrease in crack width of Specimen SCUE after using ECC and URSP-S connectors was
 5 55% in comparison with Specimen SC. (ii) Number of cracks (see Fig. 15(b)). The largest
 6 number of cracks were found in Specimen SCE, indicating the application of ECC increases
 7 the number of new cracks, which was also stated in Ref. [16]. The number of cracks of
 8 Specimen SCUE was much less than Specimen SCE, indicating the number of new cracks
 9 of the specimen with ECC was significantly reduced because of the use of URSP-S
 10 connectors, which also means the number of cracks was well controlled when ECC and
 11 URSP-S connectors were both used at the same time.
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

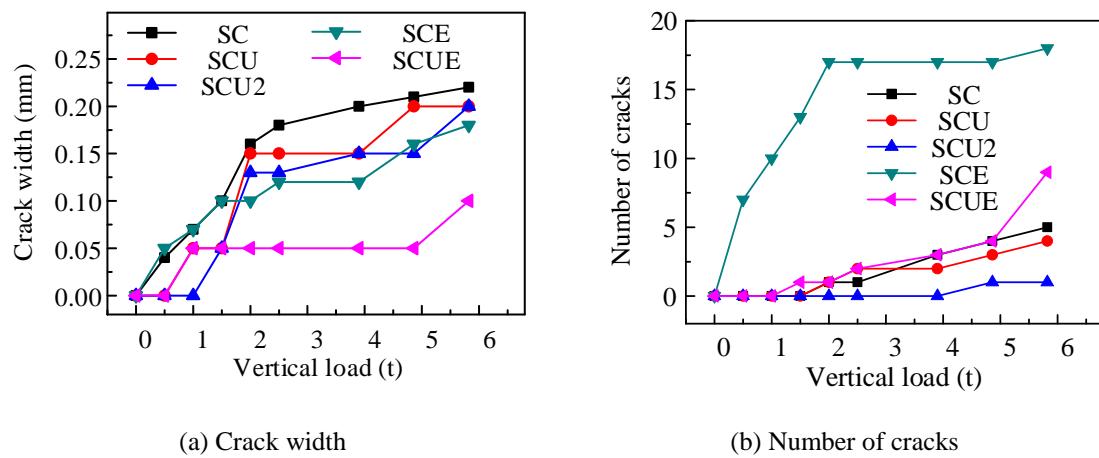
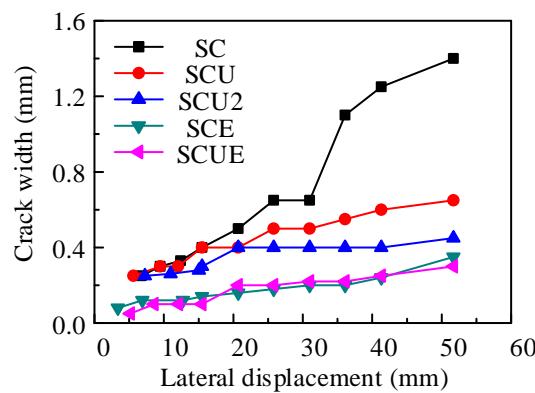



Fig. 15. Crack comparison under vertical loading cases.

1 With the increase of the lateral displacement, the development of the crack width on
 2 the slab is plotted in Fig. 16. The result of Specimen SCUE was minimal, indicating the
 3 crack width can be well controlled using both ECC and URSP-S. The width of cracks of
 4 Specimen SCE was less than SCU, indicating that ECC reduced the crack width more
 5 significantly than URSP-S with the same application length. It can also be observed that
 6

1 279 little difference was found between results of Specimen SCE and SCUE, which means that
 2 280 after half-span ECC was used, half-span URSP-S had little effect on improving crack width
 3
 4 281 control.
 5
 6
 7

22 Fig. 16. Crack comparison under lateral loading cases.
 23
 24

25 282 The results in terms of the crack control effects under the whole loading process show
 26
 27 283 that ECC played a major role in width of crack while URSP-S connectors played a major
 28
 29 284 role in number of crack. Anyhow, the development of crack widths and numbers were well
 30
 31 285 controlled at the ultimate state and the end of loading when both the half-span ECC and
 32
 33 286 URSP-S were arranged in composite frames.
 34
 35
 36
 37

38 287 **3.4.3 Interface slips**
 39
 40

41 288 Under vertical loads, the maximum interface slip of the composite beam of five
 42
 43 289 specimens are compared: SC(0.634 mm), SCU(0.844 mm), SCU2(1.57 mm), SCE(1.217
 44
 45 290 mm), SCUE(3.728 mm). From the previous studies [16, 21], it has been found that the
 46
 47 291 URSP-S connectors and ECC increased the interface slip compared with the basic Specimen
 48
 49 292 SC. Here, comparing Specimen SCE with ECC and Specimen SCU with URSP-S
 50
 51 293 connectors, it is found that the increase of slip applying ECC was higher than that applying
 52
 53 294 URSP-S connectors. For Specimen SCUE with ECC and URSP-S, the slip increased
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

1 295 significantly due to the superposition effect of ECC and URSP-S. Similar regularity can be
2 296 found for lateral loading cases. The corresponding slip of the five specimens at the ultimate
3 297 bearing capacity are SC(0.89 mm), SCU(1.04 mm), SCU2(2.73 mm), SCE(1.281 mm),
4 298 SCUE(4.662 mm). It should be mentioned the large slip of frame using ECC and URSP-S
5 299 connectors rarely influenced the failure mode and integrity of structural behavior during the
6 300 whole loading test.

7 301 **4. Finite element**

8 302 **4.1 Finite element modelling and validation**

9 303 The elaborate finite element (FE) model of the specimen was developed using
10 304 nonlinear finite element software, MSC.Marc [24], and simulating models were
11 305 supplementary analyzed to explore the capacity of steel-concrete frames with ECC and
12 306 URSP-S under various parameters.

13 307 **4.1.1 Loading and boundary conditions**

14 308 The assembled FE model was properly restrained, which was consistent with that in
15 309 the experiment, as illustrated in Fig. 17. The bottom of the column was constrained by
16 310 constraints $UX=UZ=0$ on the central y-axis. $UZ=0$ at beam end was set. $UY=0$ on the
17 311 column was simulated to the transverse constraint. The vertical load was exerted on the slab,
18 312 axial load was imposed on the column, and lateral displacement was applied to the side
19 313 column.

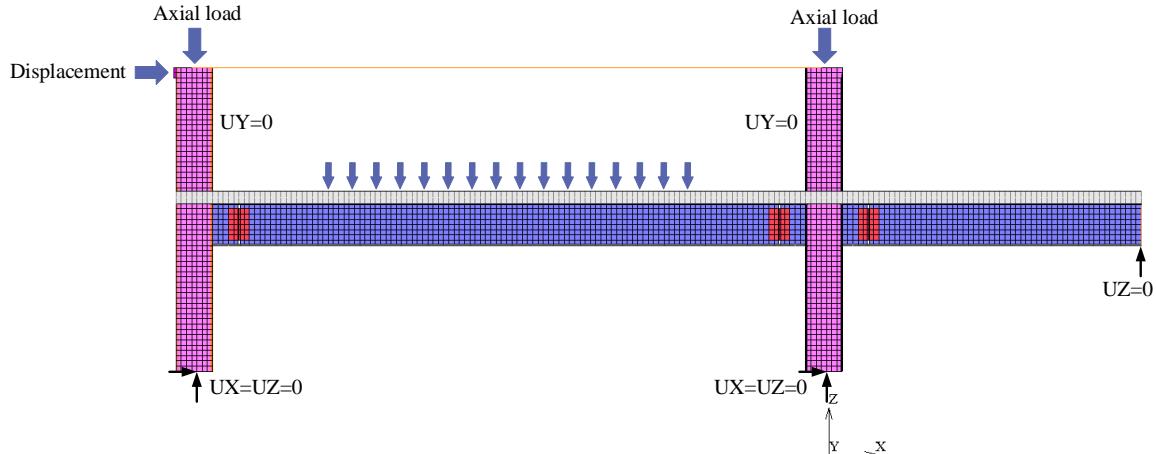
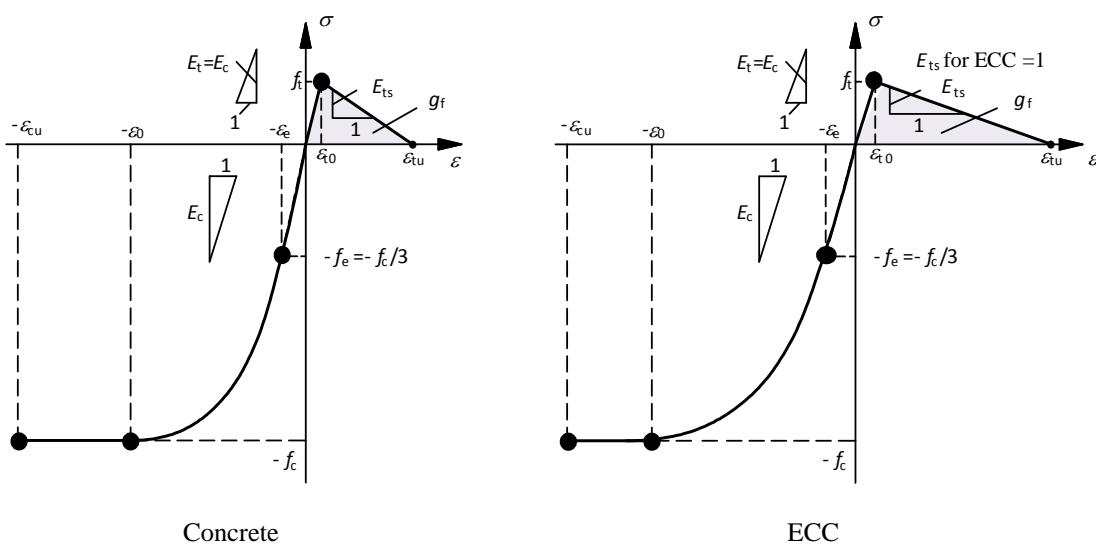
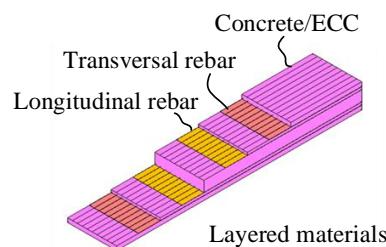
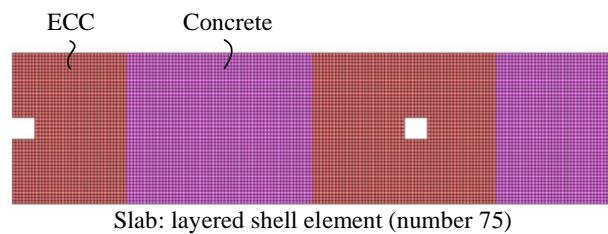
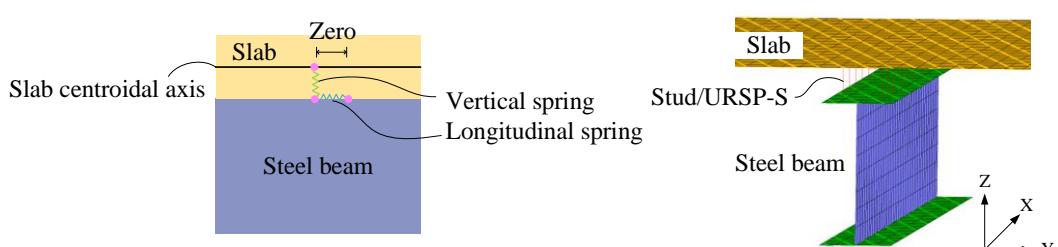
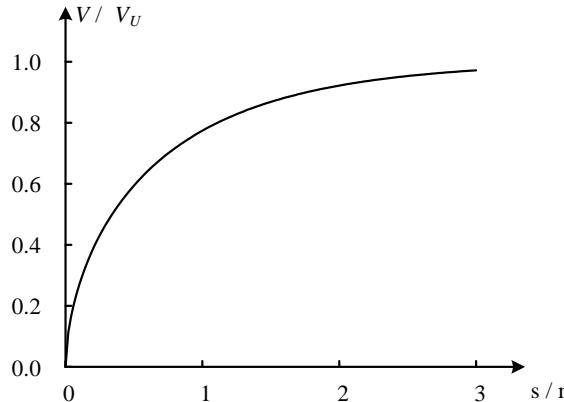
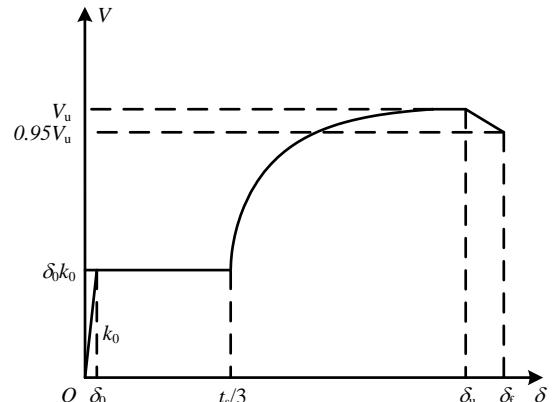





Fig. 17. Boundary conditions in FE models.


314 4.1.2 Finite element type

315 The three-dimensional refined modeling can reflect global and local effect between
 316 components of steel-concrete composite structure accurately [33, 34]. However, considering
 317 higher computing efficiency, shell elements were mainly applied in this modeling and has
 318 been used in previous studies [3, 35]. In detail, shell elements were used for the steel tube
 319 of CFST columns and steel beams, solid elements were adopted for the core concrete of
 320 CFST columns. For CFST columns, the core concrete shared nodes with steel tube, the
 321 modelling strategy rarely influences the frame behaviour [4]. The use of layered shell
 322 elements has been proven to simulate the spatial combination effect of floor slabs accurately
 323 and improve computing efficiency [4]. No. 75 layered four-node thick-shell elements with
 324 six degrees of freedom per node using full integration schemes were employed for the
 325 concrete/ECC slab along the thickness direction as per Ref. [4]. The corresponding
 326 proportions of concrete/ECC, longitudinal and transverse rebar material layers of the
 327 layered shell element were calculated based on Ref. [36] (see Fig. 18 (a)). The element mesh
 328 size was generally 25 mm. A x-axis truss element, connecting nodes on the central y-axis,

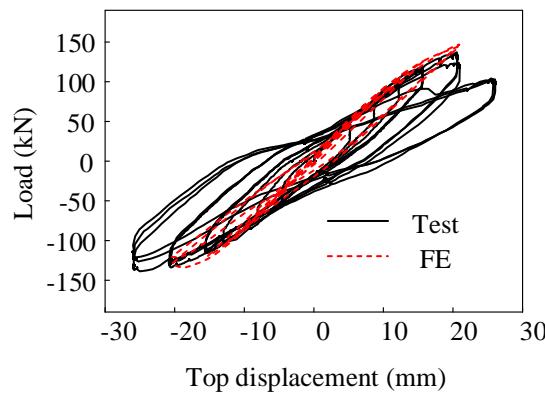

1 was applied to simulate the horizontal rod connected the columns. The shear connectors
 2 inside the composite beam were simulated by the longitudinal and vertical springs (see Fig.
 3
 4
 5
 6 331 18 (b)).
 7


(a) Slab modeling and the stress-strain curve of Concrete/ECC

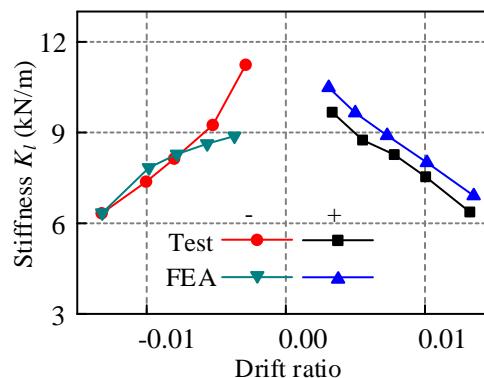
(b) Shear connectors modeling

15 (c) Constitutive curve of shear stud

16 (d) Constitutive curve of URSP-S connector


17 Fig. 18. Modeling details in the FE models.

18 332 **4.1.3 Material modeling**


19 333 The elastic material was adopted in the simulating of column concrete on the basis of
 20 334 design criterion of “strong-column-weak-beam” and the test results that no yield was found
 21 335 in the CFST column. Rüsch curve was employed as the constitutive relationship of the slab
 22 336 concrete [37], see Fig. 18(a). For ECC, the stress-strain curve form similar to that of concrete
 23 337 and different value of key parameters of the curve was adopted. The material properties
 24 338 were the same as the ECC material test results. The elastic modulus E_s took a value of 20
 25 339 GPa recommended by Ref. [8, 38], and the tensile softening modulus E_{ts} was set as 1 MPa
 26 340 when simulating ECC under tension [16]. The three-fold line constitutive law was used for
 27 341 the steel plate [4], the constitutive law of reinforcement in tension and compression in Ref.
 28 342 [16, 39] was adopted. The material properties were the same as those in the test. The steel
 29 343 plate fracture of beam flange was not considered in FE modeling and did not influence the
 30 344 research aim in this paper. Fig. 18(b) gives the simulation of shear connectors in composite
 31 345 beam. The constitutive curves proposed by Ollgaard et al. [40] and described in Ref. [19]
 32 346 were employed for shear studs and URSP-S connectors, respectively in the simulation, as
 33 347 depicted in Fig. 18(c) and (d).

1 348 **4.1.4 Validation of FE model**
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

349 Fig. 19 shows the experimental and numerical comparison of the hysteresis curves of
350 Specimen SCUE in lateral loading cases. It is found that the initial stiffness and the capacity
351 were in good agreement with the test results, indicating the responses were accurately
352 simulated by using the established models. It should be mentioned that the data of larger
353 loading displacement in FE was missing because of the unstable convergence of the FE
354 modeling. This rarely affects the research aim focusing structural capacity. In addition, the
355 stiffness degradation curves of Specimen SCUE by test and FE were compared, which
356 showed good consistency as shown in Fig. 20. The validation of other specimens can be
357 shown in previous study by the authors [16].

47 Fig. 19. The load-displacement curves of Specimen SCUE by test and FE.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

59 Fig. 20. The stiffness degradation curves of Specimen SCUE by test and FE.
60
61
62
63
64
65

1 358 According to the FE results, the bending moment diagrams of the frame at the loading
2
3 359 displacement of peaking loads in positive and negative directions are plotted in Fig. 21(a)
4
5 360 and (b), respectively. The bending moments of each component truly reflected the structural
6
7 361 force of experimental specimen. When the frame reached ultimate capacity, the sagging
8
9 362 moment of composite beam end near the side and middle columns were 78 and 48 kN·m,
10
11 363 respectively. The larger sagging moment of the beam end occurred near the side column in
12
13 364 the positive loading, which was in line with the test results that welding fracture firstly
14
15 365 happened at the joint near the side column. At the peak point of the skeleton curves, the
16
17 366 stress near the side column in positive loading and the middle column in negative loading
18
19 367 in FE results are given in Fig. 22(a) and (b), respectively. It is found that the column kept
20
21 368 elastic and the lower flange of the steel plate where the welding fracture of the joint occurred
22
23 369 in the test exceeded yield. FE results of equivalent Von Mises stress of slab upper layer
24
25 370 reinforcement at the positive and negative ultimate capacity are given in Fig. 22(c). Large
26
27 371 slab stress occurred near the columns, where the failure of the slab occurred in the test.
28
29
30 372 Furthermore, the local slab-interaction effects of steel-concrete composite joints and the
31
32 373 resisting mechanisms were studied comprehensively in Ref. [41]. In all, the above-
33
34 374 mentioned FE results show that the overall behavior and damage concentration of the
35
36 375 specimen were well reproduced, demonstrating the accuracy of the established FE model.
37
38
39 376 It should also be mentioned that a sudden stress increase was found at the interface of the
40
41 377 arrangement of ECC/URSP-S and concrete/studs, indicating the complex stress of the
42
43 378 interface and needed to be further studied. However, no obvious phenomenon was found at
44
45 379 the interface in the test.

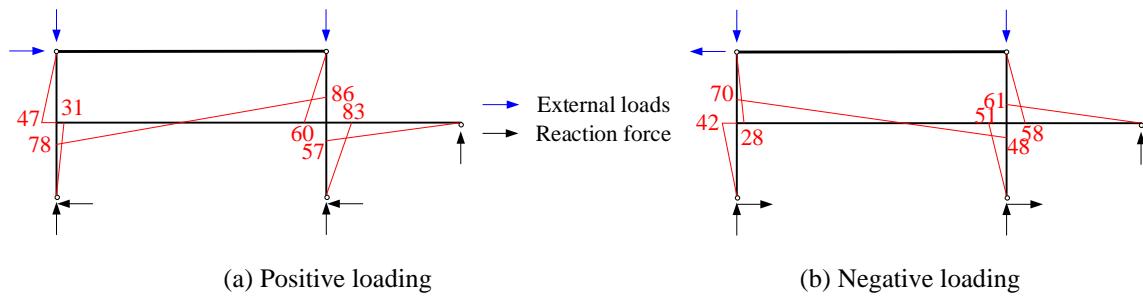
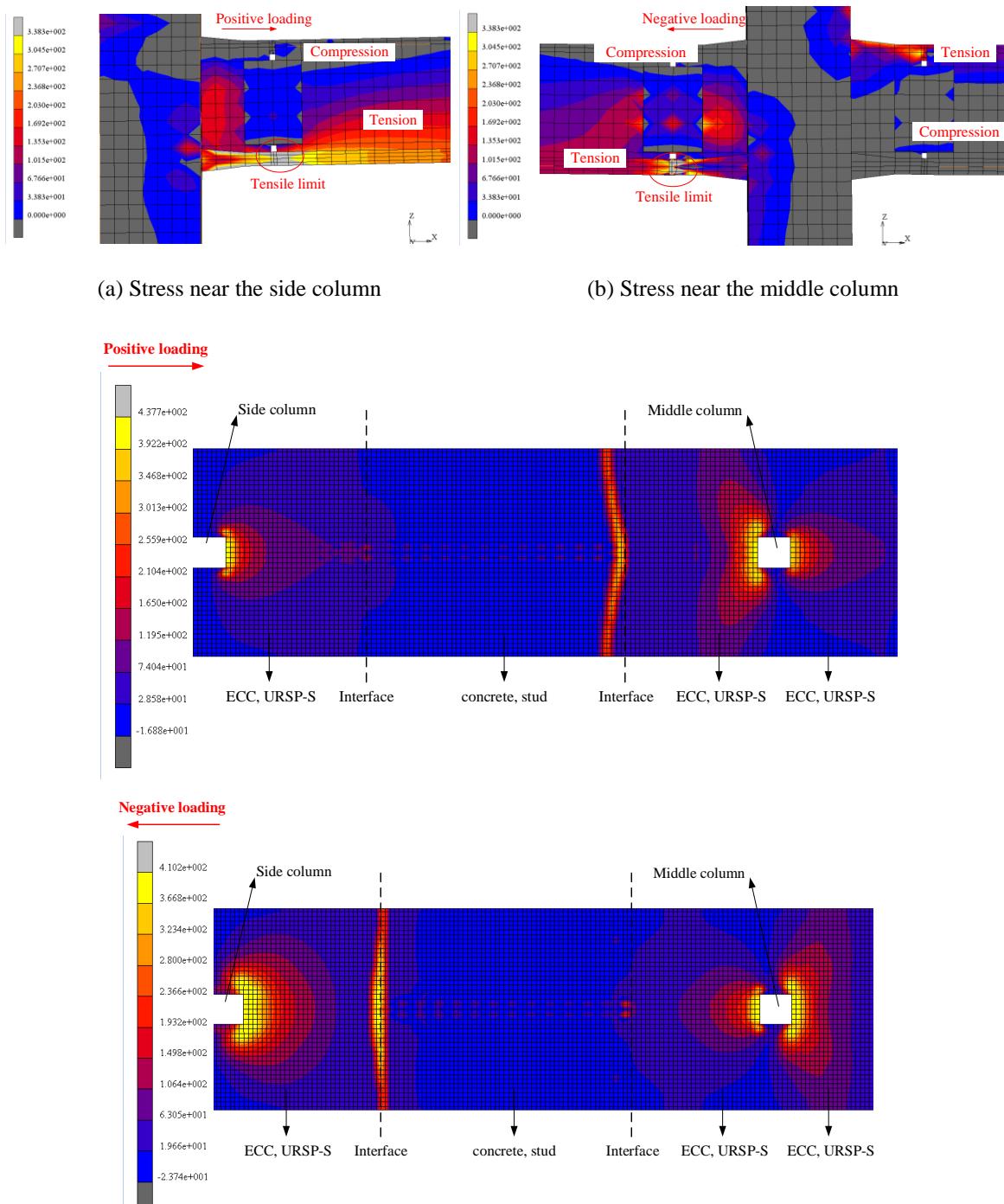



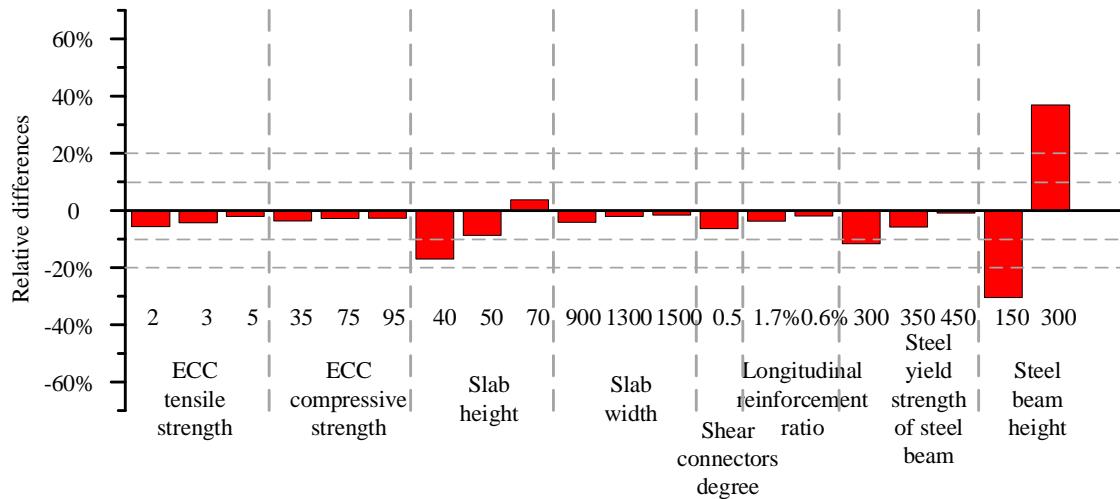
Fig. 21. Bending moment diagram of Specimen SCUE at the ultimate capacity (in units of kN·m).

(c) Equivalent Von Mises stress of slab upper layer reinforcement of positive and negative loading

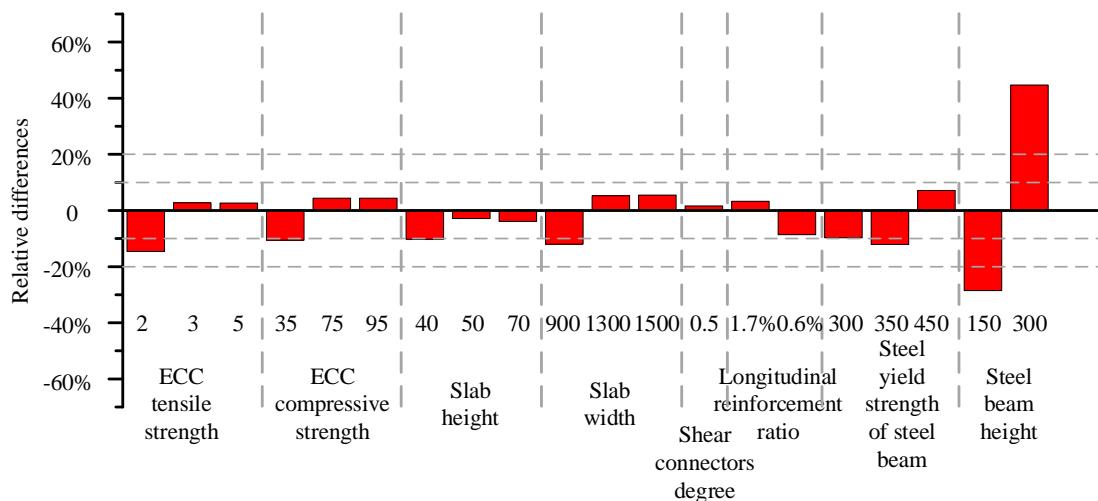
Fig. 22. FE results of Specimen SCUE at the ultimate capacity.

4.2 Capacity of the specimen frame under various parameters

To explore the influence factor of the capacity of steel-concrete-ECC composite frames with URSP-S connectors, parametric analysis was performed employing the validated FE model. The parameters included ECC properties (tensile and compressive strength), slab dimensions (thickness and width), shear connector degree, longitudinal reinforcement ratio of steel beam (yield strength of steel beam flange and height). As listed in Table 6, the initial values of parameters were determined in accordance with test specimen, and these ranges of the parameters covered most of the common engineering practice values. The column was assumed to be elastic during the simulation, which was consistent with the initial test. Therefore, the parameters related to the column were not considered in the analyses.


Table 6 Parameters considered in the supplementary models.

Parameters	Values (Bold font represents the initial values)
ECC tensile strength (MPa)	2, 3, 4, 5
ECC compressive strength (MPa)	35, 55 , 75, 95
Slab thickness (mm)	40, 50, 60 , 70
Slab width (mm)	900, 1100 , 1300, 1500
Shear connector degree	Partial, full
Longitudinal reinforcement ratio	1.7%, 0.94% , 0.6%
Steel yield strength of steel beam (MPa)	300, 350, 400 , 450
Steel beam height (mm)	150, 200 , 300


To quantitatively evaluate the influence factor of the frame capacity, the relative difference between the results of each case and the initial value is calculated and given in 23(a) and (b). The relative difference d_i of a certain case is defined as

$$d_i = \frac{F_i - F_0}{F_0} \quad (1)$$

1 Where F_i, F_0 are the frame capacity result of a certain case and the result using the initial
 2 value by simulation, respectively, and parameters of simulating cases are shown in Table 6.
 3
 4

23 (a) Capacity differences in the positive loading direction
 24
 25

43 (b) Capacity differences in the negative loading direction
 44
 45

46 Fig. 23. Influence factors of the capacity of the frame.
 47
 48

49 In the positive loading, the slab height, steel yield strength and steel beam height
 50
 51

52 influenced the structural capacity, whose relative differences were greater than 10% within
 53

54 their variation range, while the other factors did little influence on the frame capacity. In the
 55

56 negative loading, many factors influence the capacity including ECC tensile strength, slab
 57

58 width, steel yield strength and height of steel beam. The relative differences of these
 59

60 402
 61 403
 62 404
 63 405
 64 406
 65

1 parameters within their variation range were between 10%-20% except for the steel beam
2 height. Generally, the frame capacities in the positive and negative direction were mainly
3 affected by the steel beam height. The influence of these factors on the capacity of the frame
4 was through their influences on the beam. Since the effect of the properties of the slab on
5 the beam subjected to hogging moments was larger than sagging moments, and the
6 structural bending moment diagrams plotted in Fig. 21 show that there were two hogging
7 moments in the negative direction while one hogging moment in the positive direction.
8 Therefore, the capacity in the negative direction was more affected by the material
9 properties of the slab.

25 **5. Conclusion**

26 In this study, a steel-concrete-ECC composite frame with URSP-S connectors was
27 proposed and was experimentally studied with a large scale of 1/2 under vertical uniform
28 loads and lateral cyclic loads. The experimental results were analyzed and also compared
29 with those of different slab materials and shear connectors. Moreover, FE models of the
30 specimen frame were established and parametric analysis in terms of the capacity of the
31 frame was performed. Main conclusions can be drawn as follows:

32 1. The novel frame with ECC and URSP-S connectors behaved well and had good seismic
33 performance in terms of hysteretic behavior, stiffness, strength degradation and
34 dissipated energy. Plane section assumption was met at the early loading stage and the
35 shear-lag effect was found in the slab of this novel frame.

36 2. The comparison of the results of five specimens with different slab material and shear
37 connectors show that ECC and URSP-S connectors enhanced substantially the crack
38

1 425 resistance of slab while influencing the capacity of the frame within 10%. Specifically,
2
3 426 the decrease in crack width of the slab after using half-span URSP-S connectors and ECC
4
5 427 simultaneously in the frame was 55% when subjected to 5.82 t vertical load in the test.
6
7 428 The increase of crack number due to use of ECC was controlled well after applying
8
9 429 URSP-S connectors. ECC played a major role in controlling the crack width while
10
11 430 URSP-S connector played a major role in controlling the crack number. Furthermore,
12
13 431 URSP-S connectors and ECC increased the interface slip without influencing the
14
15 432 structural failure modes.

22 433 3. The established elaborate FE models can simulate the overall behavior and damage
23
24 434 concentration of the frame specimen effectively. The parametric analysis results by FE
25
26 435 show the capacity of the novel frame was mainly affected by the steel beam height.

31 436 On the basis of the limited number of test specimens, the results show that the steel-
32
33 437 concrete-ECC composite frame with URSP-S connectors has good performance, and ECC
34
35 438 and URSP-S connectors enhanced the crack resistance effectively. In the future, the specific
36
37 439 and reasonable arrangement of ECC and URSP-S connectors of the entire composite
38
39 440 structure to provide guidance for engineering design is need to be explored.

441 **Acknowledgments**

47 442 This research was supported by the National Natural Science Foundation of China (Grant
48
49 443 Nos. 51978377 and 52108153). The financial support is gratefully acknowledged.

53 444 **References**

55 445 [1] Elghazouli AY, Castro JM, Izzuddin BA. Seismic performance of composite moment-resisting frames,
56 446 Eng Struct 2008;30(7):1802-19.
57
58 447 [2] Spacone E, El-Tawil S. Nonlinear analysis of steel-concrete composite structures: State of the art. J Struct
59 448 Eng 2004;130(2):159-68.

1 449 [3] Nie JG, Huang Y, Yi WJ, Fan JS. Seismic behavior of CFRSTC composite frames considering slab effects.
2 450 J Cons Steel Res 2012;68(1):165-75.

3 451 [4] Nie JG, Tao MX. Slab spatial composite effect in composite frame systems. I: Effective width for ultimate
4 452 loading capacity. Eng Struct 2012;38:171-84.

5 453 [5] Fang J, Bao W, Ren F, Pang L, Jiang J. Behaviour of composite beams with beam-to-girder end-plate
6 454 connection under hogging moments. Eng Struct 2021;235(5):112030.

7 455 [6] Lin W, Yoda T, Taniguchi N, Kasano H, He J, Mechanical performance of steel-concrete composite
8 456 beams subjected to a hogging moment. J Struct Eng 2013;140(1):04013031.

9 457 [7] Li VC, Leung CKY. Steady-state and multiple cracking of short random fiber composites. J Eng Mech
10 458 1992;118:2246-64.

11 459 [8] Li V C. Engineered Cementitious Composites (ECC) –material, structural and durability performance.
12 460 In: E. Nawy (Ed.), Concrete Construction Engineering Handbook (2nd ed.), Boca Raton: CRC Press,
13 461 2009, Chapter 24.

14 462 [9] Singh M, Saini B, Chalak H D. Performance and composition analysis of engineered cementitious
15 463 composite (ECC) – A review. J Build Eng 2019; 26:100851.

16 464 [10] Li RZ, Deng MK, Zhang YX, Wei D. Shear strengthening of reinforced concrete deep beams with highly
17 465 ductile fiber-reinforced concrete jacket. J Build Eng,2021;48: 103957

18 466 [11] Wang ZB, Wang PY, Zhu FQ. Synergy effect of hybrid steel-polyvinyl alcohol fibers in engineered
19 467 cementitious composites: Fiber distribution and mechanical performance. J Build Eng, 2022;62:105348

20 468 [12] Fan JS, Gou SK, Ding R, Zhang J, Shi ZJ. Experimental and analytical research on the flexural behaviour
21 469 of steel-ECC composite beams under negative bending moments. Eng Struct 2020;210:17.

22 470 [13] Rana MM, Lee CK, Al-Deen S, Zhang YX. Flexural behaviour of steel composite beams encased by
23 471 engineered cementitious composites. J Constr Steel Res 2018;143:279.

24 472 [14] Khan M, Lee C K, Zhang Y X. Parametric study on high strength ECC-CES Composite Columns under
25 473 Axial Compression. J Build Eng, 2021;8:102883.

26 474 [15] Yang X, Xu L, Pan JL. Mechanical behavior of full-scale composite steel plate shear wall restrained by
27 475 ECC panels. J Build Eng, 2021;44:102864.

28 476 [16] Nie X, Duan LL, Zhuang LD, Ding R, Fan JS. Experimental and numerical study on steel-concrete
29 477 composite frames with engineered cementitious composites. Eng Struct 2022;265:114489.

30 478 [17] Nie JG, Wang JG, Gou SK, Zhu YY, Fan JS. Technological development and engineering applications
31 479 of novel steel-concrete composite structures. Front Struct Civ Eng 2019;13(1):1-14.

32 480 [18] Nie X, Fan JS, Shi YJ. Elastic analysis of composite beam with local-released combined action. China
33 481 Civil Eng J 2013;46(11):105-111.(in Chinese).

34 482 [19] Duan LL, Chen HB, Nie X, Han SW. Experimental study on steel-concrete composite beams with Uplift-
35 483 restricted and slip-permitted screw-type (URSP-S) connectors. Steel Compos Struct 2020;35(2):261-78.

36 484 [20] Zhu L, Wang JJ, Li X, Tang L, Yu BY. Experimental and numerical study of curved SFRC and ECC
37 485 composite beams with various connectors. Thin Wall Struct 2020;155:106938.

38 486 [21] Nie X, Duan LL, Tao MX, Guo YT. Experimental investigation on the behavior of the steel-concrete
39 487 composite frames with uplift-restricted and slip-permitted screw-type (URSP-S) connectors. Eng Struct

488 2022;254:113868.

1 489 [22] Duan L, Nie X, Ding R, Zhuang L. Research on application of uplift-restricted slip-permitted (URSP)
2 490 connectors in steel-concrete composite frames *Appl Sci.* 2019;9(11):2235.

3 491 [23] Li ZY, Tao MX, Nie JG, Fan JS. Analysis and optimization of a continuous composite bridge with uplift-
4 492 restricted and slip-permitted connectors. In *IABSE Symposium Report*; International Association for
5 493 Bridge and Structural Engineering: Zurich, Switzerland, 2017.

6 494 [24] MSC. Software Corp. *MSC. Marc user's manual*. MSC. Software Corporation, Santa Ana, CA; 2007.

7 495 [25] JGJ 138-2016. *Code for Design of Composite Structures*. Beijing, China: China Architecture & 468
8 496 Building Press; 2016. (in Chinese).

9 497 [26] GB 50011-2010. *Code for Seismic Design of Buildings*. Beijing, China: China Architecture & Building
10 498 Press; 2010. (in Chinese).

11 499 [27] GB/T 50081-2019, *Standard for Test Methods of Concrete Physical and Mechanical Properties* Ministry
12 500 of housing and urban-rural development of China, Beijing, China (2019). (in Chinese).

13 501 [28] Gou SK, Ding R, Fan JS, Nie X, J. Zhang, Experimental study on seismic performance of precast
14 502 LSECC/RC composite joints with U-shaped LSECC beam shells. *Eng Struct* 2019;189(JUN.15):618-34.

15 503 [29] GB/T228-2010. *Metallic Materials-Tensile Testing at Ambient Temperature*. Beijing, China: China
16 504 Standards Press; 2010. (in Chinese).

17 505 [30] GB 50009-2012. *Load code for the design of building structures*. Beijing, China: China Architecture &
18 506 Building Press; 2012. (in Chinese).

19 507 [31] Peng P, Gang Z, Lu X, Deng K. Force-displacement mixed control for collapse tests of multistory
20 508 buildings using quasi-static loading systems. *Earthquake. Eng Struct* 2014;43(2):287-300.

21 509 [32] Wang JJ, Tao MX, Zhou M, Nie X. Force transfer mechanism in RC beams strengthened in shear by
22 510 means of steel plated concrete. *Eng Struct* 2018;171:56-71.

23 511 [33] Amadio C, Bedon C, Fasan M, Pecce MR. Refined numerical modelling for the structural assessment
24 512 of steel-concrete composite beam-to-column joints under seismic loads. *Eng Struct* 2017;138:394-409.

25 513 [34] Braconi A, Bursi OS, Fabbrocino G, Salvatore W, Tremblay R. Seismic performance of a 3D full-scale
26 514 high-ductility steel-concrete composite moment-resisting structure— Part II: test results and analytical
27 515 validation. *Earthq Eng Struct Dyn* 2008;37:1635-1655.

28 516 [35] Bursi OS, Sun FF. Non-linear analysis of steel-concrete composite frames with full and partial shear
29 517 connection subjected to seismic loads. *J Constr Steel Res* 2005;61(1):67-92.

30 518 [36] Zhou F, Mosalam KM, Nakashima M. Finite-element analysis of a composite frame under large lateral
31 519 cyclic loading. *J Struct Eng* 2007;133(7):1018-1026.

32 520 [37] Rüsch H. Research toward a general flexural theory for structural concrete. *ACI Struct J* 1960;July:1-28

33 521 [38] Huang T, Zhang XY. Numerical modelling of mechanical behaviour of engineered cementitious
34 522 composites under axial tension. *Comput Struct* 2016;173:95-108.

35 523 [39] Wang W, Teng S. Finite-element analysis of reinforced concrete flat plate structures by layered shell
36 524 element. *J Struct Eng* 2008;134:1862-72.

37 525 [40] Ollgaard JG., Slutter RG, Fishe JW. Shear strength of stud connectors in lightweight and normal-weight
38 526 concrete. *AISC Eng J Am Inst Steel Constr* 1971;169(8):55-64.

1 527 [41] Amadio C , Bedon C , Fasan M. Numerical assessment of slab-interaction effects on the behaviour of
2 528 steel-concrete composite joints. J Constr Steel Res 2017;139:397-410.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65