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Abstract

This paper studies the dynamic event-triggered intermittent control (D-ETIC) for the stabilization of delayed dynamical
systems (DDS). The stabilization of DDS via general intermittent control is formulated as a problem of delay-dependent
minimal activation time rate (MATR). A D-ETIC scheme with input delay is proposed to stabilize DDS. The delay-dependent
MATR is estimated. And the maximal input delay allowed in D-ETIC is estimated for quasi-linear DDS. Both theoretical
and numerical comparisons are given among D-ETIC, static ETIC (S-ETIC), and the recently developed static intermittent
control schemes, including time-triggered intermittent control and event-triggered aperiodic intermittent control. It is shown
that the proposed D-ETIC achieves the lowest MATR. It is also shown that larger delays, including the time delay in DDS
and the input delay in D-ETIC, may lead to more control activation time for the stabilization.

Key words: Stabilization; delayed dynamical systems; event-triggered intermittent control (ETIC); activation time; time delay.

1 Introduction

Intermittent control is attracting more and more inter-
est in the field of control (e.g., [1-4]). In some practical
problems, such as vehicle control, orbital adjustment of
space shuttles, and management of smart grids with dis-
tributed generations and energy storage units, the con-
trol of these systems is intermittent. There is no need to
continuously control these systems at all the times like
continuous control. And it is not possible to execute and
complete every control in an instant like impulsive con-
trol (e.g., [5-8]). Hence, in these practical applications,
it is meaningful to use intermittent control.

Recently, two types of intermittent control schemes have
been proposed, including periodic intermittent control
(PIC) and aperiodic intermittent control (AIC). In the
PIC scheme, the control width and the non-control width
all keep unchanged. So the entire control is periodic (e.g.,
[2,11-13]). This control method is easy to be executed,
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but as noted in [14-16], the restriction on periodicity
might be conservative and unnecessary in some prac-
tical problems, e.g., vehicle control. The AIC scheme
is more flexible and can relax the periodicity restric-
tion in PIC. This makes AIC more general and versa-
tile than PIC, see, e.g., [14-18]. However, the reported
AIC is often time-triggered and is designed via Lyapunov
stability conditions or dwell-time conditions ([19,20]).
The sufficient stabilization conditions are independent
of states and may be conservative. It may lead to re-
dundant and sometimes unnecessary control activation
time. This problem was formulated as the minimum ac-
tivation time rate (MATR) of AIC in [17].

For the stabilization via AIC, although it is difficult to
find the MATR, it is meaningful to design an AIC with
a relatively lower MATR. By integrating the event-
triggered control ([21-26]) and the event-triggered im-
pulsive control ([9,10]) into AIC, the event-triggered
aperiodic intermittent control (E-AIC) was proposed
([17,18]). It was shown that E-AIC could achieve smaller
MATR than the time-triggered intermittent controls
(TTIC) (including time-triggered PIC and AIC). How-
ever, there are still some shortcomings in the designed E-
AIC. The E-AIC by [17,18] is not fully event-triggered,
and for the MATR problem, the control width that is
not based on the state may result in excess control time.
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Thus, the activation time rate of E-AIC may still be
high. Moreover, the E-AIC in [17,18] is designed only for
systems without time delays. It is clearly not suitable
for systems with time delays. Hence, an open question
is how to design event-triggered intermittent control
(ETIC) with lower MATR for delayed dynamical sys-
tems (DDS). And the questions on how to estimate the
MATR of ETIC, and how to estimate the effects of time
delays on ETIC and MATR are also challenging.

Note that a scheme of dynamic event-triggered control
(D-ETC) was developed in [27]. Compared with static
ETC, D-ETC has extra internal dynamics in the event-
trigger condition. By [27], the triggering times of D-ETC
are less than that of the static ETC. Thus D-ETC can
save more system resources. Recently, many develop-
ments on D-ETC have been obtained, e.g., [28-31].

Motived by the above observations, in this paper, we
study dynamic event-triggered intermittent control (D-
ETIC) with input delay for stabilization of DDS. First,
we formulate the stabilization via general intermittent
control as a problem of delay-dependent MATR. Then,
we propose a scheme of D-ETIC with input delay, where
a dynamics is designed into ETIC. Both the control
starting time and the control width are state-dependent
and determined by event conditions. Moreover, the time
delay in DDS is taken into the design of events. It is
shown that the stabilization of DDS is achieved by the
designed D-ETIC with input delay. Comparisons on
MATR of D-ETIC, TTIC, E-AIC by [17,18], and static
ETIC (S-ETIC), are given via both theoretical analysis
and numerical simulations.

The main contributions of the paper include: an event-
triggered and delay-dependent D-ETIC with input delay
is proposed, which is a clear improvement over static and
delay-independent E-AIC without input delay by recent
[17,18]; the dynamics introduced into D-ETIC make D-
ETIC have lower MATR than S-ETIC; both theoreti-
cal comparisons and numerical simulations are derived
among MATR of D-ETIC, TTIC, E-AIC, and S-ETIC,
and D-ETIC achieves the lowest MATR; the effect of
time delay on MATR is analyzed, and it is shown that
a larger delay including time delay in DDS and input
delay in D-ETIC leads to more control activation time
for stabilization, and the maximal input delay allowed
in D-ETIC is derived for quasi-linear DDS.

The rest of this paper is organized as follows. In Sec-
tion 2, we present preliminaries. In Section 3, we design
the D-ETIC scheme, give comparisons on MATR of D-
ETIC, TTIC, E-AIC, and S-ETIC, analyze the effect of
the time delay on MATR, and extend the D-ETIC to
the sampling-based D-ETIC. In Section 4, a numerical
example is given to illustrate the correctness of the ob-
tained results. Section 5 provides some conclusions.

2 Preliminaries

In the sequel, R denotes the field of real numbers, Ry =
[0,+00), R™ the n-dimensional Euclidean space, N =
{0,1,2,---}. Given a matrix A € R™™" let ||A] =
MAmax(ATA)]2, where Amax(+) is the maximum eigen-
value of the matrix (). And let p(A) denote the spec-
tral radius of the matrix A and I,, denote the n x n
unity matrix. For h* € Ry, let C'([—h*, 0]; R"™) be the set
of continuous functions defined on [—h*, 0], and define

[@lln- 2 sup_-<,<o{lld(s)[1}, Vo € C([=h*, 0], R™).
Consider a delayed dynamical system (DDS) as

&(t) = f(x(t), z(t = h(t)), u(t)), t = to, (1)

where € R™; f is continuous with f(0,0,0) = 0; u is
the control input; and h(t) is the time delay satisfying
0 < h(t) < h§ < oo with the maximal time delay hg. For
any 7° > hj, assume the solution z(t) £ x(t,to, ¢) of
(1) exists uniquely for any initial condition (tg, ¢) with
xo = ¢ € C([to — 7*, 0], R™) and is forward complete.

Assumption 2.1. There exists a Lyapunov-like func-
tion V : R™ — R, satisfying:
(i) for constants ¢; > 0,¢q > 0,7 > 0,

allzl|” < V(x) < eslz||”, Vo € R™; (2)

(ii) the Dini derivative DTV along (1) with u = 0 satis-
fies: for some constants ag > 0, bg > 0,

DYV (a(t))],_o < aoV (z(t)) + bV (z(t));  (3)
(iii) there is a control law, for continuous function ¥ (-),

U = ¢($)a (4)

such that for some input delay ¢* > 0 and some con-
stants a and b with a > b > 0,
D+V(x(t))|u —aV(x(t)) + bV (2(t)),
(5)
holds for all continuous input delay ¢(t) satisfying 0 <
q(t) < ¢*, where V(z(t)) = max;_p<s<¢{V (z(s))} with
h* & max{2q¢*, h} + ¢*}.

(= (a(t—g(t)) =

Remark 2.1. Assumption 2.1 (ii) means DDS (1) with
u = 0 is unstable while DDS (1) is stabilized by the con-
trol law (4) (see Lemma 2.2). Here, the maximum delay
h* is set as h* = max{2q¢*, h§ + ¢*}. This is based on
the fact that under the input delay of u, the transforma-
tion z(t — q(t)) = x(t) + (x(t — q(t)) — x(t)) = =(t) -
J2 o F@(tts), 2(t+s—h(t+s)), Y(@(t+s—q(t+s))))ds
is often required in the calculation of DV (z(t)).



In this paper, by Assumption 2.1, we consider an inter-
mittent control denoted by (u, {¢;}, {7:}) with 7o = 0 as:

u(t) = {wx(t a0 e (it iz 1 o

0, te (ti —|—Ti,ti+1], >0,

where t; and t; + 7; are respectively the starting and the
completion time of u on the interval (¢;,¢;11] and satisfy

to<ti<ti+n <t < - <t <t+7 <tip1 <o
(7)

Here, 7; is called the i-th control-width or active time

and s; = t;41 — t; — 7; is the i-th non-control-width.

Under the control law (6), DDS (1) becomes:

{ i = f(z,2(t — h(t), vzt — q(t)), t € (ti,t; + 7,
T = f(x,z(t — h(t)),O), t e (ti + Tiati+1]a i€ N.
(8)

Remark 2.2. In some literature, the intermittent con-
trol might be inactively forced due to the uncertainty
or disturbances which can lead to that control can be
implemented intermittently. Like many other works (see
[11-18] for examples), this paper considers active inter-
mittent control problems. The meaning of considering
this active intermittent control is that in some physical
systems, such as smart grids and spacecraft, the active
intermittent control should be used once the state of the
system runs into unsafe and unstable areas.

Definition 2.1. The DDS (1) is said to be exponentially
stabilized by the intermittent control (6) if the system
(8) is globally exponentially stable, i.e., ¥(to, ¢), and for
some a > 0, K > 0, ||2(t)]| < Ke=®=0)||¢]|;x, Vt > to.

Definition 2.2. The intermittent control (u, {t;},{7})
is called non-Zeno (NZ) ift;11 > t;, Vi € N, lim ¢; = co.
11— 00

Further, the intermittent control (u, {¢;}, {m;}) is called
non-trivial (NT) if 0 < Tiax = sup;en{m : 7% > 0} < oc.

MATR Problem: Let Assumption 2.1 be satisfied. We
formulate the stabilization issue of (1) via intermittent
control (u,{t;},{7}) as a problem of delay-dependent
minimal activation time rate (MATR):

i

{hminf ﬂ},

Rumin(h*) £  min ]
i—oo T41 — to

{ti}{m}
s.t. (1) is stabilized by (u, {t;}, {7:}) satisfying NZ-NT.

In this paper, for the MATR problem, we design a
dynamic event-triggered intermittent control law (D-
ETIC), estimate the MATR, and analyze the impact of
the time delay on the MATR Rin(h*) and the D-ETIC.

Remark 2.3. (i) In [17], the delay-independent Ry is
used for the MATR problem. Here, note that the control
time sequence {t;} and the control width sequence {;}
are dependent on the time delay. Hence, in the MATR
problem, we use Ruyin (h*) to replace Ruyin to reflect the
effect on MATR from the time delay.

(ii) Generally, it is difficult to solve the MATR problem.
Note that Ruyin(h*) = min { lim inf R(h*, z)}, where
‘ {t:i},{m:} 1—00
D DS
Do Tt 0

vation time rate.

R(h*,i) = is defined as the i-th acti-

Lemma 2.1. ([32]) Assume v € C([tp — h*,+00),Ry)
satisfies the following differential delayed inequal-
ity (DDI): DYo(t) < agu(t) + bov(t), t > to > 0,
where ap € R and by € Ry satisfy a9 + bp > 0,
and 9(t) = max¢_p-<s<t{v(s)}. Then, v(t) < (1 +
boh*)e(ao‘*‘bo)(t—tO)T;(to), t > tg.

Lemma 2.2. (Halanay Lemma ([32])) Let v € C([tg —
h*, 4+00),R ) satisfy the Halanay inequality: DT v(t) <
—av(t) + bo(t), t > to > 0, where a > 0 and b € Ry
satisfy —a+b < 0, and 9(t) = max;_p-<s<¢{v(s)}. Then,
v(t) < e ANETR)G(ty), t > tg, where A > 0 is the unique
root of A — a + be*” = 0.

3 Main Results

In this section, we give the D-ETIC scheme. Then, we
derive the stabilization of DDS (1) via D-ETIC and esti-
mate the MATR of D-ETIC. And we make comparisons
on MATR of D-ETIC, TTIC, E-AIC, and S-ETIC.

Let Assumption 2.1 hold with parameters ag > 0,by >
0,a > b>0. Let g1(h*) > 0 be the unique root of

s—a+be’" =0, (9)

Note that for every h* > 0, there exists a unique
root ¢g1(h*) > 0 satisfying (9). For some constants
Omax > 1 and opmyn < 1, define gg, 69, 61 as:

A 2 Inomax—In(1+boh™) A px _ Inomig
go_a0+b0760_ g0 761 _h gl(h*)'

For DDS (1), we define a dynamic system as:

(10)

{ D(t) = —Ev(t) +nV(x(t), t > to,
v(ty) = V(xo),

where £ > 0 and 1 > 0 are some constants.
Given V() and v(t), constants omax > 1, v > 0, define:

Cls,t] 2{0:5<0<t,V(z(0) > (0)+omaxV (z(s))}.



D-ETIC for DDS (1): The D-ETIC scheme is based
on the dynamics (10) and three indices: the threshold-
value onax > 1, the control-goal index o, < 1, and
the check-period A > 0, which satisfy:

A > max{dp, 61,h*}, 1+bph* < Omax < 0ty (11)

min*

Set 79 = 0. The (i + 1)-th D-ETIC (u(t),t;41,Tit1) is

min{t : t € C(t; + 7i,t; + 7 + Al},
if C(t; + 7yt + 1 + A) # 0; (12)
ti+71+ A HCH + 7t + 7 + A = 0
Tiv1 = min{7 : V(z(tiz1 + 7)) < ominV (2(tig1)) };(13)
_ { Y(a(t = q(t), t € [t tirs +Tirn),

0, t€ [tiy1 + Tit1,tit2).

tit1 =

(14)

S-ETIC for DDS (1): Specifically, in (12), if v = 0,
then the ETIC is independent of the dynamics (10), and
thus, it is static. We call it static ETIC (S-ETIC).

Remark 3.1. The D-ETIC (10)-(14) is based on the
Lyapunov-like function V on the delay intervals, the dy-
namics v(t), and the three indices: omax, Omin, and A.
The threshold-value oax and the check-period A are
used to get the control starting time sequence {¢; }, while
the control-goal index omiy is used to check the con-
trol goal, i.e., V(z(t + 7)) < ominV (z(t)), and deter-
mines the control width sequence {7;}. Compared with
time-triggered intermittent control (TTIC) ([2,11-16))
and event-triggered aperiodic intermittent control (E-
AIC) ([17,18]), there are some basic differences among
D-ETIC, TTIC, and E-AIC. Both TTIC and E-AIC are
static. Here, in (12), only if v = 0, then the ETIC is
static, i.e., S-ETIC. In TTIC, both the control start-
ing time ¢; and the control width 7; are determined
only by Lyapunov stability conditions and are state-
independent. In E-AIC, the information of time delay,
including the input delay ¢(t), is not taken into consid-
eration in u. In E-AIC, every 7; is determined by the sta-
bilization condition and is state-independent. While in
D-ETIC, it is fully state-dependent, i.e., all 7; and t; are
determined by the event-trigger conditions. Moreover,
in E-AIC, 7; > 0 is required for all 4 > 1. While in D-
ETIC (10)-(14), 7; = 0 in the case that the control goal
is already satisfied at some control starting instants ¢;.

Note that s; = t;41 — t; — 7;. Define the i-th average
control width and average non-control-width respectively
as: 7; & ijo Tj, 5 = ZJ =% . Then, R(h*,i) = ?:ﬁgi.
Define the maximal/ mimmal average control width as:

7_-max = SupieN{ﬂ'}a 7_-min é infiEN{fi}-

Theorem 3.1. Let Assumption 2.1 be satisfied. Let
the parameters ~, &, and n in D-ETIC (10)-(14) sat-
isfty v > 0, £ > yp > 0 and p(0©) < 1, where

o (ammomax oy (2 + Do) (e 50))

1 4 M%minTmax e —(&—vm)do

3
Then, D-ETIC (10)-(14) is NZ-NT and DDS (1) is
exponentially stabilized by D-ETIC (10)-(14) with

Ronin (h*) < _ Tmax

=~ y Tmax < Tmax < 1. (15)
(50 ~+ Tmin

Proof. First, we show that
Tmax = sup{7;} < d1. (16)

For Vt € [t;,t; + 7;), since the D-ETIC is input into (1)
on [t;, t; + i), i.e., u(t) = ¥(x(t)), it follows from (5)
and (14) that D+V(a:(t)) < —aV(x(t)) + bV (x(t )) for
Yt € [t;, t; + 7;). By Lemma 2.2, we get that for 7; > 0,

V() < eIV (a(t), t€ [t ti 7). (17)

From (17), we get that
Vet + 7)) < e o=y (2(¢,)). (18)

Moreover, by the continuity of V', we have V (x(t;+7;)) =
OminV (2(t;)). Tt yields that opmin < e91 (W)™ g=g1(R*)Ti
Thus, 7; < h* — 7= = §;. Hence, (16) holds.

Now, for the non-Zeno (N
show that

7) of D-ETIC (10)-(14), we

0 < do < min{s;} < A. (19)
By (11), we get dp > 0. And by (16) and (11), we have
Ti < Tmax < 01 < A for all 7 € N. Since there is no
control input on [t; + 7;, ;1) for (1), i.e., u(t) =0, Vt €
[ti + Tis tit1), by (3), we have DTV (z(t)) < aoV (x(t)) +
boV (z(t)) on [t; + 74, ti+1). Thus, by Lemma 2.1, we get

V(x(t)) < e

where §y = 1+ bph* and go = ag+bp > 0. Thus, by (20)
and the continuity of V', we get

LTIV (2t 4+ 1), (20)

V(a(tinn)) < Goe™ =V (a(t + 7). (21)

If C(tl + Ti,ti + 7 + A] 75 @, then ti+1 S ti + 7+ A
and by the continuity of V(z(t)), we have V(z(t;+1)) =
TmaxV (x(t; +7;)) + yv(tiv1). It follows from (21) that
Omax < foegO(t’iJrl_t’i_”). ThllS, we get

60S5i=ti+1—ti—TiSA. (22)
IfC(tZ + Ti,ti + 7 + A] = @, then ti+1 = ti —+ 7+ A. By
(11), we get that

Si:ti+1*ti*Tz:A>5O (23)



Hence, by (22)-(23), we get that (19) holds.

It follows from (19) that t;41 —t; = s; + 7 > dp > 0.
Thus, D-ETIC (10)-(14) is non-Zeno satisfying (19).
By using the estimates of (16) and (19) and the definition
of Tmax, We get that Ruyin (h*) < 5mex—. Clearly, Tmax <
Tmax < 01. Hence, we get that (15) is satisfied.

Now, we show DDS (1) is stabilized by the D-ETIC. For
any t € [t;,t;+7;], under the control input u(t) = ¥ (x(t))
and by (13) and the continuity of V', we get that

V(z(t; + 7)) = ominV (2(t;)). (24)

Moreover, from (12), we have, Vt € [t; + 7;, tiv1],

V((t) < omaxV (x(ti + 7)) +w(t),  (25)

which implies that

V(z(ti+1)) < omaxV (x(ti + 7)) +77(tipr).  (26)

For the function v(t), ¥t € [t; + 7;,ti+1], by (10), (12),
and (24)-(25), we get that v(t) < —(& — yp)v(t) +
NOminTmaxV (2(t;)). Thus, Vt € [t; + 74, ti11], we get that

110 minOmax

T (o))

(27)
And for t € [t;,t; + 7], from (25) and (17), we get that

v(t) < e—(&—vn)(t—ti—n)y(ti 1)+

v(t) < ety (t) + gf/(ax(ti)). (28)

It follows from (27)-(28) that, V¢ € [t; + 74, tit1],

v(t) < e EMMEty () + 01V (2(;)), (29)
where 0, = 1 + 1%piaZuex From (29), (19), we get that
V(tiJrl) S 9221/@1') + 921‘7(%(?51)), (30)
P(tipr) < eCTMETT0 (1) 4 05,V (a(h:)), (31)

where oy = e~ (6=7)% By (26), (24), and (31), we get
V(x(tiyr)) < 0nV((t;)) + 012v(t:), (32)
where 911 = OminOmax T 79217 012 = ’76(6_7”)(}1*_60)'

Denote y(i) = (V(x(t;)),v(t;))T for all i € N. Noting
© = (6ij)2x2, and by (30) and (32), we get that Vi € N,

y(i+1) < Oy(i), Vie N. (33)

By p(©) < 1, we get that the discrete-time system (33)
is exponentially stable. Thus, for some a > 0 and K > 0,

()|l < Ke™*[ly(0)]|, i € N. (34)

Thus, Vt € [t;,t; + 7], by (34) and (17), we get that
V(z(t) < V(x(t:) < Ke™[ly(0)]. (35)
By (34), (24)-(25), and (29), Vt € [t; + T4, tit1], we get
V(@) < yv(ts)+0uV (2(t:)) < Ke_ai(7+911)\\y((0)||)-
36
Thus, for all t € [t;,t;41], from (35)-(36) and noting
v(tg) = V(zo), we have

V(z(t)) < V2K max{1,vy + 011 }e “V(zo).  (37)

By (2), (37), and (19), we get

lz(t)]| < Kem®=1))| g5, (38)

r max V2K max 1,v+6 1/r - o «
where K = (£ umm{ 2l 11}) &= A
0. Hence, DDS (1) is exponentially stabilized. O

Remark 3.2. (i) By (15) of Theorem 3.1, the MATR
Rumin(h*) is dependent on h* and g;(h*). Note that
g1(h*) is strictly decreasing w.r.t. h*. By (15), a larger
(smaller) maximal time delay A* in DDS (1) makes D-
ETIC (10)-(14) have more (less) control activation time.

On the other hand, for a fixed h*, if we use stronger
(weaker) control function ¢ () such that a in (5) is bigger
(smaller), then g1 (h*) in (9) is bigger (smaller). By (15),
a stronger (weaker) control leads to less (more) control
activation time in D-ETIC (10)-(14).

(ii) Noting for any opmin and omax satisfying ominOmax <
1, there always exist parameters v > 0, £ > yn > 0 sat-
isfying p(©) < 1. Hence, there always exists a dynamics
(10) satistying the condition of Theorem 3.1.

Corollary 3.1. Let Assumption 2.1 be satisfied and let
the parameters v, £, and 7 in (10)-(14) satisfy yn = 0 and
¢ > 0. Then D-ETIC (10)-(14) is NZ-NT, and DDS (1) is
exponentially stabilized by D-ETIC (10)-(14), satisfying
the estimates in (15).

Proof. It is derived by Theorem 3.1 with vn = 0. O

Now, we give comparisons on MATR of D-ETIC, TTIC,
E-AIC, and S-ETIC, and analyze the effect of the de-
lay. Let (u(t), {#{"}, {r"'}) and (u(t), {#{*}, {r"}) de-
note TTIC and E-AIC, respectively, where Té” = TéZ) =
7o = 0, and u(t) satisfies Assumption 2.1. For the com-
parison, we use the same gain function ¢ (x). Thus, for

(u(t), {tY {79}), 5 = 1,2, > 1, u(t) is in form of
apy = [ Pt —a®), te @ P+ r)
07 t c (tZ(J) +TZ(J)7t(J)1}

K3



Here, we also use the same Lyapunov-like function V' and
the same parameters omax, Omin, and A satisfying (11)
to give TTIC and E-AIC. And the following stabilization
conditions are used to design TTIC and E-AIC:

V@t +r7) < ounV(@(t), j=1,2,  (40)
V(@) < ominomaxV (2(tP)), j=1,2, i € N. (41)

Remark 3.3. By (10)-(14) and Theorem 3.1, S-ETIC,
i.e., D-ETIC with v = 0, also satisfies (40)-(41).

g1(h") In 73

Define c¢(h*) = go0h”g1(h7) a(h*) =

—Inomin —Inomin ’

* * c(h* *
and R (h ) #W. Let Rmin,y>0(h ),
Ruin,y=0(h*), R (h*), and R®) (h*) denote MATR

of D-ETIC with v > 0, D-ETIC with v = 0 (S-ETIC),
TTIC, E-AIC, respectively.

Theorem 3.2. Let Assumption 2.1 be satisfied. For the
stabilization of DDS (1) via the above TTIC, E-AIC, S-
ETIC, and D-ETIC, suppose that (40)-(41) hold. Then,
(i) D-ETIC (10)-(14) with v > 0 achieves the smallest
MATR than that of S-ETIC, E-AIC, and TTIC, and

7?/min,'y>0(h*) S Rmin,’y:O(h*) < R(Q) (h*) S R(l) (h*)

min min

= R*(h"). (42)

(ii) R*(h*) is strictly increasing w.r.t. h* and satisfies:
for any 0 < hy < h3,

90 * * (7% * (7%
m <R (0) <R (hl) <R (hQ) <1, (43)
lim R (h*) = 1. (44)

h*—o0
Proof. See Appendix.

Remark 3.4. (i) From Theorem 3.2, D-ETIC achieves
the lowest MATR than that of TTIC, E-AIC, and
S-ETIC, while TTIC has the highest MATR. (ii) By
Theorem 3.2 and (43)-(44), a larger time delay h*
leads to more control activation time. Specifically, if
h* — oo, then by (42)-(43), we get that the control
activation time of TTIC will reach the full time. In
this case, there is no basic difference between TTIC
and the continuous feedback control u(t) = ¥ (z(t))
for all t > tg. Another specific case is h* = 0 or
h* — 0. By (42)a we get 7zmin,’y>0(0) < 7zmin,'y:O(O) <

REL(0) < RLL(0) = R*0) = g0

so+01 O) T
Note that if let A = oOmaxOmin — 17, then, we
get that Rmin,’y>0(0)|>\_>17 S Rmin,w:()(o)h_ﬂf S

(2) _ @) :
Rmin(0>|)\_)1— < go+g_(;)1(0) = Rmin(o)’x—nf' Hence, if
no time delay exists in (1) and D-ETIC or the time
delay h* is sufficiently small, then we can choose oy ax

and opmin to satisfy omaxOmin — 17, the MATR of

both D-ETIC (10)-(14) and E-AIC will be less than

R(0) = —2—, while the MATR of TTIC equals to
go+91(0) .
R(O0) = 5% = @ +‘Zg;'+‘()a_b). This result is consis-

tent with the results in [17,18] without delays.

In the following, we extend the D-ETIC to a sampling-
based D-ETIC to reduce the computation in the D-
ETIC. Here, assume Assumption 2.1 is satisfied.

Sampling instants: Assume that N is the sampling
number during a check-period A > 0. The sequence of
triggering instants {¢;} satisfies: t;41 = t; + 7 +
for some integer m; satisfying 1 < m; < N. By (11)
and (16), the control width 7; satisfies 7, < A. Thus in
the case of sampling-based D-ETIC, assume 7; = {A
for some integer n; satisfying 0 < n; < N. Hence, all ¢;
and t; + 7; are the sampling instants. In addition, from
h* < A, assume that the maximal time delay h* satisfies
h* = ™= A for some integer ny- satisfying 0 < nj- <
N, otherwise, we use max{™*A < h*} to replace h*
without loss of the generality.

Calculations: We may only calculate the values of
V(z(t)) and V(z(t)) at the sampling instants as:
ti— A== h e = A G A
BN =t 4T, b+ Ti+ A, o T+ A =ty

Sampling-based D-ETIC: Choose three indices oy ax,
Omin, and A, which satisfy (11). Let NV be the sampling
number during a check-period A, and tg = 79 = 0. The
(’L + 1)—th D-ETIC (u(t), ti+1, Ti+1) is set by

mln{tz—i—n—&— %‘A EC(t2+TZ,t2+TZ+A]}7
if mi:min{mENzlngN,

tiv1 =4 V(e +7+ BA) > wit; + 7 + A) (45)
+Umax‘7(‘r(ti + Tz))} 7é (D’
t; + 7 + A, otherwise.
Ti+1:%A, where n; =min{l e N: 1 <[ <N -1,
_ l _
V(z(tiv1 + NA» < ominV (2(ti1))} (46)

where u(t) is set by (14) and the nonnegative constants
v, &€, and 7 are to be determined.

Theorem 3.3. Let Assumption 2.1 hold. Let the con-
stants v, £, n, and the sampling number N in (51)-(46)

satisfy v > 0, &€ > yn > 0, and p(©,) < 1, where O, =
A

A ) 90 N _ *_
UmingmaxegoN +ry(g + ﬁUnnngf];;;?e ) ’)/6(5 ym)(h*—do)

1 4 Nminmaxe® N e—(E=rmdo

1
Then the sampling-based D-ETIC satisfying (10)-(11),
(14), and (45)-(46) is NZ-NT and DDS (1) is exponen-
tially stabilized by such a sampling-based D-ETIC.



Proof. By the same proof of Theorem 3.1, we get that
the sampling-based D-ETIC is NZ-NT satisfying (19).
Note that in the sampling-based D-ETIC, by the trig-
gering condition (45) for {t¢;}, we get that V(z(t)) <
v (t) + amaxegﬂ%f/(x(ti + 7)) for all t € [t; + 74, tit1].
Thus, by using amaxeg"% to replace the parameter oyax
in D-ETIC (10)-(14), the left proof follows the similar
process of Theorem 3.1. The details are omitted here. O

For s € R, let [s] be the minimal integer larger than s.

Remark 3.5. In (10)-(11) and (45)-(46), suppose yn =
0, and the sampling number N satisfies:

N>1+ 902 } (47)

- [— In(0maxOmin)

Then, by Theorem 3.3, DDS (1) is exponentially sta-
bilized by such a sampling-based D-ETIC. The condi-
tion (47) implies OmaxOmin < ehN < 1. Compared to
OmaxOmin < 1 in D-ETIC (10)-(14), we can see the sam-
pling brings the constraint in the design of D-ETIC.

At the end of the section, we consider a quasi-linear DDS:
i(t) = Az(t) + Bx(t — h(t)) + ¢(x(t) + u(t), (48)

where 2 € R™; A = (a;5), B = (bij) € R"*"; ¢ satisfies
©(0) = 0 and for some L = (I;;) with ;; > 0, |p(x)] <
L|]J|, Va € Rna with |$| = (|.’L‘1|, e 7|anT'

Here, for the stabilization of (48) under D-ETIC, let
Y(z) = Kz and V(z) = maxi<i<n{|zi|}.
Let K = (kij),Ax = A+ K, D = KA = (d;;),F =
B = (fi;), G = K? = (gsj), C = KL = (c;;). And let
ap = maxi<i<ni{ai +li}, bo = maxi<i<n { Z;;i |laij] +
Z;;l |bij\}, a1 = —maxi<i<n{@i + ki + lii}, b1 =
maxi <i<n { |bii| + > izillai; + kij| + bi;])}, and dy =
maxi<i<n { Z?=1(|dij‘ + 19| + | fi5] + leiz]) }-

Theorem 3.4. For DDS (48), suppose ag > 0 and by > 0
and the matrix K is chosen to satisfy:

ap — b1 > 0. (49)

Then, (i) DDS (48) is exponentially stabilized by D-
ETIC (10)-(14), where the parameters v, &, n satisfy
v >0, >~n > 0and p(©) < 1, and the maximal input
delay ¢* in (14) satisfies

ay; — bl
dq

¢ < (50)

(ii) DDS (48) is exponentially stabilized by the sampling-
based D-ETIC satisfying (10)-(11), (14), and (51)-(46),

where v, &€, n, and N satisfy v > 0, £ > vy > 0 and
p(0) < 1, and the maximal input delay ¢* satisfies (50).

Proof. We first prove that Assumption 2.1 holds. For
V(z) = maxi<;<n{|2:|}, Assumption 2.1 (i) holds for
r=1/2,¢cp=1,and ¢ = 1/y/n.

Letting u = 0, by ( 8), we get &(t) = Ax(t) + Bx(t —
h(t)) + @(z(t ) It is easy to get that DTV (2(t))|u=o <
aoV (z(t)) +boV (z(t)). Thus, Assumption 2.1 (ii) holds.

Note that d; > 0 and there exists a positive constant
q* satisfying (50). Thus, for the control w with input
delay ¢(t) satisfying 0 < ¢(t) < ¢*, by (48) we get
(t) = Agx(t)+ Bx(t — h(t)) +o(x(t)) — f o) (Dx(t+
N +Gr(t+0—q(t+0))+Fax(t+0—h(t+0))+ Kp(x(t+

9)))d9 It follows that D+V( ())|u (t)=Ka(t—q(t)) <
—a1V(x(t)) + (b1 + dy - q(t))V (2(t)), where V(x(t)) =
max;_p-<s<¢{V(2(s))} with h* = max{2¢*, h§ + ¢*}.
Thus, Assumption 2.1 (iii) is satisfied with a = a; and
b = by + d1q*. Therefore, Assumption 2.1 is satisfied.

By Assumption 2.1, the results (i)-(ii) are derived di-
rectly from Theorems 3.1 and 3.3, respectively. |

Remark 3.6. Theorem 3.4 is still true if V(z) = 27 Px
and ¢ (z) = Kz for some matrices P > 0 and K. In this
case, the parameters ag, bg, a1, b1, d; in Theorem 3.4 are
obtained by the LMI technique.

4 Examples

In this section, we give one example for illustrations.
Consider a delayed Chua’s system as:

#(t) = Aw(t)+Ba(t—h(t))+o(x(t))+u(t), t > 0, (51)

—a(l+r) a 0
wherex € R3, A = 1 —11 |,B=0.015Is,
0 B30
p(z) = (p1(2),0,0)7, 1 (z) = —eln=r2llotlizln =1l
a =0.9216, 5 = 0.15995,r1 = —1.2495, ro = —0.75735.

Let V(z) = maxi<i<n{|zi|}, ¥(2) = Kz, K = —3.25I5.
Solving Assumption 2.1, we get that ag = 0.2299,by =
2.150,a = a1y = 4.250,b = by + d1q¢*,by = 2.150,d; =
20.800. Hence, by Theorem 3.4 and Remark 3.2(ii), there
exists a dynamics (10) such that the unstable system (51)
is stabilized by the D-ETIC (10)-(14) with the maximal
input delay ¢* satisfying ¢* < ‘“{;11“ = 0.1010.

Let h(t) = h§ = 0.4, ¢* = 0.1. Then h* = max{2q¢*, ¢* +
h$} = 0.5. And do(h*) = 0.9520, go = ag + bo = 2.3799,
and ¢1(h*) = 0.8918. In the simulation, let xzo(s) =
(sin(—hg), —e~ "0, cos(—hg))T for all s € [—h*,0].



S-ETIC (y=0) D-ETIC (y=0.2,7=0)

System states
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Fig. 1. (left) Stabilization via S-ETIC with input delay
q(t) = ¢" = 0.1. (right) Stabilization via D-ETIC with
v=0.2,7=0, and ¢(t) = ¢* = 0.1. Here, “0” is the starting
instant and “4” is the ending instant of each control.

For D-ETIC (10)-(14), choose indices omax, Omin, A as:
Omax = 20,0min = 0.045, A = 10. Then, omaxOmin =
0.9 < 1 and (11) is satisfies. And c¢(h*) = % =
034227 gl(h*) = (gl(h*) In 111;,‘:;;* )/(_ In Umin) =
0.6516. Thus, by Theorem 3.2, the maximal activation

time rate: R*(h* = 0.5) = 200 — 80.69%.

Case-I. Stabilization via S-ETIC and D-ETIC.

(i) S-ETIC, i.e., v = 0. The condition of Theorem 3.1
is satisfied since opaxOmin < 1. By Theorem 3.1, DDS
(51) is exponentially stabilized by such a S-ETIC. The
simulation is given in Fig. 1 (left). By the simulation,
the estimate of the activation time rate of S-DETIC is

_ 2T

Rfyzo(h* = 05) = ZT‘ n ZS'

~13.06%.  (52)

(ii) D-ETIC with v > 0 and n = 0. Here, set v = 0.2
and £ = 0.1, and use the same h* = 0.5. Then, © =

<0.9 0.1912

0 0.9092

orem 3.4, the system (51) is stabilized by the D-ETIC.
The simulation is given in Fig. 1 (right). Here, the acti-
vation time rate of D-ETIC is:

>. And p(0) = 0.9092 < 1. Then, by The-

R’y:O.2,n:O(h* = 05) ~ 1218% (53)

(iii) D-ETIC with v > 0 and 1 > 0. Here, set = 0.002,
and use the same v and &, and h* as in the above (ii),
ie,v=0.2 €& =0.1, h* = 0.5. Then, the matrix © =

<O.9076 0.1912

0.0381 0.9095

Theorem 3.4, DDS (51) is stabilized by such a D-ETIC.
The simulation is given in Fig. 2 (left). By the simulation,
the activation time rate of D-ETIC is:

). And p(©) = 0.9939 < 1. Then, by

Rfy:()‘z’n:o.oog(h* = 0.5) ~ 11.61%. (54)

(iv) D-ETIC with v > 0, n > 0, and bigger h*. Here,
set h* = 1.0, i.e., h§ = 0.9. The parameters v, £, and 7

D-ETIC (v =02, 7= 0.002,h" = 0.5) D-ETIC (y=02,7=0.002,h"= 1)

1 1

| 10
‘.74.4 - X3 +

System states

System states
L S RS

20 40 60 80 100 0 20 40 60 80 100
Time (second) Time (second)

Fig. 2. (left) Stabilization via D-ETIC with v = 0.2,
n = 0.002, ¢(t) = ¢" = 0.1, h* = 0.5. (right) Stabilization
via D-ETIC with v = 0.2, n = 0.002, q(t) = 0.1, B* = 1.

Here, “0” and “4” are the same meanings as in Fig. 1.

are the same as in (iii). i.e., v = 0.2,£ = 0.1, = 0.002.
Then, by Theorem 3.4, DDS (51) is stabilized by such
a D-ETIC. The simulation is given in Fig. 2 (right). By
the simulation, the activation time rate of D-ETIC is:

Ry=0.2,n=0.002(h* = 1) = 14.63%. (55)

(v) No input delay: ¢(t) = 0. Consider S-ETIC (y = 0)
and D-ETIC and use the same h* = 0.5 but ¢(¢) = 0. In
D-ETIC, the parameters v, £, and 7 are the same as in
(iii). i.e., vy = 0.2, = 0.1, = 0.002. By the simulation,
the activation time rates of S-ETIC and D-ETIC are:

Ro=0,q()=0 ~ 10.31%, Ry—0.2,(t)=0 =~ 9-89%. (56)

Summary-I: From Case-I, we conclude: by (52)-(54),
under the same time delay h*, the activation time rate
of D-ETIC is less than that of S-ETIC; by (53)-(54),
under the same h*, the activation time rate of D-ETIC
with bigger dynamics (n > 0) is less than that of D-
ETIC with smaller dynamics (n = 0); by (54)-(55), the
activation time rate of D-ETIC under bigger time delay
is larger than that of D-ETIC under smaller time delay;
by (56) and (52)-(54), the input delay lets the activation
time rate of both S-ETIC and D-ETIC be bigger.

Case-II. Comparisonson MATR of TTIC, E-AIC,
S-ETIC, and D-ETIC.

Here, for the comparison, we use the same control matrix
K = —3.2513, the same time delay h* = 0.5, and the
same stabilization conditions (40)-(41) to design TTIC
and E-AIC. Note: S-ETIC also satisfies (40)-(41).

Stabilization via TTIC (u(t), {tV},{r'"}): Let
TTIC (u(t), {tl(l)}, {Ti(l)}) with t(()l) = Tél) = 0 satisfy:

tz(‘-li-)l = tgl) + Ti(l) + sgl), where by the proof of Theorem
3.2 (see (60)-(61) in Appendix), Ti(l) = h* — ln‘;% =

3.9772, sél) = sl(-l) — Momax—In(1+boh™) _ (9590, And

g0
u(t) is in the form of (39) with ¢(x) = Kx. Then, by



TTIC E-AIC

System states
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Fig. 3. (left) Stabilization via TTIC, (right) stabilization via
E-AIC, where ¢(t) = 0.1, h* = 0.5. Here, “0” and “+” are
the same meanings as in Fig. 1.

the stabilization conditions (40)-(41), DDS (51) is sta-
bilized by such a TTIC. The simulation is given in Fig.
3 (left). For the activation time rate of this TTIC, it is

RM(h* =0.5) = R*(h* = 0.5) = 80.69%.  (57)

Stabilization via E-AIC (u(t), {t!*},{r®}): By
[17,18], let E-AIC (u(t), {t*}, {P}) with t{?) =
0 set as: Vi € N, 72 = 7 = 39772, > sV —
0.9520; {t§2)} satisfies (12) with v = 0; and u(t) is in
form of (39) with ¢(x) = Kz. Then, by (40)-(41), DDS
(51) is stabilized by such an E-AIC. The simulation is
given in Fig. 3 (right) with the activation time rate:

zr”
Y+ s

e~

RA(h* =0.5) = ~ 44.19%.  (58)

Summary-ITI: Under the same time delay h*, from (52)-
(54) and (57)-(58), the activation time rate of D-ETIC
is the lowest than that of TTIC, E-AIC, and S-ETIC.

5 Conclusions

In this paper, the dynamic event-triggered intermittent
control (D-ETIC) with input delay has been proposed for
the stabilization of delayed dynamical systems (DDS).
The stabilization of DDS via general intermittent control
was formulated as a problem of delay-dependent minimal
activation time rate (MATR). Then, a D-ETIC scheme
was designed. It was shown that the stabilization of DDS
was achieved by D-ETIC, and the MATR of D-ETIC
was estimated. And the maximal input delay was derived
for quasi-linear DDS. Moreover, the comparisons have
been given among D-ETIC, static ETIC (S-ETIC), the
time-triggered intermittent control (TTIC), and event-
triggered aperiodic intermittent control (E-AIC). From
the theoretical analysis and numerical simulations, we
conclude that: the dynamics let the activation time rate
of D-ETIC be lower than that of S-ETIC; D-ETIC has
the lowest MATR than TTIC, E-AIC, and S-ETIC; a
larger time delay, including input delay, leads to more
control activation time for the stabilization.

Appendix. Proof of Theorem 3.2. Note that TTIC,
E-AIC, and S-ETIC (10)-(14) with v = 0, all have
the common stabilization conditions (40)-(41). Letting

Yy (i) = V(m(tgj))) for 7 = 1,2 and ¢ € N, by similar
proof of (33), we get that

YD (i +1) < OmaxOminy? (@), i € N. (59)

From (41) with 01ax0min < 1 and by the similar proof of
(35)-(38) of Theorem 3.1, DDS (1) is exponentially sta-
bilized by the designed TTIC and E-AIC, respectively.
(i) Now, we show the inequality (42) holds.

Firstly, consider the case of TTIC (u(t), {tgl)}, {Ti(l)}).
For t € (tgl),tgl) + Ti(l)], by Lemma 2.2, we get that
V(x(t) < et (M), Thus, by (41), the
control width Ti(l) in TTIC satisfies:

(1) * In omin
T > h* — . 60
LT g1(h*) (60)

For t € (tz(-l) + Ti(l),tl(i)l], by Lemma 2.1, we get that

V((t) < &en 4" =m0V (w(t ) +71)). By (42), the
non-control width sil) in TTIC satisfies:
Inomax —In&y  Inopmax — In(1 + boh*)

(1)
s/ < = . (61
v 9o 9o (61

Therefore, from (60)-(61), we get that

Rl () = —— e

T o+ gi ()t e(hr) T R*(h*).  (62)

Secondly, consider the case of E-AIC (u(t), {t§2) I3 {Ti(z) 1.
By [17,18], in E-AIC, the triggering time sequence
{tz(?)} is determined by the event condition (12) while

the control width sequence {Ti@)} is determined by the
stabilization condition (41). Thus, by (12) and Lemma

2.1, we get that UmaxV(m(tEZ) + Ti(2))> = V(:r:(tﬁ)l)) <
(1+ boh*)ego“”f) V(m(tgz) + 7'1-(2))), which implies that
sgg) < In omax — In(1 + boh™)

- i

go

i>1.  (63)

The control width Ti(2) satisfies el 91(h") =g (k)P <

Omin. Thus, from (12) and (42), we get that a

(2) * In omin
7 >h* — .
LT g1(h*)

Therefore, for the MATR problem, by (63)-(64), we get

(64)

go + c(h*)
go + g1 (h*) + c(h*)

R () <

min

= R*(h*).  (65)



Thirdly, consider S-ETIC (u, {t;},{7:}): v =0.

Compared S-ETIC and E-AIC ([17,18]), the difference is
that every control width 7; in S-ETIC is state-dependent,
satisfying the event-trigger condition (13), while Ti(Q) in
E-AIC by [17] satisfies the stabilization condition (41).

By comparing (13) and (41), we have 7; < TZ-(Q). It follows
that the average control widths satisfy:

=Y nfi<t? =3P, vi>1.  (66)
= i=1

For the non-control width, both S-ETIC and E-AIC use
the same event condition (12) with the same parameters.

So we have 372 | s; = 377 2 Thus, for a sufficiently

j=1°7j
largei > 1, weget 5; = >0, 5;/i ~ 59 = > i1 s§2)/i.
Note that R(r) = . is strictly increasing. Hence,

by (66), for the sufficiently large i, R(7;) = =2

Fits; —
RGPy = 1 i hich implics that

T = —t =~ i which implies that

( i ) _Flgz)Jrgi _Féz)Jrggz) D p

Roniny=o(h*) < RO, (h°). (67)
Hence, by (67), (65), and (62), S-ETIC achieves the low-
est MATR than that of TTIC and E-AIC, i.e.,

Ranin r=0(h") < R, (07) < Ry, (7).

min

(68)

Finally, compare S-ETIC (y = 0) and D-ETIC (y > 0).
Clearly, it should wait for longer to trigger the event
condition with v > 0 than the case of v = 0. Thus, the
total non-control width for D-ETIC (10)-(14) withy > 0
will be bigger than S-ETIC. For the control width, both
cases have the same triggering condition. Thus, the total
control width for both cases is the same. Thus, we have

7?fmin,'y>0(h*) < Rminﬂ:()(h*)~ (69)

Hence, the inequality (42) is derived from (68)-(69).

(ii) The inequalities (43)-(44) is derived by the mono-
tonicities of the functions g1(h*), c(h*), g1(h*), and
R*(h*). The details are omitted here. O
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