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Abstract

This paper studies the dynamic event-triggered intermittent control (D-ETIC) for the stabilization of delayed dynamical
systems (DDS). The stabilization of DDS via general intermittent control is formulated as a problem of delay-dependent
minimal activation time rate (MATR). A D-ETIC scheme with input delay is proposed to stabilize DDS. The delay-dependent
MATR is estimated. And the maximal input delay allowed in D-ETIC is estimated for quasi-linear DDS. Both theoretical
and numerical comparisons are given among D-ETIC, static ETIC (S-ETIC), and the recently developed static intermittent
control schemes, including time-triggered intermittent control and event-triggered aperiodic intermittent control. It is shown
that the proposed D-ETIC achieves the lowest MATR. It is also shown that larger delays, including the time delay in DDS
and the input delay in D-ETIC, may lead to more control activation time for the stabilization.
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1 Introduction

Intermittent control is attracting more and more inter-
est in the field of control (e.g., [1-4]). In some practical
problems, such as vehicle control, orbital adjustment of
space shuttles, and management of smart grids with dis-
tributed generations and energy storage units, the con-
trol of these systems is intermittent. There is no need to
continuously control these systems at all the times like
continuous control. And it is not possible to execute and
complete every control in an instant like impulsive con-
trol (e.g., [5-8]). Hence, in these practical applications,
it is meaningful to use intermittent control.

Recently, two types of intermittent control schemes have
been proposed, including periodic intermittent control
(PIC) and aperiodic intermittent control (AIC). In the
PIC scheme, the control width and the non-control width
all keep unchanged. So the entire control is periodic (e.g.,
[2,11-13]). This control method is easy to be executed,
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but as noted in [14-16], the restriction on periodicity
might be conservative and unnecessary in some prac-
tical problems, e.g., vehicle control. The AIC scheme
is more flexible and can relax the periodicity restric-
tion in PIC. This makes AIC more general and versa-
tile than PIC, see, e.g., [14-18]. However, the reported
AIC is often time-triggered and is designed via Lyapunov
stability conditions or dwell-time conditions ([19,20]).
The sufficient stabilization conditions are independent
of states and may be conservative. It may lead to re-
dundant and sometimes unnecessary control activation
time. This problem was formulated as the minimum ac-
tivation time rate (MATR) of AIC in [17].

For the stabilization via AIC, although it is difficult to
find the MATR, it is meaningful to design an AIC with
a relatively lower MATR. By integrating the event-
triggered control ([21-26]) and the event-triggered im-
pulsive control ([9,10]) into AIC, the event-triggered
aperiodic intermittent control (E-AIC) was proposed
([17,18]). It was shown that E-AIC could achieve smaller
MATR than the time-triggered intermittent controls
(TTIC) (including time-triggered PIC and AIC). How-
ever, there are still some shortcomings in the designed E-
AIC. The E-AIC by [17,18] is not fully event-triggered,
and for the MATR problem, the control width that is
not based on the state may result in excess control time.
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Thus, the activation time rate of E-AIC may still be
high. Moreover, the E-AIC in [17,18] is designed only for
systems without time delays. It is clearly not suitable
for systems with time delays. Hence, an open question
is how to design event-triggered intermittent control
(ETIC) with lower MATR for delayed dynamical sys-
tems (DDS). And the questions on how to estimate the
MATR of ETIC, and how to estimate the effects of time
delays on ETIC and MATR are also challenging.

Note that a scheme of dynamic event-triggered control
(D-ETC) was developed in [27]. Compared with static
ETC, D-ETC has extra internal dynamics in the event-
trigger condition. By [27], the triggering times of D-ETC
are less than that of the static ETC. Thus D-ETC can
save more system resources. Recently, many develop-
ments on D-ETC have been obtained, e.g., [28-31].

Motived by the above observations, in this paper, we
study dynamic event-triggered intermittent control (D-
ETIC) with input delay for stabilization of DDS. First,
we formulate the stabilization via general intermittent
control as a problem of delay-dependent MATR. Then,
we propose a scheme of D-ETIC with input delay, where
a dynamics is designed into ETIC. Both the control
starting time and the control width are state-dependent
and determined by event conditions. Moreover, the time
delay in DDS is taken into the design of events. It is
shown that the stabilization of DDS is achieved by the
designed D-ETIC with input delay. Comparisons on
MATR of D-ETIC, TTIC, E-AIC by [17,18], and static
ETIC (S-ETIC), are given via both theoretical analysis
and numerical simulations.

The main contributions of the paper include: an event-
triggered and delay-dependent D-ETIC with input delay
is proposed, which is a clear improvement over static and
delay-independent E-AIC without input delay by recent
[17,18]; the dynamics introduced into D-ETIC make D-
ETIC have lower MATR than S-ETIC; both theoreti-
cal comparisons and numerical simulations are derived
among MATR of D-ETIC, TTIC, E-AIC, and S-ETIC,
and D-ETIC achieves the lowest MATR; the effect of
time delay on MATR is analyzed, and it is shown that
a larger delay including time delay in DDS and input
delay in D-ETIC leads to more control activation time
for stabilization, and the maximal input delay allowed
in D-ETIC is derived for quasi-linear DDS.

The rest of this paper is organized as follows. In Sec-
tion 2, we present preliminaries. In Section 3, we design
the D-ETIC scheme, give comparisons on MATR of D-
ETIC, TTIC, E-AIC, and S-ETIC, analyze the effect of
the time delay on MATR, and extend the D-ETIC to
the sampling-based D-ETIC. In Section 4, a numerical
example is given to illustrate the correctness of the ob-
tained results. Section 5 provides some conclusions.

2 Preliminaries

In the sequel, R denotes the field of real numbers, R+ =
[0,+∞), Rn the n-dimensional Euclidean space, N =
{0, 1, 2, · · · }. Given a matrix A ∈ Rn×n, let ∥A∥ =

[λmax(A
TA)]

1
2 , where λmax(·) is the maximum eigen-

value of the matrix (·). And let ρ(A) denote the spec-
tral radius of the matrix A and In denote the n × n
unity matrix. For h∗ ∈ R+, let C([−h∗, 0];Rn) be the set
of continuous functions defined on [−h∗, 0], and define

∥ϕ∥h∗ ≜ sup−h∗≤s≤0{∥ϕ(s)∥},∀ϕ ∈ C([−h∗, 0];Rn).

Consider a delayed dynamical system (DDS) as

ẋ(t) = f(x(t), x(t− h(t)), u(t)), t ≥ t0, (1)

where x ∈ Rn; f is continuous with f(0, 0, 0) = 0; u is
the control input; and h(t) is the time delay satisfying
0 ≤ h(t) ≤ h∗0 <∞ with the maximal time delay h∗0. For

any τ∗ ≥ h∗0, assume the solution x(t) ≜ x(t, t0, ϕ) of
(1) exists uniquely for any initial condition (t0, ϕ) with
x0 = ϕ ∈ C([t0 − τ∗, t0],Rn) and is forward complete.

Assumption 2.1. There exists a Lyapunov-like func-
tion V : Rn → R+, satisfying:
(i) for constants c1 > 0, c2 > 0, r > 0,

c1∥x∥r ≤ V (x) ≤ c2∥x∥r, ∀x ∈ Rn; (2)

(ii) the Dini derivative D+V along (1) with u = 0 satis-
fies: for some constants a0 ≥ 0, b0 ≥ 0,

D+V (x(t))
∣∣
u=0

≤ a0V (x(t)) + b0V̄ (x(t)); (3)

(iii) there is a control law, for continuous function ψ(·),

u = ψ(x), (4)

such that for some input delay q∗ ≥ 0 and some con-
stants a and b with a > b ≥ 0,

D+V (x(t))
∣∣
u(t)=ψ(x(t−q(t))) ≤ −aV (x(t)) + bV̄ (x(t)),

(5)
holds for all continuous input delay q(t) satisfying 0 ≤
q(t) ≤ q∗, where V̄ (x(t)) = maxt−h∗≤s≤t{V (x(s))}with
h∗ ≜ max{2q∗, h∗0 + q∗}.

Remark 2.1. Assumption 2.1 (ii) means DDS (1) with
u = 0 is unstable while DDS (1) is stabilized by the con-
trol law (4) (see Lemma 2.2). Here, the maximum delay
h∗ is set as h∗ = max{2q∗, h∗0 + q∗}. This is based on
the fact that under the input delay of u, the transforma-
tion x(t − q(t)) = x(t) + (x(t − q(t)) − x(t)) = x(t) −∫ 0

−q(t) f(x(t+s), x(t+s−h(t+s)), ψ(x(t+s−q(t+s))))ds
is often required in the calculation of D+V (x(t)).
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In this paper, by Assumption 2.1, we consider an inter-
mittent control denoted by (u, {ti}, {τi}) with τ0 = 0 as:

u(t) =

{
ψ(x(t− q(t))), t ∈ (ti, ti + τi], i ≥ 1,

0, t ∈ (ti + τi, ti+1], i ≥ 0,
(6)

where ti and ti+ τi are respectively the starting and the
completion time of u on the interval (ti, ti+1] and satisfy

t0 < t1 ≤ t1 + τ1 < t2 ≤ · · · < ti ≤ ti + τi < ti+1 ≤ · · ·
(7)

Here, τi is called the i-th control-width or active time
and si = ti+1 − ti − τi is the i-th non-control-width.

Under the control law (6), DDS (1) becomes:{
ẋ = f(x, x(t− h(t)), ψ(x(t− q(t)))), t ∈ (ti, ti + τi],

ẋ = f(x, x(t− h(t)), 0), t ∈ (ti + τi, ti+1], i ∈ N.
(8)

Remark 2.2. In some literature, the intermittent con-
trol might be inactively forced due to the uncertainty
or disturbances which can lead to that control can be
implemented intermittently. Like many other works (see
[11-18] for examples), this paper considers active inter-
mittent control problems. The meaning of considering
this active intermittent control is that in some physical
systems, such as smart grids and spacecraft, the active
intermittent control should be used once the state of the
system runs into unsafe and unstable areas.

Definition 2.1. The DDS (1) is said to be exponentially
stabilized by the intermittent control (6) if the system
(8) is globally exponentially stable, i.e., ∀(t0, ϕ), and for
some α > 0,K > 0, ∥x(t)∥ ≤ Ke−α(t−t0)∥ϕ∥h∗ , ∀t ≥ t0.

Definition 2.2. The intermittent control (u, {ti}, {τi})
is called non-Zeno (NZ) if ti+1 > ti, ∀i ∈ N, lim

i→∞
ti = ∞.

Further, the intermittent control (u, {ti}, {τi}) is called
non-trivial (NT) if 0 < τmax ≜ supi∈N{τi : τi > 0} <∞.

MATRProblem: Let Assumption 2.1 be satisfied. We
formulate the stabilization issue of (1) via intermittent
control (u, {ti}, {τi}) as a problem of delay-dependent
minimal activation time rate (MATR):

Rmin(h
∗) ≜ min

{ti},{τi}

{
lim inf
i→∞

∑i
j=0 τj

ti+1 − t0

}
,

s.t. (1) is stabilized by (u, {ti}, {τi}) satisfying NZ-NT.

In this paper, for the MATR problem, we design a
dynamic event-triggered intermittent control law (D-
ETIC), estimate the MATR, and analyze the impact of
the time delay on the MATRRmin(h

∗) and the D-ETIC.

Remark 2.3. (i) In [17], the delay-independent Rmin is
used for the MATR problem. Here, note that the control
time sequence {ti} and the control width sequence {τi}
are dependent on the time delay. Hence, in the MATR
problem, we use Rmin(h

∗) to replace Rmin to reflect the
effect on MATR from the time delay.
(ii) Generally, it is difficult to solve the MATR problem.
Note that Rmin(h

∗) = min
{ti},{τi}

{
lim inf
i→∞

R(h∗, i)
}
, where

R(h∗, i) =

∑i

j=0
τj∑i

j=0
τj+
∑i

j=0
sj

is defined as the i-th acti-

vation time rate.

Lemma 2.1. ([32]) Assume v ∈ C([t0 − h∗,+∞),R+)
satisfies the following differential delayed inequal-
ity (DDI): D+v(t) ≤ a0v(t) + b0v̄(t), t ≥ t0 ≥ 0,
where a0 ∈ R and b0 ∈ R+ satisfy a0 + b0 ≥ 0,
and v̄(t) = maxt−h∗≤s≤t{v(s)}. Then, v(t) ≤ (1 +

b0h
∗)e(a0+b0)(t−t0)v̄(t0), t ≥ t0.

Lemma 2.2. (Halanay Lemma ([32])) Let v ∈ C([t0 −
h∗,+∞),R+) satisfy the Halanay inequality: D+v(t) ≤
−av(t) + bv̄(t), t ≥ t0 ≥ 0, where a > 0 and b ∈ R+

satisfy−a+b ≤ 0, and v̄(t) = maxt−h∗≤s≤t{v(s)}. Then,
v(t) ≤ e−λ(t−t0)v̄(t0), t ≥ t0, where λ > 0 is the unique
root of λ− a+ beλh

∗
= 0.

3 Main Results

In this section, we give the D-ETIC scheme. Then, we
derive the stabilization of DDS (1) via D-ETIC and esti-
mate the MATR of D-ETIC. And we make comparisons
on MATR of D-ETIC, TTIC, E-AIC, and S-ETIC.

Let Assumption 2.1 hold with parameters a0 > 0, b0 ≥
0, a > b ≥ 0. Let g1(h

∗) > 0 be the unique root of

s− a+ besh
∗
= 0. (9)

Note that for every h∗ ≥ 0, there exists a unique
root g1(h

∗) > 0 satisfying (9). For some constants
σmax > 1 and σmin < 1, define g0, δ0, δ1 as:

g0 ≜ a0 + b0, δ0 ≜ lnσmax−ln(1+b0h
∗)

g0
, δ1 ≜ h∗ − lnσmin

g1(h∗) .

For DDS (1), we define a dynamic system as:{
ν̇(t) = −ξν(t) + ηV (x(t)), t ≥ t0,

ν(t0) = V̄ (x0),
(10)

where ξ > 0 and η ≥ 0 are some constants.

Given V (x) and ν(t), constants σmax > 1, γ ≥ 0, define:

C(s, t] ≜ {θ : s < θ ≤ t, V (x(θ)) ≥ γν(θ)+σmaxV̄ (x(s))}.
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D-ETIC for DDS (1): The D-ETIC scheme is based
on the dynamics (10) and three indices: the threshold-
value σmax > 1, the control-goal index σmin < 1, and
the check-period ∆ > 0, which satisfy:

∆ > max{δ0, δ1, h∗}, 1 + b0h
∗ < σmax < σ−1

min. (11)

Set τ0 = 0. The (i+ 1)-th D-ETIC (u(t), ti+1, τi+1) is:

ti+1 =


min{t : t ∈ C(ti + τi, ti + τi +∆]},

if C(ti + τi, ti + τi +∆] ̸= ∅;
ti + τi +∆, if C(ti + τi, ti + τi +∆] = ∅;

(12)

τi+1 = min{τ : V̄ (x(ti+1 + τ)) ≤ σminV̄ (x(ti+1))};(13)

u(t) =

{
ψ(x(t− q(t))), t ∈ [ti+1, ti+1 + τi+1),

0, t ∈ [ti+1 + τi+1, ti+2).
(14)

S-ETIC for DDS (1): Specifically, in (12), if γ = 0,
then the ETIC is independent of the dynamics (10), and
thus, it is static. We call it static ETIC (S-ETIC).

Remark 3.1. The D-ETIC (10)-(14) is based on the
Lyapunov-like function V on the delay intervals, the dy-
namics ν(t), and the three indices: σmax, σmin, and ∆.
The threshold-value σmax and the check-period ∆ are
used to get the control starting time sequence {ti}, while
the control-goal index σmin is used to check the con-
trol goal, i.e., V̄ (x(t + τ)) ≤ σminV̄ (x(t)), and deter-
mines the control width sequence {τi}. Compared with
time-triggered intermittent control (TTIC) ([2,11-16])
and event-triggered aperiodic intermittent control (E-
AIC) ([17,18]), there are some basic differences among
D-ETIC, TTIC, and E-AIC. Both TTIC and E-AIC are
static. Here, in (12), only if γ = 0, then the ETIC is
static, i.e., S-ETIC. In TTIC, both the control start-
ing time ti and the control width τi are determined
only by Lyapunov stability conditions and are state-
independent. In E-AIC, the information of time delay,
including the input delay q(t), is not taken into consid-
eration in u. In E-AIC, every τi is determined by the sta-
bilization condition and is state-independent. While in
D-ETIC, it is fully state-dependent, i.e., all τi and ti are
determined by the event-trigger conditions. Moreover,
in E-AIC, τi > 0 is required for all i ≥ 1. While in D-
ETIC (10)-(14), τi = 0 in the case that the control goal
is already satisfied at some control starting instants ti.

Note that si = ti+1 − ti − τi. Define the i-th average
control width and average non-control-width respectively

as: τ̄i ≜

∑i

j=0
τj

i , s̄i ≜

∑i

j=0
sj

i . Then, R(h∗, i) = τ̄i
τ̄i+s̄i

.

Define the maximal/minimal average control width as:

τ̄max ≜ supi∈N{τ̄i}, τ̄min ≜ infi∈N{τ̄i}.

Theorem 3.1. Let Assumption 2.1 be satisfied. Let
the parameters γ, ξ, and η in D-ETIC (10)-(14) sat-
isfy γ ≥ 0, ξ > γη ≥ 0 and ρ(Θ) < 1, where

Θ ≜

(
σminσmax + γ

(
η
ξ +

ησminσmax

ξ−γη
)
γe(ξ−γη)(h

∗−δ0)

η
ξ +

ησminσmax

ξ−γη e−(ξ−γη)δ0

)
.

Then, D-ETIC (10)-(14) is NZ-NT and DDS (1) is
exponentially stabilized by D-ETIC (10)-(14) with

Rmin(h
∗) ≤ τ̄max

δ0 + τ̄min
, τ̄max ≤ τmax ≤ δ1. (15)

Proof. First, we show that

τmax = sup{τi} ≤ δ1. (16)

For ∀t ∈ [ti, ti + τi), since the D-ETIC is input into (1)
on [ti, ti + τi), i.e., u(t) = ψ(x(t)), it follows from (5)
and (14) that D+V (x(t)) ≤ −aV (x(t)) + bV̄ (x(t)) for
∀t ∈ [ti, ti + τi). By Lemma 2.2, we get that for τi > 0,

V (x(t)) ≤ e−g1(h
∗)(t−ti)V̄ (x(ti)), t ∈ [ti, ti + τi). (17)

From (17), we get that

V̄ (x(ti + τi)) ≤ eg1(h
∗)h∗

e−g1(h
∗)τi V̄ (x(ti)). (18)

Moreover, by the continuity of V , we have V̄ (x(ti+τi)) =
σminV̄ (x(ti)). It yields that σmin ≤ eg1(h

∗)h∗
e−g1(h

∗)τi .
Thus, τi ≤ h∗ − lnσmin

g1(h∗) = δ1. Hence, (16) holds.

Now, for the non-Zeno (NZ) of D-ETIC (10)-(14), we
show that

0 < δ0 ≤ min{si} ≤ ∆. (19)

By (11), we get δ0 > 0. And by (16) and (11), we have
τi ≤ τmax ≤ δ1 < ∆ for all i ∈ N. Since there is no
control input on [ti+ τi, ti+1) for (1), i.e., u(t) = 0, ∀t ∈
[ti+ τi, ti+1), by (3), we have D+V (x(t)) ≤ a0V (x(t))+
b0V̄ (x(t)) on [ti + τi, ti+1). Thus, by Lemma 2.1, we get

V (x(t)) ≤ ξ0e
g0(t−ti−τi)V̄ (x(ti + τi)), (20)

where ξ0 = 1+ b0h
∗ and g0 = a0+ b0 > 0. Thus, by (20)

and the continuity of V , we get

V (x(ti+1)) ≤ ξ0e
g0(ti+1−ti−τi)V̄ (x(ti + τi)). (21)

If C(ti + τi, ti + τi + ∆] ̸= ∅, then ti+1 ≤ ti + τi + ∆
and by the continuity of V (x(t)), we have V (x(ti+1)) =
σmaxV̄ (x(ti + τi)) + γν(ti+1). It follows from (21) that
σmax ≤ ξ0e

g0(ti+1−ti−τi). Thus, we get

δ0 ≤ si = ti+1 − ti − τi ≤ ∆. (22)

If C(ti + τi, ti + τi +∆] = ∅, then ti+1 = ti + τi +∆. By
(11), we get that

si = ti+1 − ti − τi = ∆ > δ0 (23)
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Hence, by (22)-(23), we get that (19) holds.

It follows from (19) that ti+1 − ti = si + τi ≥ δ0 > 0.
Thus, D-ETIC (10)-(14) is non-Zeno satisfying (19).

By using the estimates of (16) and (19) and the definition
of τ̄max, we get thatRmin(h

∗) ≤ τ̄max

δ0+τ̄min
.Clearly, τ̄max ≤

τmax ≤ δ1. Hence, we get that (15) is satisfied.

Now, we show DDS (1) is stabilized by the D-ETIC. For
any t ∈ [ti, ti+τi], under the control input u(t) = ψ(x(t))
and by (13) and the continuity of V , we get that

V̄ (x(ti + τi)) = σminV̄ (x(ti)). (24)

Moreover, from (12), we have, ∀t ∈ [ti + τi, ti+1],

V (x(t)) ≤ σmaxV̄ (x(ti + τi)) + γν(t), (25)

which implies that

V̄ (x(ti+1)) ≤ σmaxV̄ (x(ti + τi)) + γν̄(ti+1). (26)

For the function ν(t), ∀t ∈ [ti + τi, ti+1], by (10), (12),
and (24)-(25), we get that ν̇(t) ≤ −(ξ − γη)ν(t) +
ησminσmaxV̄ (x(ti)). Thus, ∀t ∈ [ti+τi, ti+1], we get that

ν(t) ≤ e−(ξ−γη)(t−ti−τi)ν(ti + τi) +
ησminσmax

ξ − γη
V̄ (x(ti)).

(27)
And for t ∈ [ti, ti + τi], from (25) and (17), we get that

ν(t) ≤ e−ξ(t−ti)ν(ti) +
η

ξ
V̄ (x(ti)). (28)

It follows from (27)-(28) that, ∀t ∈ [ti + τi, ti+1],

ν(t) ≤ e−(ξ−γη)(t−ti)ν(ti) + θ21V̄ (x(ti)), (29)

where θ21 = η
ξ +

ησminσmax

ξ−γη . From (29), (19), we get that

ν(ti+1) ≤ θ22ν(ti) + θ21V̄ (x(ti)), (30)

ν̄(ti+1) ≤ e(ξ−γη)(h
∗−δ0)ν(ti) + θ21V̄ (x(ti)), (31)

where θ22 = e−(ξ−γη)δ0 . By (26), (24), and (31), we get

V̄ (x(ti+1)) ≤ θ11V̄ (x(ti)) + θ12ν(ti), (32)

where θ11 = σminσmax + γθ21, θ12 = γe(ξ−γη)(h
∗−δ0).

Denote y(i) = (V̄ (x(ti)), ν(ti))
T for all i ∈ N. Noting

Θ = (θij)2×2, and by (30) and (32), we get that ∀i ∈ N,

y(i+ 1) ≤ Θy(i), ∀i ∈ N. (33)

By ρ(Θ) < 1, we get that the discrete-time system (33)
is exponentially stable. Thus, for some α > 0 andK > 0,

∥y(i)∥ ≤ Ke−αi∥y(0)∥, i ∈ N. (34)

Thus, ∀t ∈ [ti, ti + τi], by (34) and (17), we get that

V (x(t)) ≤ V̄ (x(ti)) ≤ Ke−αi∥y(0)∥. (35)

By (34), (24)-(25), and (29), ∀t ∈ [ti + τi, ti+1], we get

V (x(t)) ≤ γν(ti)+θ11V̄ (x(ti)) ≤ Ke−αi(γ+θ11)∥y(0)∥.
(36)

Thus, for all t ∈ [ti, ti+1], from (35)-(36) and noting
ν(t0) = V̄ (x0), we have

V (x(t)) ≤
√
2Kmax{1, γ + θ11}e−αiV̄ (x0). (37)

By (2), (37), and (19), we get

∥x(t)∥ ≤ K̃e−α̃(t−t0)∥ϕ∥h∗ , (38)

where K̃ =
(µmax

√
2Kmax{1,γ+θ11}

µmin

)1/r
, α̃ = α

r(∆+τmax)
>

0. Hence, DDS (1) is exponentially stabilized. 2

Remark 3.2. (i) By (15) of Theorem 3.1, the MATR
Rmin(h

∗) is dependent on h∗ and g1(h
∗). Note that

g1(h
∗) is strictly decreasing w.r.t. h∗. By (15), a larger

(smaller) maximal time delay h∗ in DDS (1) makes D-
ETIC (10)-(14) have more (less) control activation time.

On the other hand, for a fixed h∗, if we use stronger
(weaker) control functionψ(x) such that a in (5) is bigger
(smaller), then g1(h

∗) in (9) is bigger (smaller). By (15),
a stronger (weaker) control leads to less (more) control
activation time in D-ETIC (10)-(14).

(ii) Noting for any σmin and σmax satisfying σminσmax <
1, there always exist parameters γ ≥ 0, ξ > γη ≥ 0 sat-
isfying ρ(Θ) < 1. Hence, there always exists a dynamics
(10) satisfying the condition of Theorem 3.1.

Corollary 3.1. Let Assumption 2.1 be satisfied and let
the parameters γ, ξ, and η in (10)-(14) satisfy γη = 0 and
ξ > 0. Then D-ETIC (10)-(14) is NZ-NT, and DDS (1) is
exponentially stabilized by D-ETIC (10)-(14), satisfying
the estimates in (15).

Proof. It is derived by Theorem 3.1 with γη = 0. 2

Now, we give comparisons on MATR of D-ETIC, TTIC,
E-AIC, and S-ETIC, and analyze the effect of the de-

lay. Let (u(t), {t(1)i }, {τ (1)i }) and (u(t), {t(2)i }, {τ (2)i }) de-
note TTIC and E-AIC, respectively, where τ

(1)
0 = τ

(2)
0 =

τ0 = 0, and u(t) satisfies Assumption 2.1. For the com-
parison, we use the same gain function ψ(x). Thus, for

(u(t), {t(j)i }, {τ (j)i }), j = 1, 2, i ≥ 1, u(t) is in form of

u(t) =

{
ψ(x(t− q(t))), t ∈ (t

(j)
i , t

(j)
i + τ

(j)
i ],

0, t ∈ (t
(j)
i + τ

(j)
i , t

(j)
i+1].

(39)
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Here, we also use the same Lyapunov-like function V and
the same parameters σmax, σmin, and ∆ satisfying (11)
to give TTIC and E-AIC. And the following stabilization
conditions are used to design TTIC and E-AIC:

V̄ (x(t
(j)
i + τ

(j)
i )) ≤ σminV̄ (x(t

(j)
i )), j = 1, 2, (40)

V̄ (x(t
(j)
i+1)) ≤ σminσmaxV̄ (x(t

(j)
i )), j = 1, 2, i ∈ N. (41)

Remark 3.3. By (10)-(14) and Theorem 3.1, S-ETIC,
i.e., D-ETIC with γ = 0, also satisfies (40)-(41).

Define c(h∗) = g0h
∗g1(h

∗)
− lnσmin

, g̃1(h
∗) =

g1(h
∗) ln σmax

1+b0h∗

− lnσmin
,

and R∗(h∗) = g0+c(h
∗)

g0+g̃1(h∗)+c(h∗) . Let Rmin,γ>0(h
∗),

Rmin,γ=0(h
∗), R(1)

min(h
∗), and R(2)

min(h
∗) denote MATR

of D-ETIC with γ > 0, D-ETIC with γ = 0 (S-ETIC),
TTIC, E-AIC, respectively.

Theorem 3.2. Let Assumption 2.1 be satisfied. For the
stabilization of DDS (1) via the above TTIC, E-AIC, S-
ETIC, and D-ETIC, suppose that (40)-(41) hold. Then,
(i) D-ETIC (10)-(14) with γ > 0 achieves the smallest
MATR than that of S-ETIC, E-AIC, and TTIC, and

Rmin,γ>0(h
∗) ≤ Rmin,γ=0(h

∗) < R(2)
min(h

∗) ≤ R(1)
min(h

∗)

= R∗(h∗). (42)

(ii) R∗(h∗) is strictly increasing w.r.t. h∗ and satisfies:
for any 0 < h∗1 < h∗2,

g0
g0 + g1(0)

< R∗(0) < R∗(h∗1) < R∗(h∗2) < 1, (43)

lim
h∗→∞

R∗(h∗) = 1. (44)

Proof. See Appendix.

Remark 3.4. (i) From Theorem 3.2, D-ETIC achieves
the lowest MATR than that of TTIC, E-AIC, and
S-ETIC, while TTIC has the highest MATR. (ii) By
Theorem 3.2 and (43)-(44), a larger time delay h∗

leads to more control activation time. Specifically, if
h∗ → ∞, then by (42)-(43), we get that the control
activation time of TTIC will reach the full time. In
this case, there is no basic difference between TTIC
and the continuous feedback control u(t) = ψ(x(t))
for all t ≥ t0. Another specific case is h∗ = 0 or
h∗ → 0. By (42), we get Rmin,γ>0(0) ≤ Rmin,γ=0(0) ≤
R(2)

min(0) < R(1)
min(0) = R∗(0) = g0

g0+g1(0)
ln σmax

− ln σmin

.

Note that if let λ = σmaxσmin → 1−, then, we
get that Rmin,γ>0(0)

∣∣
λ→1−

≤ Rmin,γ=0(0)
∣∣
λ→1−

≤
R(2)

min(0)
∣∣
λ→1−

≤ g0
g0+g1(0)

= R(1)
min(0)

∣∣
λ→1−

. Hence, if

no time delay exists in (1) and D-ETIC or the time
delay h∗ is sufficiently small, then we can choose σmax

and σmin to satisfy σmaxσmin → 1−, the MATR of

both D-ETIC (10)-(14) and E-AIC will be less than
R(0) = g0

g0+g1(0)
, while the MATR of TTIC equals to

R(0) = g0
g0+g1(0)

= a0+b0
(a0+b0)+(a−b) . This result is consis-

tent with the results in [17,18] without delays.

In the following, we extend the D-ETIC to a sampling-
based D-ETIC to reduce the computation in the D-
ETIC. Here, assume Assumption 2.1 is satisfied.

Sampling instants: Assume that N is the sampling
number during a check-period ∆ > 0. The sequence of
triggering instants {ti} satisfies: ti+1 = ti + τi +

mi

N ∆
for some integer mi satisfying 1 ≤ mi ≤ N . By (11)
and (16), the control width τi satisfies τi < ∆. Thus in
the case of sampling-based D-ETIC, assume τi =

ni

N∆
for some integer ni satisfying 0 ≤ ni < N . Hence, all ti
and ti + τi are the sampling instants. In addition, from
h∗ < ∆, assume that the maximal time delay h∗ satisfies
h∗ = nh∗

N ∆ for some integer nh∗ satisfying 0 < nh∗ ≤
N , otherwise, we use max{nh∗

N ∆ ≤ h∗} to replace h∗

without loss of the generality.

Calculations: We may only calculate the values of
V (x(t)) and V̄ (x(t)) at the sampling instants as:
ti− nh∗

N ∆ = ti−h∗, · · · , ti− 1
N∆, ti, ti+

1
N∆, · · · , ti+

ni

N∆ = ti+ τi, ti+ τi+
1
N∆, · · · , ti+ τi+

mi

N ∆ = ti+1.

Sampling-basedD-ETIC:Choose three indices σmax,
σmin, and ∆, which satisfy (11). Let N be the sampling
number during a check-period ∆, and t0 = τ0 = 0. The
(i+ 1)-th D-ETIC (u(t), ti+1, τi+1) is set by

ti+1 =



min{ti + τi +
mi

N ∆ ∈ C(ti + τi, ti + τi +∆]},
if mi = min

{
m ∈ N : 1 ≤ m ≤ N,

V (x(ti + τi +
m
N∆)) ≥ γν(ti + τi +

m
N∆)

+σmaxV̄ (x(ti + τi))
}
̸= ∅;

ti + τi +∆, otherwise.

(45)

τi+1 =
ni
N

∆, where ni = min{l ∈ N : 1 ≤ l ≤ N − 1,

V̄ (x(ti+1 +
l

N
∆)) ≤ σminV̄ (x(ti+1))}, (46)

where u(t) is set by (14) and the nonnegative constants
γ, ξ, and η are to be determined.

Theorem 3.3. Let Assumption 2.1 hold. Let the con-
stants γ, ξ, η, and the sampling number N in (51)-(46)

satisfy γ ≥ 0, ξ > γη ≥ 0, and ρ(Θs) < 1, where Θs ≜σminσmaxe
g0

∆
N + γ

(
η
ξ +

ησminσmaxe
g0

∆
N

ξ−γη
)
γe(ξ−γη)(h

∗−δ0)

η
ξ +

ησminσmaxe
g0

∆
N

ξ−γη e−(ξ−γη)δ0

 .

Then the sampling-based D-ETIC satisfying (10)-(11),
(14), and (45)-(46) is NZ-NT and DDS (1) is exponen-
tially stabilized by such a sampling-based D-ETIC.
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Proof. By the same proof of Theorem 3.1, we get that
the sampling-based D-ETIC is NZ-NT satisfying (19).
Note that in the sampling-based D-ETIC, by the trig-
gering condition (45) for {ti}, we get that V (x(t)) ≤
γν(t) + σmaxe

g0
∆
N V̄ (x(ti + τi)) for all t ∈ [ti + τi, ti+1].

Thus, by using σmaxe
g0

∆
N to replace the parameter σmax

in D-ETIC (10)-(14), the left proof follows the similar
process of Theorem 3.1. The details are omitted here. 2

For s ∈ R, let [s] be the minimal integer larger than s.

Remark 3.5. In (10)-(11) and (45)-(46), suppose γη =
0, and the sampling number N satisfies:

N ≥ 1 +
[ g0∆

− ln(σmaxσmin)

]
. (47)

Then, by Theorem 3.3, DDS (1) is exponentially sta-
bilized by such a sampling-based D-ETIC. The condi-

tion (47) implies σmaxσmin < e−g0
∆
N < 1. Compared to

σmaxσmin < 1 in D-ETIC (10)-(14), we can see the sam-
pling brings the constraint in the design of D-ETIC.

At the end of the section, we consider a quasi-linear DDS:

ẋ(t) = Ax(t) +Bx(t− h(t)) + φ(x(t)) + u(t), (48)

where x ∈ Rn; A = (aij), B = (bij) ∈ Rn×n; φ satisfies
φ(0) = 0 and for some L = (lij) with lij ≥ 0, |φ(x)| ≤
L|x|, ∀x ∈ Rn, with |x| = (|x1|, · · · , |xn|)T .

Here, for the stabilization of (48) under D-ETIC, let
ψ(x) = Kx and V (x) = max1≤i≤n{|xi|}.
Let K = (kij), AK = A + K, D = KA = (dij), F =
KB = (fij), G = K2 = (gij), C = KL = (cij). And let
a0 = max1≤i≤n{aii+ lii}, b0 = max1≤i≤n

{∑n
j ̸=i |aij |+∑n

j=1 |bij |
}
, a1 = −max1≤i≤n{aii + kii + lii}, b1 =

max1≤i≤n
{
|bii| +

∑n
j ̸=i(|aij + kij | + |bij |)

}
, and d1 =

max1≤i≤n
{∑n

j=1(|dij |+ |gij |+ |fij |+ |cij |)
}
.

Theorem3.4.For DDS (48), suppose a0 ≥ 0 and b0 ≥ 0
and the matrix K is chosen to satisfy:

a1 − b1 > 0. (49)

Then, (i) DDS (48) is exponentially stabilized by D-
ETIC (10)-(14), where the parameters γ, ξ, η satisfy
γ ≥ 0, ξ > γη ≥ 0 and ρ(Θ) < 1, and the maximal input
delay q∗ in (14) satisfies

q∗ <
a1 − b1
d1

. (50)

(ii) DDS (48) is exponentially stabilized by the sampling-
based D-ETIC satisfying (10)-(11), (14), and (51)-(46),

where γ, ξ, η, and N satisfy γ ≥ 0, ξ > γη ≥ 0 and
ρ(Θs) < 1, and the maximal input delay q∗ satisfies (50).

Proof. We first prove that Assumption 2.1 holds. For
V (x) = max1≤i≤n{|xi|}, Assumption 2.1 (i) holds for
r = 1/2, c2 = 1, and c1 = 1/

√
n.

Letting u = 0, by (48), we get ẋ(t) = Ax(t) + Bx(t −
h(t)) + φ(x(t)). It is easy to get that D+V (x(t))|u=0 ≤
a0V (x(t))+ b0V̄ (x(t)). Thus, Assumption 2.1 (ii) holds.

Note that d1 > 0 and there exists a positive constant
q∗ satisfying (50). Thus, for the control u with input
delay q(t) satisfying 0 ≤ q(t) ≤ q∗, by (48), we get

ẋ(t) = AKx(t)+Bx(t−h(t))+φ(x(t))−
∫ 0

−q(t)
(
Dx(t+

θ)+Gx(t+θ−q(t+θ))+Fx(t+θ−h(t+θ))+Kφ(x(t+
θ))
)
dθ. It follows that D+V (x(t))|u(t)=Kx(t−q(t)) ≤

−a1V (x(t)) + (b1 + d1 · q(t))V̄ (x(t)), where V̄ (x(t)) =
maxt−h∗≤s≤t{V (x(s))} with h∗ = max{2q∗, h∗0 + q∗}.
Thus, Assumption 2.1 (iii) is satisfied with a = a1 and
b = b1 + d1q

∗. Therefore, Assumption 2.1 is satisfied.

By Assumption 2.1, the results (i)-(ii) are derived di-
rectly from Theorems 3.1 and 3.3, respectively. 2

Remark 3.6. Theorem 3.4 is still true if V (x) = xTPx
and ψ(x) = Kx for some matrices P > 0 and K. In this
case, the parameters a0, b0, a1, b1, d1 in Theorem 3.4 are
obtained by the LMI technique.

4 Examples

In this section, we give one example for illustrations.
Consider a delayed Chua’s system as:

ẋ(t) = Ax(t)+Bx(t−h(t))+φ(x(t))+u(t), t ≥ 0, (51)

where x ∈ R3,A =


−α(1 + r2) α 0

1 −1 1

0 −β 0

,B = 0.015I3,

φ(x) = (φ1(x), 0, 0)
T , φ1(x) =

−α(r1−r2)(|x1+1|−|x1−1|)
2 ,

α = 0.9216, β = 0.15995, r1 = −1.2495, r2 = −0.75735.

Let V (x) = max1≤i≤n{|xi|}, ψ(x) = Kx,K = −3.25I3.
Solving Assumption 2.1, we get that a0 = 0.2299, b0 =
2.150, a = a1 = 4.250, b = b1 + d1q

∗, b1 = 2.150, d1 =
20.800.Hence, by Theorem 3.4 and Remark 3.2(ii), there
exists a dynamics (10) such that the unstable system (51)
is stabilized by the D-ETIC (10)-(14) with the maximal
input delay q∗ satisfying q∗ ≤ a1−b1

d1
= 0.1010.

Let h(t) = h∗0 = 0.4, q∗ = 0.1. Then h∗ = max{2q∗, q∗+
h∗0} = 0.5. And δ0(h

∗) = 0.9520, g0 = a0 + b0 = 2.3799,
and g1(h

∗) = 0.8918. In the simulation, let x0(s) =
(sin(−h∗0),−e−h

∗
0 , cos(−h∗0))T for all s ∈ [−h∗, 0].
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Fig. 1. (left) Stabilization via S-ETIC with input delay
q(t) = q∗ = 0.1. (right) Stabilization via D-ETIC with
γ = 0.2, η = 0, and q(t) = q∗ = 0.1. Here, “o” is the starting
instant and “+” is the ending instant of each control.

For D-ETIC (10)-(14), choose indices σmax, σmin,∆ as:
σmax = 20, σmin = 0.045,∆ = 10. Then, σmaxσmin =

0.9 < 1 and (11) is satisfies. And c(h∗) = g0g1h
∗

− lnσmin
=

0.3422, g̃1(h
∗) = (g1(h

∗) ln σmax

1+b0h∗ )/(− lnσmin) =
0.6516. Thus, by Theorem 3.2, the maximal activation

time rate: R∗(h∗ = 0.5) = g0+c(h
∗)

g0+g̃1(h∗)+c(h∗) = 80.69%.

Case-I. Stabilization via S-ETIC and D-ETIC.

(i) S-ETIC, i.e., γ = 0. The condition of Theorem 3.1
is satisfied since σmaxσmin < 1. By Theorem 3.1, DDS
(51) is exponentially stabilized by such a S-ETIC. The
simulation is given in Fig. 1 (left). By the simulation,
the estimate of the activation time rate of S-DETIC is

Rγ=0(h
∗ = 0.5) =

∑
τi∑

τi +
∑
si

≈ 13.06%. (52)

(ii) D-ETIC with γ > 0 and η = 0. Here, set γ = 0.2
and ξ = 0.1, and use the same h∗ = 0.5. Then, Θ =(
0.9 0.1912

0 0.9092

)
. And ρ(Θ) = 0.9092 < 1. Then, by The-

orem 3.4, the system (51) is stabilized by the D-ETIC.
The simulation is given in Fig. 1 (right). Here, the acti-
vation time rate of D-ETIC is:

Rγ=0.2,η=0(h
∗ = 0.5) ≈ 12.18%. (53)

(iii) D-ETIC with γ > 0 and η > 0. Here, set η = 0.002,
and use the same γ and ξ, and h∗ as in the above (ii),
i.e., γ = 0.2, ξ = 0.1, h∗ = 0.5. Then, the matrix Θ =(
0.9076 0.1912

0.0381 0.9095

)
. And ρ(Θ) = 0.9939 < 1. Then, by

Theorem 3.4, DDS (51) is stabilized by such a D-ETIC.
The simulation is given in Fig. 2 (left). By the simulation,
the activation time rate of D-ETIC is:

Rγ=0.2,η=0.002(h
∗ = 0.5) ≈ 11.61%. (54)

(iv) D-ETIC with γ > 0, η > 0, and bigger h∗. Here,
set h∗ = 1.0, i.e., h∗0 = 0.9. The parameters γ, ξ, and η
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Fig. 2. (left) Stabilization via D-ETIC with γ = 0.2,
η = 0.002, q(t) = q∗ = 0.1, h∗ = 0.5. (right) Stabilization
via D-ETIC with γ = 0.2, η = 0.002, q(t) = 0.1, h∗ = 1.
Here, “o” and “+” are the same meanings as in Fig. 1.

are the same as in (iii). i.e., γ = 0.2, ξ = 0.1, η = 0.002.
Then, by Theorem 3.4, DDS (51) is stabilized by such
a D-ETIC. The simulation is given in Fig. 2 (right). By
the simulation, the activation time rate of D-ETIC is:

Rγ=0.2,η=0.002(h
∗ = 1) ≈ 14.63%. (55)

(v) No input delay: q(t) ≡ 0. Consider S-ETIC (γ = 0)
and D-ETIC and use the same h∗ = 0.5 but q(t) ≡ 0. In
D-ETIC, the parameters γ, ξ, and η are the same as in
(iii). i.e., γ = 0.2, ξ = 0.1, η = 0.002. By the simulation,
the activation time rates of S-ETIC and D-ETIC are:

Rγ=0,q(t)≡0 ≈ 10.31%, Rγ=0.2,q(t)≡0 ≈ 9.89%. (56)

Summary-I: From Case-I, we conclude: by (52)-(54),
under the same time delay h∗, the activation time rate
of D-ETIC is less than that of S-ETIC; by (53)-(54),
under the same h∗, the activation time rate of D-ETIC
with bigger dynamics (η > 0) is less than that of D-
ETIC with smaller dynamics (η = 0); by (54)-(55), the
activation time rate of D-ETIC under bigger time delay
is larger than that of D-ETIC under smaller time delay;
by (56) and (52)-(54), the input delay lets the activation
time rate of both S-ETIC and D-ETIC be bigger.

Case-II. Comparisons onMATRofTTIC,E-AIC,
S-ETIC, and D-ETIC.

Here, for the comparison, we use the same control matrix
K = −3.25I3, the same time delay h∗ = 0.5, and the
same stabilization conditions (40)-(41) to design TTIC
and E-AIC. Note: S-ETIC also satisfies (40)-(41).

Stabilization via TTIC (u(t), {t(1)i }, {τ (1)i }): Let

TTIC (u(t), {t(1)i }, {τ (1)i }) with t(1)0 = τ
(1)
0 = 0 satisfy:

t
(1)
i+1 = t

(1)
i + τ

(1)
i + s

(1)
i , where by the proof of Theorem

3.2 (see (60)-(61) in Appendix), τ
(1)
i = h∗ − lnσmin

g1
=

3.9772, s
(1)
0 = s

(1)
i = lnσmax−ln(1+b0h

∗)
g0

= 0.9520. And

u(t) is in the form of (39) with ψ(x) = Kx. Then, by

8



0 20 40 60 80 100

Time (second)

-1

-0.5

0

0.5

1

S
y
st

em
 s

ta
te

s

TTIC

x
1

x
2

x
3

0 1 2 3 4 5
-1

0

1

0 20 40 60 80 100

Time (second)

-10

-8

-6

-4

-2

0

2

4

S
y
st

em
 s

ta
te

s

E-AIC

x
1

x
2

x
3

10 11 12 13 14 15
-10

-5

0

Fig. 3. (left) Stabilization via TTIC, (right) stabilization via
E-AIC, where q(t) = 0.1, h∗ = 0.5. Here, “o” and “+” are
the same meanings as in Fig. 1.

the stabilization conditions (40)-(41), DDS (51) is sta-
bilized by such a TTIC. The simulation is given in Fig.
3 (left). For the activation time rate of this TTIC, it is

R(1)(h∗ = 0.5) = R∗(h∗ = 0.5) = 80.69%. (57)

Stabilization via E-AIC (u(t), {t(2)i }, {τ (2)i }): By

[17,18], let E-AIC (u(t), {t(2)i }, {τ (2)i }) with t(2)0 = τ
(2)
0 =

0 set as: ∀i ∈ N, τ (2)i = τ
(1)
i = 3.9772, s

(2)
i ≥ s

(1)
i =

0.9520; {t(2)i } satisfies (12) with γ = 0; and u(t) is in
form of (39) with ψ(x) = Kx. Then, by (40)-(41), DDS
(51) is stabilized by such an E-AIC. The simulation is
given in Fig. 3 (right) with the activation time rate:

R(2)(h∗ = 0.5) =

∑
τ
(2)
i∑

τ
(2)
i +

∑
s
(2)
i

≈ 44.19%. (58)

Summary-II:Under the same time delay h∗, from (52)-
(54) and (57)-(58), the activation time rate of D-ETIC
is the lowest than that of TTIC, E-AIC, and S-ETIC.

5 Conclusions

In this paper, the dynamic event-triggered intermittent
control (D-ETIC)with input delay has been proposed for
the stabilization of delayed dynamical systems (DDS).
The stabilization of DDS via general intermittent control
was formulated as a problem of delay-dependentminimal
activation time rate (MATR). Then, a D-ETIC scheme
was designed. It was shown that the stabilization of DDS
was achieved by D-ETIC, and the MATR of D-ETIC
was estimated. And themaximal input delay was derived
for quasi-linear DDS. Moreover, the comparisons have
been given among D-ETIC, static ETIC (S-ETIC), the
time-triggered intermittent control (TTIC), and event-
triggered aperiodic intermittent control (E-AIC). From
the theoretical analysis and numerical simulations, we
conclude that: the dynamics let the activation time rate
of D-ETIC be lower than that of S-ETIC; D-ETIC has
the lowest MATR than TTIC, E-AIC, and S-ETIC; a
larger time delay, including input delay, leads to more
control activation time for the stabilization.

Appendix. Proof of Theorem 3.2. Note that TTIC,
E-AIC, and S-ETIC (10)-(14) with γ = 0, all have
the common stabilization conditions (40)-(41). Letting

y(j)(i) = V̄ (x(t
(j)
i )) for j = 1, 2 and i ∈ N, by similar

proof of (33), we get that

y(j)(i+ 1) ≤ σmaxσminy
(j)(i), i ∈ N. (59)

From (41) with σmaxσmin < 1 and by the similar proof of
(35)-(38) of Theorem 3.1, DDS (1) is exponentially sta-
bilized by the designed TTIC and E-AIC, respectively.
(i) Now, we show the inequality (42) holds.

Firstly, consider the case of TTIC (u(t), {t(1)i }, {τ (1)i }).
For t ∈ (t

(1)
i , t

(1)
i + τ

(1)
i ], by Lemma 2.2, we get that

V (x(t)) ≤ e−g1(h
∗)(t−t(1)

i
)V̄ (x(t

(1)
i )). Thus, by (41), the

control width τ
(1)
i in TTIC satisfies:

τ
(1)
i ≥ h∗ − lnσmin

g1(h∗)
. (60)

For t ∈ (t
(1)
i + τ

(1)
i , t

(1)
i+1], by Lemma 2.1, we get that

V (x(t)) ≤ ξ0e
g0(t−t(1)i

−τ(1)
i

)V̄ (x(t
(1)
i +τ

(1)
i )). By (42), the

non-control width s
(1)
i in TTIC satisfies:

s
(1)
i ≤ lnσmax − ln ξ0

g0
=

lnσmax − ln(1 + b0h
∗)

g0
. (61)

Therefore, from (60)-(61), we get that

R(1)
min(h

∗) =
g0 + c(h∗)

g0 + g̃1(h∗) + c(h∗)
= R∗(h∗). (62)

Secondly, consider the case of E-AIC (u(t), {t(2)i }, {τ (2)i }).
By [17,18], in E-AIC, the triggering time sequence

{t(2)i } is determined by the event condition (12) while

the control width sequence {τ (2)i } is determined by the
stabilization condition (41). Thus, by (12) and Lemma

2.1, we get that σmaxV̄ (x(t
(2)
i + τ

(2)
i )) = V̄ (x(t

(2)
i+1)) ≤

(1 + b0h
∗)eg0s

(2)
i V̄ (x(t

(2)
i + τ

(2)
i )), which implies that

s
(2)
i ≥ lnσmax − ln(1 + b0h

∗)

g0
, i ≥ 1. (63)

The control width τ
(2)
i satisfies eh

∗g1(h
∗)−g1(h∗)τ

(2)
i ≤

σmin. Thus, from (12) and (42), we get that

τ
(2)
i ≥ h∗ − lnσmin

g1(h∗)
. (64)

Therefore, for the MATR problem, by (63)-(64), we get

R(2)
min(h

∗) <
g0 + c(h∗)

g0 + g̃1(h∗) + c(h∗)
= R∗(h∗). (65)
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Thirdly, consider S-ETIC (u, {ti}, {τi}): γ = 0.

Compared S-ETIC and E-AIC ([17,18]), the difference is
that every control width τi in S-ETIC is state-dependent,

satisfying the event-trigger condition (13), while τ
(2)
i in

E-AIC by [17] satisfies the stabilization condition (41).

By comparing (13) and (41), we have τi ≤ τ
(2)
i . It follows

that the average control widths satisfy:

τ̄i =

i∑
j=1

τj/i ≤ τ̄
(2)
i =

i∑
j=1

τ
(2)
j /i, ∀i ≥ 1. (66)

For the non-control width, both S-ETIC and E-AIC use
the same event condition (12) with the same parameters.

So we have
∑∞
j=1 sj =

∑∞
j=1 s

(2)
j . Thus, for a sufficiently

large i ≥ 1, we get s̄i =
∑i
j=1 sj/i ≈ s̄

(2)
i =

∑i
j=1 s

(2)
j /i.

Note that R(r) = r
r+s̄i

is strictly increasing. Hence,

by (66), for the sufficiently large i, R(τ̄i) = τ̄i
τ̄i+s̄i

≤

R(τ̄
(2)
i ) =

τ̄
(2)
i

τ̄
(2)
i

+s̄i
≈ τ̄

(2)
i

τ̄
(2)
i

+s̄
(2)
i

,, which implies that

Rmin,γ=0(h
∗) ≤ R(2)

min(h
∗). (67)

Hence, by (67), (65), and (62), S-ETIC achieves the low-
est MATR than that of TTIC and E-AIC, i.e.,

Rmin,γ=0(h
∗) ≤ R(2)

min(h
∗) ≤ R(1)

min(h
∗). (68)

Finally, compare S-ETIC (γ = 0) and D-ETIC (γ > 0).
Clearly, it should wait for longer to trigger the event
condition with γ > 0 than the case of γ = 0. Thus, the
total non-control width for D-ETIC (10)-(14) with γ > 0
will be bigger than S-ETIC. For the control width, both
cases have the same triggering condition. Thus, the total
control width for both cases is the same. Thus, we have

Rmin,γ>0(h
∗) ≤ Rmin,γ=0(h

∗). (69)

Hence, the inequality (42) is derived from (68)-(69).

(ii) The inequalities (43)-(44) is derived by the mono-
tonicities of the functions g1(h

∗), c(h∗), g̃1(h
∗), and

R∗(h∗). The details are omitted here. 2
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