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Abstract
The processing of quantum information always has a cost in terms of physi-
cal resources such as energy or time. Determining the resource requirements is
not only an indispensable step in the design of practical devices—the resources
need to be actually provided—but may also yield fundamental constraints on
the class of processes that are physically possible. Here we study how much
energy is required to implement a desired unitary gate on a quantum system
with a non-trivial energy spectrum. We derive a general lower bound on the
energy requirement, extending the main result of Chiribella et al (2021 Phys.
Rev. X 11 021014) from finite dimensional systems to systems with unbounded
Hamiltonians. Such an extension has immediate applications in quantum infor-
mation processing with optical systems, and allows us to provide bounds on the
energy requirement of continuous variable quantum gates, such as displacement
and squeezing gates.
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1. Introduction

Determining the resource requirement of quantum information processing is pivotal for its
implementation. For this purpose, a wide range of quantum resource theories [2] have been
proposed and studied extensively, including coherence [3, 4], entanglement [5, 6], (a)symmetry
[7–10], work [11–13], and energy [1, 14–16]. In reference [1], the in-principle energy require-
ment for a basic quantum information processing task, implementing a unitary gate on a finite
dimensional system, has been determined. Specifically, consider a unitary operation U on a
system with Hamiltonian HS that one would like to implement with an error at most ε. Then
any implementation requires a battery (i.e. an auxiliary system serving as an energy supply),
whose average energy 〈HB〉 is lower bounded as

〈HB〉 �
(ΔE(U) +ΔE(U−1))2

32
√
ε‖HS‖

, (1)

up to an error term that scales as
√
ε. Here ‖HS‖ denotes the operator norm of HS (as a con-

vention, in this article we set the ground state’s energy to zero), U−1 denotes the inverse of U ,
and ΔE(U) is the maximal gap between the input state energy and the corresponding output
state energy of the unitary gate U , which captures the energy gain of the unitary.

For finite dimensional systems, the bound (1) is achievable up to a constant (dimension-
independent) factor, and it quantifies the minimum amount of energy resource needed by
any concrete implementation. However, the bound does not work when the system has an
unbounded Hamiltonian, in which case there are at least two obvious issues with equation (1).
First, for many common unitary gates acting on a quantum system with unbounded HS, the
energy gainΔE(U) depends on the energy of the input state, and larger input energies may thus
correspond to larger energy gains. In these cases, ΔE(U) can be infinite. For example, sending
a coherent state |α〉 through a displacement gate with displacement β, the output state is the
coherent state |α+ β〉 (up to an irrelevant global phase), and the energy gain is |β + α|2 − |α|2
that tends to infinity as |α| →∞. In this case, the bound (1) holds trivially (since the energy
requirement for implementing the given gate on all possible states may indeed be infinite).
However, it does not take into account that in many realistic scenarios the goal is not to imple-
ment a gate on every possible state, but rather on states satisfying a bound on the expectation
value of the energy. Another trickier issue is that ‖HS‖ = +∞ for unbounded Hamiltonians,
which trivialises the bound. Due to these issues, the existing bound (1) does not capture the
energy requirement of gates that are common in quantum optics, including displacement [17],
squeezing [18], and other non-linear operations.

In this article, we resolve both issues, obtaining the energy requirement for quantum proces-
sors acting on energy-unbounded systems. We circumvent the first issue (unbounded energy
gain) by incorporating energy-constrained figures of merit as well as energy constraints on the
processors [19–23] into our framework. Under the energy-constrained scenario, the quantity
ΔE(U) in the previous bound (1) is replaced by a new term that depends on the input energy.
Furthermore, we tackle the second issue (infinite norm of the Hamiltonian) by proposing an
energy threshold method. By overcoming these two issues, our result extends the scope of refer-
ence [1] to a large class of continuous variable systems, with applications in quantum photonics
as well as potential applications in fundamental physics (see section 5 for more details).

The remaining part of the article is structured as follows. In section 2, we introduce the
basic notions as well as tools required for quantum information processing under energy con-
straints. In section 3, we derive the energy requirement for implementing unitary gates on
systems with unbounded Hamiltonians. In section 4, we show how our new bound can be used
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to retrieve the main result of reference [1], and we discuss applications to continuous-variable
systems. Finally, in section 5, we conclude the article with an overview of potential long-term
applications and generalisations of our result.

2. Preliminaries

2.1. Basic notation

In this article, we use the following notations. For a matrix A, positive-semidefiniteness is
indicated by A � 0. We denote by H a Hilbert space and by St(H) the set of density operators
on H. For a pure state |ψ〉, we adopt the notation ψ := |ψ〉〈ψ| for its density operator. Each
system is associated with a Hamiltonian, denoted by H (possibly with a subscript S/B for the
Hamiltonian of the system/battery, i.e. HS/HB). Here we assume H to be grounded and discrete,
i.e. H =

∑∞
n=0 en|en〉〈en| with e0 � e1 � e2 � · · ·. For simplicity, we assume without loss of

generality e0 � 0. Fixing any system and its Hamiltonian, we write Pe′ :=
∑

e�e′ |e〉〈e| for the
projection into its energy eigenspace with an energy threshold e′. For a quantum state ρ on H,
we denote by E(ρ) := tr[ρH] its energy.

A generic quantum process can be described by a completely-positive trace-preserving lin-
ear map from an input Hilbert space to a (possibly different) output Hilbert space, named a
quantum channel. Quantum channels that preserve the distance between quantum states are
called isometries. An isometry whose input and output spaces have the same dimension is
called a unitary channel (or a unitary gate, or even just a unitary, for short). A unitary U acts
on an input via the relation U(·) = U(·)U† for a unitary matrix U. Its inverse, denoted by U−1,
then follows the relation U−1(·) = U†(·)U.

2.2. Energy-constrained metrics

The similarity of two quantum channelsA and B acting upon the same system H can be tested
by sending a probe state Ψ ∈ St(HR ⊗H) (entangled to a reference register R with HR � H)
through the implementation and comparing the fidelity between the output state and the desired
output:

FΨ(A,B) :=F((IR ⊗A)(Ψ), (IR ⊗ B)(Ψ)), (2)

where F(ρ, σ) := (tr
√√

ρσ
√
ρ)2 is the quantum state fidelity. The similarity is evaluated via

the channel fidelity, which equals the infimum of FΨ over all possible probe states.
For quantum channels acting on energy-unbounded systems, however, the conventional

channel fidelity is ill-defined. For example, Winter [19] pointed out that the (unconstrained)
channel fidelity between any two quantum attenuators is always zero and thus fails to capture
their true similarity.

To address this issue, we adopt the energy-constrained fidelity [20] as a figure of merit:

FE (A,B) := inf
Ψ∈St(HR⊗H)
trΨ(IR⊗H)�E

FΨ(A,B) (3)

with FΨ given by equation (2). Following the same idea, the diamond norm [24] can be gener-
alised to the energy-constrained worst-case error, introduced by Pirandola et al. [23], Shirokov
[20] and Winter [19]:

DE(A,B) := sup
Ψ∈St(HR⊗H)
trΨ(IR⊗H)�E

1
2
‖IR ⊗ (A− B)(Ψ)‖1 (4)
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for any E ∈ R+. Here ‖ · ‖1 denotes the trace norm (one-norm). When there are multiple input
systems H1 ⊗ · · · ⊗ Hk, it is often useful to put a constraint on the input energy of each indi-
vidual subsystem rather than on the total input energy. For this purpose, the notion of energy-
constrained worst-case error can be readily extended (and similarly for the energy-constrained
fidelity) [21]:

D(E1,...,Ek )(A,B) := sup
Ψ∈St(HR⊗H1⊗···⊗Hk)

trΨHi�Ei ∀i
Hi := (IR⊗I1⊗···Hi···⊗Ik)

1
2
‖IR ⊗ (A− B)(Ψ)‖1 (5)

for any (E1, . . . , Ek) ∈ Rk
+. The Fuchs–van der Graaf inequality [25] can be extended to its

energy-constrained version as:

1 −
√

FE(A,B) � DE(A,B) �
√

1 − FE(A,B). (6)

In this way, the energy-constrained fidelity and the energy constrained diamond norm are
related. High fidelity always implies low error and vice versa.

2.3. Energy requirement of a unitary gate

Here we define the task under consideration in this article, i.e. the physical implementation
(implementation, in short) of a given unitary using auxiliary systems and interactions that
preserve the total energy. Consider a unitary gate U(·) :=U(·)U† acting on a system HS with
grounded (but potentially unbounded) discrete Hamiltonian HS. The goal is to determine the
energy requirement for the unitary U , i.e. how much energy is needed for its implementation.
For the latter, we consider a model that features an explicit battery system B, which is ini-
tialised to a fixed state β. The battery provides or absorbs the energy consumed or released by
the implementation. To ensure that no other energy is introduced into the system, we demand
that the time evolution V(·) :=V(·)V† of the implementation conserves the total energy of the
system and battery ([V, HS + HB] = 0). We remark that explicit examples of such a time evo-
lution V for implementing a generic unitary U can be found in references [10, 15, 26, 27], and
an explicit form of the battery state for the case of ‖HS‖ < ∞ is given in [1, section IV].

We now demand that the evolution that V induces on the system approximates the desired
gate U :

Definition 1 ((E, ε)-ideal implementation). An implementation (V , β) is said to be
(E, ε)-ideal for some ε � 0 if FE(U , trB ◦ V(· ⊗ β)) � 1 − ε.

With these notions, the energy requirement of a unitary U can be characterised by a lower
bound on E(β) of every (E, ε)-ideal implementation of it, formulated in terms of E, ε, and other
properties of U . A relevant property is the energy constraint function that will be introduced
next.

2.4. Energy-constrained quantum channels

In the last part of this section, we introduce the notion of energy constraint function and deter-
mine the family of unitary gates whose energy requirement is under consideration. The energy
requirement for a unitary that adds an arbitrarily large amount of energy to an input state with
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bounded energy is obviously infinite. Therefore, to make the setting meaningful, we consider
energy constrained unitaries defined as follows:

Definition 2 (Energy-constrained unitary gates). A unitary quantum channel U
acting on H is energy-constrained with an energy constraint function f : R+ → R+, if

E(U(ρ)) � f (E(ρ)) (7)

holds for every ρ ∈ St(H).

The physical meaning of the energy constraint function f (E) is the maximum output energy
when the input energy is constrained to E. For example, in quantum optics it is common that
channels are energy-constrained with linear constraint functions f (E) = aE + b for some con-
stants a and b. Note that, by definition, f (E) is non-decreasing. More properties of the energy
constraint function can be found in the literature [19, 21].

3. Energy requirement of energy-limited unitary gates

3.1. Battery recycling lemma

In this subsection, we introduce a series of tools that will later be used to derive the energy
requirement. The first tool is the battery recycling lemma, originally derived in [1] and extended
to the unbounded Hamiltonian case in [21]. Compared to the battery recycling lemma in [21],
the version provided here is slightly more general, in that it includes unitary gates with generic
energy constraint functions rather than assuming them to be linear.

Intuitively, the lemma states that the battery state β of any (E, ε)-implementation of a unitary
gate U can be recycled for up to O(1/

√
ε) times:

Lemma 1 (Battery recycling; an energy-constrained version). Let (V , β) be an
(E, ε)-ideal physical implementation of a unitary U . Suppose its inverse U−1 has an energy
constraint function g(E). Then, there exists an energy non-increasing circuit N : H⊗2m

S ⊗
HB →H⊗2m

S (consisting of multiple uses of V , V−1 and trB) such that

D(E,...,E)
(
N (· ⊗ β), (U ⊗ U−1)⊗m

)
� mε′ (8)

for any m, where ε′ =
(
1 + g(E)

E

)√
ε and the energy constraints on all 2m input systems are

equal to E.

Note that N in the lemma is energy non-increasing, meaning that E(N (ρ)) � E(ρ) for any
ρ. The content of the above lemma is slightly different from [21, lemma 11], in that the energy
constraint function is allowed to be general, and the channel N emulates m uses of U ⊗ U−1

rather than U . The proof, however, can be derived in a similar way. For completeness of pre-
sentation, we provide the proof in appendix A. When ‖HS‖ < ∞, the energy requirement
can be obtained from the following argument: (i) the battery recycling lemma implies that
the battery can be recycled to provide energy for up to O(1/

√
ε) uses of U ⊗ U−1 up to a

constant O(1) error. Hence, the energy content of the battery has to be O(1/
√
ε), up to a cor-

rection term due to the error of approximation. (ii) Then, using the Lipschitz continuity relation
|E(ρ) − E(σ)| � ‖HS‖ · ‖ρ− σ‖1 between the distance between two arbitrary quantum states
(ρ, σ) and their energy difference, we can upper bound the correction term and show that the
energy requirement is indeed still O(1/

√
ε).

5
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The argument sketched in the previous paragraph is at the basis of the bound (1) in reference
[1]. This approach, however, does not work for unbounded Hamiltonians. When ‖HS‖ = ∞.
There is no such continuity relation as required by step (ii). Consider, as a simple example, a
Harmonic oscillator with HS =

∑∞
k=0 kh̄ω|k〉〈k| (with ω > 0 being a constant) and two quan-

tum states ρ0 = |0〉〈0| and ρ1 = 1
n |n〉〈n|+ (1 − 1

n )|0〉〈0| respectively. It is obvious that the
energy difference E(ρ1) − E(ρ0) = h̄ω does not depend on the closeness (1/2)‖ρ0 − ρ1‖1 =

1
n

of the two states, which can be made arbitrarily small by increasing n.
When ‖HS‖ = ∞, to obtain an upper bound on the aforementioned correction term of the

energy, we need a new upper bound on the minimum energy of any state that is within a
fixed distance to a certain state ρ. To this aim, we shall apply the following semidefinite pro-
gram (SDP), which can be derived via first expressing the trace distance constraint in the SDP
form [28, chapter 1] and then applying duality. Compared to the existing Lipschitz continuity
method, it offers a more accurate bound on the fluctuation of E due to any disturbance to a
state.

Lemma 2 (Minimum energy SDP). Let ρ ∈ St(H) be a quantum state and denote by
H the Hamiltonian of the system H. The minimum energy achievable by states within the
ε-neighbourhood of ρ, Emin,ε(ρ) :=minσ∈St(H): 1

2 ‖σ−ρ‖1�εE(σ), is given by the following SDP
(and its dual):

Emin,ε(ρ) = minimise
A,X,Y

tr(AH)

subject to A � 0 tr A = 1
1
2

(tr X + tr Y) � 2ε(
X −(ρ− A)

−(ρ− A) Y

)
� 0.

(9)

= maximise
y,z,M

tr ρ
( z

2
(M + M†) − y · I

)
− z · 2ε

subject to z � 0 M†M � I
z
2

(M + M†) − y · I � H.
(10)

An immediate observation is that, in equation (10), choosing a configuration of the param-
eters (z, y, M) yields a lower bound of Emin,ε(ρ). As an obvious example, we can always
choose z, y, and M so that z

2 (M + M†) − y · I � H is saturated, which yields a lower bound
Emin,ε(ρ) � E(ρ) − 2z · ε. For finite systems, we can choose z = ‖H‖ to get an effective
bound Emin,ε(ρ) � E(ρ) − 2ε‖H‖. However, this bound becomes trivial for unbounded H. For
unbounded H, we pick an energy threshold e � 0 and define the corresponding truncated
Hamiltonian Htrunc = PeHPe, where Pe is the projector onto the direct sum of all energy
eigenspaces with energy upper bounded by e. Then, by choosing (M + M†)/2 = Htrunc/e, z = e
and y = 0 in equation (10), and defining the truncated energy to be

E(ρ, e) := tr(PeHPeρ), (11)

we get:

Corollary 1. For any energy threshold e � 0, we have

Emin,ε(ρ) � E(ρ, e) − 2ε · e. (12)

Remark 1. As a sanity check, let us apply corollary 1 to the state ρ1 = 1
n |n〉〈n|+

(1 − 1
n )|0〉〈0| of a harmonic oscillator with HS =

∑
n nh̄ω|n〉〈n|. If the energy threshold

is higher than nh̄ω, the energy is not truncated and the bound at best (e = nh̄ω) reads

6
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Emin,ε(ρ1) � h̄ω(1 − 2εn). If the energy threshold is lower than nh̄ω, the energy of the trun-
cated state is equal to 0 and the bound becomes trivial. In both cases, the bound is non-positive
if we choose ε = 1

n , which does not contradict with the fact that there exists another state
ρ0 = |0〉〈0| that is δ-close but with zero energy.

3.2. Energy requirement for implementing unitary gates

With all these preparations, we can now derive our main results on the energy requirement of
implementing an arbitrary unitary that acts on a system with a potentially unbounded Hamil-
tonian. First, we present it in the most general form (theorem 1) and then reduce it to an
easier-to-use version (theorem 2).

Theorem 1 (Energy requirement for implementing unitary gates). Consider any
(E, ε)-ideal physical implementation (V , β) of a unitary U that acts on a system with a discrete
Hamiltonian HS bounded from below. For any m ∈ N, any energy threshold e(m), and any
ρm ∈ St(H⊗2m

S ) with tr(ρHk) � E (Hk := Ik ⊗ (H)k is the Hamiltonian of the kth subsystem) for
any 1 � k � 2m, the following inequality holds:

E(β) � Ē((U ⊗ U−1)⊗m(ρm), ē(m)) − 2m · E − 2mε′ · ē(m), (13)

where E(ρ, e(m)) is the truncated energy (11) and ε′ := (1 + g(E)/E)
√
ε with g(E) being the

energy constraint function of U−1.

The new bound (13), compared with [1, equation (1)], is characteristic of an additional
parameter e(m), which controls the energy cut-off. This manifests the key difference between
the energy bounded and unbounded cases, as the role of e(m) is to address the issue of infinite
‖HS‖. We remark that e(m), by definition, is a manually set variable independent of the system
and the unitary to implement. In practice, nevertheless, we can often find an optimal cut-off
that depends on the unitary to implement via simple algorithms (see section 4).

Proof of theorem 1. For any m ∈ N, consider any state ρm ∈ St(H⊗2m
S ) with bounded

energy on every subsystem: tr(ρHk) � E for any 1 � k � 2m. Applying lemma 1, we know
that there exists an energy non-increasing circuit N that emulates m uses of U ⊗ U−1 on ρm.
Since the network N is energy non-increasing, the energy of the output state is bounded by the
input energy, namely that

E(ρout) � E (ρm ⊗ β) = E(ρm) + E(β). (14)

Meanwhile, since the energy of ρm is properly bounded, we can apply lemma 1, and thus the
output state is (mε′)-close to (U ⊗ U−1)⊗m(ρm), which implies that

E(ρout) � Emin,mε′
(
(U ⊗ U−1)⊗m(ρm)

)
. (15)

Further applying corollary 1 and combining with equation (14) and E(ρm) � 2m · E (by
definition), we get equation (13). �

In principle, we can choose ρm to be an entangled state to maximise the bound. In prac-
tice, nevertheless, it is often convenient to pick a tensor-power form ρm = ρ⊗m for some
ρ ∈ St(H⊗2

S ). If there exists an energy threshold e of the bipartite Hamiltonian HS ⊗ I + I ⊗ HS

such that E
(
(U ⊗ U−1)(ρ), e

)
> E(ρ), then the general bound (13) can be reduced to

7
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E(β) � m ·
(
E
(
(U ⊗ U−1)(ρ), e

)
− E(ρ) − 2mε′ · e

)
. (16)

Taking the maximum over m ∈ N, we obtain the following specialised version of our main
result:

Theorem 2. Consider any (E, ε)-ideal physical implementation (V , β) of a unitary U that
acts on a system with a discrete Hamiltonian HS bounded from below. For any energy threshold
e of the bipartite Hamiltonian HS ⊗ I + I ⊗ HS such that E

(
(U ⊗ U−1)(ρ), e

)
> E(ρ) for some

ρ with E(ρ) � E, the energy requirement satisfies the following bound:

E(β) �
(
E
(
(U ⊗ U−1)(ρ), e

)
− E

)2

8ε′e
− ε′e

2
. (17)

Here ε′ := (1 + g(E)/E)
√
ε with g(E) being the energy constraint function of U−1.

4. Applications of the energy requirement

4.1. Systems with bounded Hamiltonian

As the first example, we show how to retrieve the main result of reference [1] on the
energy requirement for energy-bounded systems. When ‖HS‖ < ∞, a legitimate truncation on
HS ⊗HS is the trivial one e = 2‖HS‖ that keeps the Hamiltonian HS ⊗ I + I ⊗ HS untouched,
which yields E

(
(U ⊗ U−1)(ρ), 2‖HS‖

)
= E

(
(U ⊗ U−1)(ρ)

)
. Substituting into theorem 2, we

get the following:

Corollary 2 (Energy requirement in the bounded Hamiltonian case). The energy
requirement of physically implementing a unitary U (with the energy constraint fidelity
FE � 1 − ε) is bounded as:

E(β) � (ΔE)2

16ε′‖HS‖
− ε′‖HS‖. (18)

Here ΔE :=maxρ E
(
(U ⊗ U−1)(ρ)

)
− E(ρ) and ε′ := (1 + g(E)/E)

√
ε with g(E) being the

energy constraint function of U−1.

Consider a generic bounded system Hamiltonian HS whose ground state energy is, without
loss of generality, zero. Since the system has bounded energy, we can further waive the input
energy constraint by letting E = ‖HS‖. Then, since g(E) � ‖HS‖we have ε′ � 2

√
ε. Moreover,

we haveΔE = maxρ tr
(
ΔUHS ⊗ I + I ⊗ΔU†HS

)
ρwithΔUHS :=U†HSU − HS is the change

of HS upon the action of U . Observing that ΔU†HS has the same spectrum as −ΔUHS, we
choose ρ = ψ1 ⊗ ψ2, where ψ1 (ψ2) is the eigenstate of ΔUHS corresponding to the maximal
(minimal) eigenvalue λmax(ΔUHS)(λmin(ΔUHS)). Therefore, corollary 2 implies

E(β) � [(λmax − λmin)(ΔUHS)]2

32
√
ε‖HS‖

− 2
√
ε‖HS‖, (19)

matching the main result (equation (1)) of reference [1].

8
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4.2. Displacement

One major area of application for our new bound is quantum optics. As a working example,
here we consider a Harmonic oscillator with Hamiltonian HS =

∑∞
n=0(n + 1

2 )h̄ω|n〉〈n|, where
{|n〉} is the photon (excitation) number basis. For simplicity, we follow the dimensionless
convention and set h̄ω = 1. The unitary gate we consider is the displacement operator, one of
the most fundamental building blocks of quantum optical circuits [17].

First, we determine the energy constraint function for a single-mode displacement oper-
ator D(z) where z ∈ C is the displacement parameter. The Hamiltonian of the harmonic
oscillator under consideration can be expressed as HS = (aa† + a†a)/2 = (X2 + P2)/2, where
a(a†) is the creation (annihilation) operator and X(P) is the position (momentum) opera-
tor. D(z)†HSD(z) = HS +

√
2(X R(z) + PI(z)) + |z|2, where R (I) denotes the real (imag-

inary) part of a complex number, and we used the properties D(z)†XD(z) = X +
√

2R(z)
and D(z)†PD(z) = P +

√
2 I(z). Further using the Schwarz inequality 〈X R(z) + P I(z)〉 �√

〈X〉2 + 〈P〉2 · |z| �
√

2〈HS〉 · |z|, we get 〈D(z)†HSD(z)〉 � (
√
〈HS〉+ |z|)2, and a legitimate

energy constraint function is thus

fdis,z(E) =
(√

E + |z|
)2

� 2(E + |z|2). (20)

Note that, since D(z)† = D(−z), the energy constraint function of D(z)−1 is also fdis,z(E).

Choose the input state to be a coherent state |
√

E − 1
2 ei arg(z)〉 ⊗ |

√
E − 1

2 ei arg(−z)〉, which

has energy E on both modes. Sending it through D(z) ⊗D(z)−1 yields |
√

E − 1
2 ei arg(z) + z〉 ⊗

| − (
√

E − 1
2 ei arg(z) + z)〉. To obtain an energy requirement, we apply theorem 2 with some

energy threshold 2e > 0. Then the truncated output energy satisfies

Eout � 2E

(∣∣∣∣∣
√

E − 1
2

ei arg(z) + z

〉〈√
E − 1

2
ei arg(z) + z

∣∣∣∣∣ , e

)
. (21)

Since the energy distribution of the output state is Poisson, the truncated output energy
can be bounded using the tail property of Poisson distributions. Defining ν := (E + |z|2 +
2|z|

√
E − 1

2 )/E > 1 to be the ratio between the output energy and the input energy, the
truncated average energy can be bounded as

Eout = 2
∑

n�e− 1
2

(νE)n
(
n + 1

2

)
e−νE

n!
(22)

� 2νE ·
∑

n�e− 3
2

(νE)ne−νE

n!
. (23)

Substituting into theorem 2 and noticing that g(E)/E � 2ν, we obtain the energy requirement

of implementing a displacement D(z): define Ethres :=
{

e : ν ·
∑

n�e− 3
2

(νE)ne−νE

n! � 1
}

to be

the set of legitimate e. For any (E, ε)-ideal implementation, the energy of the battery is lower

9
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Figure 1. The energy requirement for a displacement D(z) (z = 1). (a) Shows the energy
requirement (24) as a function of the input energy constraint E, whereas the error thresh-
old is fixed to be ε = 10−6. (The unit of the energy constraint is h̄ω.) It can be seen that
the energy requirement increases with E, as the amount of energy that the displacement
could generate also grows with E. (b) Shows the log-scale plot of the energy requirement
(24) as a function of the error threshold ε, whereas the input energy constraint is fixed to
be E = 4. It can be seen that the energy requirement fits the 1/

√
ε scaling except in the

large ε region.

bounded as:

E(β) � max
e∈Ethres

E2

2(1 + 2ν)e
√
ε

⎛
⎝ν

∑
n�e− 3

2

(νE)ne−νE

n!
− 1

⎞
⎠2

− (1 + 2ν)
√
ε · e

2
.

(24)

In figure 1, the energy requirement for a displacement gate with displacement z = 1 is plot-
ted against the input energy constraint E and the error threshold ε. From figure 1(a), we can
see that the energy requirement indeed grows as the allowed input energy grows, since more
energy has to be pumped into the battery to compensate the E-dependent energy generation.
The plot suggests a sub-linear trend of the energy requirement growth. On the other hand, in
figure 1(b) the energy requirement is plotted as a function of the error threshold ε. We can see
that the energy requirement is well-fitted by the curve 0.190/

√
ε in the small ε region. The

same phenomenon has been observed in the case of bounded Hamiltonians [1].
At last, we discuss the behavior of the bound in the vanishing error regime, i.e. ε � 1. In

this case, it is enough to choose the threshold e to grow (relatively slowly) with 1/ε. Following
this intuition, we choose e = E · ln(1/ε). Then, there exists an ε0 > 0 such that, when ε � ε0,
we have

∑
n�e− 3

2

(νE)ne−νE

n! � ν+1
2ν . Substituting into equation (24), we get

E(β) � E
ln (1/ε)

√
ε
·
{

(ν − 1)2

9(1 + 2ν)
− (1 + 2ν)ε(ln (1/ε))2

2

}
for ε � ε0, (25)

where ε0 is a small enough positive constant. We can see that the energy requirement
approximately achieves the same scaling (i.e. 1/

√
ε) as in the bounded Hamiltonian case [1].

10
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4.3. One-mode squeezing

Here we consider another fundamental unitary operation acting on a single harmonic oscillator:
the single-mode squeezing operator [18]. The squeezing operator can generate entanglement
between photons, enhancing the precision in the detection of extremely weak signals such as
gravitational waves [29].

Again, we first determine the energy constraint function for a single-mode squeezing oper-
ator S(ξ) where ξ is the squeezing parameter. For simplicity, we assume ξ > 0 to be a positive
real number. S(ξ) acts on the creation and annihilation operators as S†(ξ)aS(ξ) = a cosh ξ − a†

sinh ξ and S†(ξ)a†S(ξ) = a† cosh ξ − a sinh ξ. Therefore, the squeezing operator acts upon the
Hamiltonian HS = (a†a + aa†)/2 of a harmonic oscillator as S†(ξ)HSS(ξ) = cosh(2ξ)HS − 1

2

sinh(2ξ)((a†)2 + a2). Since 〈 1
2 ((a†)2 + a2)〉 = 〈HS〉 − 〈P2〉 � −〈HS〉, the output energy can be

bounded as 〈S†(ξ)HSS(ξ)〉 � (cosh(ξ) + sinh(ξ))2〈HS〉 = e2ξ〈HS〉, and thus a legitimate energy
constraint function is

fsq,ξ(E) = e2ξE. (26)

Note that, since S(ξ)† = S(−ξ), the energy constraint function of S(ξ)−1 is also f sq,ξ(E).
Therefore, we have ε′ = (1 + e2ξ)

√
ε in theorem 2.

For one-mode squeezing, we try different forms of input states and compare the obtained
energy requirement bounds. First, we choose the input state to be a number state |�E − 1

2�〉⊗2,
which has energy �E − 1

2�+
1
2 on both modes where �·� denotes the floor function. Sending it

through S(ξ) ⊗ S(ξ)−1 yields two squeezed number states, whose photon number distribution
is [30]

Psn,ξ,E(n) = |〈n|S(ξ)|l〉|2 for l = �E − 1
2
� (27)

〈n|S(ξ)|l〉 =
√

n!l!
(cosh ξ)n+1/2

(
tanh ξ

2

) l−n
2

cos2 (n − l)π
2

× S(ξ, l, n) (28)

S(ξ, l, n) :=

n
2∑

m= n−l
2

(−1)m(2−1 sinh ξ)2m

m!(n − 2m)![m + (l − n)/2]!
. (29)

Alternatively, we choose the input state on each single mode to be a coherent state of energy
E with phase π

2 . Sending it throughS(ξ) (and S(ξ)−1 as well) yields a squeezed coherent states,
whose photon number distribution is

Psc,ξ,E(n) =

∣∣∣∣∣∣∣
∞∑

m=0

|〈n|S(ξ)|m〉

√(
E − 1

2

)m
e
−
(

E− 1
2

)

m!

∣∣∣∣∣∣∣
2

. (30)

At last, we can also choose the input state to be a single-mode squeezed state of energy E
(i.e. with squeezing parameter 1

2 cosh−1(2E). Sending it over the gate S(ξ) amounts to increas-
ing its degree of squeezing by ξ. The output state is still a squeezed state with photon number
distribution Psq,ξ,E(n) = |〈n|S(ξ + 1

2 cosh−1(2E))|0〉|2.

11
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Applying theorem 2 with some energy threshold 2e > 0 (so that the threshold on each single
system is at least e), the truncated average output energy can be expressed as

E = 2
∑

n�e− 1
2

(
n +

1
2

)
Px,ξ,E(n). (31)

for x = sn, sq, sc. By theorem 2, we have

E(β) � max
e

(∑
n�e− 1

2

(
n + 1

2

)
Px,ξ,E(n) − Ein

)2

2(1 + cosh(2ξ))
√
εe

− (1 + cosh(2ξ))
√
εe

2
, (32)

where the maximisation is conducted over all e > 0 such that
∑

n�e− 1
2

(
n + 1

2

)
Px,ξ,�E− 1

2 �
(n) is

greater than the input energy Ein, which is either E (x = sc, sq) or �E − 1
2�+

1
2 (x = sn).

In figure 2(a), the energy requirements obtained via inputting different states are compared.
All input states have the same average energy E = 4.5. By comparing with the reference line
(black, dashed) we can see that the (1/

√
ε)-scaling persists. The energy requirement obtained

by plugging in a coherent state is the tightest, even though in this case the output energy before
truncation (= 11.8) is lower than that of the squeezed state case (= 12.2). This seems to con-
tradict the intuition that inputting a state that best stimulates the energy generating power of
the unitary would make the bound tighter. The reason for such a phenomenon is manifested
by figure 2(b), where the photon number distributions of the output states are plotted. It is
clear from the plot that the tail of the output corresponding to the squeezed state case is longer
than that of the coherent state case, leading to a larger value of e that decreases the value of
the bound. Indeed, numerical calculations show that the optimal value of the energy thresh-
old e is around 24 (which varies slightly as ε changes) in the coherent input state case in
contrast to around 79 in the squeezed input state case. Meanwhile, although the optimal e
in the number input state case is the smallest (around 15), the number state fails to trigger
enough energy generation compared to the other two states. Therefore, a good choice of the
input state (to make the bound tighter) should achieve a good balance between larger out-
put energy and a more concentrated distribution with a shorter tail over the output energy
spectrum.

Finally, it is also intriguing to explore the relation between the above result and quantum
metrology. It was previously shown that choosing the battery state to be an optimal state
for quantum metrology (specifically, for the estimation of the phase shift generated by the
battery’s Hamiltonian) will also achieve the optimal energy-precision tradeoff in the case of
a bounded Hamiltonian [1]. Here we consider a different problem of choosing the input state
to test the accuracy of implementation. Intuitively, a better state for quantum metrology as the
input should provide a more stringent notion of accuracy, which could potentially lead to a
higher energy requirement. In contrast, we showed that the squeezed state, a superior resource
in photonic quantum metrology [31], did not perform better than the coherent state when cho-
sen as the input state for evaluating our energy requirement bound. An immediate explanation,
as mentioned in the above paragraph, is that there are other variables (such as the cut-off energy
e) than the accuracy threshold in our bound. Whether this phenomenon is fundamental, or there
exist other bounds that lead to a different result, remains an interesting topic of future research.
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Figure 2. The energy requirement for a single-mode squeezing operation S(ξ) (ξ = 0.5)
as a function of the error threshold ε for different choices of the input state. In (a), the
energy requirement (32) is plotted with the input state being a squeezed state, a coherent
state, or a number state. All choices of the input state have the same energy E = 4.5.
In (b) shows the photon number distributions of the output state of S(ξ) when choosing
each of these states as the input state.

5. Conclusions and outlook

In this article, we discussed the energy requirement for implementing a unitary quantum gate.
We derived a general lower bound on the amount of energy needed for the implementation,
which extends the bound in reference [1] to infinite dimensional systems and unbounded
Hamiltonians. To illustrate our new result, we analyzed the energy requirement of operations
in quantum optics, such as displacement operations and (single-mode) squeezing operations.
The analysis can also be readily adapted to other operations, such as two-mode squeezing and
non-Gaussian operations.

This article is reminiscent of reference [21], which generalises the optimal quantum pro-
gramming result [32] from finite dimensional systems to infinite dimensional systems. An
important difference to our work is, however, that their resource of interest was the size (dimen-
sion) of the minimum quantum program, and the ‘battery’ register of reference [21] is thus
constrained to be finite-dimensional by the task of programming. Here we completely replaced
dimension constraints by energy constraints, which is more natural for many real physical
systems such as a harmonic oscillator prepared in a coherent state.

In reference [1], the method for determining the minimum resource requirement has also
been extended from energy to general resources that satisfy three main assumptions, namely
(i) monotonicity under discarding any subsystem, (ii) (sub)additivity on product states, and
(iii) the Lipschitz continuity with respect to the trace distance between quantum states. In
this article, despite the failure of (iii) (since the Lipschitz constant is infinite for unbounded
Hamiltonians), we have successfully derived an energy requirement lower bound. This success
prompts us to look for further relaxations of the assumptions in [1] and extend our work to other
generic resources beyond energy.

Determining the resources that a unitary consumes is also relevant in the context of funda-
mental questions. A prominent example is the physics of black holes. A widespread assumption
is that black holes, as viewed from the outside, can be treated as ordinary quantum systems.
Under this assumption, the map that describes the evolution of a black hole together with the
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Hawking radiation that it produces would then be a unitary. There are furthermore strong indi-
cations that this unitary is rapidly mixing, and information-theoretic models of black holes
thus usually rely on such a mixing property. For example, Page’s famous calculation of the
time-dependence of the entropy of the Hawking radiation relies on the assumption that this
unitary is typical, as if it was chosen at random according to the Haar measure from all possi-
ble unitaries [33]. Similarly, Hayden and Preskill’s conclusions that an old black hole quickly
emits all information that falls into it, and in this sense acts like a mirror, is based on the same
typicality assumption [34].

But if black holes are treated as quantum systems that evolve unitarily, it is reasonable to
assume that they also obey the resource constraints that ordinary quantum systems do. Such
considerations have already been made in terms of their complexity. It has been argued that the
typicality assumption could be relaxed to the requirement that the unitaries are two-designs,
which have a relatively low complexity. The work presented here suggests that it may also be
interesting to ask whether energy considerations can constrain the class of physically plausible
unitaries further.

We note that black holes are usually considered as finite-dimensional quantum systems,
and potentially one may apply the earlier results [1] to their study. (Notice that the limitation
of quantum information recovery in the Hayden-Preskill model of black holes has recently
been considered in [35]). However, since this dimension is very large (actually as large as the
dimension of a system can be that can still be embedded in spacetime without collapsing to a
black hole), it may be more promising to consider energy rather than dimensional constraints.
Furthermore, recent breakthrough results suggest that the subsystem structure of a spacetime
containing a black hole is non-trivial [36, 37]. Based on these insights, it has been suggested
to consider many-black-holes systems instead of a single black hole [38]. In such a system, it
may be difficult to define the dimension of any individual black holes, so that energy bounds,
again, appear to be a more promising choice.

The application of our results to such a setting may however be subtle, not least because
the notion of energy is depending on the reference one is considering. We thus leave it as a
proposal for future work.
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Appendix A. Proof of lemma 1

By [20, proposition 1] (which generalises the purification continuity [39] for the energy-
constrained fidelity), there exists a pure state β′ such that FE(V ◦ (I ⊗ β),U ⊗ β′) � 1 − ε.
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We remark that the purification continuity [39] and its extended form [40, 41] has been used
in a couple of previous works [1, 9, 10, 35, 42, 43] By the Fuchs–van de Graaf inequality [25]
of the energy-constrained channel fidelity, we have

DE
(
V(· ⊗ β),U ⊗ β′) � √

ε. (A.1)

By invariance of the energy-constrained error under the energy preserving unitary V , we have

DE
(
V−1 ◦ (U ⊗ β′), (·) ⊗ β

)
�

√
ε. (A.2)

Further applying properties of the energy-constrained diamond norm from [19, lemma 4], we
get:

√
ε � E

g(E)
Dg(E)

(
V−1 ◦ (U ⊗ β′), (·) ⊗ β

)
(A.3)

� E
g(E)

DE
(
V−1 ◦ (U ◦ U−1 ⊗ β′),U−1 ⊗ β

)
(A.4)

=
E

g(E)
DE

(
V−1(· ⊗ β′),U−1 ⊗ β

)
. (A.5)

Combining equation (A.2) with equation (A.5), we get

D(E,E)
(
(V−1 ⊗ I) ◦ (I ⊗ V)(· ⊗ β ⊗ ·),U−1 ⊗ β ⊗ U

)
�

(
1 +

g(E)
E

)√
ε.

(A.6)

Physically, the above inequality manifests the following fact: by consecutively applying V
and V−1, each with its own system register, on the same battery β, up to an error of ε′ one
can simulate U and U−1 while keeping the battery ‘untouched’. Iteratively applying the above
procedure on the same battery register and new system registers for m times, we get a network
consisting of V and V−1 that acts on 2m identical subsystems H1, . . . ,H2m � HS:

Ñ = V2m ◦ V2m−1 ◦ · · · ◦ V1 (A.7)

Vk :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ik︸︷︷︸
all but Hk

⊗ V︸︷︷︸
acting on Hk⊗HB

for odd k

Ik ⊗ V−1︸︷︷︸
acting on Hk⊗HB

for even k
. (A.8)

At last, notice that discarding the battery register will not increase the energy since, by
assumption, the energy eigenvalues of every register including the battery is non-negative.
Defining N := trB ◦ Ñ to be the resultant network, we get the desired inequality

D(E,...,E)
(
N , (U−1 ⊗ U)⊗m

)
� m

(
1 +

g(E)
E

)√
ε (A.9)

thanks to the data processing inequality. �

15



J. Phys. A: Math. Theor. 55 (2022) 494003 Y Yang et al

ORCID iDs

Yuxiang Yang https://orcid.org/0000-0002-0531-8929
Renato Renner https://orcid.org/0000-0001-5044-6113
Giulio Chiribella https://orcid.org/0000-0002-1339-0656

References

[1] Chiribella G, Yang Y and Renner R 2021 Fundamental energy requirement of reversible quantum
operations Phys. Rev. X 11 021014

[2] Chitambar E and Gour G 2019 Quantum resource theories Rev. Mod. Phys. 91 025001
[3] Baumgratz T, Cramer M and Plenio M B 2014 Quantifying coherence Phys. Rev. Lett. 113 140401
[4] Streltsov A, Adesso G and Plenio M B 2017 Colloquium: quantum coherence as a resource Rev.

Mod. Phys. 89 041003
[5] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Mixed-state entanglement and

quantum error correction Phys. Rev. A 54 3824
[6] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement Rev. Mod.

Phys. 81 865
[7] Marvian I and Spekkens R W 2012 An information-theoretic account of the Wigner–Araki–Yanase

theorem (arXiv:1212.3378)
[8] Ahmadi M, Jennings D and Rudolph T 2013 The Wigner–Araki–Yanase theorem and the quantum

resource theory of asymmetry New J. Phys. 15 013057
[9] Tajima H, Shiraishi N and Saito K 2018 Uncertainty Relations in Implementation of Unitary

Operations Phys. Rev. Lett. 121
[10] Tajima H, Shiraishi N and Saito K 2020 Coherence cost for violating conservation laws Phys. Rev.

Research 2
[11] Sparaciari C, Oppenheim J and Fritz T 2017 Resource theory for work and heat Phys. Rev. A 96

052112
[12] Faist P, Dupuis F, Oppenheim J and Renner R 2015 The minimal work cost of information

processing Nat. Commun. 6 7669
[13] Faist P and Renner R 2018 Fundamental work cost of quantum processes Phys. Rev. X 8 021011
[14] Sagawa T and Ueda M 2009 Minimal energy cost for thermodynamic information processing:

measurement and information erasure Phys. Rev. Lett. 102 250602
[15] Navascués M and Popescu S 2014 How energy conservation limits our measurements Phys. Rev.

Lett. 112 140502
[16] Chiribella G and Yang Y 2017 Optimal quantum operations at zero energy cost Phys. Rev. A 96

022327
[17] Glauber R J 1963 Coherent and incoherent states of the radiation field Phys. Rev. 131 2766
[18] Yuen H P 1976 Two-photon coherent states of the radiation field Phys. Rev. A 13 2226
[19] Winter A 2017 Energy-constrained diamond norm with applications to the uniform continuity of

continuous variable channel capacities (arXiv:1712.10267)
[20] Shirokov M E 2018 On the energy-constrained diamond norm and its application in quantum

information theory Probl. Inf. Transm. 54 20–33
[21] Gschwendtner M and Winter A 2021 Infinite-dimensional programmable quantum processors PRX

Quantum 2 030308
[22] Pirandola S and Lupo C 2017 Ultimate precision of adaptive noise estimation Phys. Rev. Lett. 118

100502
[23] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Fundamental limits of repeaterless

quantum communications Nat. Commun. 8 15043
[24] Kitaev A Y 1997 Quantum computations: algorithms and error correction Russ. Math. Surv. 52

1191–249
[25] Fuchs C A and van de Graaf J 1999 Cryptographic distinguishability measures for quantum-

mechanical states IEEE Trans. Inf. Theory 45 1216–27
[26] Skrzypczyk P, Short A J and Popescu S 2013 Extracting work from quantum systems (arXiv:1302

.2811)
[27] Åberg J 2014 Catalytic coherence Phys. Rev. Lett. 113 150402

16

https://orcid.org/0000-0002-0531-8929
https://orcid.org/0000-0002-0531-8929
https://orcid.org/0000-0001-5044-6113
https://orcid.org/0000-0001-5044-6113
https://orcid.org/0000-0002-1339-0656
https://orcid.org/0000-0002-1339-0656
https://doi.org/10.1103/physrevx.11.021014
https://doi.org/10.1103/physrevx.11.021014
https://doi.org/10.1103/revmodphys.91.025001
https://doi.org/10.1103/revmodphys.91.025001
https://doi.org/10.1103/physrevlett.113.140401
https://doi.org/10.1103/physrevlett.113.140401
https://doi.org/10.1103/revmodphys.89.041003
https://doi.org/10.1103/revmodphys.89.041003
https://doi.org/10.1103/physreva.54.3824
https://doi.org/10.1103/physreva.54.3824
https://doi.org/10.1103/revmodphys.81.865
https://doi.org/10.1103/revmodphys.81.865
https://arxiv.org/abs/1212.3378
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1088/1367-2630/15/1/013057
https://doi.org/10.1103/PhysRevLett.121.110403
https://doi.org/10.1103/PhysRevResearch.2.043374
https://doi.org/10.1103/physreva.96.052112
https://doi.org/10.1103/physreva.96.052112
https://doi.org/10.1038/ncomms8669
https://doi.org/10.1038/ncomms8669
https://doi.org/10.1103/physrevx.8.021011
https://doi.org/10.1103/physrevx.8.021011
https://doi.org/10.1103/physrevlett.102.250602
https://doi.org/10.1103/physrevlett.102.250602
https://doi.org/10.1103/physrevlett.112.140502
https://doi.org/10.1103/physrevlett.112.140502
https://doi.org/10.1103/physreva.96.022327
https://doi.org/10.1103/physreva.96.022327
https://doi.org/10.1103/physrev.131.2766
https://doi.org/10.1103/physrev.131.2766
https://doi.org/10.1103/physreva.13.2226
https://doi.org/10.1103/physreva.13.2226
https://arxiv.org/abs/1712.10267
https://doi.org/10.1134/s0032946018010027
https://doi.org/10.1134/s0032946018010027
https://doi.org/10.1134/s0032946018010027
https://doi.org/10.1134/s0032946018010027
https://doi.org/10.1103/prxquantum.2.030308
https://doi.org/10.1103/prxquantum.2.030308
https://doi.org/10.1103/physrevlett.118.100502
https://doi.org/10.1103/physrevlett.118.100502
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1109/18.761271
https://doi.org/10.1109/18.761271
https://doi.org/10.1109/18.761271
https://doi.org/10.1109/18.761271
https://arxiv.org/abs/1302.2811
https://arxiv.org/abs/1302.2811
https://doi.org/10.1103/physrevlett.113.150402
https://doi.org/10.1103/physrevlett.113.150402


J. Phys. A: Math. Theor. 55 (2022) 494003 Y Yang et al

[28] Watrous J 2018 The Theory of Quantum Information (Cambridge: Cambridge University Press)
[29] Aasi J et al 2013 Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed

states of light Nat. Photon. 7 613–9
[30] Kim M S, De Oliveira F A M and Knight P L 1989 Properties of squeezed number states and

squeezed thermal states Phys. Rev. A 40 2494
[31] Polino E, Valeri M, Spagnolo N and Sciarrino F 2020 Photonic quantum metrology AVS Quantum

Sci. 2 024703
[32] Yang Y, Renner R and Chiribella G 2020 Optimal universal programming of unitary gates Phys.

Rev. Lett. 125 210501
[33] Page D N 1993 Information in black hole radiation Phys. Rev. Lett. 71 3743
[34] Hayden P and Preskill J 2007 Black holes as mirrors: quantum information in random subsystems

J. High Energy Phys. JHEP09(2007)120
[35] Tajima Hiroyasu and Saito Keiji 2022 Universal limitation of quantum information recovery:

symmetry versus coherence arXiv
[36] Penington G 2020 Entanglement wedge reconstruction and the information paradox J. High Energy

Phys. JHEP09(2020)002
[37] Ahmed A, Engelhardt N, Marolf D and Henry M 2019 The entropy of bulk quantum fields and the

entanglement wedge of an evaporating black hole J. High Energy Phys. JHEP12(2019)063
[38] Renner R and Wang J 2021 The black hole information puzzle and the quantum de Finetti theorem

(arXiv:2110.14653)
[39] Kretschmann D, Schlingemann D and Werner R F 2008 The information-disturbance tradeoff and

the continuity of Stinespring’s representation IEEE Trans. Inf. Theory 54 1708–17
[40] Chiribella G, D’Ariano G Mauro, Perinotti P, Schlingemann D and Werner R 2013 A short

impossibility proof of quantum bit commitment Physics Letters A 377 1076–1087
[41] Gutoski G, Rosmanis A and Sikora J 2018 Fidelity of quantum strategies with applications to

cryptography Quantum 2 89
[42] Kretschmann D, Kribs D W and Spekkens R W 2008 Complementarity of private and correctable

subsystems in quantum cryptography and error correction Phys. Rev. A 78
[43] Takagi R and Tajima H 2020 Universal limitations on implementing resourceful unitary evolutions

Phys. Rev. A 101

17

https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1103/physreva.40.2494
https://doi.org/10.1103/physreva.40.2494
https://doi.org/10.1116/5.0007577
https://doi.org/10.1116/5.0007577
https://doi.org/10.1103/physrevlett.125.210501
https://doi.org/10.1103/physrevlett.125.210501
https://doi.org/10.1103/physrevlett.71.3743
https://doi.org/10.1103/physrevlett.71.3743
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1007/jhep09(2020)002
https://doi.org/10.1007/jhep12(2019)063
https://arxiv.org/abs/2110.14653
https://doi.org/10.1109/tit.2008.917696
https://doi.org/10.1109/tit.2008.917696
https://doi.org/10.1109/tit.2008.917696
https://doi.org/10.1109/tit.2008.917696
https://doi.org/10.1016/j.physleta.2013.02.045
https://doi.org/10.1016/j.physleta.2013.02.045
https://doi.org/10.1016/j.physleta.2013.02.045
https://doi.org/10.1016/j.physleta.2013.02.045
https://doi.org/10.22331/q-2018-09-03-89
https://doi.org/10.22331/q-2018-09-03-89
https://doi.org/10.1103/PhysRevA.78.032330
https://doi.org/10.1103/PhysRevA.101.022315

	Energy requirement for implementing unitary gates on energy-unbounded systems
	1.  Introduction
	2.  Preliminaries
	2.1.  Basic notation
	2.2.  Energy-constrained metrics
	2.3.  Energy requirement of a unitary gate
	2.4.  Energy-constrained quantum channels

	3.  Energy requirement of energy-limited unitary gates
	3.1.  Battery recycling lemma
	3.2.  Energy requirement for implementing unitary gates

	4.  Applications of the energy requirement
	4.1.  Systems with bounded Hamiltonian
	4.2.  Displacement
	4.3.  One-mode squeezing

	5.  Conclusions and outlook
	Acknowledgments
	Data availability statement
	Appendix A.  Proof of lemma 
	Appendix A. Proof of lemma 1
	ORCID iDs
	References


