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1   |   INTRODUCTION

1.1  |  Scale-free neural dynamics and 
their functional and cognitive associations

Scale-free dynamics are ubiquitous in nature and are found 
at multiple neural activity levels (Allegrini et al.,  2009; 

Cocchi et al., 2017; He, 2011, 2014). They refer to aperi-
odic neural activity with self-similarity across temporal 
scales and are manifested as a 1/f-like distribution in the 
power spectrum (He, 2014). By definition, scale-free dy-
namics reflect a stationary, rather than transient, process, 
the characterization of which is based on (relatively) long-
term statistical features. From a dynamic system point of 
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Abstract
As indicators of cognitive function, scale-free neural dynamics are gaining increas-
ing attention in cognitive neuroscience. Although the functional relevance of scale-
free dynamics has been extensively reported, one fundamental question about its 
association with cognitive ability remains unanswered: is the association universal 
across a wide spectrum of cognitive abilities or confined to specific domains? Based 
on dual-process theory, we designed two categories of tasks to analyze two types of 
cognitive processes—automatic and controlled—and examined their associations 
with scale-free neural dynamics characterized from resting-state electroencephalog-
raphy (EEG) recordings obtained from a large sample of human adults (N = 102). 
Our results showed that resting-state scale-free neural dynamics did not predict in-
dividuals' behavioral performance in tasks that primarily engaged the automatic 
process but did so in tasks that primarily engaged the controlled process. In addi-
tion, by fitting the scale-free parameters separately in different frequency bands, 
we found that the cognitive association of scale-free dynamics was more strongly 
manifested in higher-band EEG spectrum. Our findings indicate that resting-state 
scale-free dynamics are not universal neural indicators for all cognitive abilities but 
are mainly associated with high-level cognition that entails controlled processes. 
This finding is compatible with the widely claimed role of scale-free dynamics in 
reflecting properties of complex dynamic systems.
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view, scale-freeness is a defining feature of self-sustaining 
nonlinear dynamic systems that exhibit criticality phe-
nomena (Cocchi et al.,  2017), which has been proposed 
to underpin the functional optimality of neural systems in 
various aspects, including dynamic flexibility (Kinouchi & 
Copelli,  2006) and computational capacity (Beggs,  2008; 
Cocchi et al.,  2017; Shew & Plenz,  2012), although this 
notion is still under debate (Beggs & Timme, 2012). The 
scale-freeness reflects the property of a complex nonlinear 
system that displays flexibility in transitioning between 
various dynamic patterns during its spontaneous activ-
ity, leading to higher ability in coping with variability and 
uncertainty in external inputs (Cocchi et al., 2017). When 
(self-)configured into optimal states with respect to a 
specific function, neural systems can display these opti-
mal states already in their ongoing spontaneous dynamic 
activity without being engaged in a task that performs 
the functions (Cocchi et al.,  2017). Therefore, the scale-
freeness of resting-state neural activity would be able to 
predict functional performance in task.

The functional relevance of scale-free dynamics has 
been increasingly recognized in recent decades (He, 2014; 
He et al., 2010; Voytek et al., 2015). This has led to a bur-
geoning of studies, particularly in recent years, reporting 
strong correlations between parameters of scale-free dy-
namics and various neurocognitive and physiological fac-
tors, such as arousal state (Colombo et al.,  2019; Gifani 
et al.,  2007; Lendner et al.,  2020), sensory deprivation 
(Weber et al.,  2020), development and aging (Churchill 
et al.,  2016; Dave et al.,  2018; McSweeney et al.,  2021; 
Merkin et al., 2023; Thuwal et al., 2021; Voytek et al., 2015), 
mental disorders (Ostlund et al.,  2021), task effortful-
ness (Churchill et al.,  2016; Kardan et al.,  2020; Kasagi 
et al.,  2017), and cognitive ability (Bongers et al.,  2020; 
Huang et al., 2016; Immink et al., 2021; Kasagi et al., 2017; 
Kolvoort et al., 2020; Ouyang et al., 2020). However, it is 
important to note that the use of the term “scale-free” and 
the underlying concepts are still ambiguous in the field. 
This is reflected in different terms used to describe sim-
ilar dynamic features such as 1/f (Voytek et al.,  2015), 
aperiodic component (Donoghue et al., 2020; McSweeney 
et al.,  2021), fractal structure or fractal scaling (Gifani 
et al., 2007; Pereda et al., 1998; Wen & Liu, 2016). Some 
of these previous literatures deliberately chose terms to 
avoid conceptual ambiguity, whereas others used them 
interchangeably. In the present article, we will use the 
term of scale-free and 1/f interchangeably to refer to the 
dynamic feature of the downward-going, straight-line-like 
spectrum pattern in the log–log space.

Among the past research studying the functional asso-
ciation of scale-free neural dynamics, the association with 
cognitive ability measured through different cognitive tasks 
is a major domain. The cognitive performance or abilities 

associated with scale-free parameters in numerous studies 
have covered multiple functional domains, including cog-
nitive control (Clements et al.,  2021), attention (Waschke 
et al., 2021; Zhang et al., 2021), working memory (Kardan 
et al., 2020), face and object recognition (Kasagi et al., 2017; 
Ouyang et al.,  2020), motor performance (Immink 
et al., 2021), academic learning (Bongers et al., 2020; Cross 
et al., 2022), and sense of self (Huang et al., 2016).

The present work is aimed at examining the association 
between the estimated parameters characterizing scale-
free features in neural activity and human cognitive abil-
ities. Based on the abovementioned extensively reported 
associations, scale-free neural dynamics are undeniably 
reflective of the functionality of the cognitive system. 
However, an important question arises from the multi-
tude of findings that remain to be answered: are scale-free 
dynamics universally associated with a wide spectrum of 
cognitive abilities or are they specific to a certain level or 
type of cognitive process?

1.2  |  Fine-graining the association of 
scale-free dynamics with cognitive abilities 
over different levels of cognition

It is important to answer the question above to deline-
ate the functional role of scale-free dynamics in human 
cognition and to support studies determining the under-
lying neural mechanisms. If the association is universal, 
scale-free dynamics would manifest the domain-general 
information-processing capacity required for a great va-
riety of cognitive activities; this may explain the reported 
associations in a wide variety of tasks (Duncan,  2010; 
Fedorenko,  2014; Gilmore & Cragg,  2018). In contrast, 
human cognition is a complex system comprising hierar-
chical levels of inter-woven cognitive processes (Craik & 
Lockhart,  1972; Miller & Wallis,  2009); therefore, scale-
free dynamics are unlikely to be universally predictive 
of cognitive processing at all levels. This question can be 
addressed by administering various cognitive tasks while 
manipulating a cognitive factor in a well-controlled way 
within the same study (preferably based on a large sam-
ple size) and examining how task performance is differen-
tially associated with the scale-free dynamics measured in 
the resting state. The cognitive factor to be manipulated 
should be fundamental and theoretically more likely to 
differentiate different neural cognitive systems, such as 
different levels, complexities, or demands in information 
processing. Previous studies have not directly addressed 
this point by distinguishing the scale-free dynamics–
cognition associations among different cognitive systems; 
however, those studies have provided interesting and 
useful aggregate patterns that can be used to foster new 
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hypotheses. For example, the associations reported in 
most studies have been based on tasks that mainly involve 
strenuous cognitive control (Bongers et al., 2020; Immink 
et al.,  2021; Kardan et al.,  2020; Ouyang et al.,  2020; 
Voytek et al.,  2015). Accordingly, in this study, we for-
mulated the following research questions and the corre-
sponding hypotheses.

First, we questioned whether scale-free dynamics are 
differentially associated with cognitive abilities at differ-
ent levels of cognition. How complex human cognition 
is structured is a major question in cognitive science 
(James, 1890; Nelson et al., 2015). In a generic sense, dif-
ferent levels of cognitive processes differ in complexity 
(e.g., processing a single color vs. evaluating fine arts). 
Dual-process theory, which is a well-established cogni-
tive theory supported by several theoretical and empir-
ical studies (for a review, see Evans & Stanovich, 2013; 
Milli et al., 2021), clearly proposes two distinct types of 
cognitive processes: automatic and controlled (Schneider 
& Shiffrin, 1977). The primary distinction between these 
two types lies in the required amount of working mem-
ory resources (Evans,  2011). Automatic processes are 
characterized by (1) minimal access to working memory 
resources and the recruitment of few top-down control 
processes, (2) having a fixed routine, and (3) being gener-
ally fast and effortless. In contrast, controlled processes 
are characterized by (1) a strong reliance on working 
memory resources and cognitive control processes, (2) 
flexibility to cope with novel situations, and (3) being 
generally slow and strenuous. Both of these processes 
interplay under a hierarchical human cognitive system 
wherein automatic processes play at a low level and con-
trolled processes play at a high level (Evans, 2011; Evans 
& Stanovich, 2013; Schneider & Chein, 2003).

The distinction between these two processes based on 
dual-process theory forms a foundation for our hypoth-
esis regarding the first research question: the two types 
of cognitive processes may be differentially associated 
with resting-state scale-free neural dynamics. First, as 
mentioned above, the cognitive associations of scale-free 
dynamics reported in most previous studies have been 
based on tasks involving controlled processes (Bongers 
et al.,  2020; Immink et al.,  2021; Kardan et al.,  2020; 
Ouyang et al., 2020; Voytek et al., 2015). Second, from a 
theoretical perspective, scale-free dynamics are a defining 
characteristic of complex systems that behave flexibly and 
unpredictably (Cavanna et al.,  2018; Cocchi et al.,  2017; 
Kelso, 2012). Flexibility refers to the ability of a dynamic 
system to intermittently and actively escape from an at-
tractor and shift to another (Kelso, 2012), thereby forming 
a rich set of activity patterns. Compared with automatic 
processes that are fixed and routine, this characteristic 
is more compatible with high-level controlled processes 

that are complex and flexible. Taken together, we con-
cretize our hypothesis about the first research question 
as follows: scale-free neural dynamics should be associ-
ated with cognitive performance in high-level tasks that 
involve high-level controlled processes to a greater extent 
than with cognitive performance in low-level tasks that 
mainly involve low-level automatic processes.

1.3  |  Characterization of scale-free 
neural dynamics

As a neural indicator of properties of the underlying func-
tional cognitive system, scale-free dynamics have been 
commonly characterized from the resting state (Colombo 
et al.,  2019; Immink et al.,  2021; Kolvoort et al.,  2020; 
Ostlund et al.,  2021; Ouyang et al.,  2020) based on the 
assumption that spontaneous (task-free) neural dy-
namics predict task-measured behavioral performance 
(Anderson & Perone, 2018; Cole et al., 2016). The in-task 
measurement of scale-free dynamics has also been applied 
in a conceptually sensible way, for example, studying how 
scale-free dynamics change as a function of task demand 
(Churchill et al., 2016). Regardless of the data source, the 
scale-free dynamics should be characterized using data 
accumulated over a long period to achieve adequate sta-
tistical reliability.

Despite the existence of well-established methods for 
characterizing scale-free dynamics, there is still an open 
issue in terms of parameterization, which is rooted in the 
reality of the neural activity feature. In fact, the power spec-
trum of neural physiological signals in the log–log space 
does not strictly follow a single straight line. Rather, the 1/f-
like pattern is usually confined to specific frequency ranges 
or separated into multiple segments with different slopes. 
This issue has been commonly reported in the literature, 
as evidenced by previous methods that used various bands 
for estimating scale-free dynamics (Chaudhuri et al., 2017; 
Donoghue et al., 2020; He, 2014; Lendner et al., 2020). In 
light of this issue of reality-theory discrepancy, it is rea-
sonable to hypothesize that the statistical results regard-
ing the cognitive association of scale-free parameters may 
depend on how the non-straightness of 1/f-like pattern in 
the log–log space is treated in the model fitting procedures. 
Therefore, in this study, we examined the results over dif-
ferent variations of data-fitting procedures.

1.4  |  The present study

To address the research questions outlined above, we de-
signed a series of cognitive tasks to measure five cogni-
tive abilities at different levels and correlated them with 
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the resting-state neural dynamics of 102 adult participants 
measured from their electroencephalography (EEG) re-
cordings. We compared the association with scale-free 
dynamics across cognitive abilities at different levels. In 
brief, we included two low-level tasks that mainly in-
volved automatic processes and three high-level tasks that 
involved controlled processes. The associations between 
the cognitive abilities and resting-state scale-free dynam-
ics were then examined from different fitting procedures 
including (1) fitting at different frequency ranges: a low 
band of 1–25 Hz and a high band of 26–90 Hz and (2) fit-
ting the aperiodic component with a bending parameter 
characterizing the curvature. The consistency of the re-
sult pattern was examined, and their implications were 
discussed.

2   |   METHOD

2.1  |  Experimental design

2.1.1  |  Participants

A total of 102 right-handed young adults with university 
education or above were included in this study. All the 
participants (mean age  =  25.3 ± 3.8 years; 50 men) were 
native Chinese speakers from mainland China, reported 
normal or corrected-to-normal vision, and had no his-
tory of mental diseases. The experimental protocol was 
approved by the Human Research Ethics Committee of 
the University of Hong Kong. Informed consent was ob-
tained from all of the participants prior to the start of the 
experiment.

2.1.2  |  Experimental tasks

All experiments were conducted in a sound-attenuated 
room. The participants were seated comfortably in front of 
a presentation display and instructed to complete a series 
of cognitive tasks with their EEG signals being recorded. 
EEG recordings from a resting-state task and behavioral 
data from the five cognitive tasks related to the present 
study were included for analysis.

Resting-state task with EEG recordings
The resting-state task included an eyes-open and an eyes-
closed session, each of which lasted for 60 s. In the eyes-
open session, the participants were instructed to sit still 
and relax with their eyes open (natural eye blinks were 
allowed); in the eyes-closed session, the participants were 
required to keep their eyes closed throughout the session. 
During the task, the participants wore an elastic EEG cap 

(actiCAP, Brain Products), with the electrodes placed fol-
lowing the international 10–20 system (Pivik et al., 1993). 
Continuous EEG signals were recorded using a 32-channel 
BrainAmp DC amplifier (Brain Products), online refer-
enced to the ground electrode of the amplifier, digitalized 
at 1000 Hz, and stored using BrainVision PyCoder.

Although both the eyes-open and eyes-closed sessions 
were included in the resting-state task, the characteriza-
tion of scale-free dynamics in this study was performed 
using the EEG data from the eyes-open session only be-
cause all the cognitive tasks included in the present study 
were conducted in the natural eyes-open state (see below). 
The eyes-closed session served to validate the correctness 
of the EEG data based on the well-known Berger effect 
(Barry et al., 2007; Bazanova & Vernon, 2014), which spec-
ifies that the spectral power in the alpha band (8–12 Hz) 
is significantly higher in the eyes-closed state than in the 
eyes-open state.

Cognitive tasks with behavioral responses
After the resting-state task, the participants were in-
structed to complete five cognitive tasks (Figure  1), in-
cluding a (1) pointing-arrow simple reaction time task 
(P-SRT), (2) moving-arrow simple reaction time task (M-
SRT), (3) task-switching (TS) task, (4) visuospatial work-
ing memory task (VSWM), and (5) mental calculation task 
(MC). P-SRT, M-SRT, and TS were performed first and the 
order of them were counterbalanced across all partici-
pants. VSWM and MC were performed as the fourth and 
fifth task, respectively. The details of the five cognitive 
tasks are provided below.

Task #1: Pointing-arrow simple reaction time task.  This 
was a low-level task that was assumed to primarily 
involve an automatic sensorimotor process and minimal 
controlled process because the participants only needed to 
provide motor responses based on the pointing direction 
of arrows, which is simple and easily recognizable. In 
each trial, a set of identical arrows pointing to one of 
four directions (up, down, left, or right) were constantly 
moving to one of four directions (up, down, left, or right) 
on the screen. The pointing direction of the arrows differed 
from their moving direction in each trial; moreover, the 
pointing directions of the arrows were different between 
adjacent trials. The participants were instructed to 
respond by pressing the arrow key corresponding to the 
pointing direction of the arrows while ignoring any other 
information (e.g., moving direction). P-SRT comprised 30 
formal trials.

Certain design principles were adopted in P-SRT. First, 
to better distinguish the pointing direction, the arrows 
were designed with one head and two tails (Figure  1a). 
The head and tails were dyed in different colors (green and 
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orange), and the dyed areas for the two colors were equal. 
Second, two opposite color schemes were used for the ar-
rows: one was a green head with orange tails (hereafter, 
green-headed arrows) and the other was an orange head 
with green tails (hereafter, orange-headed arrows). For 
each participant, a specific color scheme (one of the two) 
was assigned for the arrows in P-SRT. The other scheme 
was automatically assigned to the arrows in M-SRT (see 
below). The color scheme in P-SRT or M-SRT was irrel-
evant within these two separate tasks but relevant to the 
entire task series (please see below for an explanation).

Task #2: Moving-arrow simple reaction time task.  Similar 
to P-SRT, this task was a low-level sensorimotor-dominant 
task. The setting in this task was identical to that in P-
SRT, except that the response was judged according to the 
moving direction of the arrows and the color scheme was 

different from that in P-SRT. Again, the moving direction 
of the arrows was different from their pointing direction 
in each single trial as well as between adjacent trials. M-
SRT also comprised 30 formal trials. P-SRT and M-SRT 
were both simple tasks that are based on a very simple rule 
and do not involve a component that may elicit cognitive 
control (such as rule switching and stimulus ambiguity). 
Thus, they were assumed to primarily capture automatic 
processes.

Task #3: Task-switching task.  Switching between different 
task conditions based on cues predominantly entails 
controlled processes and is commonly used to measure 
cognitive flexibility (Koch et al., 2018). This task served as 
a high-level cognitive task for assessing the participants' 
cognitive switching abilities, and was customized based 
on an effective TS online game (Steyvers et al., 2019).

F I G U R E  1   Illustration of the five cognitive tasks. (a–c) Four example trials for the pointing-arrow simple reaction time task (P-SRT), 
moving-arrow simple reaction time task (M-SRT), and task-switching task (TS). In TS, the color scheme with the green-headed arrow cues 
the P-SRT condition, whereas the color scheme with the orange-headed arrow cues the M-SRT condition. The red arrows above (not shown 
in the experiment) denote the moving direction of the arrows on the screen. The set of identical arrows keeps moving towards the moving 
direction on the screen until the participant responds. (d–e) An example trial from the visuospatial working memory task and mental 
calculation task.
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In this task, the participants were instructed to switch 
between P-SRT and M-SRT based on the different color 
schemes (note that the color scheme becomes relevant at 
this point) assigned to the arrows. Specifically, the arrows 
in each trial were either green-headed or orange-headed 
as separately shown in P-SRT and M-SRT. The two types 
of arrows (i.e., the two color schemes) were pseudo-
randomly distributed across the trials (see below for the 
detailed randomization design), and the participants 
were instructed to respond according to the specific color 
scheme in each trial as if they were frequently switching 
between P-SRT and M-SRT. The TS task comprised 60 for-
mal trials intermixed with 30 trials for the pointing condi-
tion and 30 trials for the moving condition. To avoid any 
expectancy effects, a switch between the two conditions 
was made after one or two trials. The 60 trials could be fur-
ther categorized into repetition trials, which cue the same 
condition as the previous trial and switching trials which 
cue a different condition from the previous trial. A refer-
ence trial (random in cueing the two tasks) was performed 
before the first formal trial to categorize the first formal 
trial but was excluded from analysis.

Before performing the formal P-SRT, M-SRT, and TS, 
a practice session was arranged to ensure that the partici-
pants were familiar with the task instructions. Specifically, 
the participants were taught when to respond to the point-
ing or the moving direction of the arrows according to the 
color schemes. The participants underwent three trials 
(containing both schemes) to demonstrate their under-
standing of the tasks. Then, the formal versions of the 
three tasks were conducted in sequence. The order of P-
SRT, M-SRT and TS and the mapping between the task 
conditions and color schemes were both counterbalanced 
across all participants.

Task #4: Visuospatial working memory.  This was a high-
level task that aimed to measure the ability to retain 
visuospatial information in working memory over a short 
period. The task was adapted from a visual delayed match-
to-sample task (Ma et al.,  2017). For each trial, a light-
gray 4 × 4 grid was displayed at the center of the screen 
throughout the trial (see Figure  1d the leftmost frame). 
One second after the trial starts, two black squares appear 
on two random grid cells for 500 ms. After another second, 
two black squares appear on another two random grid 
cells for 500 ms. Again, after another second, two black 
squares appear on yet another two random grid cells for 
500 ms (Figure 1d). One second after that, two red squares 
were shown on the grid until the participants respond. 
The participants need to memorize the locations of the six 
black squares and judge whether the two red squares are at 
the locations of the previous six black squares by pressing 
the left or right Ctrl key. The mappings between the two 

Ctrl keys and their indications for matched/unmatched 
were counterbalanced across all participants. In each trial, 
only the following two options were possible for the two 
red squares: (1) matched trial: both the two red squares 
shown in the last frame were shown in the positions of the 
previous six black squares, but each red square was from 
a different frame, and (2) unmatched trial: only one of the 
red squares overlapped with one of the six black squares. 
This task comprised 30 formal trials. Before the task, the 
participants underwent three practice trials to familiarize 
themselves with the task instructions.

Task #5: Mental calculation.  This was also a high-level 
cognitive task (Gruber et al.,  2001). In each trial, three 
single-digit numbers colored in black were displayed 
one by one at the center of the screen. Each number 
was presented for 300 ms, followed by a 700-ms blank. 
Then, a two-digit number colored in blue was displayed 
and maintained until the participants responded. The 
participants were instructed to (1) memorize the first 
number when it appeared, (2) add the first two numbers 
when the second number showed up and memorize the 
sum, (3) add the sum of the first two numbers to the 
third number when the third number was displayed and 
memorize the total sum, (4) compare the total sum of the 
three numbers with a finally presented number (shown 
in blue), and (5) report the correctness of the sum by 
pressing either the left or right Ctrl key. The mappings 
between the two Ctrl keys and their indications for the 
correct/incorrect answers were counterbalanced across all 
participants. In each trial, the three single-digit numbers 
were selected such that the carry operation was needed 
when calculating the sum of the first and second numbers 
and when adding the sum of the first two numbers to the 
third number. This task also comprised 30 formal trials. 
Before the task, participants underwent three practice 
trials to familiarize themselves with the task instructions.

In all of the cognitive tasks described above, the par-
ticipants were instructed to respond as accurately and 
quickly as possible for each trial. The reaction time (RT) 
and response correctness of each trial were recorded for 
performance evaluation.

2.2  |  Data analysis

2.2.1  |  EEG pre-processing

MATLAB (MathWorks, R2021a) and EEGLAB toolbox 
(Delorme & Makeig,  2004) were used for preprocess-
ing and analyzing the resting-state EEG recordings. 
The following pre-processing procedures were con-
ducted for each participant: (1) the EEG data segment 
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containing the resting-state task (2  min in total) was 
first epoched based on task markers; (2) the extracted 
EEG data segment was then down-sampled to 250 Hz 
and filtered using an EEGLAB in-built high-pass FIR 
filter (zero-phase, non-causal, filter order: 827 data 
points, cut-off frequency: 0.5 Hz) at 1 Hz; (3) the aver-
age re-reference was applied after interpolating the EEG 
signals for bad channels (with variance >4 median abso-
lute deviations across all electrodes); (4) the independ-
ent component analysis method and MARA toolbox 
(Winkler et al., 2011) were used on the complete EEG 
data segment to isolate and automatically eliminate ar-
tifact components. The default cut-off probability set in 
MARA was 0.5, and the average number of artifact com-
ponents rejected by MARA was 17.4 ± 4.3.

2.2.2  |  EEG spectrum analysis

The frequency spectra were obtained by applying the dis-
crete fast Fourier transform (MATLAB R2021a) to the 
pre-processed EEG time series segment by segment (each 
segment was 1-s long). This process was conducted on 
each electrode and the eyes-open and eyes-closed condi-
tions separately. To remove the AC current at 50 Hz, the 
spectral amplitude at 50 Hz was replaced by the average 
value of the amplitudes at 49 and 51 Hz. To generate three 
indicators for building a latent variable for structural 
equation modeling (see below), we calculated three aver-
age spectra, each from one third of the data (i.e., 20 of 60 
segments).

2.2.3  |  Parameterization of scale-
free dynamics

Scale-free dynamics appear as a 1/f-like distribution 
when converted to frequency power spectra. The terms 
“1/f” or “1/f-like” are convenient descriptors of the fea-
ture that power decreases linearly as a function of fre-
quency in the log–log space; it is important to note that 
these terms do not, in any way, indicate that it is strictly 
1/f. Because of the straight line pattern (Donoghue 
et al.,  2020; Grigolini et al.,  2009; He,  2014; He 
et al., 2010), the slope and offset of the straight line in the 
log–log space are the two defining parameters charac-
terizing the pattern. Despite the theoretical description 
of the characteristics of scale-free dynamics, multiple 
methods have been developed to estimate the two pa-
rameters, including simple linear regression (Clements 
et al., 2021; Dave et al., 2018; Huang et al., 2016; Kasagi 
et al.,  2017; Lendner et al.,  2020; Voytek et al.,  2015), 
Hurst exponent (Churchill et al.,  2016; Kardan 

et al.,  2020), irregular resampling auto-spectral analy-
sis (Bongers et al.,  2020; Cross et al.,  2022; Immink 
et al.,  2021; Kolvoort et al.,  2020; Weber et al.,  2020; 
Wen & Liu, 2016; Zhang et al., 2021), and fitting oscil-
lations and one-over-f (FOOOF; Donoghue et al., 2020; 
McSweeney et al.,  2021; Ostlund et al.,  2021; Thuwal 
et al., 2021). FOOOF appears to be the most widely used 
among the methods.

The parameterization of scale-free dynamics in this 
study was conducted using FOOOF. FOOOF is a model-
driven approach that decomposes the spectrum into os-
cillatory components and scale-free dynamics (i.e., the 1/f 
component; Donoghue et al.,  2020). In general, FOOOF 
models the spectrum as the summation of an aperiodic 
component that captures the 1/f-like pattern in the log–
log space and multiple oscillation components that cap-
ture the discrete peaks in the spectrum (e.g., alpha peak). 
Given the non-straightness of the spectral curve in the 
log–log space as shown in previous studies (Colombo 
et al., 2019; Lendner et al., 2020), we applied FOOOF in 
different ways to explore how the cognitive association of 
extracted scale-free dynamics changes across different set-
tings. The performance of fit by FOOOF measured by R2 
will be reported.

The first treatment is that we split the whole fre-
quency range into two bands separated at 25 Hz and the 
parameters (i.e., exponent and offset) of the 1/f com-
ponent were separately estimated from each band (i.e., 
1–25 and 26–90 Hz). Although the split treatment is at 
odds with the theoretical definition of scale-freeness, we 
conducted this analysis to cope with the reality of the 
data feature and to reveal whether the 1/f parameters es-
timated from the different frequency bands contributed 
differently to the cognitive association of scale-free dy-
namics. More discussion about this issue is provided in 
the Discussion section. We heuristically selected 25 Hz 
as the split point in this study based on the following 
considerations: (1) there was a visually discernible in-
flection point at approximately 25 Hz in our grand av-
erage spectra curve (Figure 2a); (2) the 1/f component 
should be fitted using a frequency range without split-
ting oscillation humps (Gerster et al., 2022); and (3) the 
beta hump in our data profile ended at approximately 
25 Hz (Figure 2a). Because two oscillation peaks (alpha 
and beta) were clearly visible at the low band (Figure 2a), 
we specified the number of maximum peaks as 2 when 
fitting the low-band 1/f parameters and 0 when fitting 
the high-band 1/f parameters in FOOOF (Donoghue 
et al., 2020).

The second treatment is that we introduce a param-
eter that specifically models the bending feature of the 
spectrum in the log–log space. To model this bending 
feature, the FOOOF method introduces a parameter 
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k in the following equation describing the aperiodic 
component:

where b is the broadband offset, χ is the exponent and 
k is the “knee” parameter, controlling for the bend in 
the aperiodic component (Donoghue et al.,  2020). The 
higher the k is, the more curved the spectrum is in the 
log–log space protruding towards the top-right direc-
tion. After fitting the entire aperiodic component with 
these three parameters, k (bending), χ (exponent/slope) 
and b (offset), they were separately fed to the statistical 
analysis concerning their relationships with the cogni-
tive abilities. For naming simplicity, the 1/f parameters 
derived from the two bands will be termed as low-band 
(1–25 Hz) and high-band (26–90 Hz) 1/f parameters, and 
the 1/f parameters from the fitting of whole spectrum 
with a knee parameter will be termed as whole-band 1/f 
parameters.

The 1/f parameters were estimated based on the three 
average spectra at the single-electrode level for each par-
ticipant. For each participant, three values of each 1/f pa-
rameter were obtained from the three equally separated 
data segments (further averaged across electrodes) to serve 
as the three indicators for constructing latent variables in 
structural equation modeling (see Structural Equation 
Modeling section for more details).

2.2.4  |  Performance evaluation of 
cognitive tasks

The performance of each cognitive task was evaluated 
based on the mean RT across all correctly responded trials. 
To construct a latent variable for each cognitive ability in 
structural equation modeling (see the Structural Equation 

Modeling section for more details), we categorized all trials 
in each task into two or three equal partitions and obtained 
the mean RTs of the correct trials within each partition. 
P-SRT, M-SRT, VSWM, and MC were separated into three 
equal partitions (i.e., 10 trials in each partition) according 
to the trial order. TS was separated into two partitions—30 
repetition trials and 30 switching trials (see Task #3: Task-
switching Task section for more details)—because the two 
trial types were heterogenous in difficulty.

When calculating the mean RT of the correct trials 
within each partition, we performed the following pro-
cedures. For each partition, we first extracted the cor-
rectly responded trials and obtained their RTs; then, we 
eliminated the RTs that were more than 2 × inter-quartile 
range above the 3rd quartile or below the 1st quartile 
(implemented through the built-in function of isoutlier 
in MATLAB); finally, we averaged the remaining RTs to 
obtain the mean RT as an indicator of response speed for 
each partition. Only the performance of the correct trials 
was evaluated because, compared with incorrect trials, 
correct trials are more able to represent genuine cognitive 
ability. Considering that the RTs from most cognitive tasks 
display ex-Gaussian distribution (Schmiedek et al., 2007) 
with right skewness, we additionally applied reciprocal 
transformation to the RTs and examined the robustness of 
the statistical results between these two versions of behav-
ioral data (i.e., RT and 1/RT).

2.2.5  |  Structural equation modeling

SEM was applied to investigate the latent-level correla-
tions between the scale-free dynamics characterized by 
the resting-state EEG task and the cognitive abilities as-
sessed through the cognitive tasks.

The SEM models were constructed to examine the 
cognitive associations of scale-free dynamics. Basically, 

L = b − log(k + F� )

F I G U R E  2   Grand average amplitude spectra and spatial distributions of the 1/f parameters. (a) Grand average amplitude spectra from 
the two resting states plotted in linear (left) and log–log (right) spaces (averaged across all participants, electrodes, and epochs). (b) Spatial 
distributions of the grand average 1/f parameters fit from different procedures.
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      |  9 of 19PEI et al.

in each of the SEM model, one scale-free parameter fac-
tor (built from three indicators) as well as gender and age 
serve as the independent variable in the regression, and 
factors of cognitive abilities (built from two or three in-
dicators, see the diagram in Figure 3) serve as dependent 
variables. As the 1/f parameters were obtained from dif-
ferent ways of fitting (see above), the SEM results for all of 
them will be separately reported. Of note, all the factors in-
cluded in our SEM models were constructed from equally 

separated partitions of measurement data. The number 
of indicators for constructing the latent factors was de-
cided heuristically (Little et al., 1999). Little et al.  (1999, 
p. 206) noted that a small number of indicators (two or 
three) “may suffice to identify the construct of a latent fac-
tor precisely” when a measurement is well-specified and 
homogeneous. Given that the number of trial samples in 
the present data was limited, we used a minimal number 
of indicators when constructing our SEM models.

F I G U R E  3   SEM results based on the factor of high-band 1/f exponent. (a) Schematic representation of the SEM model that correlates 
the high-band 1/f exponent factor and cognitive ability factors. The correlations between all of the factors and the range of factor loadings 
are shown in the figure. Model fit indices: CFI = 0.966, RMSEA = 0.063, and SRMR = 0.055. (b) Scatter plots of the high-band 1/f exponent 
against the behavioral performance of the five cognitive abilities. The data points were obtained by averaging all indicators within each 
latent factor. Correlation estimates with p < .1 are shown in boldface (**p < .01, *p < .05, p < .1). The two low-level cognitive ability factors 
are denoted with a light-gray background, and the three high-level cognitive ability factors are denoted with a dark-gray background. MC, 
mental calculation task; VSWM, visuospatial working memory task; TS, task-switching task; P-SRT, pointing-arrow simple reaction time 
task; M-SRT, moving-arrow simple reaction time task; RT, reaction time; exp, exponent; H, high band.
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10 of 19  |      PEI et al.

To indicate the goodness-of-fit of the SEM models, 
we used the following three widely accepted fit indices 
(Bentler, 1990; Hu & Bentler, 1999), comparative fit index 
(CFI), root mean square error of approximation (RMSEA) 
and standardized root mean square residual (SRMR). The 
SEM analysis was performed using the R package lavaan 
(R Development Core Team, 2010; Yves, 2012).

3   |   RESULTS

3.1  |  Descriptive statistics of behavioral 
performance in the cognitive tasks

Table 1 summarized the descriptive statistics of behavio-
ral performance in the five cognitive tasks.

3.2  |  Visualization of resting-state 
spectra and parameterization of 
1/f component

The grand average amplitude spectra of the eyes-open and 
eyes-closed resting states are shown in Figure 2a. A sig-
nificant enhancement in the power of the alpha band (at 

approximately 10 Hz) was clearly seen in the eyes-closed 
state compared with that in the eyes-open state. This clear 
Berger effect confirmed the validity of the resting-state 
EEG recordings collected in this study.

The scalp maps of the grand average 1/f exponent pa-
rameters estimated from the low-band, high-band, and 
whole-band spectra are shown in Figure 2b. The high-band 
1/f exponent showed a spatial distribution with a peak mag-
nitude in the central scalp area petering towards the edges. 
In contrast, the low-band 1/f exponent displayed a special 
spatial distribution with a relatively larger magnitude in 
the prefrontal and parietal regions and a visibly lower mag-
nitude in the temporal regions. As for the goodness of fit, 
the average R2 for the three fitting procedures described in 
Method section (low-band, high-band, whole-band with 
knee parameters) was 0.93, 0.61, and 0.95, respectively.

3.3  |  Estimating latent-level correlations 
between scale-free dynamics and cognitive 
abilities at different levels

To estimate the associations between scale-free dynamics 
and cognitive abilities at different levels, we constructed 
SEM models with six factors from multiple indicators and 

T A B L E  1   Descriptive statistics of 
performance in each cognitive task.

Level of 
cognitive 
process Cognitive task Partition

Reaction time (s) Accuracy

Mean SD Mean (%) SD

Low-level 
automatic 
process

Pointing-arrow 
simple 
reaction time 
task (P-SRT)

Total 0.65 0.15 96.3 1.14

Partition 1 0.71 0.19 94.0 0.71

Partition 2 0.62 0.14 97.0 0.58

Partition 3 0.60 0.13 97.9 0.55

Low-level 
automatic 
process

Moving-arrow 
simple 
reaction time 
task (M-SRT)

Total 0.79 0.18 95.5 1.16

Partition 1 0.91 0.26 94.5 0.68

Partition 2 0.75 0.20 96.3 0.66

Partition 3 0.70 0.16 95.8 0.60

High-level 
controlled 
process

Task-switching 
task (TS)

Total 1.12 0.26 96.7 1.55

Partition 
(switching)

1.11 0.28 96.4 1.12

Partition 
(repetition)

1.13 0.26 97.0 0.99

High-level 
controlled 
process

Visuospatial 
working 
memory 
(VSWM)

Total 1.25 0.34 85.4 2.35

Partition 1 1.31 0.39 85.0 1.22

Partition 2 1.24 0.41 85.3 1.11

Partition 3 1.19 0.36 85.9 1.07

High-level 
controlled 
process

Mental 
calculation 
(MC)

Total 0.66 0.20 92.9 1.51

Partition 1 0.67 0.28 92.5 0.79

Partition 2 0.66 0.23 93.6 0.81

Partition 3 0.64 0.19 92.5 0.74
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      |  11 of 19PEI et al.

two control variables. As shown in Figure 3, the five cog-
nitive abilities were modeled as separate factors, and each 
was set to be predicted by a scale-free factor (i.e., 1/f factor 
constructed from specific 1/f parameters) and two control 
variables (i.e., gender and age).

Figure 3 exemplifies the SEM model for the high-band 
1/f exponent parameters (26–90 Hz). This model shows 
that the variability of the high-band scale-free factor only 
significantly predicted individual differences in certain 
cognitive abilities. Particularly, the pattern shows that 
the high-level abilities (MC, VSWM, TS) are strongly pre-
dicted by the scale-free factor, whereas the low-level abil-
ities (P-SRT, M-SRT) are not. For all the three significant 
predictions, the relationships all show that higher expo-
nent (steeper slope) is associated with shorter RT (thus 
better performance). This relationship is better visualized 
in the scatter plots of the variable pairs (Figure 3b).

The embedded numerals in Figure 3 are only for the 
factor of high-band 1/f exponent. We now show how the 
relationships between different scale-free parameters and 

different levels of cognitive abilities vary across different 
ways of fitting and summarize the consistency and pat-
terns therein. As described in Method section, we imple-
mented three ways of fitting the aperiodic component 
with FOOOF: (1) fitting a straight line within the low band 
of 1–25 Hz, (2) fitting a straight line within the high band 
of 26–90 Hz, (3) fitting a “bent” line to the whole band 
of 1–90 Hz. For the first two fittings, two 1/f parameters 
(exponent and offset) were obtained. For the third fitting, 
three 1/f parameters (exponent, offset, and knee) were ob-
tained. It is important to note that the knee parameter k 
is a value that controls the degree of bending, not a knee 
point that breaks the straight line into two segments sepa-
rated at k Hz (Donoghue et al., 2020). Table 2 summarizes 
the SEM fitting results for all the 1/f parameters from the 
three different fitting ways.

The most conspicuous pattern from Table 2 is that the 
1/f parameters overwhelmingly predict the high-level abil-
ity factors (MC, VSWM, TS), but not the low-level ones (P-
SRT, M-SRT). There are indeed some sporadic substantial 

T A B L E  2   SEM results for different 1/f factors.

High-level Low-level

CFI RMSEA SRMRMC VSWM TS P-SRT M-SRT

Based on RT

Low-band

Exponent 0.03 (0.78) 0.09 (0.42) 0.12 (0.26) 0.15 (0.16) 0.07 (0.53) 0.97 0.06 0.05

Offset −0.27 (0.033) −0.17 (0.15) −0.06 (0.56) −0.01 (0.96) 0.04 (0.70) 0.96 0.06 0.07

High-band

Exponent −0.21 (0.076) −0.24 (0.041) −0.31 (0.005) −0.13 (0.22) −0.06 (0.58) 0.97 0.06 0.06

Offset −0.29 (0.020) −0.26 (0.032) −0.32 (0.005) −0.18 (0.096) −0.08 (0.49) 0.96 0.07 0.07

Whole-band + knee

Exponent −0.27 (0.026) −0.35 (0.004) −0.33 (0.003) −0.13 (0.22) −0.02 (0.86) 0.98 0.05 0.05

Offset −0.22 (0.06) −0.34 (0.006) −0.28 (0.012) −0.11 (0.30) 0.01 (0.92) 0.98 0.05 0.06

Knee −0.23 (0.06) −0.30 (0.015) −0.33 (0.004) −0.28 (0.011) −0.11 (0.32) 0.97 0.05 0.05

Based on 1/RT

Low-band

Exponent −0.06 (0.58) −0.16 (0.15) −0.17 (0.098) −0.19 (0.067) −0.04 (0.68) 0.97 0.06 0.04

Offset 0.18 (0.12) 0.14 (0.22) 0.09 (0.43) −0.01 (0.93) −0.01 (0.94) 0.97 0.06 0.06

High-band

Exponent 0.22 (0.045) 0.22 (0.046) 0.34 (0.002) 0.15 (0.16) 0.05 (0.59) 0.98 0.06 0.05

Offset 0.27 (0.020) 0.26 (0.029) 0.37 (0.001) 0.21 (0.054) 0.09 (0.42) 0.97 0.06 0.06

Whole-band + knee

Exponent 0.28 (0.014) 0.34 (0.003) 0.39 (0.001) 0.15 (0.15) −0.01 (0.97) 0.97 0.06 0.05

Offset 0.23 (0.040) 0.32 (0.006) 0.34 (0.003) 0.14 (0.18) −0.04 (0.70) 0.97 0.06 0.05

Knee 0.30 (0.010) 0.34 (0.004) 0.41 (0.001) 0.32 (0.005) 0.13 (0.24) 0.97 0.06 0.05

Note: The upper half is based on RT. The lower half is based on 1/RT. The first five columns are the β values of the regression describing the degree the 1/f 
parameters predict the cognitive ability factors (age and gender were involved all along as shown in Figure 3). The associated p values are provided in the 
parentheses after the β values. The values with p < .1 are shown in boldface.
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βs in low-level ability factors, which is only in P-SRT (only 
robustly shown in its association with the knee parame-
ter). In terms of the variation across the frequency bands, 
the effects of 1/f parameters are predominantly located in 
the high-band and are weakly captured by the low-band 
spectrum. In terms of the direction of the effect, it is al-
ways that lower RT (higher ability) is associated with a 
larger exponent (steeper slope of the 1/f pattern), higher 
offset, and higher knee (bending more towards the top-
right direction). Note the opposite signs of the effect val-
ues between the top and bottom panels. This is due to the 
transformation of RT to 1/RT. The effect of transforming 
RT to 1/RT is shown in Figure 4. Finally, the results did 

not substantially differ after we introduced the task order 
of P-SRT, M-SRT, and TS as a control variable.

4   |   DISCUSSION

4.1  |  Summary

The present study delineated the cognitive associations of 
resting-state scale-free neural dynamics in the complex 
human cognitive system by testing whether resting-state 
scale-free dynamics predict individual differences in the 
various cognitive abilities that involve two distinct levels 

F I G U R E  4   Distribution of reaction 
time (RT) and its transformation (1/RT) 
across participants for different tasks.
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      |  13 of 19PEI et al.

of cognitive process (i.e., low-level automatic processes 
and high-level controlled processes). Based on a series of 
tasks specifically designed to address this question and 
quantitative analyses based on SEM, we found that (1) 
resting-state scale-free dynamics significantly predicted 
individual differences in cognitive abilities involving high-
level controlled processes, but appeared to be only weakly 
associated with low-level automatic processes (primarily 
the sensorimotor process) and (2) the cognitive associa-
tion of scale-free dynamics was mainly attributable to the 
high band (26–90 Hz) but not the low band (1–25 Hz) 1/f 
spectral component.

4.2  |  Task design for measuring cognitive 
processes at different levels

To investigate how the associations between resting-state 
scale-free dynamics and cognitive abilities differ across 
different levels of the cognitive system, first, we designed 
tasks that evoked different levels of cognitive processes 
but were homogeneous in other aspects. Based on dual-
process theory, we adopted a framework that proposes two 
distinct types of human cognitive processes: automatic and 
controlled. Dual-process theory has been well established 
and supported by a large body of theoretical and empirical 
studies (for a review, see Evans & Stanovich, 2013) as well 
as computational simulations (Milli et al.,  2021). Given 
that the defining distinction between the two types of pro-
cesses lies in the demand for working memory resources, 
the common experimental design to create tasks testing 
the two different processes is to manipulate the task de-
mand of working memory (Evans & Stanovich, 2013). Our 
task design measuring high- and low-level cognitive pro-
cesses made use of this principle of dual-process theory.

However, it is challenging to eliminate all confound-
ing factors between the two levels of cognitive tasks if a 
substantial amount of task content (e.g., stimulus) is al-
ready different. We adopted the TS paradigm to address 
this issue; although the TS design serves as a mechanism 
to induce controlled processes by requiring participants to 
switch back and forth between two task conditions, each 
one of the two conditions can serve as an ideal single task 
for measuring low-level sensorimotor-dominating task 
that mainly involves automatic processes. The pivotal el-
ement of our design here was that the two separate tasks 
(P-SRT and M-SRT) shared entirely identical stimulus con-
tents as TS, effectively eliminating the confounding fac-
tors in task content. Furthermore, our TS design blended 
the cues (for instructing which task condition to perform) 
into the stimulus itself, different from the TS designs that 
involve separate cues (Kiesel et al.,  2010). Presumably, 
this blending would increase cognitive demand owing 

to the simultaneous processing of the cues and stimulus 
contents. Another advantage of our blending design was 
that it guaranteed the identity of the stimulus contents be-
tween high-level (TS) and low-level (P-SRT and M-SRT) 
tasks because no cue was needed in the latter.

Taken together, the novel design of P-SRT, M-SRT, and 
TS enabled us to differentiate cognitive processes at differ-
ent levels without any chance of confounding with other 
factors (e.g., stimulus content). Finally, the inclusion of 
the other two high-level tasks (although not controlled for 
stimulus content), MC and VSWM, and their significant as-
sociation with the scale-free parameters further supported 
the differentiation between high and low-level cognitive 
systems in terms of their implication with scale-free dy-
namic features. It is noted that the RTs for MC are sub-
stantially shorter than the other two high-level tasks (TS 
and VSWM). This is mainly due to the task design: before 
the presentation of the last frame, the participants (espe-
cially those proficient ones) would have already finished 
the calculation and obtained the answer. Therefore, what 
they did was simply comparing the answer in mind and the 
number shown. Nevertheless, this task would still be able 
to reflect high-level cognitive performance because those 
participants less efficient in MC have a higher chance to 
stay in the calculation when the last frame shows. Overall, 
the task design led to a “leakage” of mental process to the 
previous stages, which resulted in shorted RTs but retained 
the cross-individual variability in MC ability.

4.3  |  Relationship between scale-free 
neural dynamics and cognitive abilities at 
different levels

The search for robust neural biomarkers for cognitive 
function in cognitive neuroscience is ongoing. Although 
many neural metrics, including both anatomical and 
functional aspects, have been reported to be indicative 
of various cognitive abilities (Anderson & Perone,  2018; 
Cheron et al.,  2016; Cole et al.,  2016; Goswami,  2009; 
Harris et al., 2020; Penke et al., 2012; Supekar et al., 2013), 
the findings in the field are heterogeneous. In recent 
years, scale-free neural dynamics have developed as a 
noticeable area in this line of research because numer-
ous studies have identified their ability to predict various 
cognitive abilities (see the review in the Introduction sec-
tion). However, given the complexity of the brain and the 
cognitive system, it is difficult to conceive of the existence 
of a universal neural indicator of general cognitive ability. 
Therefore, we hypothesized that a fine-grained structure 
should exist in the cognitive association of scale-free dy-
namics; that is, the association may be influenced by the 
level of cognitive processing of subjects.
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Given the previously claimed implication of scale-free 
dynamic features with the complexity of nonlinear dynamic 
systems, particularly those self-sustained dynamic systems 
showing the ability to flexibly cope with uncertain inputs 
and non-prescribed routines (Cavanna et al., 2018; Cocchi 
et al.,  2017; Kelso, 2012), we hypothesized that scale-free 
dynamics should be more likely to predict cognitive abili-
ties involving high-level controlled processes. Accordingly, 
we designed tasks that could examine the differential asso-
ciations between scale-free dynamics and cognitive abilities 
at different levels (see the previous section). In line with our 
hypothesis, we found that resting-state scale-free dynamics 
exclusively predicted the cognitive abilities mainly involv-
ing high-level controlled processes but were only weakly 
associated with low-level automatic processes. Our results 
corroborate those of numerous studies reporting the signif-
icant prediction effects of scale-free dynamics on tasks that 
demand strenuous executive control (Bongers et al., 2020; 
Huang et al., 2016; Immink et al., 2021; Kasagi et al., 2017; 
Kolvoort et al., 2020; Ouyang et al., 2020). As for the low-
level cognitive abilities, to the best of our understanding, 
the results of our study showed, for the first time, that scale-
free neural dynamics are weakly associated with cognitive 
abilities primarily involving the low-level sensorimotor 
automatic processes. This dichotomous phenomenon ob-
served in our study may connect complex system theory to 
dual-process theory: According to dual-process theory, the 
automatic process is rooted in a primitive functional system 
that is hard-wired, deterministic, and highly habitual, leav-
ing little room for variability. Therefore, low variability or 
complexity (in the sense of self-organized, nonlinear, and 
adaptive biological systems) is needed. In contrast, con-
trolled processes feature cognitive flexibility to cope with 
changing contexts (Evans & Stanovich,  2013), which is 
one of the defining features of complex dynamic systems 
(Cavanna et al.,  2018; Cocchi et al.,  2017; Kelso,  2012). 
Based on the theory that scale-free dynamics reflect a sys-
tem's complexity and flexibility (Cocchi et al., 2017), scale-
free dynamics are justifiably only associated with high-level 
but not low-level cognitive abilities.

4.4  |  Possible interpretation of the 
relationships at a mechanistic level

Despite the well-acknowledged functional significance, 
its generative mechanism of scale-free dynamics in the 
brain remains largely unclear (Lendner et al.,  2020). 
Various hypotheses have been proposed, including self-
organized criticality, balance of excitation and inhibition 
(E/I) in neural circuits, low-pass dendritic filtering, and 
asynchronous neuronal firing (Bak et al.,  1987; Cocchi 
et al.,  2017; Gao et al.,  2017; Lindén et al.,  2010; Miller 

et al.,  2009). Among these, self-organized criticality ap-
pears to have received the most attention and discussion 
(Cocchi et al., 2017). In brief, self-organized criticality in-
dicates that scale-free brain activity manifests a dynamic 
criticality state between order and disorder, which is a 
critical point at which various functions, including “infor-
mation transmission, information storage, dynamic range, 
metastable states, and computational power,” achieve an 
optimal state (Zimmern, 2020). However, this theory only 
states that the optimal functional states are associated 
with the scale-freeness of the dynamic activity, thus is still 
limited in explaining the data relationships in the current 
study about the characteristic parameters of scale-free pat-
tern. Here, scale-freeness refers to the feature of the power 
spectrum being scale-free (being straight in the log–log 
space), and characteristic parameters of scale-free pattern 
refer to those describing the characteristics of the pattern, 
particularly, the exponent. One possibility for the present 
results to be linked to scale-freeness (thus criticality) is 
that the characteristic parameters are implicated with 
the scale-freeness of temporal dynamics: non-criticality 
dynamics (e.g., super-criticality and sub-criticality) shape 
the 1/f exponent estimation by making it deviate from 1/f 
pattern (Liang & Zhou, 2022), and such a distortion ought 
to bias the characteristic parameters. This effect leaves an 
open question regarding how the characteristic param-
eters are influenced by sub-criticality or super-criticality 
features in the EEG data.

Another possible mechanistic interpretation is the exci-
tation/inhibition (E-I) balance theory, which is particularly 
linked to the exponent parameter. Gao et al., 2017 presented 
a neural model with tunable E-I balance which showed that 
the strength of inhibitory synapses in the simulated neu-
ral network determines the slope of the 1/f spectrum—the 
higher inhibition the steeper slope. The mechanism was 
later reported to be consistent with the phenomenon that 
decreased arousal states are associated with increased inhi-
bition. If the neuronal inhibition account holds true, it im-
plies that higher ability in controlled tasks is associated with 
stronger inhibition, which is conceptually compatible with 
the cognitive theory that inhibitory control is one of the core 
executive functions (Miyake et al., 2000).

Finally, although the current article as well as the ma-
jority of previous work on 1/f-cognition relationships drew 
particular attention on the exponent of the 1/f pattern 
(Bongers et al., 2020; Cross et al., 2022; Huang et al., 2016; 
Kardan et al., 2020; Kasagi et al., 2017; Ouyang et al., 2020; 
Waschke et al., 2021), it is important to note that the off-
set has also been found to be significantly associated with 
various cognitive abilities (Clements et al., 2021; Immink 
et al., 2021; Waschke et al., 2021; Zhang et al., 2021). In 
the present work, the offset displays a similar feature to 
the exponent in terms of its differential relationships with 
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high- and low-level abilities. In some cases, the associa-
tion in the offset is even stronger than the exponent. This 
points to the fact that the offset parameter—although not 
the core defining feature of 1/f or scale-free dynamics—
plays an important role and should not be neglected. 
Actually, the involvement of offset in the association with 
cognitive abilities implies that scale-freeness is likely not 
the sole account for the cognitive variability.

4.5  |  Scale-free neural dynamics in 
different frequency bands

Although extensive research has demonstrated the func-
tional relevance of scale-free neural dynamics, the spectra 
of neural activity at different levels do not strictly exhibit 
a power law pattern (Chaudhuri et al.,  2017; Donoghue 
et al., 2020; He, 2014; He et al., 2010; Lendner et al., 2020). 
The scale-free feature has been commonly reported to re-
flect a certain frequency band depending on the type, 
level, or modality of neural data (He, 2011). Surprisingly, 
there is no established standard or rule of thumb specify-
ing which frequency range should be used to estimate the 
1/f slope in different contexts. Various reasons have been 
reported for frequency selection. For example, some stud-
ies have used a range of approximately 1–40 Hz to exclude 
contamination from ocular and motor artifacts (Colombo 
et al., 2019; Immink et al., 2021; Kardan et al., 2020; Ouyang 
et al., 2020); other studies have recommended a frequency 
range in which no pronounced oscillatory activity and 
“knee” points are presented, for example, a low-frequency 
range of below 20 Hz or a high-frequency range greater 
than 30 Hz to avoid the clear “knee” at approximately 20 Hz 
(Colombo et al., 2019;Gao et al., 2017; Lendner et al., 2020); 
moreover, some studies have used very low bands without 
providing explicit reasons (Lei et al., 2015).

If the spectrum displays a non-straight pattern in the 
log–log axes, it is reasonable to assume differential func-
tional signatures in different local bands that show in-band 
straight patterns. Scale-free neural dynamics in different 
frequency ranges have been shown to be based on dif-
ferent generative mechanisms (He et al.,  2010; Lendner 
et al., 2020; Miller et al., 2009). In addition to the differen-
tial associations with cognitive abilities, the different spa-
tial distributions of the 1/f slope from the different bands 
served as another strong piece of evidence. The distribu-
tions of the high-band 1/f slopes exhibited a more central-
ized and broader coverage of the frontal–central–parietal 
area (Figure  2b). In contrast, the low-band 1/f slopes 
showed a radically different pattern, suggesting a different 
underlying network. These differences led us to compare 
the prediction effects obtained from the low-band and high-
band 1/f slopes split at 25 Hz. As expected, the frequency 

range crucially determined the prediction effects of scale-
free dynamics on cognitive abilities. In the present case, 
only the high-band 1/f slope was predictive of cognitive 
abilities. This corroborates the findings of previous studies 
that the 1/f slope fitted from >30 Hz is substantially more 
indicative of variation in the mental state than that fitted 
from <20 Hz (Gao et al., 2017; Lendner et al., 2020).

However, it has to be noted that our treatment of sepa-
rating the 1/f fitting into the two bands separated at 25 Hz 
only serves to reveal the different cognitive associations 
between low and high bands, not to suggest that the exact 
value of 25 Hz bears theoretical or functional signatures. 
This also highlights another fundamental issue in the use 
of the term “scale-free” throughout the article. The ter-
minology of “scale-free” actually goes against the idea of 
estimating relevant parameters in a band-confined (thus, 
scale-not-free) manner, which is an issue existing in all 
similar studies in the literature. One argument for this 
issue is that researchers can use reality-restricted data fea-
tures to estimate a theoretical construct. It appears that 
a specific frequency band needs to be specified for esti-
mating the theoretical construct of scale-freeness owing 
to the fact that the low end and high end are shaped by 
biological or technical constraints (Gerster et al.,  2022). 
Another way to explicitly model the non-straightness is 
to introduce an additional parameter characterizing this 
feature into the fitting. The FOOOF method allows to add 
this bending parameter k and after fitting the k-included 
aperiodic model to every individual, we further confirmed 
that that scale-free parameters were predominantly asso-
ciated with the high-level cognitive abilities.

An additional note about the results of data fit in dif-
ferent frequency bands is that the goodness of fit showed 
to be much lower in the high-frequency band (R2 = .61) as 
compared to the fits in the low band and whole band (both 
R2 > .9). We would like to note that this could be partly 
due to the intrinsic pattern of the spectrum. As shown in 
(Donoghue et al., 2020, particularly in Figure 2), the good-
ness fit R2 in FOOOF was calculated on the original power 
spectrum density (PSD) based on a natural (rather than 
logarithmic) scale of frequency axis. Under this scale, PSD 
curve is flatter in higher frequency band, which will lead 
to lower explanation of the variance (vertical dispersion) 
by the fit curve.

5   |   CONCLUSION

This study advanced our understanding of the cognitive 
associations of resting-state scale-free neural dynamics by 
demonstrating that resting-state scale-free dynamics are not 
a universal neural indicator of all cognitive abilities but ex-
hibit a structured relationship related to the level of cognitive 
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processes. Moreover, we reported that scale-free neural dy-
namics at different frequency ranges showed different asso-
ciations with cognitive ability. Future studies investigating 
the associations between scale-free dynamics and cognitive 
abilities should pay special attention to the level of cogni-
tive ability as well as the frequency range used for param-
eterizing the scale-free properties. In future studies, a more 
detailed structure of the relationships between scale-free 
neural dynamics and the complete cognitive system should 
be revealed using a more fine-grained factorized task design, 
which will benefit the understanding of the mechanisms via 
which scale-free neural dynamics support cognition.
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