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Large-Scale LiDAR Consistent Mapping using
Hierarchical LiDAR Bundle Adjustment

Xiyuan Liu, Zheng Liu, Fanze Kong, and Fu Zhang

Abstract—Reconstructing an accurate and consistent large-
scale LiDAR point cloud map is crucial for robotics applications.
The existing solution, pose graph optimization, though it is time-
efficient, does not directly optimize the mapping consistency.
LiDAR bundle adjustment (BA) has been recently proposed to
resolve this issue; however, it is too time-consuming on large-
scale maps. To mitigate this problem, this paper presents a
globally consistent and efficient mapping method suitable for
large-scale maps. Our proposed work consists of a bottom-
up hierarchical BA and a top-down pose graph optimization,
which combines the advantages of both methods. With the
hierarchical design, we solve multiple BA problems with a much
smaller Hessian matrix size than the original BA; with the
pose graph optimization, we smoothly and efficiently update the
LiDAR poses. The effectiveness and robustness of our proposed
approach have been validated on multiple spatially and timely
large-scale public spinning LiDAR datasets, i.e., KITTI, MulRan
and Newer College, and self-collected solid-state LiDAR datasets
under structured and unstructured scenes. With proper setups,
we demonstrate our work could generate a globally consistent
map with around 12% of the sequence time.

Index Terms—Mapping, SLAM, Localization.

I. INTRODUCTION

RECONSTRUCTING a three-dimensional (3D) high-
resolution map of the real world is of great significance in

the fields of robotics, environmental and civil engineering. This
3D map could be used as a prior for autonomous service robots
and as an information model for buildings and geographical
measurements. Compared with the traditional 3D laser scanner,
the light detection and ranging (LiDAR) sensor extraordinarily
fits into this purpose due to its fast scanning rate. Moreover, it
is more lightweight, cost-effective, and flexible to be carried
on multiple platforms, e.g., ground or aerial vehicles and hand-
held devices. In this paper, we focus on developing an accurate
and consistent LiDAR mapping method for large-scale maps.

Rich research results have been presented on LiDAR-based
mapping algorithms [1]–[3], which generate both point cloud
maps and LiDAR odometry. Due to the accumulation of scan-
to-map registration errors, odometry drift usually appears and
further leads to divergence in the point cloud map. The most
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well-known method to refine the mapping quality (closing the
gap) is pose graph optimization (PGO), which minimizes the
relative pose errors between two LiDAR frames. In PGO,
the relative pose estimation is assumed to follow Gaussian
distribution. However, the PGO does not directly optimize
the consistency of the point cloud. The divergence within
the point cloud map might only be narrowed but not fully
eliminated (or not even aware of). This phenomenon is more
obvious when the wrong loops are detected or incorrect relative
transformation estimations happen.

LiDAR bundle adjustment (BA) approach [4, 5] directly
optimizes the mapping consistency by minimizing the overall
point-to-plane distance, which leads to a high mapping quality
necessary for mapping applications. In [4], the plane parame-
ters are analytically solved first such that the final optimization
problem is only related to the LiDAR pose. In [5], the plane
parameters are eliminated in each iteration of the optimization
by a Schur complement trick as in visual BA [6]. Either way,
the resultant optimization is (at least) the dimension of the
LiDAR pose number N , requiring O(N3) time to solve [7].
The cubic growth of the computation time has prohibited the
BA for large-scale maps with large pose numbers.

To address the above issues, we propose a hierarchical Li-
DAR BA method to globally optimize the mapping consistency
while maintaining time efficiency. This method constructs a
pyramid structure of frame poses (see Fig. 1) and conducts a
bottom-up hierarchical BA and a top-down PGO (see Fig. 2).
The bottom-up process conducts a hierarchical BA within local
windows from the bottom layer (local BA) to the top layer
frames (global BA). Such design benefits the computation time
since the process of local BA in each layer is suitable for
parallel computation and the time complexity of each local BA
is relatively low due to the small number of poses involved.
One issue in the bottom-up process is that it neglects features
co-visible across different local windows, which could lower
the accuracy. To mitigate this issue, the top-down process
constructs a pose graph from the top to the bottom layers and
distributes the errors by PGO. The two process iterates until
convergence.

With the hierarchical design, we could both directly opti-
mize the consistency of the planar surfaces within the point
cloud and avoid solving a cost function with large dimensions.
With the PGO, we properly update the entire LiDAR poses
towards convergence in a fast and reliable manner. To retain the
smoothness between every two adjacent keyframes, we keep
an overlap area between them by setting the stride size smaller
than the window size. To further boost the optimization speed,
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we have applied a filter to remove outlier points and imple-
mented CPU-based parallel processing when constructing the
pyramid. In summary, our contributions are as follows:

• We propose a hierarchical bundle adjustment method to
globally optimize the LiDAR mapping consistency and
odometry accuracy. Our proposed approach improves the
mapping quality given a good initial pose trajectory (e.g.,
from a pose graph optimization) and even closes the gap
when the initial pose trajectory has large drifts.

• The effectiveness of our proposed work has been validated
on multiple public mechanical spinning LiDAR datasets
and our self-collected solid-state LiDAR dataset in both
structured and unstructured scenes.

II. RELATED WORKS

Multiple approaches have been discussed in the literature
on improving the mapping quality, which mainly divides into
two categories: pose graph optimization and plane (bundle)
adjustment-based methods. In PGO, the relative transformation
(pose constraint) between two frames is estimated by ICP [8]
or its variants [9]. This relative pose error is then weighted
by the information matrix, which is usually the inverse of the
corresponding Hessian [10] or simply a constant matrix [11].
The pose graph is optimized when the summed relative pose
errors are minimized. Though computationally efficient, one
important issue of PGO is that it does not directly optimize
the consistency of the point cloud. Due to incorrect estimation
or imprecise modeling of the relative pose constraint [12], the
PGO might converge to a local minimum that considerable
divergence within the point cloud could still exist [3, 13].

The plane adjustment (PA) method directly optimizes the
consistency of the point cloud by minimizing the summed
point-to-plane distance. In PA, each plane feature is repre-
sented by two parameters, i.e., the distance from its center
to the viewpoint and the estimated plane normal vector [5].
In [14], authors concurrently optimize both the LiDAR poses
and the geometric plane features. This method needs to
maintain and update the parameters of all features during
the optimization, whereas the total number of features will
rapidly grow when the scale of the map enlarges, leaving a
huge dimension of the cost function to solve. Though with
the Schur complement technique, the optimization variables
could be reduced to LiDAR poses only, this method is prone
to generate glitches in pose estimation in real-world practices.

The bundle adjustment (BA) method improves the PA by
eliminating the feature parameter prior to the optimization us-
ing a closed-form solution [4]. In [4], authors segment the point
cloud into multiple voxels, each containing a plane feature. The
original point-to-plane minimization problem is transformed
into the minimization of the eigenvalue of points covariance
in each voxel. Such a method needs to iterate through every
point within each feature to derive the Hessian matrix, whose
time complexity is the square of the number of points, causing
a great computation demand. In the following-up work of [4],
this problem is completely addressed. All the points of a
feature observed by the same pose are aggregated into a
point cluster which fundamentally removes the dependence

of time complexity on the total point number [7] and further
improves the computation accuracy and efficiency. Authors
in [15, 16] also release this problem by fixing the positions of
the co-visible plane features as anchors and only optimizing
the related LiDAR poses. In all the above-mentioned PA
and BA methods, it requires solving a nonlinear optimization
problem of dimension 6N with N being the pose number.
Solving this problem needs to solve a 6N -dimensional linear
system which usually takes O(N3) time with the Cholesky
factorization. Despite the pre-conditioned conjugate gradient
(PCG) algorithm that could solve this linear system with O(N)
time complexity, it requires further iterations, especially when
the pre-conditioned matrix is of large size. Moreover, when
the divergence in the map is larger than or approximates the
maximum voxel size, these PA/BA methods might have a slow
convergence rate.

Our proposed hierarchical BA approach is developed based
on the latest BA work [7] and takes advantage of both BA
and PGO. We use BA to directly minimize the point-to-plane
distance and utilize PGO to smoothly and efficiently update
the LiDAR poses to avoid glitches in pose estimation. With
the hierarchical design, we could parallelly solve multiple BA
problems with a much smaller Hessian matrix size compared
with the original problem using [4, 7]. Moreover, we could
flexibly set the BA parameters from the bottom layers to the
top layers in accordance with the quality of the initial pose
trajectory.

III. METHODOLOGY

A. Overview

The system workflow of our proposed method is illustrated
in Fig. 2. This method consists of two processes, bottom-up
(see Sec. III-B) and top-down (see Sec. III-C), which iterate
until convergence. The inputs are raw or deskewed points
from each LiDAR scan and the initial estimations of their
corresponding pose in the global frame. The deskewed LiDAR
points and scan poses could either be estimated from general
LiDAR odometry or optimized by simultaneous locomotion
and mapping (SLAM) algorithms. As shown in Fig. 1, a local
window refers to a collection of a fixed number of LiDAR
frames from the same layer. Points within the local window
from one layer are aggregated as a keyframe for the next layer.
The term first layer, also referred to bottom layer in the context
below, describes the collection of the initial LiDAR frames
and poses. Similarly, the term second layer represents the
collection of the LiDAR keyframes and poses reconstructed
from the first layer using the local BA. The term top layer
means the collection of the last remaining LiDAR keyframes
(in Fig. 1, the top layer refers to the third layer). The process
of hierarchically creating LiDAR keyframes from the bottom
layer to the top layer is called the bottom-up process. The
process of updating bottom layer LiDAR poses by pose graph
optimization is called the top-down process.

In the bottom-up process, a BA is performed on LiDAR
frames within each local window (local BA) to construct
keyframes from the bottom layer to the upper layer (see Fig. 1),
e.g., from the first layer to the second layer and from the
second layer to the third layer, etc. Meanwhile, the optimized
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Figure 1: Pyramid structure of the proposed hierarchical bundle adjustment with layer number l=3, stride size s=3 and window size w=6. In
the bottom-up process, frames within the same local window are optimized by BA to create a keyframe for the next layer. The first frame
of two adjacent local windows is s=3 frames apart. In the top-down process, adjacent frames in the same layer are connected by factors
obtained from the bottom-up BA. Frames overlapped by two (or more) local windows (e.g., nodes T1

3 and T1
4), two (or more) factors will be

connected, and each is contributed from one local window BA. The red dashed line crossing two adjacent layers connects the nodes ought
to be the same, e.g., T1

9, T2
3, and T3

1 are the same.
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Figure 2: System overview. The light yellow region depicts the
bottom-up process and the light blue region depicts the top-down
process. These two processes iterate until the first layer poses are
converged.

relative poses within each local window are stored for later
use in the top-down process. This process is hierarchically
performed until the optimal layer number is met, and then
a BA is performed on the entire top layer keyframes (global
BA). In the top-down process, the relative poses obtained from
the bottom-up BA process are used as the constraints (factors)
to construct a pose graph. The pose graph is then solved to
update the first layer poses (see Fig. 4).

B. Bottom-Up Hierarchical BA

We denote Fi
j the j-th LiDAR frame of the i-th layer and

Ti
j =

(
Ri

j , t
i
j

)
, with Ri

j ∈ SO(3) and tij ∈ R3, is the state of
the i-th layer j-th LiDAR frame. We denote Ti

j,k the relative
pose between Ti

j and Ti
k, i.e., Ti

j,k =
(
Ti

j

)−1 ·Ti
k. It is noted

that points in Fi
j is represented in the LiDAR local frame, and

Ti
j is in the global frame. We denote w as the local window

size and s as the stride size during the bottom-up construction
of the LiDAR keyframes, i.e., the starting position of every
two adjacent local windows is s frames apart, and Ni the total
number of LiDAR frames from the i-th layer.

In the bottom-up process, a BA is performed in each local
window using the provided initial pose trajectory. For the j-
th local window from the i-th layer, containing w frames

{Fi
s·j+k | j = 0, · · · , ⌊Ni−w

s ⌋; k = 0, · · · , w − 1}, the
relative poses between the first frame and other frames in this
window, i.e., {Ti

s·j,s·j+k}, are optimized via a local BA [7],
and the pose of the first frame is fixed to resolve the gauge
freedom. The local BA constructs the Hessian matrix H and
solves for the optimal relative poses {Ti∗

s·j,s·j+k}, with which
a keyframe, denoted by Fi+1

j , containing all points from this
local window is constructed for the (i + 1)-th layer (see Fig.
1 and (1a)). The pose of the keyframe, denoted by Ti+1

j , is
calculated by multiplying the optimal relative poses solved in
all preceding local windows (see (1b)). The derived H from
the BA in this local window is also recorded and will be used
as the information matrix in the later top-down pose graph
construction.

Fi+1
j ≜

w−1⋃
k=0

(
Ti∗

s·j,s·j+k · Fi
s·j+k

)
(1a)

Ti+1
j = Ti∗

s·j =

j∏
k=1

Ti∗
s·k−s,s·k (1b)

This process is repeatedly performed from the lower layer
to the upper layer until the optimal layer number l is reached.
It is noticed that the construction of new keyframes (local BA)
does not rely on the frames outside the local window, making it
suitable to concurrently use multiple local windows for parallel
processing in the same layer.

Remark. For the same frame occurring in different threads,
multiple relative constraints (factors) from different local win-
dows of different threads will be exerted on it (each contribut-
ing one factor) to ensure the pose consistency after pose graph
optimization (see Fig. 1).

Suppose we have N total number of LiDAR frames, i.e.,
N = N1, and each time we choose to aggregate w frames
from the lower layer into one frame to the upper layer with
stride frame size s. Let n be the number of threads that could
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be used for parallel processing. Since the computation time of
BA is O

(
M3
)

with M being the number of involved poses,
we could derive the overall time consumption O (Tl) for a l-th
layer pyramid.

The total time consumption of l-th layer pyramid includes
that consumed by the local BA in each layer and that from the
global BA in the top layer. For a l-th layer pyramid, the number
of local windows in i-th layer (i < l) is N

si and each local
window consumes O(w3) of time. With n number of parallel
threads, the total time consumption of the local BA equals the
sum of the local BA in each layer which is w3 ·

(∑l−1
i=1

N
si ·

1
n

)
and the global BA in the l-th layer takes O

((
N

sl−1

)3)
of time.

In summary, O (Tl) is expressed as

Tl =


N3 (l = 1)

w3

n
·
l−1∑
i=1

N

si
+

(
N

sl−1

)3

(l > 1)
(2)

Since Tl is a function of l, we thus calculate the optimal l∗

by letting the derivative of Tl equal to zero, which leads to

l∗ =

⌊
1

2
logs

(
3N2

(
s3 − s

)
n

w3

)⌋
(3)
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Figure 3: Example plot of time consumption Tl w.r.t. the layer number
l and the pose number N using w=10, s=5 and n=8. It is seen the
overall time consumption is significantly reduced from the original
BA (l=1) to our proposed hierarchical BA (l=3 or l=4).

Fig. 3 shows an example of the computation time Tl versus
the layer number l at different frame numbers N . As illustrated
in Fig. 3, the total computation time is greatly reduced when
the layer number increases from l=1 (original BA [7]) to l∗,
suggesting the effectiveness of the proposed hierarchical BA.
When l > l∗, the computation time does not increase much
and keeps almost constant, suggesting that any layer number
greater than l∗ will work equally well.

C. Top-Down Pose Graph Optimization

The top-down pose graph optimization process aims to
reduce the pose estimation errors in the bottom-up hierarchical
BA process, which considers only features co-visible in the
same local windows but ignores those observed across dif-
ferent local windows. As shown in Fig. 1, the pose graph is
constructed in a top-down manner in the pyramid structure.
In each layer of the pyramid, the factors are relative poses
between the adjacent two frames. Since the node Ti+1

j and
Ti

s·j are essentially the same, i.e., Ti
j = Ti−1

s·j = · · · =
T1

si−1·j , ∀i ∈ L, j ∈ F i, where L = {1, · · · , l} represents
the set of l layers and F i = {0, · · · , Ni − 1} represents the

second layer factorsecond layer factor third layer factorthird layer factorfirst layer factorfirst layer factor

Figure 4: Final factor graph of our proposed approach with layer
number l=3, stride size s=3 and window size w=6. Factors on the
same side indicate that they originate from the same local window.
Nodes will be connected with multiple factors if their corresponding
frames occur in multiple local windows, e.g., T1

3 and T1
4.

set of Ni numbers, the original pose graph in Fig. 1 is reduced
to Fig. 4 and the objective function to be minimized is thus

f (F, T ) =
∑
i∈L

∑
j∈Fi

c
(
T1

si−1·j ,T
1
si−1·(j+1)

)
(4)

where F = {F1
i | i ∈ F1} is the collection of all first layer

frames and T = {T1
i | i ∈ F1} represents the collection

of first layer poses. The reduction of the pose graph from
Fig. 1 to Fig. 4 and detailed derivation of (4) are included in
Supplementary1 Sec. A. Note that the cost function in (4) is
weighted by the Hessian matrix computed in the bottom-up BA
process. Finally, the factor graph is solved by the Levenberg-
Marquardt method using GTSAM2.

IV. EXPERIMENTS

A. Accuracy Analysis

1) Initial Odometry with Loop Closure: In this section, we
take the odometry results from the state-of-the-art (SOTA)
LiDAR SLAM algorithms [1]–[3] as the input and further
optimize them with our proposed work. We demonstrate that
our work could both improve the mapping quality (consis-
tency) and the pose estimation accuracy even when the initial
poses have already been pose-graph optimized. The BA and
pyramid parameters used in all our following experiments,
without further specification, are listed in Table I (a more
detailed implementation of BA is explained in Supplementary1

Sec. B). The optimal l∗ is obtained by calculation using (3)
based on the actual pose number N in each sequence. For data
length N < 5 × 103 (KITTI [17], MulRan [18] and Newer
College [19]), we have l∗ = 3 and for larger sequence, i.e.,
N ≥ 5× 103 (New College [20]), we have l∗ = 4.

Table I: Hierarchical Bundle Adjustment Parameter Setting

Parameter Value Description

w 10 window size
s 5 stride size
n 8 threads number for parallel processing

θlocal 0.05 eigenvalue ratio threshold for local BA
Vlocal 4 initial voxel size for local BA
θglobal 0.1 eigenvalue ratio threshold for global BA
Vglobal 4 initial voxel size for global BA

We first test on the KITTI dataset [17] and use the pose
estimation results from MULLS with loop closure [3] as our
initial input. The RMSE of the absolute rotation (degree) and

1https://github.com/hku-mars/HBA/blob/main/Supplementary.pdf
2https://github.com/borglab/gtsam
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Table II: RMSE of the ATE (◦/m) on KITTI Dataset with Loop Closure

Method Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 Avg.

Proposed 0.7/0.8 0.9/1.9 1.2/5.1 0.7/0.6 0.1/0.8 0.5/0.4 0.4/0.2 0.4/0.3 1.3/2.7 0.8/1.3 0.6/1.1 0.7/1.4
CT-ICP [21] 0.7/1.7 1.0/4.2 1.2/4.1 0.6/0.7 0.2/0.7 0.5/0.8 0.4/0.3 0.4/0.3 1.2/2.5 0.7/0.9 0.5/0.8 0.7/1.5
MULLS [3] 0.7/1.1 0.9/1.9 1.2/5.4 0.7/0.7 0.2/0.9 0.6/1.0 0.4/0.3 0.4/0.4 1.3/2.9 1.0/2.1 0.6/1.1 0.7/1.6
LiTAMIN2 [22] 0.8/1.3 3.5/15.9 1.3/3.2 2.6/0.8 2.3/0.7 0.7/0.6 0.8/0.8 0.6/0.5 0.9/2.1 1.7/2.1 1.2/1.0 1.2/2.4
SuMa [11] 0.7/1.0 3.2/13.8 1.7/7.1 1.5/0.9 1.8/0.4 0.5/0.6 0.7/0.6 1.1/1.0 1.2/3.4 0.8/1.1 0.9/1.3 1.1/3.2
LOAM [23] 1.2/1.5 5.8/17.2 4.2/17.9 3.3/0.8 0.7/0.4 0.7/0.7 0.8/0.8 0.6/0.5 1.7/3.8 1.3/1.1 1.2/1.3 2.0/4.2

Figure 5: Mapping result from (A) MULLS [3] and (B) our proposed
method on KITTI Seq. 07. The white dashed rectangle emphasizes
the divergence.

Figure 6: Point cloud mapping in sequence DCC03 of MulRan. (A):
The mapping result from LIO-SAM [2] with loop closure. (B): The
mapping result from our proposed method. The start (red) and ending
(blue) positions have been emphasized by the white dashed rectangle
and enlarged at the bottom (zoomed view is recommended).

translation (meter) errors are summarized in Table II. We
choose the absolute trajectory error (ATE) as the evaluation
criterion since each LiDAR frame has one unique ground truth.
As can be seen, our proposed work could further improve the
pose estimation accuracy, especially in translation, even when
they are pose-graph optimized. Though our approach does not
achieve the best result in every sequence, our work produces
the optimal ATE results (0.7◦/1.4m) on average compared with
other SOTA methods. Moreover, since the pose graph opti-
mization does not directly optimize the consistency of the point
cloud, the divergence in the map is not fully eliminated in [3]
(see Fig. 5). This divergence could be iteratively solved with
our proposed hierarchical BA and pose graph optimization,
which in return, reduces the ATE on pose estimations.

Table III: RMSE of the ATE (m) on MulRan Dataset with Loop
Closure

Method D01 D02 D03 K01 K02 K03 R01 R02 R03 Avg.

Proposed 5.19 3.20 2.54 3.36 3.75 3.53 8.92 7.94 10.26 5.41
LIO-SAM [2] 5.67 3.48 2.84 3.55 3.81 3.60 9.25 8.04 10.37 5.62
LEGO-LOAM [24] 6.95 5.49 6.29 5.45 5.49 5.70 19.05 16.04 30.91 11.62

D stands for DCC, K stands for KAIST and R stands for RIVERSIDE.

We then test our proposed method on another spatially
large-scale spinning LiDAR dataset, MulRan [18]. The average
lengths of the contained sequences DCC, KAIST and RIVER-

SIDE, are 4.9km, 6.1km and 6.8km, respectively. Unlike the
KITTI dataset, which collects most of the data within the urban
area, MulRan dataset includes more challenging scenes from
the viaduct, river and woods. We choose to use the pose-
graph optimized pose trajectory results from LIO-SAM [2]
as our input. The RMSE of the absolute translation error
has been summarized in Table III. Our proposed work could
still improve the pose estimation accuracy regardless of these
challenging unstructured woods scenes. However, these scenes
make the LIO-SAM generate poor relative pose and covariance
estimations, which further leads to partial failure in the loop
closure, causing a large divergence in altitude (see Fig. 6). With
our proposed hierarchical BA and pose graph optimization
mechanism, this divergence could be fully eliminated, and the
pose trajectory accuracy is thus further improved.

Lastly, we test our work on the sequence long experiment
which is the longest sequence (N=26557) in the New College
dataset [20]. We choose the FAST-LIO2 [1] to provide the
pose trajectory as our initial input. It is noted that these initial
poses are generated without loop closure. Table IV shows the
absolute translation error of our proposed and other SOTA
methods. Our proposed work outperforms other loop closure-
enabled SOTA methods and achieves optimal accuracy on this
large time-scale sequence.

Table IV: RMSE of the ATE (m) on Newer College Dataset with
Loop Closure

Method long experiment

Proposed 0.26
GICP Matching Factor [12] 0.28
FAST-LIO2 [1] 0.35
LIO-SAM [2] 0.53
CT-ICP [21] 0.58

2) Initial Odometry without Loop Closure: In this section,
we demonstrate that our proposed work can converge well
even when the loop is not closed in the initial pose trajectory.
We first test on the KITTI dataset [17] using the initial pose
trajectory estimated from MULLS [3] without loop closure.
The RMSE of the absolute rotation and translation errors are
summarized in Table V. As can be seen, other SOTA methods
get much worse ATEs due to the lack of loop closure function,
whereas our proposed work could still produce reliable pose
estimations, with the absolute rotation and translation errors
being largely reduced (e.g., Seq. 00 and Seq. 08) and achieving
the optimal ATE on average (0.8◦/1.9m). This is due to the
reason that, in local BA, the strict parameters (see Table I)
ensure the frames within each local window do not diverge,
and the loose parameters of the top layer global BA could
implicitly identify potential divergences, generating correct
relative pose constraints (see Fig. 7). Though false feature
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Table V: RMSE of the ATE (◦/m) on KITTI Dataset without Loop Closure

Method Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 Avg.

Proposed 1.0/1.2 1.0/2.4 2.3/9.0 0.7/0.6 0.2/0.9 0.5/0.7 0.3/0.2 0.4/0.3 1.3/2.5 0.7/1.5 0.5/1.1 0.8/1.9
CT-ICP [21] 1.2/4.5 1.0/4.3 1.6/7.5 0.6/0.7 0.2/0.7 0.6/1.4 0.3/0.4 0.4/0.4 1.2/2.5 0.7/1.3 0.5/0.8 0.8/2.2
MULLS [3] 1.7/6.1 1.0/2.4 2.4/10.7 0.7/0.7 0.2/0.9 1.0/2.4 0.4/0.6 0.5/0.6 1.9/4.3 1.0/3.1 0.5/1.1 1.0/3.0
Voxel Map [25] 0.9/2.8 1.9/7.8 1.7/6.1 1.2/0.7 0.6/0.3 0.8/1.2 0.4/0.4 0.7/0.7 1.1/2.3 1.0/1.9 1.0/1.1 1.2/2.9
SuMa [11] 1.0/2.9 3.2/13.8 2.2/8.4 1.5/0.9 1.8/0.4 0.7/1.2 0.4/0.4 0.7/0.5 1.5/2.8 1.1/2.9 0.8/1.3 1.4/3.9
LiTAMIN2 [22] 1.6/5.8 3.5/15.9 2.7/10.7 2.6/0.8 2.3/0.7 1.1/2.4 1.1/0.9 1.0/0.6 1.3/2.5 1.7/2.1 1.2/1.0 1.8/5.1
LOAM [23] 1.1/2.3 4.1/17.7 7.3/37.9 3.6/0.8 0.8/0.4 0.9/2.3 0.8/0.8 0.6/0.5 1.7/3.7 1.4/1.6 1.3/1.3 2.1/6.3

Figure 7: Closure of the gap on KITTI dataset Seq. 00 with our
proposed method. The mapping result (A) is provided by MULLS [3]
without loop closure, and (B) our proposed method. The odometry
is colored by the moving distance from the start (red) to the end
(blue). The main gaps are detailed by white dashed rectangles. The
full experiment video is available on https://youtu.be/CuLnTnXVujw.

Figure 8: Reconstructed point cloud map of scene-1 using (A) FAST-
LIO2 [1] (MME=-2.99) and (B) our proposed work (MME=-3.06).
The main differences are emphasized by the white dashed rectangles,
including the walls (bottom), ceiling lights (middle) and wind tunnel
(top). Please view our experiment video for more details.

correspondence matching in global BA might happen if an
incorrect top layer factor is added to the pose graph, the dense
bottom layer factors ensure this incorrect factor will not drag
the poses away from the correct direction.

We further validate the versatility of our proposed work
on our self-collected dataset using solid-state LiDAR [26] in
both structured and unstructured scenes. The first test scene
is a structured indoor factory with several irregular-shaped
pipelines and machines (see Fig. 8). The size of this scene
is around 14×16×8m, and the length of this sequence is
7339 frames. The pyramid parameters are set the same as
in Table I except that the initial voxel size is decreased due
to the smaller size of the indoor scene (Vlocal=Vglobal=1m).
The second test scene is an unstructured outdoor park with
bush, grassland and woods around (see Fig. 9). The size
of this scene is around 95×195m, and the length of this

Figure 9: Reconstructed point cloud map of scene-2 using (A) FAST-
LIO2 [1] (MME=-2.60) and (B) our proposed work (MME=-2.69).
The main differences are emphasized by the white dashed rectangle.
The second row depicts the side view of divergence in height. The
third row shows the divergence from the bird-eye’s view.

sequence is 3407 frames. We thus adjust the initial voxel
size (Vlocal=Vglobal=2m) without changing the other pyramid
parameters from Table I. For both test sequences, we use the
pose estimations from FAST-LIO2 [1] without loop closure as
our input. Since the measurement of the ground truth is not
available, we instead use the mean map entropy (MME [27])
to evaluate the mapping quality (see Table VI). Since the
MME calculates the natural logarithm of the determinant of the
covariance matrix, the smaller MME is, the more consistent
the point cloud is. Our proposed work further improves the
mapping consistency and closes the gap in both structured and
unstructured scenes regardless of the LiDAR types.

Table VI: MME on Self Collected Dataset

Method scene-1 scene-2

FAST-LIO2 [1] -2.99 -2.60
Proposed -3.06 -2.69

B. Ablation Study

1) Pose Graph Optimization versus Direct Assign: In this
section, we demonstrate our proposed top-down design is non-
trivial. To update the bottom layer poses, a trivial method is
to directly assign the optimized upper layer poses to the lower
layer poses, e.g., an optimized pose of a keyframe from the
upper layer is used to update the first s poses from the lower
layer within the corresponding local window. For example,
in Fig. 1, the poses T2

0,T
2
1,T

2
2 are updated by T3∗

0 and the
poses T2

3,T
2
4,T

2
5 are updated by T3∗

1 , respectively. We test
this trivial method (“Direct Assign”) with our proposed pose
graph optimization mechanism on KITTI dataset [17] both
using the poses generated before and after loop closure from
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Table VII: RMSE of the ATE (◦/m) on KITTI Dataset

Method Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 Avg.

Direct Assign⋆ 0.68/0.81 0.87/1.88 1.44/5.25 0.72/0.62 0.19/0.81 0.51/0.52 0.35/0.29 0.40/0.26 1.28/2.76 0.86/1.59 0.55/1.13 0.71/1.47
Proposed⋆ 0.67/0.79 0.87/1.91 1.19/5.08 0.71/0.63 0.14/0.82 0.53/0.39 0.36/0.22 0.40/0.30 1.25/2.68 0.83/1.26 0.57/1.12 0.68/1.38

Direct Assign 1.30/1.32 0.97/2.37 2.18/9.47 0.67/0.58 0.28/0.87 0.66/0.83 0.35/0.31 0.47/0.32 1.71/3.42 1.02/2.12 0.54/1.08 0.92/2.06
Proposed 1.00/1.17 0.98/2.41 2.26/8.95 0.65/0.59 0.21/0.90 0.48/0.74 0.33/0.22 0.43/0.29 1.29/2.53 0.70/1.47 0.53/1.07 0.81/1.85
⋆ The initial pose trajectory is generated with loop closure.

Figure 10: Mapping results (A) without and (B) with our proposed
pose graph optimization in KITTI Seq. 08. The main difference
is emphasized by the yellow dashed rectangle. The white dots
represent the trajectory. Inconsistency occurs at the higher layer and
is iteratively assigned to the bottom layer poses if no pose graph
optimization is applied.

MULLS [3] as the input. The RMSE of the absolute rotation
and translation errors are summarized in Table VII. As can
be seen, our proposed pose graph optimization outperforms
the direct assigning one both in pose estimation accuracy and
mapping consistency (see Fig. 10). Though the above trivial
strategy could still improve the pose estimation accuracy, such
a method neglects the relative pose constraints from each local
window, e.g., the pose T2

3 is involved in two local windows,
whereas it is updated by T3∗

1 only without considering the
relative constraint from T2

2. This will lead to a mapping
inconsistency between frames F2

2 and F2
3 and further between

frames F1
8 and F1

9. In our proposed pose graph optimization
approach, the first layer factor ensures the consistency between
every adjacent frame while the second and above layer factors
ensure the gap is converged towards the correct direction.

2) Hierarchical BA versus Reduced BA: In this section,
we demonstrate that our proposed bottom-up design is non-
trivial. To accelerate the Hessian matrix solving process, a
trivial way is to keep only the block diagonal elements (of
size s of the stride length) of the original Hessian matrix and
solve this reduced matrix without considering the relative pose
constraints among different local windows as in our method.
We verify this reduced BA with the original BA [7] and our
approach on the DCC sequence of the MulRan dataset [18].
The RMSE of the absolute translation error and the total
optimization time of all methods are summarized in Table VIII.
Our proposed work achieves a similar precision as the original
BA method while drastically reducing the computation time.
This is due to the reason that the original BA needs to construct
an adaptive voxel map using all points (adaptive-voxel map),
which quickly escalates as the involved pose number increases.
Our method conducts BA in local windows, so we only have
to construct an adaptive voxel map using a very small amount
of points in the local window, and different local windows
can be paralleled. The reduced BA actually takes longer time
than the original BA due to two reasons. First, it needs to
construct an adaptive voxel map similar to the original BA.
Second, the reduced BA zeros the off-diagonal block elements,
which leads to inaccurate Hessian estimation and significantly

Table VIII: RMSE of ATE (m) and Optimization Time on DCC
Sequence of MulRan Dataset

Method DCC01 DCC02 DCC03
RMSE Time RMSE Time RMSE Time

Initial 5.67m - 3.48m - 2.84m -
Original BA [7] 5.17m 2830.91s 3.19m 2631.83s 2.54m 3655.10s
Reduced BA 5.66m 4390.15s 3.46m 4615.90s 2.83m 7522.20s
Proposed 5.19m 226.10s 3.20m 362.59s 2.54m 248.42s
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Figure 11: RMSE of ATE w.r.t. runtime of iterations of the original
BA [7], reduced BA and our proposed methods on the DCC sequence
of the MulRan dataset. Each marker represents one iteration.

slows down the convergence speed. In our experiments, the
reduced BA may even fail to converge when the maximum
iteration number is reached (max iter=10) while the original
BA converges within a few steps (see Fig. 11). Moreover, since
we use relatively strict parameters on the local BA, factors
from these layers ensure that glitches will not appear between
every adjacent frame. For the simplified and the original BA,
only the strict parameter could be adopted. Otherwise, false
feature matching will frequently happen (points within the
voxel do not form a plane feature).

C. Computation Cost

In this section, we demonstrate that our proposed approach
is computationally efficient, especially on large-scale datasets.
We test our proposed method with multiple setups of used
layers on New College [20], and Newer College [19] datasets
whose data length varies from 103 to 104 frames. The total
computation time (including the adaptive-voxel map construc-
tion and BA time) and the maximum RAM memory consump-
tion recorded for each setup at all sequences are illustrated in
Fig. 12. Due to the huge time and RAM consumption of the
original BA method, we do not test it on the last two sequences
since the plot could already depict the trend.

It is seen for all test scenes the more layers are used, the less
computation time the pyramid takes. When the pose number
N < 5 × 103, the time and RAM consumption of 3-layer
and 4-layer pyramids are similar, and when N > 5 × 103,
the 4-layer pyramid becomes optimal. All these phenomenons
are in accordance with our theoretical analysis shown in
Fig. 3 and (3). Since the third test scene (N=2436) contains



8 IEEE ROBOTICS AND AUTOMATION LETTERS, PREPRINT VERSION, JANUARY 2023

101

102

103

104

105

Ti
m

e 
Co

st
 (s

ec
on

d)

Original BA
2-Layer Pyramid
3-Layer Pyramid
4-Layer Pyramid
12% Data Time

11
98

18
75

24
36

27
84

37
34

50
06

15
71

7
26

55
7

LiDAR Frame Number

0

5

10

15

20

25

RA
M

 C
os

t (
Gi

ga
by

te
) Original BA

2-Layer Pyramid
3-Layer Pyramid
4-Layer Pyramid
100% Data Size

Figure 12: Comparison of computation time and RAM costs with
multiple setups of layers used in the pyramid under Newer College
Dataset [19, 20]. Different setups are represented using different
colors. The red dashed lines represent 12% of the total data time
and total point cloud size of the corresponding sequence.

a more complex environment (thus more adaptive-voxel map
construction time), the total time consumption is actually larger
than the latter scene. Despite this, by choosing the optimal
layer setup, our work could converge within around 12% of
the whole data time and consumes much smaller RAM during
operation, which is suitable for practical usage.

V. CONCLUSION

In this paper, we propose a hierarchical BA and pose
graph optimization-based work to optimize the pose estimation
accuracy and mapping consistency globally for the large-scale
LiDAR point cloud. With the bottom-up hierarchical BA, we
parallelly solve multiple BA problems with a much smaller
Hessian matrix size than the original BA method. With the
top-down pose graph optimization, we smoothly and efficiently
update the LiDAR poses without generating glitches. We
validate the effectiveness of our work on spatially and timely
large-scale LiDAR datasets with structured and unstructured
scenes, given a good initial pose trajectory or with large drifts.
We demonstrate our proposed work outperforms other SOTA
methods in pose estimation accuracy and mapping consistency
on multiple public spinning LiDAR and our self-collected
solid-state LiDAR datasets. In our future work, we could
combine the IMU pre-integration and LiDAR measurement
noise model into our hierarchical BA work.
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