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Abstract—This paper proposes a robocentric formulation for
quadrotor visual servoing. This formulation presents the task-
specific state dynamics of the quadrotor in its body reference
frame. Compared to other visual servoing methods, our method
allows tightly and integrated state estimation and control on the
same robocentric model, and allows a faster system response in
aggressive quadrotor flights. On the theory level, we prove the
controllability and observability of the proposed robocentric model.
Then, we design an on-manifold Kalman filter for the estimation
and an on-manifold iterative model predictive controller (MPC) for
motion planning and control. We verify our proposed formulation
and controller in two crucial quadrotor flight tasks: hovering and
dynamic obstacle avoidance. Experiment results show that the
quadrotor is able to resist large external disturbances and recover
its position and orientation from two reference visual features.
Moreover, the quadrotor is able to avoid dynamic obstacles reliably
at a relative speed up to 7.4 m/s, demonstrating the effectiveness
of our visual servoing methods in agile quadrotor flights.

Index Terms—Visual servoing, model predictive controller,
obstacle avoidance, unmanned aerial vehicle.

NOTATIONS

x State in aircraft’s body frame.
x̂ Skew-symmetric matrix of x.
xm Direct measurement from IMU or camera.
xh Stable state in aircraft’s body frame.
xobs State of dynamic obstacle represented in aircraft’s

body frame.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) draw intensive at-
tention from researchers and industry companies due

to their great potential to various applications such as aerial
photography, inspection, environment exploration and logistics.
To fulfill these widespread applications, it is usually required
to operate UAVs in close proximity of (or even in contact with)
objects, such as flying through a cluttered environment with
obstacles (e.g., narrow gaps), landing on a moving platform,
perching on a target, and avoiding dynamic obstacles (e.g.,
birds). Achieving these agile flights reliably requires a low-
latency processing pipeline consisting of the environment
perception, ego-motion estimation and control. Such a low-
latency pipeline allows a possibly faster response enabling
the UAV to respond timely to any errors caused by external
disturbances or internal model uncertainties.
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Fig. 1. Our quadrotor avoids a dynamic obstacle (a tennis ball), with relative
speed up to 7.4 m/s. All perception, estimation, planning and control are
performed by the onboard sensor (an Intel D455) and computer (a DJI Manifold
2 computer with Intel i7-8550U CPU). No prior knowledge of the size of the
obstacle is required.

One way to achieve these mentioned agile flights is to
separately estimate the UAV’s ego-motion and the target (e.g.,
a landing pad) or the surrounding environment. This typically
requires a full simultaneous localization and mapping (SLAM)
or visual(-inertial) odometry in GPS denied environments.
Then, a trajectory planning is performed to find a feasible
and collision-free trajectory from the UAV’s current state
to the target one. This trajectory is then tracked by an
underlying tracking controller. Despite its separation of different
modules and generality to different tasks, this full pipeline
typically requires significant computation resources and leads
to considerably high latency.

Visual servoing techniques provide an alternative solution for
UAV navigation and control, which directly use image data in
the servo loop to control the motion of a robot [1]. Compared to
the above mentioned full pipeline, visual servoing establishes a
direct estimation between the robots with the target. This more
tightly-coupled and compact pipeline promises lower latency
from perception to control, enabling the UAV to execute mission
with high accuracy and aggressiveness.

Generally, visual servoing is classified into two categories:
position-based visual servoing (PBVS) and image-based visual
servoing (IBVS) [1], [2]. PBVS methods first estimate the
robot’s position (and other states) in the world frame and
then perform the control based on the estimated states. The
robot’s position could be estimated from the projection of
known structures, such as collinear points, spheres, cylinders
and multiple heterogeneous features [3], or a more general
visual(-inertial) odometry [4] by robustly tracking salient
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visual features in the environment. In the latter case, the
PBVS reduces to the common pipeline which requires a
complete state estimation in the world frame thus suffers from
similar drawbacks of long processing pipeline and increased
computation load and latency.

In contrast to PBVS methods, IBVS methods do not require
to estimate explicitly the robot’s position (or other states) in
a world frame, but directly take control to make a number of
visual features reach their specified values. To achieve this, the
visual features are first defined according to a specific task.
Then the time derivatives of the visual features are obtained,
which are related to the robot’s full velocity. Based on this
differential equation relating the time derivative of the visual
features and the robot’s velocity, a control law can be easily
designed to drive the visual features to their desired values by
viewing the robot’s velocity as the virtual control.

By utilizing the visual features for control, the IBVS methods
promise a lower latency and have enabled many interesting UAV
applications recently. In [5][6], UAVs were able to hover at a
desired position utilizing the IBVS method, where the visual
features were defined as the image moments on a virtual image
plane. With the defined visual features, the authors designed a
cascaded controller and further proved its stability. In [7], the
authors demonstrated a quadrotor flying through multiple gaps
using the IBVS method. The reciprocal of distance between
every two projected visual points on a unit sphere was used
as the visual features. The specially designed visual features
were invariant to robot rotation thus the rotation dynamics
of the quadrotor was decoupled. Path planning and control
were designed and implemented which enable the quadrotor
to fly through narrow gaps. IBVS was also implemented on a
quadrotor to land on a moving platform in [8]. The centroid
of landmarks’ projection on a sphere in body frame was
selected as the visual features. Different from other IBVS works
which view static reference target as landmarks, the platform
for landing is moving. They additionally used optical flow
technique to estimate the relative velocity between the quadrotor
and the moving platform. Thomas et al. [9] considered a
perching task. The coordinates of a cylinder projection on a
virtual plane were selected as the visual features. A perching
trajectory was generated and tracked then the quadrotor was
able to perch on the target cylinder. The selection of visual
features in this work also decoupled the angular dynamics
from the visual feature dynamics thus a cascaded controller
was designed to separately control position and orientation.
IBVS methods also found some applications in the task of
UAV dynamic obstacle avoidance, a very challenging task
that has drawn much recent research interest [10]–[14]. In
[15], authors designed a nonlinear MPC (NMPC)-based IBVS
method to enable a fixed-wing UAV to avoid a dynamic obstacle
in simulation. Mcfadyen et al. [16] applied the IBVS method
to a quadrotor UAV for dynamic obstacle avoidance but only
demonstrated the system with a virtual, simulated dynamic
obstacle when the UAV was tracking a conical spiral trajectory.

The IBVS methods mentioned above typically differ in the
selection of visual features, but the controllers all use the robot’s
velocity [5], [16] or acceleration [6], [7], [9], [15], [17] as
the virtual control, requiring an additional cascaded attitude

controller to track the computed velocity or acceleration
commands. In this cascaded control structure, the visual
servoing controller essentially neglects the underlying dynamics
caused by the inner-loop attitude controller and hence limits
the system’s attainable response rate.

Regardless of the navigation and control framework (visual
servoing or non-visual servoing, PBVS or IBVS), a key problem
is how to design an appropriate controller within the chosen
framework. In recent years, control theory has been widely
applied in real-world nonlinear systems, such as H-infinity
control [18], [19], fuzzy control [20], [21], sliding mode
control [22], model predictive control (MPC) [23], [24] and
learning-based control [25], [26]. Among these control methods,
MPC transforms the control problem to an optimization
problem considering both input and state constraints. These
properties have made MPC very flexible to incorporate actual
constraints (e.g., actuation limit) and been popularly used
in real-world robotic systems. In [27], [28], MPC was used
to achieve tracking control with a given trajectory. In [11],
[23], collision-free constraint was considered within MPC and
in [6] a tightened state constraint was included for external
disturbance rejection. Authors in [24] proposed an iterative
method, sequential quadratic programming (SQP), as the
optimization solver for MPC applied on a quadrotor UAV. MPC
has also been used in previous visual servoing methods. In the
framework of visual servoing, [29] used MPC to handle input
and visibility constraints and [30] applied the MPC method on
underwater vehicles for setpoint tracking. In [31] and [6], MPC
was utilized as visual servoing controller on quadrotors and
they focus on visibility improvement and external disturbance
rejection respectively. While these works designed the MPC in
normal Euclidean space, our previous work [32] considered how
to incorporate the manifold constraints into a trajectory tracking
MPC controller since real-world robotic systems usually evolve
on manifolds.

In this work, we propose a robocentric approach for the IBVS
method. The key idea is to establish a full dynamic model (as
opposed to the robot’s velocity only) of the visual features in
the robot’s body reference frame (as opposed to the world frame
where the robot’s velocity is expressed). The consideration of
the full dynamic model allows a faster response of the UAV,
while the robocentric model agrees well with the visual features
which are naturally expressed in the body reference frame (e.g.,
the image frame). More specifically, our contributions are as
follows:

1) We propose a robocentric model for quadrotor visual
servoing control and analyze its controllability and
observability. Compared with existing IBVS methods
[5]–[9], [15], [16], which use simplified models actuated
by the UAV’s velocity or acceleration, our model is a full
dynamic model actuated directly by the UAV’s angular
velocity, allowing a possibly faster system response.

2) Based on the robocentric model, we implement an
integrated estimation and visual servoing control frame-
work. The estimation is a lightweight on-manifold state
estimator that utilizes measurements of only onboard
depth-camera and IMU to estimate the full robocentric
state. For the visual servoing controller, we propose an on-
manifold iterative Model Predictive Controller (iMPC).
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Compared with previous on-manifold MPC [32] which
always requires a feasible trajectory planned beforehand
and [24] that parameterized the attitude using redundant
parameters (i.e., quaternion), our proposed iMPC is able
to perform trajectory planning and tracking control jointly
while admitting manifold constraints.

3) The proposed formulation and method are verified by
experiments on a quadrotor UAV. Besides hovering tasks,
we apply our method to more challenging dynamic
obstacle avoidance task. To our best knowledge, it is the
first time that a visual servoing controller is successfully
demonstrated for such task with real-world UAVs and
environments, which differs from the simulated environ-
ments or virtual obstacles demonstrated in existing visual
servoing methods [15], [16].

This paper is organized as follows: Section II derives the
robocentric model in a given task and analyzes its controllability
and observability. Section III presents the integrated estimation
and control methods based on the robocentric model. Section
IV presents simulation and experiment results of our methods in
two quadrotor tasks: hovering and dynamic obstacle avoidance.
Section V draws conclusions and discusses future work.

II. ROBOCENTRIC MODELING

In this section, states of a quadrotor will be represented in
body frame (i.e., the front-right-down frame). We consider
two tasks, hovering and dynamic obstacle avoidance. For
each task, the corresponding visual targets are selected and
system equations are derived respectively. When deriving the
system state equation, we assume the control inputs are the
collective thrust acceleration aT and the body angular velocity
ω, which can be tracked by a cascaded inner-loop angular
velocity controller. Moreover, we assume a RGB-D sensor
configuration on the quadrotor UAV, so that the full coordinates
of the visual targets in the body frame are directly measurable.
Although we consider these two tasks for presentation clarity,
the presented robocentric formulation can be extended to other
visual servoing tasks with similar derivations.

A. Hover

The hovering of a quadrotor can be achieved by choosing a
static visual target and maintaining its RGB-D measurement
(coordinates in the body frame) at a given value. Assume the
measurement of the visual target is p, which is represented in
the quadrotor body frame. To maintain this measurement at
a given position ph, we derive, based on the standard rigid-
body motion [33], its state equation with respect to the input
collective thrust acceleration aT and body angular velocity ω,
as follows:

ṗ = −ω̂p− v v̇ = −ω̂v + a+ g ġ = −ω̂g (1)

where v denotes the velocity, a = −aTe3 denotes the
acceleration along the UAV belly with e3 =

[
0, 0, 1

]T
, and g

denotes the gravity, all in the body frame, ω̂ is skew-symmetric
matrix of ω. Based on the state representation in (1), the
hovering task is achieved by stabilizing the state around the

Fig. 2. (a) The quadrotor may hover at any position on a horizontal circle
when the only one target point is controlled. (b) The quadrotor hovers at
a determined position with control of one visual target and one reference
direction (e.g., made up by two visual targets).

equilibrium point at (ph,0, ge3), where g ≈ 9.8 m/s2 is the
gravity.

The visual servoing formulation in (1) cannot determine a
unique pose of the quadrotor in the world frame. As shown in
Fig. 2(a), the quadrotor would freely move along a horizontal
circle of radius (x2

h + y2h)
1
2 around the point ph without

changing the measurement of the visual targets at all.
In order to fully control the quadrotor orientation during a

hovering, we consider another visual target pj in addition to
the first one denoted as pi. A unit direction vector is made
up by the two visual targets r =

pj−pi

∥pj−pi∥ ∈ S2. Similar to
gravity, this direction provides extra orientation information
of the quadrotor, and maintaining the observed direction r at
a desired value rh would uniquely determine the quadrotor
orientation in the world frame. To achieve this control objective,
we need to augment the state dynamics in (1) further by that
of the direction r, as follows:

ṗ = −ω̂p− v v̇ = −ω̂v + a+ g

ġ = −ω̂g ṙ = −ω̂r (2)

One thing to notice is that the choice of rh ∈ S2 is not
completely free because it has to respect the simple geometric
constraint that, the angle between rh and the gravity at the
desired state (i.e., hovering), gh = ge3, has to be equal to the
actual one. That is,

rTh · gh = c (3)

where c is a constant determined by the actual angle between
the reference direction and the gravity in the space. It is within
the ranges (−g, g) and its value is estimated from the first few
measurements of the reference direction r and the estimation
of the gravity vector g. Violating the constraint in (3) would
lead the desired direction rh unattainable at hovering.

On the other hand, the choice of ph is relatively free as
long as it is within the sensor FoV. As a consequence, ph

contributes three degrees of freedom, and rh contributes just
one due to the constraint in (3). The total four degrees of
freedom are equal to the controllable degrees of freedom of
a quadrotor. As introduced in [1], to control the 6 DOF of
the system, it is necessary to consider at least three visual
targets in visual servoing methods. However, quadrotor is an
under-actuated system and its 6 DOF cannot be simultaneously
controlled. In our method, the under-actuated dynamics of the
quadrotor is considered thus using only two visual targets is
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able to control the system. When the desired coordinates of the
visual target ph and the reference direction rh are determined
in the body frame, the quadrotor has a unique position and
orientation as shown in Fig. 2(b).

Denote x = (p,v,g, r) the state and u = (ω, aT ) the
control input of the system in (2), we have the following
theorem.

Theorem 1. The pair (xh,uh), xh = (ph,0, ge3, rh) with rh
satisfying (3) and uh = (0, g), represents an equilibrium point
of the system (2). Moreover, the system (2) around the point
(xh,uh) is locally controllable.

Proof. The controllability proof can be referred at Sec. I in
our supplementary material [34].

B. Obstacle Avoidance

To make sure the quadrotor to hover safely although with
the existence of some dynamic obstacles which may collide
with the quadrotor, the system model is extended by including
an obstacle’s dynamics. In our circumstance, only one obstacle
is considered and its relative position to quadrotor is measured
and denoted in the quadrotor body frame as pobs. Its velocity
is denoted as vobs. The dynamics of the obstacle is established
by assuming only gravity affecting its motion and it can be
written in quadrotor robocentric formulation as

ṗobs = −ω̂pobs − (v − vobs) v̇obs = −ω̂vobs + g (4)

In the above obstacle dynamics, it can be seen that v and ω
are included in right hand side. States of the obstacle (i.e. pobs

and vobs) are directly related to states of the quadrotor thus
obstacle avoidance can be considered as a control problem.
Combining (2) with above obstacle dynamics leads to

ṗ = −ω̂p− v v̇ = −ω̂v + a+ g ġ = −ω̂g ṙ = −ω̂r

ṗobs = −ω̂pobs − (v − vobs) v̇obs = −ω̂vobs + g (5)

The goal of this task is to avoid a dynamic obstacle from
a hover state and recover to hover thereafter. In this problem,
pobs is not required to reach some desired value, but to stay
above a safe clearance. Therefore the controllability of the
above system reduces to the controllability of the hovering
state, which is already proved controllable in Section II-A.

III. INTEGRATED ESTIMATION AND ITERATIVE MODEL
PREDICTIVE CONTROL

When compared to existing visual servoing methods, one
benefit of the robocentric formulation (e.g., (2) for hovering
and (5) for obstacle avoidance) is that, it allows integrated
estimation and control based on the same task-specific state
equation, without using an additional visual-inertial odometry
(VIO). In this section, state estimation of our system is
introduced firstly. Then we propose an on-manifold iterative
Model Predictive Control (iMPC). We will introduce its solving
procedures and then specify the control goals of the robocentric
tasks.

A. State Estimation

All states in our method for quadrotor control are estimated
by a stereo RGB-D camera mounted on the quadrotor and a 6-
axis IMU. Positions of visual targets are measured in the camera
frame, which is transformed to the body frame p from the
known extrinsic parameters. The IMU measurements contain
the angular velocity ωm and acceleration am. Augmenting the
state equation in (2) with the IMU model [35] leads to the
complete state equation for the hovering task:

ṗ = p̂ (ωm − bg − ng)− v ḃg = nbg ḃa = nba

v̇ = v̂ (ωm − bg − ng) + am − ba − na + g

ġ = ĝ (ωm − bg − ng) ṙ = r̂ (ωm − bg − ng)

(6)

where p̂, v̂, ĝ, r̂ are skew-symmetric matrix of p,v,g, r re-
spectively and bg and ba are the gyro and accelerometer bias,
respectively, which are typically modelled as random walks
[35]. ng, na, nbg, nba are all noises. The measurements for
the hovering task contain the measurement of the visual target
pm and the reference direction rm:

pm = p+ np rm = r+ nr (7)

where np, nr are measurement noises.

Theorem 2. The system with states (6) and measurements (7)
is locally weakly observable for p ̸= 0.

Proof. The observability proof is based on the on-manifold
observability analysis in [36] and the detailed proof can be
referred at Sec. II of our supplementary material [34].

For the task of dynamic obstacle avoidance, the full state
equations can be obtained similarly by augmenting the IMU
states. The resultant system is similar to (6) but contains two
more states, pobs and vobs. These two more states can be
trivially estimated from the additional measurement of pobs,
thus does not alter the observability of (6). For example, pobs

can directly use its measured value and vobs can be obtained by
differentiating pobs. To sum up, the system remains observable.

With the proved observability of the two systems,
their states (i.e., (p,v,g, r,bg,ba) for hovering and
(p,v,pobs,vobs,g, r,bg,ba) for dynamic obstacle avoidance)
are estimated by an iterated Kalman filter that operates on the
respective state manifolds. We directly use the on-manifold
extended Kalman filter implementation in our previous work
[37] by simply specifying the manifold of each system and
casting the system into a canonical representation. Details of
the Kalman filter implementation can be referred to [37].

B. Canonical representation

With the state estimation in the previous section, we have
the knowledge of the full state vector, including the IMU bias
terms. In this section, we design a model predictive controller
(MPC) for each task based on the state feedback. With the
knowledge of the bias terms, we estimate the actual angular
velocity by ω = ωm − bg, the collective thrust acceleration
by aT = ∥am − ba∥ and use them to track any commands
computed by the MPC. Therefore, the MPC is designed on state
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space model without the bias terms (i.e., (2) for hovering and (5)
for obstacle avoidance) and has the control input u = (ω, aT ).

To design a hovering controller that runs at discrete time, we
discretize the system (2) using the Euler’s method as below:

pk+1

vk+1

gk+1

rk+1


︸ ︷︷ ︸

xk+1

=


pk +∆t(−ω̂k pk − vk)

vk +∆t(−ω̂k vk + ak + gk)
Exp(−∆tωk) gk

Exp(−∆tωk) rk


︸ ︷︷ ︸

xk⊕(∆tf(xk,uk))

(8)

where Exp(θ) = I + θ̂
∥θ∥ sin ∥θ∥ +

(
θ̂

∥θ∥

)2
(1− cos ∥θ∥)

is the exponential function on SO(3) transforming an axis-
angle vector to a rotation matrix [38] and ∆t represents the
sampling time, xk denotes the entire system state and uk

denotes the control input, both at the time step k. As can be
seen, the discrete system naturally evolves on the state manifold
M = R3 × R3 × S2 × S2 with dimension dim(M) = 10.

The discrete system in (8) is written into a more compact
form of xk+1 = xk ⊕ (∆tf(xk,uk)), where the operator ⊕
encodes compactly the “addition” of a state at its present time
and the state perturbation caused by the input for one sampling
period, such that the state at the next step still remains on the
state manifold M. Specially, for system evolving in Rn, ⊕ is
the usual vector addition. Finally, f(xk,uk) ∈ Rr represents
the state perturbation caused by the input and is defined as:

f (x,u) =


−ω̂p− v

−ω̂v − aTe3 + g
−ω
−ω

 ∈ R12 (9)

For task of obstacle avoidance, the discrete state equation
can be derived similarly:

pk+1

vk+1

pobs,k+1

vobs,k+1

gk+1

rk+1


︸ ︷︷ ︸

xk+1

=


pk +∆t(−ω̂k pk − vk)

vk +∆t(−ω̂k vk + ak + gk)
pobs,k +∆t(−ω̂k pobs,k − vk + vobs,k)

vobs,k +∆t(−ω̂k vobs,k + gk)
Exp(−∆tωk) gk

Exp(−∆tωk) rk


︸ ︷︷ ︸

xk⊕(∆tf(xk,uk))

(10)
where the state manifold is M = R3×R3×R3×R3×S2×S2,
dim(M) = 16, the ⊕ is defined accordingly on M, and

f (x,u) =


−ω̂p− v

−ω̂v − aTe3 + g
−ω̂pobs − (v − vobs)

−ω̂vobs + g
−ω
−ω

 ∈ R18. (11)

To sum up, for both the hovering and obstacle avoidance
task, the system can be represented in the following canonical
form

xk+1 = xk ⊕ (∆tf(xk,uk)) ,x ∈ M, dim(M) = n. (12)

where the state x naturally evolves on the state manifold M
with dimension n = dim(M).

The canonical representation for both tasks allows to
implement the state estimation and MPC control in the same
pipeline and structure without from-scratch re-designs for each
specific task or system. The general pipeline for on-manifold
extended Kalman filter used in this paper is detailed in our
previous work [37]. For the MPC control, the design and
implementation are detailed as follows.

C. On-Manifold iterative MPC

With the discrete system defined on manifold and the
canonical form of the system state (12), we formulate the
control problem of the system using the MPC formulation on
manifold as follows:

min
u0,··· ,uN−1

C =

N−1∑
k=0

Ck (xk,uk) + CN (xN )

s.t. xk+1 = xk ⊕ (∆tf(xk,uk)) , x0 = xinit

umin ≤ uk ≤ umax, k = 0, · · · , N − 1

(13)

The definition of the cost function depends on tasks and will
be specified in Section III-D for the hovering task and Section
III-E for the obstacle avoidance task, respectively. To efficiently
solve the above optimization problem while naturally satisfying
the manifold constraints, the cost and system dynamics are
both approximated around a reference trajectory (x̄k, ūk) ∈
M×Rm. To do so, the state error and input error are defined
firstly:

δxk = xk ⊟ x̄k ∈ Rn δuk = uk − ūk ∈ Rm (14)

The notation ⊟ denotes the error between the predicted
state xk and the reference one x̄k. This error has the same
dimension n as that of the manifold M, hence it is a minimal
parameterization of the state error. As shown in [32], the
operation ⊟ can be chosen as any local coordinates chart.
Since the local coordinates chart is expressed around each
point on the reference trajectory x̄k, the amount is usually
small, thus suffering from no singularity issue. Specifically, for
the hovering task (8), its state error is defined as:

δx = x⊟ x̄ =


δp
δv
δg
δr

 =


p− p̄
v − v̄

B(ḡ)T
(
θg

ˆ̄gg
∥ˆ̄gg∥

)
B(r̄)T

(
θr

ˆ̄rr
∥ˆ̄rr∥

)
 ∈ R10 (15)

where B(x) = [b1,b2] consists of two orthonormal vectors
that are perpendicular to x ∈ S2 and θx is the rotation angle
from x to x̄. The detailed representation of B(x) function and
θ can be referred in [37]. For the obstacle avoidance task (10),
its state error is defined as:

δx = x⊟ x̄ =


δp
δv

δpobs

δvobs

δg
δr

 =



p− p̄
v − v̄

pobs − p̄obs

vobs − v̄obs

B(ḡ)T
(
θg

ˆ̄gg
∥ˆ̄gg∥

)
B(r̄)T

(
θr

ˆ̄rr
∥ˆ̄rr∥

)


∈ R16 (16)

The inverse operator ⊞ can be defined accordingly such that
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x̄⊞ (x⊟ x̄) = x,∀x, x̄ ∈ M. Then, based on (14), we have

xk = x̄k ⊞ δxk ∈ M uk = ūk + δuk ∈ Rm (17)

and the cost in (13) can be approximated as:

C=

N−1∑
k=0

Ck (x̄k ⊞ δxk, ūk + δuk) + CN (x̄N ⊞ δxN )

≈
N−1∑
k=0

(
Ck (x̄k, ūk)+JT

k

[
δxk

δuk

]
+
1

2

[
δxk

δuk

]T
Hk

[
δxk

δuk

])
+ CN (x̄N ) + JT

NδxN +
1

2
δxT

NHNδxN

(18)
where Jk and Hk are the normal Jacobian and Hessian of the
cost function Ck over the vector (δxk, δuk) ∈ Rn+m.

Similarly, the system (12) is also linearized at the reference
trajectory (x̄k, ūk) to obtain the linearized error system:

δxk+1 = (xk ⊕ (∆tf(xk,uk)))⊟ (x̄k ⊕ (∆tf(x̄k, ūk)))

≈ Fx̄k
δxk + Fūk

δuk (19)

where Fx̄k
is the partial differentiation with respect to δxk

and evaluated at zero. Fūk
is the partial differentiation with

respect to δuk and evaluated at zero. The detailed expression
of them can refer to our previous work [32]. By approximating
both the cost function and the system around the reference
trajectory shown in (18) and (19), respectively, the original
problem (13) reduces to:

min
δu0,··· ,δuN−1

N−1∑
k=0

(
Jk

T

[
δxk

δuk

]
+
1

2

[
δxk

δuk

]T
Hk

[
δxk

δuk

])
+JT

NδxN+
1

2
δxT

NHNδxN

s.t. δxk+1 = Fx̄k
δxk + Fūk

δuk, δx0 = δxinit

umin−ūk ≤ δuk ≤ umax−ūk, k = 0, · · · , N − 1 (20)

which can be transformed into a standard QP problem (see
Sec. IV of the supplementary [34]) and solved efficiently by
QP solvers.

Due to the approximation error in the cost (18) and
linearization error in model (19), the optimal solution to (20)
is not necessary the optimal solution to the original problem
(13). To address this issue, we iterate the above linearization
and solving procedure. That is, the solution δu∗

k (equivalently
u∗
k) is rolled out according to the actual system (12) to obtain

an updated trajectory, which is then used to approximate the
optimization problem in (13) as the QP problem (20). This
procedure is repeated until convergence (i.e., ∥δu∗∥ < δ, ∀k) or
the maximum iteration number Niter is reached. The complete
algorithm is summarized in Sec. III of the supplementary
material [34].

D. Hover

In the hovering task, the control goal is to drive the quadrotor
from any initial state x0 = (p0,v0,g0, r0) to a hover state
xh = (ph,0, ge3, rh) and stabilize the quadrotor there. The
corresponding control at the hovering is uh = (0, g) according
to Theorem 1. Therefore, (xh,uh) is naturally a feasible
trajectory satisfying (12).

In order to ensure rh fulfill geT3 rh = c (see (3)), we calculate
the constant c according to the current state c = gT

0 r0. Then,
rh can be chosen as:

rh =
[√

1− (c/g)2 sin θ
√
1− (c/g)2 cos θ c/g

]T
(21)

where θ corresponds to the quadrotor heading angle. We set
θ = 0, meaning that the heading direction is perpendicular to
the plane formed by the gravity and the reference direction.

The hovering task is achieved by our iterative MPC, where
the cost is

Ck(xk,uk) = ∥xk ⊟ xh∥Qk
+ ∥uk − uh∥Rk

CN (xN ) = ∥xN ⊟ xh∥PN
(22)

with Qk and Rk being respectively the state penalty matrices
and the input penalty matrices, PN being the penalty matrix
of the terminal state. (xh,uh) is set as the initial trajectory in
the iterative MPC solving, and the number of iteration is set
to one (Niter = 1), meaning that the linearization is always
around the hovering state.

E. Obstacle Avoidance

To enable the quadrotor to evade a suddenly appearing
obstacle from an unknown direction when hovering, an obstacle
cost is defined and minimized in the iMPC according to the
relative distance between the quadrotor and the obstacle:

Cobs = ∥max(d2 − ∥pobs∥2, 0)∥Qobs
(23)

where d denotes the safe distance and Qobs denotes the
weight penalizing any distance below the safe distance d. As
can be seen, only when the obstacle falls within the safe
distance from quadrotor, the cost is activated Cobs > 0 and it
grows quadratically as the obstacle approaches. In the avoidance
process, to prevent violent actions that may destabilize the
quadrotor, it is required to keep close to the hover state
simultaneously. Therefore, the cost in (13) for this task can be
defined as:

Ck = ∥xk⊟xh∥Qk+∥uk−uh∥Rk+∥max(d2−∥pobs,k∥2, 0)∥Qobs

CN = ∥xN⊟xh∥PN +∥max(d2−∥pobs,N∥2, 0)∥Qobs (24)

In this task, system state x (and hence xh) also includes
obstacle state (pobs,vobs). Since the obstacle position does not
affect the hover after the quadrotor evades it, we set the penalty
matrix Qk and PN that are associated to the components
pobs,vobs to be zeroes. Moreover, we roll out the control
action uh = (0, g) to obtain xh, which is used as the initial
trajectory in the iterative MPC solving.

IV. SIMULATIONS AND EXPERIMENTS

In this section, we present simulation and experiment results
to verify the proposed robocentric model method and the
designed estimator and controller. In the simulation, our
method is compared with a recent IBVS work on quadrotor
hovering task [6]. In the experiment, hovering task and obstacle
avoidance task are both conducted.
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A. Simulation results

For a fair comparison, our method is applied to the same
task used in [6], where the UAV starts from an initial position
[−1,−0.6,−3] in the world frame and aims to reach a
desired hover position at [0, 0,−1] by observing four co-planar
visual targets (see Fig. 3). The system setup, state estimation,
controller and all parameters of each method are chosen to
make the comparison as fair as possible and their details are
provided in Sec. V in our supplementary material [34].

The simulation results are presented from Figures 3 to 5.
To compare the two methods in one criterion, the response
trajectories are colored in time and displayed in Fig. 3 and
the UAV position ζ in world frame versus time is shown in
Fig. 4. As can be seen, it consumes 3.8 s for our method to
reach within 0.2 m to the desired position while IBVS method
uses 5.6 s. Meanwhile, the control inputs (i.e., angular velocity
ω and collective thrust acceleration aT ) are guaranteed to
be within the same limits as shown in Fig. 5. These results
suggest that our method has faster response than the IBVS
method while admitting the same bound for control efforts. The
response improvement of our method is mainly attributed to the
elimination of additional attitude controller, which introduces
further response delay when executing the visual servoing
control commands. In contrast, our visual servoing controller
directly actuates the angular velocity command that has a lower
response delay and hence exploits more aggressive motions.
Finally, we should be noted that incorporating angular velocity
control into IBVS methods is non-trivial because the image
moments in IBVS methods are typically specially designed to
ensure a certain invariance with respect to the control action.
Taking angular velocity as the control action will often violate
these invarance properties.

B. Hardware Setup

The experiments are conducted on a Q250 quadrotor airframe
equipped with an onboard computer DJI Manifold-2C (Intel

Fig. 3. Trajectory of our method and the IBVS method [6].

Fig. 4. UAV position ζ of our method and the IBVS method [6].

Fig. 5. Control inputs of our method and the IBVS method [6].

Core i7-8550U @1.80GHz with 8 cores) for image processing,
state estimation and visual servoing control, a flight controller
Pixhawk4 mini for low-level control (angular velocity control
and collective thrust acceleration mixing), and an Intel Re-
alsense (87◦×58◦ FoV and 0.33 m to 6 m range) for detection
of visual targets. The quadrotor and all its components are
showed in Fig. 6.

Fig. 6. The quadrotor used in our experiments.

C. Detection of visual targets

Tennis balls are used as targets in the experiments. Our
method doesn’t restrict the shape of targets to ball. It is used
in the experiment due to the convenience and robustness of
detection for circles. The detection algorithm leverages the
SimpleBlobDetector function in OpenCV library to track circles
appearing in each image. Prior knowledge of the ball size is
not needed.

One or two balls are hung on a bracket as static targets. After
they are detected, each ball is tracked based on its radius and
pixel location in the last frame. Once a third ball appears in
the camera field of view, it is identified as a dynamic obstacle.
In our algorithm, center position of the detected circles is
used as the target position in the camera frame. The detection
code runs on the onboard computer at 40 Hz. The positions
of static targets or obstacle ones in the camera frame are then
transformed to the body frame based on the known extrinsic.

The perception and all other modules including state estima-
tion and control are coded in C++ language and communicated
with each other using ROS Kinetic.

D. State Estimation Tests

As detailed in Section III, our proposed visual servoing
method performs integrated state estimation and control based
on the same robocentric model. To verify the effectiveness of
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Fig. 7. The estimated (estim-) and ground true (gt-) states and the estimation
error distribution.

the state estimation and target detection module, we handheld
the quadrotor UAV to move randomly in front of two visual
targets and examine the estimation of the state [p,v,g, r] in
(6) against the ground-truth measured by an external motion
capture system. The estimated and ground-true states are shown
in Fig. 7, where a temporary data loss occured during 35 s
and 37 s. It can be seen that, with the detected visual targets,
the states estimated by our designed estimator converge to the
ground truth values quickly, which agrees with our analysis
that the system is observable. The estimation errors after
convergence are very small (a few centimeters for position).
As shown in Fig. 8, the estimated IMU bias bg and ba also
converge to stable values within the normal range of typical
IMU biases as the system is excited by more aggressive motions.

Fig. 8. Estimation of IMU bias bg and ba.

E. Hover Test

We first apply our robocentric visual servoing method to
the hovering task. The controller runs at 50 Hz on onboard
computer and the sampling interval of MPC is 0.02 s. The
prediction horizon N is set to 12. The penalty matrices of cost (22)
are chosen as Qk = diag([125,40,45,80,30,10,10,10,180,10]),
Rk = diag([1,2,1,0.2])and PN =Qk. The input constraints are
umax=[3.5,3.5,1.75,12.0]

T andumin=[−3.5,−3.5,−1.75,5.0]T ,
respectively. The quadrotor is launched from ground by a human
pilot manually, and then stabilized near hovering in front of
the static visual targets. Once the camera detects the visual
targets, their initial positions and the reference direction are

recorded as p0 and r0, respectively. Then, the desired hovering
position of the quadrotor is set to ph = p0 − 0.5e1 where the
displacement 0.5 m along the x direction is intentionally added
to excite the quadrotor. The desired reference direction is set to

rh =

(
0,

√
1−

(
gT
0 r0/g

)2
,gT

0 r0/g

)
in consideration of the

constraint (21). Finally, the maximum iteration number Niter

is set to 1 as the hovering state trajectory xh is pre-known
(see Theorem 1), requiring no trajectory iteration.

First, we test the hovering task with only one visual target
(see model (1)). The results of the control error are shown in
Fig. 9. As can be seen, from the initial position, the quadrotor
successfully converges to the desired hovering position (with
error below 0.07 m) after 2.5 s. After convergence, the position
error keeps below 0.07 m and the velocity keeps below 0.1 m/s,
which achieves a stable hovering.

As discussed before, with only one visual target, the
quadrotor cannot hover at a unique point. This phenomenon
is apparent in a third person camera view shown in Fig. 10.
The figure shows the quadrotor in the fixed camera view drifts
from right to left from 54 s to 60 s. It can be seen that, while
the relative position to the target are both small (below 0.07 m,
see Fig. 9) during this period, the quadrotor drifts freely on a
horizontal circle (see Fig. 10).

Then, we test the hovering task with two visual targets (see
model (2)). Compared to the previous condition where only one
target exists, the quadrotor heading direction (i.e., orientation)
is observable and controllable when two targets exist. To show
this, in the experiment, after the quadrotor hovers at a desired
position, we use a pole to poke the quadrotor to apply a
consistent lateral disturbance as shown in Fig. 11. The direction
error shown in Fig. 12 denotes the two components of δr = r⊟
rh ∈ R2, whose norm ∥δr∥ represents the quadrotor orientation
error in radians. With the consistent lateral disturbance, the
position error reaches 0.45 m while the orientation error ∥δr∥
reaches around 0.28 rad (see Fig. 11(a) and Fig. 12). After
the disturbance is released, the quadrotor recovers to its initial
hovering state (position error below 0.15 m, orientation error
below 0.05 rad) after 8.6 s (see Fig. 11(b) and Fig. 12). To

Fig. 9. Convergence of the position error in the hovering task.

Fig. 10. The quadrotor is free to drift along a horizontal circle.
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Fig. 11. (a) Perturbed by a consistent lateral disturbance, the quadrotor moves
away from initial position. (b) The quadrotor recovers to the initial position
and orientation.

Fig. 12. Time evolution of position error and direction error in the presence
of a consistent lateral disturbance (the shaded area denotes the period during
which the lateral disturbance is applied).

Fig. 13. (a) The quadrotor encounters a sudden rotation when one of its
landing gear is stabbed (b) The qudrotor recovers to its initial hovering state.

Fig. 14. Time evolution of position and direction error when the quadrotor
encounters a sudden rotation.

sum up, with an additional target to form a direction with the
first target, the quadrotor is able to hover at a desired position
without drift.

Finally, we verify the disturbance rejection of the proposed
robocentric visual servoing controller by applying a sudden
rotation and a consistent forward push as shown in Fig. 13
and Fig. 15. In case of the sudden rotation, the position error
caused by the disturbance is up to 1.35 m on the y axis and
the orientation error is up to 0.7 rad as shown in Fig. 14. The
quadrotor recovers to its initial hovering state (position error
below 0.15 m, orientation error below 0.05 rad) after 6.1 s. In
case of the consistent forward pushing, the maximum position
error along body x axis is 0.42 m while the orientation is
only slightly perturbed as shown in Fig. 16. Once releasing
the forward push, the quadrotor recovers to its hovering state
(position error below 0.15 m, orientation error below 0.05 rad)
in 1.9 s. Several more similar experiments are conducted and
their results are presented in Sec. VI.1 in the supplementary
material [34]. It can be concluded from above experiments that
the system shows high ability to resist external disturbances.

Fig. 15. (a) The quadrotor is consistently pushed away from its initial position
(b) It immediately recovers to the initial position when the push force is
released.

Fig. 16. Time evolution of position and direction error when the quadrotor is
perturbed by a consistent forward push (the shaded area denotes the period
during which the push is active).

In terms of computation time, the solving time for the iMPC
controller in the above experiments is within [0.0049,0.0096] s and
the average value is 0.0064 s, which are all below the MPC
running period 0.02 s.

F. Obstacle Avoidance Test

Our proposed visual servoing formulation is used to avoid
a thrown ball identified as a dynamic obstacle. The iMPC is
implemented for both planning and tracking control. The safe
distance d in (23) is set to 2 m. The penalty matrices of cost
(24) are chosen as Qk = diag([80,30,30,30,5,5,10,10,40,15]),
Rk=diag([0.6,0.6,0.4,0.1])and PN =Qk. The penalty factor is
Qobs =600. The input constraints are umax =[7,7,5,16.0]T and
umin =[−7,−7,−5,2.0]T respectively. The maximum iteration
number Niter is set to 3. To mitigate the increased computation load
caused by more iterations, we set the prediction horizons N to 4, a
shorter value than that in the hovering task. As a result, the planning
and control rate of our iMPC remains at 50 Hz.

An example of the obstacle avoidance experiments is shown
in Fig. 17. Before the ball is thrown out, the obstacle cost
(23) is always equal to zero and the quadrotor hovers at the
desired position. Once the ball appears in the camera FoV and
is within the safe distance, it is identified as an obstacle and its
trajectory within the prediction horizon is predicted according
to the dynamic model (4). At the same time, Cobs grows as
the obstacle approaches the quadrotor. During this process, the
static targets are still detected and the avoidance action causes
a considerable position error from the hover position. After a
successful avoidance, the quadrotor recovers to hover in front
of the static targets.

The quadrotor position relative to the hovering position and
the detected obstacle distance and speed are shown in Fig.
18(a) and Fig. 18(b) respectively. As can be seen, the ball is
thrown out and detected by the quadrotor at around 54.4 s,
at a 2.5 m distance. At 54.6 s, the ball falls within the safe
distance (i.e., 2 m) and the quadrotor starts to react as depicted
in Fig. 18(a) (also see Fig. 17(a)). The evading maneuver takes
0.5 s (from 54.6 s to 55.1 s, see Fig. 17(d)), after which the
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Fig. 17. Episode 1: avoid an incoming ball by moving backward. The relative velocity is up to 7.4 m/s. The upper images capture the avoidance sequence
from an external camera and the lower images are respective views from the onboard camera. (a) the ball is detected within the safe distance. (b) the quadrotor
pitches up to move backward. (c) the closest relative distance. (d) successfully avoid the obstacle. (e) the quadrotor begins to recover to the hovering state. (f)
back to hovering.

quadrotor recovers to the initial hovering position (with error
below 0.3 m) at 59.4 s (see Fig. 17 (f)). The whole process
from detecting the ball, avoiding it to recovering back to hover
lasts 4.8 s (from 54.6 s to 59.4 s). The maximum estimated
relative velocity between the ball and the quadrotor is up to
7.4 m/s as shown in Fig. 18(b) and the quadrotor is allowed to
react when the ball is within a close distance (i.e., 2 m), both
making the avoidance very challenging. The quadrotor moves
up to 1.3 m from the hovering position at 55.9 s to avoid the
obstacle. The average solving time of iMPC in the avoidance
process is 0.018 s which is below the running period 0.02 s
of the iMPC.

(a) quadrotor’s position error (b) obstacle’s position and velocity

Fig. 18. (a) The position error when the quadrotor is reacting to avoid the
dynamic obstacle. (b) The meausured obstacle distance and estimated obstacle
velocity. The shaded area denotes the period when the ball is thrown and
approaching the quadrotor. After 55 s, the obstacle has been avoided by the
quadrotor and falls out of the sensor FoV.

We present another two experiments in Sec. VI.2 of the
supplementary material [34] in which the quadrotor moves
forward and sideward to avoid the obstacle respectively. The
quadrotor successfully avoids the balls and recovers to the
original hovering position within 3.93 s and 2.68 s respectively.
All the three episodes and several more experiments are
presented in the video at https://youtu.be/iAODWE3eTCo.

Thrown balls are chosen as dynamic obstacles in many
previous works such as [10], [11], which are both based on
non-visual servoing method, due to its high speed and the
quite random thrown direction, height and distance. It creates
a challenging and realistic scenario for the quadrotor to testify
the avoidance algorithm. In order to demonstrate the agility of
the system in our experiments, the quadrotor is set to react the
approaching ball at a close distance with high speed, which
are 2 m and 7.4 m/s, respectively, in episode 1. The reaction
time left for the quadrotor to finish the avoidance action is
0.27 s. In [10], a basketball is thrown out from around 3 m
away with the relative velocity up to 10 m/s. The reaction
time is 0.3 s which is comparable with our result although

their work uses event camera which mainly addresses obstacle
detection problem. The reaction time is longer than 0.5 s in
another work [11].

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a robocentric formulation for visual
servoing control. The measurements of the visual targets are
directly used for state estimation and control. This formulation
is implemented on the quadrotor for hover and obstacle
avoidance. The controllability and observability analysis of the
robocentric model are discussed. An on-manifold iterative MPC
is proposed for trajectory planning and tracking. Simulations
and experiments are then conducted to validate the robocentric
model and iterative MPC. In the hover tests, the quadrotor
accurately hovers at a desired position with small control errors.
Even after significant disturbances, the quadrotor is able to
stabilize itself and recover to the original hover position. In
obstacle avoidance tests, the quadrotor successfully avoids
tennis balls in high speed.

In future works, we could apply the robocentric formulation
and iterative MPC for more challenging tasks and general
scenarios, such as the consideration of camera FoV constraints
in planning and control and detection of more natural visual
targets other than those with specified shape or color. For
the latter, we could adopt visual features (e.g., corner points)
that have been widely used in feature-based visual SLAM
as the visual targets. These visual features are abundant
in feature-dense environments and could be matched using
their descriptors (e.g., ORB descriptor). How to exploit these
abundant visual features in the visual servoing framework
would be an interesting future work.
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