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Abstract
Compositional nature of relative abundance data in the current standard microbiome studies limits microbial dynamics interpretations and cross-sample comparisons. Here, we demonstrate the first rapid (1-hr sequencing) method coupling Nanopore metagenomic sequencing with cellular spike-in to facilitate the absolute quantification and removal assessment of pathogens and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). Nanopore sequencing-based quantification results for both simple mock community and complex real environmental samples showed a high consistency with those from the widely-used Illumina and culture-based approaches. Implementing such method, we quantified 46 predominant putative pathogenic species, and 361 ARGs in three WWTP sample sets. Though high log removals of dominant pathogens (2.23 logs) and ARGs (1.98 logs) were achieved, complete removal of all pathogens and ARGs were not achieved. Noticeably, Mycobacterium spp., Clostridium_P perfringens, and Borrelia hermsii exhibited low removal, and 13 ARGs even increased in absolute abundance after the treatment. Our proposed approach manifested its profound ability in providing absolute quantitation information guiding wastewater-based epidemiological surveillance and quantitative risk assessment facilitating microbial hazards management.
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ARGs: antibiotic resistance genes
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SWH: Hong Kong Shek Wu Hui Wastewater Treatment Plant
YL: Hong Kong Yuen Long Wastewater Treatment Plant
Inf: influent sample
Eff: effluent sample
STOct: samples collected from ST in Oct 2020
STNov: samples collected from ST in Nov 2020
YLNov: samples collected from YL in Nov 2020
DCS: DNA control strand
SF: scaling factor
SAGS: structured average genome size database
GTDB: Genome Taxonomy Database
LoD: limit of detection
SARG: Structured Antibiotic Resistance Gene database
CFU: colony-forming unit
AS: activated sludge
MLS: macrolide-lincosamide-streptogramin

1. Introduction

Wastewater-based epidemiological (WBE) surveillance has its remarkable role in indicating the public health of the residents within particular sewer-sheds (Cai and Zhang, 2013) and providing informed early warnings of potential outbreaks, and its use has been particularly highlighted in the current COVID-19 pandemic (Kumar et al., 2021). Detection and enumeration of potentially infectious agents have relied on both the culture-dependent and culture-independent marker gene amplicon sequencing (An et al., 2020) methods that each have their own limitations. Extended turnaround time for results (Gu et al., 2020), difficult and slow-to-culture pathogens (Gallagher et al., 2018; Li et al., 2014), and amplification biases (Brankatschk et al., 2012; Suzuki and Giovannoni, 1996), for example, may impede the practical applicability and effectiveness of these methods. 

Metagenomic sequencing, alternatively, can achieve comprehensive pathogen screening (Chiu and Miller, 2019) in a high-throughput fashion with a demonstrated higher sensitivity than the traditional methods (Gu et al., 2020). Furthermore, with the advent of Oxford Nanopore Technology, WBE surveillance can become portable, on-site, and real-time, largely shortening the turnaround sample-to-result time from 48-72 hr (Gu et al., 2020) to 5-7 hr (Gu et al., 2020; Leggett et al., 2020). Besides unveiling the microbial compositions, metagenomic sequencing also provides insights into the antibiotic resistome. Though antibiotic resistance occurs naturally, the increasing anthropogenic contribution to the acceleration of the dissemination of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment has raised global concern and Global Action Plan on antibiotic resistance was put in place to tackle the antibiotic resistance issue (World Health Organization., 2015). Measuring the absolute abundances of ARGs, and thus, the reduction of ARGs in wastewater treatment plants (WWTPs) have significant implications in evaluating the effectiveness of the treatment technologies in removing emerging pollutants and assessing the potential risk in the spread of ARGs in the environmental dimension. 

Despite these promises of metagenomic sequencing, microbial and antibiotic resistome profiles are often reported in relative terms leading to challenging results interpretation. Though relative data facilitates the characterization of the dominant taxa and resistome (Barlow et al., 2020), the interpretation of such data is complicated as the compositional nature of relative data (Barlow et al., 2020; Harrison et al., 2020) and the neglected total loads may lead to skewed observations of microbial dynamics (Harrison et al., 2020; Props et al., 2017) resulting in high false discovery rate (Hawinkel et al., 2017) and misleading correlations (Gloor et al., 2017; Gloor and Reid, 2016). Absolute quantification, on the other hand, is fundamental in providing meaningful biological insights (Barlow et al., 2020), allowing for comparative evaluation across different studies for different samples, and empowering quantitative risk assessment (Haas, 2020) for a broad-spectrum of microbial pollutants. 

To overcome the aforementioned pitfalls of differential abundance profiling, two major strategies towards absolute quantification have been developed. The first strategy requires the use of internal standards (termed as “spike-in”) of known absolute abundance for calibration. Either exogenous bacterial cells (Lou et al., 2018; Yang et al., 2018) or non-indigenous (Smets et al., 2016) or synthetic (Hardwick et al., 2018; Tkacz et al., 2018; Tourlousse et al., 2017) DNAs can be spiked into samples before (Smets et al., 2016; Tkacz et al., 2018) or after (Guo et al., 2020; Hardwick et al., 2018; Tkacz et al., 2018) the DNA extraction step. Simultaneous use of multiple internal standards (Hardwick et al., 2018; Stämmler et al., 2016; Tourlousse et al., 2017; Venkataraman et al., 2018) has also been implemented for ascertained quantification results. Spiking at the cell level before DNA extraction, in particular, is an effective absolute quantification method that factors in DNA extraction efficiency in data conversion as DNA extraction efficiencies can vary greatly for different sample types (Frostegård et al., 1999). The second strategy involves the direct (Frossard et al., 2016; Props et al., 2017; Vandeputte et al., 2017) or indirect (Barlow et al., 2020; Lou et al., 2018; Smets et al., 2016; Zhang et al., 2017) measurement of the total microbial load. However, these total microbial load estimation methods have their own deficiencies that can hamper their capacities to fully capture the genuine abundance profiles. For example, complex sample pretreatment (Böllmann et al., 2016; Foladori et al., 2010), sample matrices (Frossard et al., 2016),  amplification biases (Brankatschk et al., 2012; Suzuki and Giovannoni, 1996), and 16S rRNA gene copy number variations (Sun et al., 2013) may affect method precision. 

Here, we establish an absolute microbial and ARG quantification method that combines cellular spike-in added before DNA extraction with the metagenomic Nanopore sequencing. We then validate the method both culture-independently and culture-dependently. Implementation of this approach further demonstrates its capability in 1) achieving rapid putative pathogen and ARGs surveillance; 2) assessing the removal of putative pathogens and ARGs, as well as 3) tracking the pathogenic hosts of ARGs in the WWTPs.

2. Materials and Methods

2.1 Internal standard (spike-in), sample collection and preparation 
An E. coli spike-in was constructed with a single-copy fluorescent mClover3 gene labelled on the genome following the steps described previously (Che et al., 2021). Detailed spike-in solution preparation, enumeration, and complete genome sequencing were provided in SI1 S1. In total, 8 WWTP samples were used for the method validation and implementation. For the validation, 2 WWTP effluent grab samples prior to the disinfection process were collected from Hong Kong Shatin WWTP (ST: 22.407°N, 114.214°E) in November 2019 (“Effluent 1”) and from Shek Wu Hui WWTP (SWH: 22.508°N, 114.119°E) in November 2019 (“Effluent 2”). For the implementation, 3 influent grab samples (“Inf”) immediately after the grit chamber and 3 effluent grab samples (“Eff”) prior to the disinfection process were collected from ST in October 2020 (“STOct”) and November 2020 (“STNov”) and from Yuen Long WWTP (YL: 22.467°N, 114.026°E) in November 2020 (“YLNov”). All WWTP samples were immediately processed upon arrival at the laboratory (within 2 hrs). 

Spike-in were added to samples prior to any processing (detailed spiking scheme in SI1 Table S1). The spiked influents were mixed and centrifuged at 4,750 rpm for 15 min and concentrated into 2 mL volumes. Cell pellets were collected by re-centrifuging the concentrated spiked 2 mL influents at 14,000 xg for 5 min. Cells in the spiked effluent samples were collected by filtration through sterile 0.45 µm filter membrane (Micro Filtration Systems, Cat. A045F047A). DNA of the retained influent cell pellets and effluent cell pellets collected on the shredded filter paper was immediately extracted using ZymoBIOMICS DNA Miniprep Kit (Zymo Research). Concentration and purity of the DNAs were measured using Qubit® 2.0 Fluorometer (Invitrogen Life Technologies, NY, USA) and NanoDropTM One Spectrophotometer (Thermo Scientific, Waltham, MA), respectively.

2.2 Illumina and Nanopore sequencing for the mock and environmental samples 
Illumina sequencing (Hiseq PE150, service provided by Novogene, China) was conducted for the ZymoBIOMICS™ Microbial Community Standard II (composed of 8 bacteria and 2 yeasts in log distribution, Catalog No. D6310) and the 2 validation WWTP effluents. For Nanopore sequencing, extracted DNAs of the 2 validation effluents and 6 surveillance samples were strictly quality controlled and the ligation sequencing kit (SQK-LSK109) with 1.2 µg input DNA was used following the manufacturer’s protocol, with alterations to an extended 30 min DNA repair and end-prep incubation time and a 30 min adapter ligation time. Sequencing libraries were individually prepared for each sample and sequenced on individual R9.4.1 flow cells (FLO-MIN106) on GridION. Flow cells were refueled once the sequencing speed dropped below 300 bases/sec or the median read quality dropped below 7, and each flow cell was sequenced until nanopore exhaustion (> 48 hr). Nanopore raw reads of the mock community (SRA: ERR3152366) were downloaded from a previous study (Nicholls et al., 2019). 

2.3 Illumina and Nanopore data preprocessing 
Illumina clean reads generated by fastp (Chen et al., 2018) (-u 33, -q 30, -T 10) were used in the method validation. Nanopore passed reads (Q ≥ 7), base-called by the built-in Guppy base-caller (v. 4.0.11 - 4.2.3, high-accuracy model) in MinKNOW (v. 20.06.17 - 20.10.6), shorter than 1 kb in length were removed by seqkit (Shen et al., 2016). Retained reads were then used in the downstream analysis. Additional read preprocessing step before the downstream analysis was applied to the STOct samples where DNA Control Strand (DCS) were added during the Nanopore library preparation stage. DCS reads were identified by minimap2 (Li, 2018) (preset map-ont, minimum 85% identity, minimum 90% subject alignment coverage, and minimum 3,600bp in length) and removed before analysis. For assessing the real-time capacity of Nanopore sequencing in accurately profiling the microbial abundances of the real environmental samples, sequencing data were subsampled into different datasets according to the read generation time (i.e., 1-hr, 2-hr, 4-hr, 8-hr, 16-hr, 24-hr, All) and absolutely quantified individually.

2.4 Metagenomic data analysis for absolute quantification of ARGs and taxonomic lineages
Essentially, a scaling factor (SF) was applied to achieve absolute quantification by converting the sequenced ARG copy numbers or the sequenced taxonomic lineage genome copy numbers into their absolute abundances in the real metagenomic environmental samples (related calculations and example calculation in SI1 S2). The ratio between the copy number of the sequenced mClover3 gene in the dataset and the actually-dosed load of the spike-in in the sample was the SF used for the conversion (SI1 S2 Eq. S1). Absolute abundances of different ARGs and taxonomic lineages per unit sample volume (SI1 S2 Eq. S2) were calculated by multiplying the sequenced copy numbers (SI1 S2 Eq. S3 for ARGs and SI1 S2 Eq. S4 for taxonomic lineages) by the SF. In this study, a structured average genome size database (SAGS, SI1 S3 & SI2 Table S1) was constructed based on Genome Taxonomy Database (Parks et al., 2020) (GTDB, Release 05-RS95, downloaded on Aug 3 2020) to facilitate the calculation of the sequenced genome copy number. In this spike-in-based absolute abundance conversion, it was assumed that 1) the extraction efficiencies and sequencing biases of different microbial cells were the same as the spike-in cells; 2) the genome coverage of the spike-in bacteria was the same as the coverage of the single-copy mClover3 gene; and 3) the mapping recovery rates of different ARGs were the same as the mClover3 gene. Under these assumptions, the relationship between the sequenced coverages of microbial cells and ARGs and their absolute abundances in the actual sample was established. Calculations of the limit of detection (LoD) and log removals for microbial taxa and ARGs are provided in SI1 S2. To reduce the noise of the spike-in in this absolute quantification framework, ARGs carried by the Escherichia spp. and the absolute abundances of the Escherichia spp. were not considered in pathogen profiling. 

[bookmark: _Hlk65489024]Mapping to the reference mClover3 gene sequence was conducted using minimap2 (Li, 2018) (Nanopore reads: preset map-ont, minimum 75% identity and minimum matched length of 150 bp; Illumina reads: preset sr; detailed alignment cutoff evaluation in SI1 S4), and the sequenced copy number of the mClover3 gene was calculated by normalizing the sum of bases mapped to the mClover3 gene to the length of the mClover3 reference sequence. To identify ARGs, retained Nanopore reads were aligned to the nucleotide Structured Antibiotic Resistance Gene database (SARG) (Yin et al., 2018) (multidrug resistance type are removed as they might not always be associated to ARGs (Che et al., 2021; El-Awady et al., 2017)) using minimap2 (Li, 2018) (preset map-ont, minimum alignment length of 200 bp (Leggett et al., 2020), and minimum 80% identity (Leggett et al., 2020)), and only the ARG hits of the highest mapping quality were kept whenever hits overlapped with other ARG hits by 80% in length to avoid multiple hits on the same gene segment. And the ARG copy numbers were calculated using SI1 S2 Eq. S3. ARG-carrying reads with additional 1 kb length besides the ARG-mapped regions were used to track the host of ARGs. Taxonomic classification of the retained Nanopore reads was conducted using Kraken2 (Wood et al., 2019) (v. 2.0.8-beta) with the customized spike-in-genome-added GTDB (Parks et al., 2020) (Release 05-RS95, representative genomes, https://data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/genomic_files_reps/gtdb_genomes_reps_r95.tar.gz). Genome copy numbers of the classified lineages were estimated by normalizing the sum of bases assigned to specific taxonomic lineages to their average genome sizes in the SAGS database, assuming one genome copy per cell (SI1 S2 Eq. S4). Species-level potential human bacterial pathogen characterization was then conducted by comparing the taxonomic results to a pathogen list (Li et al., 2015; Woolhouse et al.) modified to the GTDB taxonomic system and additional lists of prioritized pathogens (SI1 S5 & SI2 Table S2-S5). Selective plate counting and full-length 16S rRNA gene sequencing were applied to Klebsiella spp. to compare the colony-forming units (CFU) results with the results of the proposed absolute quantification workflow (SI1 S6). 

3. Results and Discussion

[bookmark: _Hlk76739909]3.1 High agreement between Nanopore and Illumina absolute quantification results 
Benchmarking to Nanopore sequencing was performed to confirm both the accurate identification and reliable abundance profiling of the bacterial species by Kraken2 (Wood et al., 2019) using pure bacterial cultures, simple mock community, as well as complex real environmental samples. Several studies (Imai et al., 2020; Pearman et al., 2020) have demonstrated a limited impact of Nanopore high read error rates on the accurate taxonomic classification and abundance estimation by Kraken2 compared to the benefit of long-read length using both simulated and real Nanopore reads, and Kraken2 can achieve high accuracy at the species-level resolution (Dilthey et al., 2019; Imai et al., 2020). Higher profiling specificity and greater taxonomic resolution were achieved by Nanopore reads than the accurate but short next-generation reads (Cheng et al., 2018). As demonstrated in this study (Table 1), a much greater proportion of Nanopore read bases (75.6%) were classified to the species level than the Illumina read bases (35.4%), supporting the efficacy of Nanopore sequencing for resolving classifications to lower taxonomic ranks. 

Real Nanopore datasets of 30 bacterial pure cultures (SI1 Table S4) were used to evaluate the accuracy of Kraken2 for species-level identification. Kraken2 achieved a high species-level classification accuracy by correctly assigning 87.14 ± 15.63% (ranged from 43.0% to 99.3%) Nanopore bases in these 30 pure culture datasets (avg. lengths of 8,045 ± 3,260 bp) (Figure 1a). As for the use of Nanopore in microbial composition profiling, the proportions of genomic DNA of different species in the mock community profiled by Nanopore reads were consistent with the expected proportions (Figure 1b, log-transformed Pearson’s r=0.952, n=8). Benchmarking to the popular Illumina-based Kraken2 profiling was also performed for the same mock community and a high correlation with the theoretical proportions was also achieved (Figure 1c, log-transformed Pearson’s r=0.919, n=8). Nanopore- and Illumina-based microbial profiling also had a strong correlation in profiling (Figure 1d, log-transformed Pearson’s r=0.883, n=8).

We then tested the performance of Nanopore sequencing in profiling the absolute abundance of the dominant putative pathogens (i.e., pathogens within the top 500 abundant species) using 2 real environmental samples by comparing the absolute abundance profiling results generated by Nanopore and the widely-accepted Illumina reads. High levels of correlation were demonstrated for both complex environmental samples (Figure 1e-f, log-transformed Pearson’s r = 0.956 with n=29 for Effluent 1 and r = 0.993 with n=4 for Effluent 2), confirming the efficacy of the absolute quantification workflow developed in this study in profiling the abundance of the dominant potentially pathogenic microbes. For other identified abundant species, the correlations between the Illumina- and Nanopore-based absolute quantification results were also high (SI1 Figure S4, log-transformed Pearson’s r = 0.852 with n=362 for Effluent 1, and r = 0.891 with n=361 for Effluent 2), illustrating the promising performance of the proposed method in microbial absolute abundance profiling.

[bookmark: _Hlk76740299]3.2 Efficacy of Nanopore-based absolute quantification demonstrated by CFU counting
To test the accuracy of the absolute quantification results generated by the in-silico quantification workflow proposed in this study, CFU counting was performed on a dominant putative pathogenic species, Klebsiella spp.. As there was still difficulty differentiating between some closely-related species using the full-length 16S rDNA sequences (eg. full-length 16S rDNA sequences of colony #7 and #8 in SI1 S2 Table S5 were aligned to Klebsiella pneumonia and Klebsiella quasipneumoniae under the same identity and query coverage percentages), we have combined the plate count and in-silico absolute quantification results for both of them to evaluate the workflow accuracy. Overall, a good absolute abundance estimation was achieved (2.66 × CFU/L effluent by culturing and 4.10 × cells/L effluent by Nanopore sequencing). Since culture-independent methods could not differentiate between living and dead cells, having the in-silico quantification results being higher than the culturing results was expected. Future efforts should focus on distinguishing the viable cells from total cells producing more stringent quantitative results for risk assessment. Additionally, the high sequencing error could render the limited capacity for Nanopore sequencing to distinguish closely-related bacterial species (Leggett et al., 2020). Future developments in extracting high molecular weight DNA and improving sequencing accuracy could largely enhance the accuracy of the microbial absolute quantification. Despite the difference in the counting results, the magnitudes of the absolute abundance for the 2 Klebsiella spp. reported by the sequencing and culturing methods were similar; both at the level of 6 logs per L effluent.

[bookmark: _Hlk76740370]3.3 Near real-time (1 hr sequencing) profiling capacity of Nanopore-based absolute quantification workflow
Figure 2 illustrated the rapid absolute abundance profiling of 46 dominant pathogen species achieved by Nanopore sequencing for the STOct samples (correlation plots for STNov and YLNov were provided in SI1 Figure S5). For most samples, 1 hr Nanopore sequencing data (SI1 Table S5, 606.9 ± 37.4 Mb and 547.0 ± 65.6 Mb unfiltered pass reads for influents and effluents, respectively) were sufficient for profiling dominant potentially pathogenic species (SI1 Figure S5, log-transformed Pearson’s r in the range of 0.912 and 0.987), with an exception to the YLNov Eff sample where 2-hr Nanopore sequencing data would be more desirable (log-transformed Pearson’s r = 0.764). These results indicated the near real-time surveillance capacity (mostly 1 hr after the start of sequencing, 4 hr sample-to-sequence time, Figure 2) of Nanopore sequencing for revealing the dominant putative pathogenic microbial consortium in the WWTP samples permitting rapid WEB surveillance. However, as the sequencing depths were much reduced when using 1-hr Nanopore sequencing data for rapid profiling compared to using all the data generated (> 48 hr sequencing), the corresponding LoDs were much elevated for the 1-hr data, limiting the quantitative pathogen profiling to the abundant pathogens. For example, the LoD for Klebsiella pneumoniae in the STOct Inf increased from 19.0 cells/mL influent to 590.8 cells/mL influent when changing from > 48 hr (12.6 Gb unfiltered data) to 1-hr sequencing data (570.3 Mb unfiltered data), and increased from 0.5 cells/mL effluent (6.53 Gb unfiltered data) to 9.6 cells/mL effluent (478.1 Mb unfiltered data) for STOct effluent (SI1 Table S6). Sample preprocessing (e.g. sample dilution) would deserve future attention in reducing LoDs so that pathogens of lower abundance can also be reliably quantified in 1-hr sequencing time.

[bookmark: _Hlk76740966]3.4 Absolute quantification and removal assessment of putative pathogens in WWTPs 
The 3 influents had higher diversities of pathogen species than the 3 effluents (Figure 3a) as 27, 34, and 33 different putative pathogen species were detected among the top 500 abundant species for the influents of STOct, STNov, and YLNov, respectively, and 16, 20, and 3 for the effluents of STOct, STNov, and YLNov, respectively. And 25 of these dominant putative pathogen species were common in all the 3 influents, and 2 were common in all 3 effluents. Overall, all these dominant putative pathogens summed to 46 different putative pathogenic species (Figure 3). Among them, the 5 most abundant genera were Aliarcobacter (aka. Arcobacter), Bacteroides, Phocaeicola, Aeromonas, and Vibrio contributing to 75.33 ± 11.03% of the total absolute abundance of these 46 dominant pathogen species (Figure 3b). The average of the total absolute abundance of these dominant pathogen species was (1.11 ± 0.16) cells/L for the 3 influents and (3.75 ± 1.80)  cells/L for the 3 effluents, accounting for 5.70 ± 2.65% (influent) and 0.73 ± 0.49% (effluent) of the total bacterial absolute abundance (Table 1). The absolute abundance of these dominant presumptive pathogen species was in the range of 4.38(Borrelia hermsii) to 6.11(Aliarcobacter cryaerophilus_A, aka. Arcobacter cryaerophilus) cells/L for the influent, and 5.31(Fibrobacter_A intestinalis) to 1.42107 (Aliarcobacter cryaerophilus_A) cells/L for the effluent. Though Aliarcobacter cryaerophilus_A was the most abundant potential pathogen among all these 46 dominant ones in all the 6 samples studied, effective removal of it was also achieved (log removal of 2.67 ± 0.46, Figure 3, SI1 Table S7). Arcobacter has also been previously detected as a highly abundant genus in both the influents and effluents of municipal WWTPs (Kristensen et al., 2020; Li et al., 2015). Other dominant presumptive pathogens of high abundance detected were Phocaeicola vulgatus, Bacteroides uniformis, and Aeromonas caviae.

Among these 46 pathogenic species, 9 of them were of particular importance, including 8 emerging/re-emerging pathogens (Aeromonas veronii, Aeromonas caviae, Aeromonas hydrophila, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Mycobacterium marinum, and Klebsiella pneumoniae), 2 priority pathogens ranked by World Health Organization (WHO) (Klebsiella pneumoniae and Enterobacter cloacae), and 1 waterborne pathogen (Vibrio cholerae). Opportunistic pathogens, such as Aeromonas media, Pseudomonas_E alcaligenes, Acinetobacter junii, and Acinetobacter johnsonii were also detected as the dominant putative pathogens in the influents (7 to 8 log/L influent) and effluents (5 log/L effluent). Alarmingly, the presence of these 3 opportunistic pathogens was also previously reported in household tap water samples (Ma et al., 2019), indicating the potential transmission of these pathogens from surface water sources to households, posing risks to the general public health.

[bookmark: _Hlk67343371]Though most of these pathogenic species were removed with log removals close to or greater than 2 (Figure 3c) and the average log removal achieved for them was 2.23 ± 0.67, which was similar to previous studies (Barrios-Hernández et al., 2020; Li et al., 2015; Verburg et al., 2019; Zhang and Farahbakhsh, 2007), 6 of these 46 dominant putative pathogens (i.e., including all the 4 dominant Mycobacterium spp., Clostridium_P perfringens, and Borrelia hermsii) were not effectively removed (log removal close to or lower than 1). Noticeably, the relative abundance of the Mycobacterium genus increased in all 3 WWTPs from influents to effluents suggesting the comparatively lower removal or growth of them in WWTPs (Figure 3b). Low log removals of Mycobacterium spp. in WWTPs have also been reported previously (less than 1 log removal of Mycobacterium ulcerans and close to 1 log removal of Mycobacterium smegmatis) (Li et al., 2015). Low removal of these foaming Mycobacterium spp. might be attributed to the contribution from the AS. Bio-foaming has been an intractable issue precluding the effective solid separation in the activated sludge (AS) treatment process in WWTPs and the foaming issue has also been reported to be severe in the ST WWTP in the winter seasons before (Jiang et al., 2016; Ju and Zhang, 2015).

3.5 Absolute quantification and removal assessment of ARGs in WWTPs 
Overall, 361 different ARG subtypes (belonging to 16 different ARG types) were characterized in these 3 WWTPs, where ARG diversity was much greater in the influents (225 ± 44 ARG subtypes) than that of in the effluents (108 ± 9 ARG subtypes) (Figure 4a). The absolute abundance of ARG subtypes in the influents ranged from  copies/L to  copies/L, and ranged from  copies/L to  copies/L for the effluents. And the total absolute abundance of ARGs ranged from  copies/L for the influents and the effluents had 2 logs less than that of in the influents (ranged from  copies/L). Tetracycline resistant genes (absolute abundance in the range of  copies/L influent) were the most abundance ARG types found in all the 3 influents (Figure 4), followed by ARGs resisting to macrolide-lincosamide-streptogramin (MLS), beta-lactam, and aminoglycoside (not in order). These 4 ARG types together accounted for 79.1% to 87.9% of the total absolute ARG abundance in the influents. For the 3 effluents, beta-lactam resistance genes were the most abundant ARG type (ranged from  copies/L effluent), followed by ARGs resisting to aminoglycoside, MLS, sulfonamide, and tetracycline (not in order). Together, these 5 ARG types accounted for a predominant proportion (87.5% to 95.9%) of the total absolute ARG abundance in the effluents. 

A majority (55.6 ± 82.7%) of the total ARG absolute abundance was contributed by the top 20 abundant ARG subtypes in each of the 6 samples (SI1 Table S8). The absolute abundance of these 20 predominant ARGs ranged from  copies/L for the influents, and ranged from  copies/L for the effluents. Among these 20 ARG subtypes, 15 were shared in all the 3 influents: including 4 tetracycline resistance genes (tetQ, tetO, tetM, and tetA), 4 MLS resistance genes (mefA, lnuC, ermB, and ermF), 3 beta-lactam resistance genes (cfxA2, class A beta-lactamase, and NPS-1), 2 aminoglycoside resistance genes (aadA and aph(3'')-Ib), 1 quinolone resistance gene (qnrS), and 1 sulfonamide resistance gene (sul1). The clinically relevant genes resisting MLS (ermB) and sulfonamide (sul1) have also been frequently reported as the predominant ARGs in the influent (Sabri et al., 2020b) with a similar level of magnitude detected in this study (9 log copies/L) (Pallares-Vega et al., 2019). For all the 3 effluents, 5 of the top 20 dominant ARGs were common, including 2 aminoglycoside resistance genes (aac(6')-Ib7 and aadA), 2 beta-lactam resistance genes (class A beta-lactamase and VEB-3), and 1 sulfonamide resistance gene (sul1). Among all these dominant subtypes, 3 persisted in dominant abundance in both influents and effluents: sul1, aadA, and aac(6')-Ib7 (Pärnänen et al., 2019).

[bookmark: OLE_LINK4][bookmark: OLE_LINK5]In total, 82, 100, and 82 ARGs persisted (i.e., detected in both influent and effluent) along the WWTP treatment process (Figure 4b) in STOct, STNov, and YLNov WWTPs, respectively. Within these ARGs, 47 of them (Figure 4d), mainly resisting to beta-lactam, aminoglycoside, MLS and tetracycline, were common persistent ARGs found across all 3 sets of WWTP samples accounting for 51.2% to 74.1% of the total absolute ARG abundance (SI1 Table S9). Other studies have also observed such ARG persisting phenomenon in WWTPs in China (An et al., 2018) and Europe (Pärnänen et al., 2019).  Among these persistent ARGs, tetQ, tet36, tet39, blacfxA2, and lnuD exhibited high removal (median log removal > 2.5), while the reduction of blaPSE-1 was the lowest (median log removal < 1.0). Average log removals of these 47 ARGs were in the range of 1.81-2.07 (removal efficiency: 98.5%-99.2%), which was similar to the literature values (Mao et al., 2015; Pallares-Vega et al., 2019; Sabri et al., 2020b) where PCR-based methods were used for a selected number of ARGs in WWTPs. 

Overall, significant ARG removal (1.98 ± 0.81 logs) was achieved in all 3 conventional AS municipal WWTPs. However, absolute abundance of 13 ARG subtypes increased after the treatment, including 11 resisting to beta-lactam (8 blaOXA alleles, CARB-7, IMP-7, and DHA-7), 1 resisting to aminoglycoside (AAC(3)_Ib), and 1 resisting to chloramphenicol (catA) (SI1 Figure S6). Two beta-lactam resistance genes, CARB-7 and IMP-7, in particular, increased after the treatment in all 3 WWTPs.  ARGs enrichment in WWTPs has also been reported before (Rafraf et al., 2016; Sabri et al., 2020b; Saxena et al., 2021). Such enrichment could potentially be contributed by the AS ARG reservoir as effluent is the upper aqueous phase of the AS compartment and AS has frequently been regarded as the hotspot of ARGs possessing a large complex ARG pool (Munir et al., 2011; Sabri et al., 2020b). ARGs in the biosolid phase have been reported to be of significantly higher loads than that of in the effluent (Mao et al., 2015; Munir et al., 2011; Sabri et al., 2020b) indicating the higher contributions of biosolids sludge to the release of ARGs in the environment than the aqueous effluent phase. Examining the ARG diversity and abundance in the AS could facilitate tracing the sources of these enriched ARGs in the effluent as well as assessing the risks of these ARGs in countries where sludge is used for agricultural purposes. Nevertheless, a significant abundance of ARGs (about  copies/L effluent) could be released into the downstream receiving water bodies raising the ARG risks in the environmental dimension. Though this study did not evaluate the effect of releasing these ARGs into the downstream environmental ecosystems, it was addressed in previous studies that the abundance of ARGs increased in the receiving aquatic environments downstream of the WWTP effluent in most cases (Iwane et al., 2001; LaPara et al., 2015; Sabri et al., 2020a).

[bookmark: _Hlk76741033]3.6 Pathogenic host-tracking of ARGs
As expected, influents were richer in pathogenic ARB diversity than that of in the effluents as among the dominant 46 presumptive pathogens detected, 16, 28, and 24 of them carried antibiotic resistances in the 3 influents of STOct, STNov, and YLNov, respectively, and 5, 5, and 0 of them were ARG carriers for the 3 effluents. In total, 31 different putative pathogenic ARBs (17 genera), mostly members of the Gammaproteobacteria (15/31, including Aeromonas, Enterobacter, Klebsiella, Vibrio, Acinetobacter, Pseudomonas_E, and Moraxella_A) and Bacteroidia (8/31, including Bacteroides and Phocaeicola), were present in at least one of these samples (Figure 5). Overall, ARGs of high diversity were harbored by these 31 pathogens (12 different ARG types) and genes resistant to beta-lactam (20/31), MLS (18/31), tetracycline (14/31), and aminoglycoside (13/31) were often found in these 31 pathogens. Among these pathogenic species, the ones in the Aeromonas and Bacteroides genera carried the highest ARGs diversity (Figure 5b). The Aeromonas genus often carried bacA (detected in all 5/5 samples), MOX variants (detected in 3/5 samples), and sul1(detected in 3/5 samples) (SI1 Table S10). The Bacteroides genus often carried blacfxA alleles and tetQ, which could potentially be attributed to the reported carriage of them both on a mobile genetic element that facilitated their proliferation among the Bacteroides genus (Che et al., 2019). Seven of the 31 putative pathogenic ARBs even carried at least 5 different ARG types in WWTP samples (SI Figure S7). Aeromonas caviae, a reported causative pathogen for human (Kimura et al., 2013), for example, could even confer resistance to 5 different types of antibiotics in a single sample (YLNov_Inf). The above results suggested the bright future of long-read Nanopore sequencing in rapidly identifying the potentially pathogenic ARBs supplementing additional parameters in WBE risk assessment and WWTP management. 

4. Conclusion   
This study developed and evaluated a Nanopore metagenomic sequencing-based absolute quantification workflow, which was then implemented for the rapid surveillance of putative pathogens, as well as the investigation of the removal of pathogens and ARGs in municipal WWTPs. In addition to the use in WBE surveillance, this workflow may also benefit other fields (such as the clinical, environmental, and production sectors) interested in quantitative research relating to microbial-host, microbial interactions, energy and element cycling, and ultimately ecological modelling and quantitative microbial risk assessment. However, our study was limiting in that 1) the inability of differentiating between viable and nonviable cells using culture-independent DNA-based quantification methods for assessing pathogen abundance could contribute to false-positive risk alarms; 2) though Kraken2 worked as a good tool for microbial composition estimation for the expected bacterial species in the mock community and most bases (87.14 ± 15.63% for the 30 pure cultures) were properly assigned to the correct species, diversity of the species could be largely inflated by the remaining small portion of the improperly assigned bases. However, the incredible speed of Kraken2 (14G dataset with a database containing 32K representative genomes processed in less than 2 hours in this study) still offers a prominent and promising option for use in fast screening of possible environmental hazards and providing informed early warnings. We envision the future developments built upon this absolute quantification workflow to be even more accurate and rapid while demanding minimal laboratory involvement as the accuracy of Nanopore sequencing and Kraken2 algorithm increases and the automated sample preparation devices advance. 
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SI1 Figure S4. Correlation plots comparing the absolute abundances of dominant species (species identified as the top 500 abundant species by both Illumina and Nanopore sequencing) in 2 real metagenomic samples profiled by the Nanopore VS. Illumina platforms.
SI1 Figure S5. Linear correlation plots comparing the absolute abundances of the 46 dominant putative pathogens estimated based on read data generated at a short time (1 hr or 2 hrs) and all the sequencing data (> 48 hrs) demonstrating the rapid and accurate nature of the current workflow.
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Tables and Figures

Table 1. Summary of in-silico sequencing results for samples used in framework validation and implementation.

Figure 1. Method validation. Benchmarking to Nanopore sequencing in bacterial species identification, community compositional profiling, and putative pathogen absolute abundance profiling using Kraken2. a) demonstrates the species-level identification accuracy at the base level for bacterial pure cultures. b) to d) are correlation plots representing the relative abundances at the base level of a simple mock microbial community between the expected and Nanopore platform (b), the expected and Illumina platform (c), and between Nanopore and Illumina platforms (d). e) and f) are correlation plots comparing the absolute abundances of dominant putative pathogenic species in 2 real complex environmental samples profiled by Nanopore VS. Illumina platforms. Three asterisks represent significant correlation (p-value < 0.01).

Figure 2. Rapid profiling achieved by Nanopore sequencing. a) Timeline diagram for our Nanopore sequencing-based absolute quantification workflow. b) to c) Linear correlation plots comparing the absolute abundances of the dominant 46 putative pathogen species estimated based on the sequencing data generated in 1 hr and all the sequencing data (> 48 hrs) demonstrating the rapid and accurate nature of the current framework. The shaded area represents the 95% confidence intervals of the fit line (species n=46). Three asterisks represent significant correlation (p-value < 0.01).

Figure 3. Diversity sharing, absolute abundance, and removal of the dominant 46 putative pathogen species identified. a) Sharing of the dominant pathogen diversity among influent and effluent samples in the 3 municipal WWTPs. b) Absolute and relative abundances of the 46 dominant pathogens at the genus level. Percentages represent the relative abundances of the corresponding genera to the total cellular absolute abundance of the 46 dominant pathogens in each sample. Black and blue color codes refer to the scales for the influents and effluents, respectively. c) Absolute abundances (heatmap) and log removals (boxplot) of the 46 dominant putative pathogen species. Tick marks represent the abundant pathogens among the top 500 abundance species in the corresponding samples.

Figure 4. Diversity sharing and absolute abundance of all identified ARGs, and the absolute abundances and log removals of the dominant 47 persistent ARGs across WWTPs. a) ARG diversity. Number of ARG subtypes detected in the influents and effluents of the 3 WWTP sample sets. b) Venn diagrams show the shared and unique ARG subtypes in the influents and effluents of different WWTPs and the shared and unique persistent ARG subtypes (i.e. not reduced to un-detectable levels after treatment) in all 3 WWTPs. c) Absolute and relative abundance of ARG types. Percentages refer to the relative abundance of the respective ARG type in the samples. Black and blue color codes refer to the scales for the influents and effluents, respectively. d) Heatmaps show the absolute abundance of the 47 persistent ARGs and boxplots of their log removals achieved in the 3 WWTPs. MLS: macrolide-lincosamide-streptogramin.

Figure 5. Pathogenic ARBs. a) Chord diagram illustrating the correlations between ARGs and the genera of the 31 predominant ARG-carrying putative pathogenic species. Thickness of the lines represents the number of samples observing such correlation. b) Bar plot showing that the number of unique ARG types, ARG subtypes, and samples for each genus of the 31 pathogenic ARG-carrying species. c) Bar plot showing the number of dominant 31 putative pathogenic species carrying the respective ARG types. MLS: macrolide-lincosamide-streptogramin.
