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Abstract—This paper addresses the problem of determining
the peak of the response to a linear time-invariant (LTI) signal
of a linear system whose system matrices are rational functions
of an uncertainty vector constrained into a convex bounded
polytope. The uncertainty can be time-invariant, bounded-rate
time-varying or arbitrarily time-varying. A novel approach based
on linear matrix inequalities (LMIs) is proposed for obtaining
upper bounds of the sought peak based on the construction of a
structured polynomial Lyapunov function in the state and in the
uncertainty. A priori and a posteriori conditions for establishing
optimality of the obtained upper bounds are also provided. As
shown by some numerical examples, which includes the model of
an electric circuit, the proposed approach may have significant
advantages with respect to the existing methods in terms of
conservatism or computational burden.

Index Terms—Output response; Peak; Uncertainty; LMI.

I. INTRODUCTION

Establishing upper bounds of the peak of the response of
a dynamical system is a fundamental problem in engineering.
Indeed, it is important that the physical quantities (e.g., cur-
rent, voltage, etc) of a real device remain within their operative
ranges in order to avoid malfunctioning or even destruction,
which means that upper bounds on the peak of the signals must
be known when designing the real device. Also, it is important
to be able to establish such upper bounds in the presence of
uncertainties since real devices cannot be modeled exactly
in general, due to impossibilities in measuring exactly the
coefficients of the various components, or due to the fact that
these coefficients may change. Moreover, it is important that
these upper bounds are as less conservative as possible, since
conservative upper bounds make more difficult the realization
of real devices, and it is important that these upper bounds can
be computed efficiently, in order to save computational time
and be able to consider systems with larger dimension.

This problem is challenging due to various reasons. The first
reason is that quadratic Lyapunov functions may be conserva-
tive in providing upper bounds of the peak of the response
even for second-order linear systems without uncertainty, see
for instance [3]. The second reason is that dynamical systems
are often affected by uncertainties, see for instance [1], [2] for
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classical references, and [5], [20]—[23] for recent contributions
in various areas such as 2D systems, event-triggered systems
and networked systems. In such a case, a family of possible
responses has to be considered, generally depending on the
temporal nature of the uncertainty (time-invariant or time-
varying) and on the way that the uncertainty affects the system
matrices (e.g., linear, polynomial, etc). The third reason is that
this family of possible responses cannot be considered via
simulations in practice since the set of admissible uncertainties
is continuous (and, hence, not finite).

This paper proposes a novel approach for this problem as
follows. Firstly, the paper starts by considering the impulse
response of a strictly proper single-input system, whose system
matrices are polynomial functions of a time-invariant uncer-
tain vector constrained in the simplex. A novel condition is
proposed in terms of feasibility of a system of LMIs for
establishing whether a chosen quantity is an upper bound
of the sought peak based on the construction of a structured
polynomial Lyapunov function in the state and in the uncer-
tainty through the use of polynomials that can be expressed
as sums of squares of polynomials and through the use of a
projection operator. The proposed condition is sufficient for
any chosen degree of this function, and also necessary for
some finite degree whenever the system is robustly asymptoti-
cally stable. Secondly, it is shown that the proposed condition
can be used to calculate upper bounds of the sought peak by
solving a semidefinite program (SDP) obtained by augmenting
the LMIs. Thirdly, a necessary and sufficient condition is
proposed for establishing whether a calculated upper bound
is tight through the determination of worst-case values of
the uncertainty. Lastly, several generalizations of the proposed
approach are presented, which include the extension to non-
strictly proper systems, multi-input systems, uncertainty over
convex bounded polytopes, response to LTI signals, time-
varying uncertainties, and systems with rational dependence
on the uncertainty.

It is useful to mention that the proposed approach is novel
because for this problem:

o polynomial Lyapunov functions in the state and in the
uncertainty have never been exploited;

e an LMI condition that is not only sufficient but also
necessary has never been proposed;

o the best upper bound guaranteed for chosen degrees of
the Lyapunov function can be obtained via a single LMI
optimization rather than a sequence of LMI optimizations
in a bisection algorithm as required by existing methods
that exploit nonhomogeneous Lyapunov functions;



o anecessary and sufficient condition for establishing tight-
ness of the found upper bound has never been proposed.

This is also supported by the examples in Section VI, where
it is shown that the proposed approach presents significant
advantages with respect to the existing methods, in terms of
conservatism (by providing the sought peak when the existing
methods may return only a conservative upper bound of it or
no upper bound at all) or in terms of computational burden
(by allowing to find the sought peak with an SDP whose size
may be half of that of the existing methods).

It is important to mention that methods for the determination
of the peak of the response of dynamical systems have been
developed since long time, in particular based on LMIs, since
LMI methods can be solved with convex optimization and
since they may be extended in some cases to the synthesis of
feedback controllers, see [3] about LMIs. The main existing
LMI methods and the advantages of the proposed approach
with respect to such methods are as follows:

« the pioneering methods [3], [18]. These methods search
for a quadratic Lyapunov function in linear systems
without uncertainty, and can be used to search for a
common quadratic Lyapunov function in linear systems
depending linearly on polytopic uncertainty by repeating
the LMIs at the vertices of the uncertainty set. Compared
with the proposed approach, these methods have the
advantages of an easier implementation and a smaller
computational burden. On the other hand, the proposed
approach may provide less conservative results by using
polynomial Lyapunov functions, common or depending
on the uncertainty;

o our previous work [8]. The proposed approach contains
this previous work as a special case. Moreover, it has the
following advantages: 1) it considers systems that depend
not only linearly but also polynomially on the uncertainty;
2) it considers uncertainty that is not only arbitrarily time-
varying but also time-invariant or bounded-rate time-
varying; 3) it shows how an upper bound of the sought
peak can be obtained with a single SDP rather than a
sequence of LMI feasibility tests in a bisection search
even when the Lyapunov function is not restricted to be
homogeneous; 4) it proposes a necessary and sufficient
condition for establishing tightness of a calculated upper
bound. It is useful to mention that [8] includes our
previous work [7] where only systems without uncertainty
are considered, and where only the sufficiency of the LMI
condition is proved;

o the recent method [16] based on occupation measures.
Compared with the proposed approach, this method has
the advantage of being more general, for instance because
the dynamics can be not only linear but also nonlinear,
and because the uncertainty set can be not only a poly-
tope but also a semialgebraic set. On the other hand,
the proposed approach may have two advantages: 1) it
does not require knowledge of the region of interest of
the trajectories, which is a region that should contain
the response of the system and is typically unknown a
priori in the problem considered in this paper; 2) the

computational burden may be significantly smaller.

The paper is organized as follows. Section II reports the
preliminaries. Section III provides the first part of the proposed
approach, which is the condition for establishing upper bounds
of the sought peak. Section IV provides the second part of the
proposed approach, which investigates the nonconservatism
and the computation of the upper bounds. Section V provides
the generalizations. Lastly, Sections VI and VII present the
numerical examples and conclusions.

A preliminary conference version of this paper was pre-
sented as reported in [9]. This preliminary conference version
contains only the first part of the proposed approach (i.e.,
Section III) and some numerical examples.

II. PRELIMINARIES

This section introduces the problem formulation and some
preliminaries about polynomials.

A. Problem Formulation
The notation is as follows:

o N, R: sets of nonnegative integers and real numbers;

e 0, (respectively, 1,): n x 1 vectors with all entries 0
(respectively, 1);

o [: identity matrix of size specified by the context;

o A’: transpose of A;

o A ® B: Kronecker product of A with B;

e A >0, A>0: positive definite and positive semidefinite
matrix A;

e conv{Aj,...,A,}: convex hull of Ay,... A,;

o V.f(x,y): gradient of f(x,y) with respect to x;

e deg, f(x,y): degree of f(x,y) in x;

o z¥, with z,y € R", is the quantity [[;_, z¥";

o 2¥, with z € R" and y € R, is the vector (zY,...,z%)";

e s.t.: subject to.

Let us start by considering the uncertain system'
#(t) = A(o)x(t)+ Blo)u(t)

y(t) = Clo)z(t) (1)
o € S

where ¢ € R is the time, z(t) € R™ is the state, u(t) € R is
the input, y(¢) € RP? is the output, o € R" is the time-invariant
uncertainty, S is the simplex defined by

S={ceR": llo=1,0,>0Vi=1,...,7} (2)

and A(c), B(o) and C(o) are matrix polynomials.

Definition 1: An admissible impulse response of the system
(1), denoted as Y (t), is the solution y(t) for some o € S and

z(07) = 0,
{ u(t) = o(t) )

where d(t) is the Dirac distribution. O

"More general versions of this system will be considered in Section V.



This paper addresses two main problems, namely,
establishing a desired upper bound on the largest peak of
the admissible impulse responses of the system (1), and
determining such a peak, which are formulated as follows.

Problem 1: Given ¢ € (0,00), establish whether ¢ is an
upper bound of the largest peak of the admissible impulse
responses of the system (1), i.e.,

V()| <c Vt>0Vo€S. @)
O

Problem 2: Determine the largest peak of the admissible
impulse responses of the system (1), i.e.,

p=inf ¢ s.t. (4) holds. 5)

O

In the sequel of this paper, C¥) () will denote the i-th row

of C(0). Also, the dependence on the time ¢ of the signals
will be omitted for brevity unless specified otherwise.

B. Polynomials

Here we provide some preliminaries about a class of poly-
nomials that will be exploited in the next sections. For 0 € R”
and z € R", let w(o, z) be a polynomial, i.e.

>

a€N", beN™, 17.a+1/,b<2d

w(o,z) = Tab ozt (6)

where d € N defines the upper bound 2d on the degree of
w(o,z), and 7, € R is the coefficient of the monomial o%x®.
Let us gather all the coefficients 7,5 into a vector 7. Then,
w(o, x) can be expressed as

w(o,z) = b(o,z) (W(r) + L(c)) b(o, x) (7

where b(o,x) € R™ is a vector whose entries are all the
monomials in the variables ¢ and x of degree less than or
equal to d, whose number is given by

_(r4+n+d)
 (r+n)ld
W(r) € R™™ js a symmetric linear matrix function, and

L(a) € R™*™ is a symmetric linear matrix function that
parameterizes the linear set

®)

L= {Ii =1L": b(o,x) Lb(o,z) = O} )

where @ € R? is a free vector with length equal to the
dimension of £ given by

(r+mn+2d)!
(r +mn)!(2d)!"
The representation (7) is known as Gram matrix method of
w(o, ) with respect to b(o, z).

q= 1m(m +1) - (10)

2

Definition 2: For w(o,x) polynomial, the notation

w(o, z) € S(o, x) (11)

means that w(o, ) is a sum of squares of polynomials, i.e.,

there exist polynomials w; (o, ), i = 1,...,k, such that
k
w(o,x) = Zwi(o, )2, (12)
i=1
O

The representation (7) is useful to establish if w(o,z) €
S(o, z). Indeed, w(o, x) € S(o, ) if and only if the LMI

W(r)+ L(a) > 0 (13)

is feasible for some a. Moreover, if 7 depends affine linearly
on some auxiliary variables, the above condition is still an LMI
in such auxiliary variables and in « since W (7) is linear. The
reader is refereed to [10], [17] for more information about
sums of squares of polynomials, and to [4], [6] for algorithms
for the construction of the Gram matrices and for formulas
about the complexity.

III. THE APPROACH: PART I

In this section we address the solution of Problem 1. Let
us start by introducing Definitions 3 and 4 which have the
following goals:

o for Definition 3, to obtain an equivalent representation of

a polynomial over an affine set through a homogeneous
polynomial;

o for Definition 4, to impose that a polynomial is nonneg-
ative over the simplex. This is done by imposing that the
homogeneous polynomial obtained in Definition 3 for a
suitable choice of the affine set is a sum of squares of
polynomials after a suitable change of variables.

The first definition that needs to be introduced is as follows.

Definition 3: For a polynomial w; : R" x R™ — R and a
vector wo € R”, let us define

>

aeN", 17 a<d,

Do (wi(o,2), wz) = Ta(@)o® (who )™ 1+ (14)

where d, = deg, (w1 (o,z)) and 7,(x) is the coefficient of
the monomial % in wy (o, x), i.e.,

>

aeN", 1" a<d,

wy (o,2) = Ta(x)o®. (15)

O

Definition 3 introduces the function ®,(wi(o, ), ws)
which returns a polynomial homogeneous in o that coincides
with wy(o,2) on the affine set {o : wio = 1}. Hence,
the function @, (w; (o, x), wy) can be regarded as a projection
operator, in particular, projecting a polynomial onto an affine
set. This function has been exploited in different areas, see,
e.g., [6] and references therein. Similarly, @, (w1 (o, z),ws),
w3z € R"™, returns a polynomial homogeneous in x that
coincides with wy (o, ) on the affine set {z : wizx = 1}.

In order to clarify Definition 3, let us introduce the
following simple numerical example.



Example 0. Consider 0 = (01,02), © = (x1,22),
wy (0, z) = 22 + 222 — 012} + 0222 and wy = (1,1)’. Then,
from Definition 3,

D, (wi(o,x),ws) = (01 + 202)50411 + (201 + 302)173

which is obtained by multiplying each monomial times a
power of o1 + o2 in order to achieve a polynomial that is
homogeneous in o. (]

The second definition that needs to be introduced is as
follows.

Definition 4: For w : R” xR™ — R polynomial, the notation

w(o,z) € Sy(o,x) (16)
stands for
w? (6%, z) € S(o, x) (17)
where
w? (0,1) = @y (w(o, z),1,). (18)
O

Definition 4 introduces the set Si(o,z). A polynomial
w(o, z) belongs to this set if the polynomial obtained from
w# (0, z) by squaring all entries of o is a sum of squares of
polynomials, where w# (¢, z) is the homogeneous polynomial
in o that coincides with w(o,z) on the simplex and has
the same degree of w(c, ). It should be mentioned that the
parametrization of nonnegative polynomials over the simplex
through the use of squared variables has been exploited in the
context of robust analysis, see [6] and references therein.

Similarly to Definition 3, let us clarify Definition 4 through
the following simple numerical example.

Example 0 (continued). For the polynomial w; (o, z) pre-
viously seen, the condition w; (o, ) € Sy (o, z) introduced in
Definition 4 stands for

(of + 205):1041l + (20% + 30’%)1‘% € S(o, x),

whose left hand side is obtained by replacing o7 and o2 with
0% and o3 in the polynomial ®,(wi(o,x),ws). O

Hereafter we formulate the first result of the paper, which
provides a sufficient LMI condition for Problem 1. In order to
reduce the conservatism of the existing methods [3], [8], [18],
or to not require a priori information about the trajectories of
the system (1) as done by the existing method [16], this result
searches for a structured polynomial Lyapunov function in
the state and in the uncertainty, whose sublevel sets are used
to embed the admissible impulse responses of the system (1)
and to evaluate their peak. To this aim, the projection operator
introduced in Definition 3, the set of polynomials introduced
in Definition 4, and sums of squares of polynomials are
exploited to build the LMI condition.

Theorem 1: Let us define v = ¢! and ¢ = 1. The condition
(4) holds if there exist € > 0 and a polynomial v : R" x R" —
R of the form

v(o,x) = Z Cap aazzrb, (19)
a€eN", 1! a=d,
beEN™, 2<1/ b<2d,
with dy,d, € N and (,; € R, such that
ej,k(g);f(a')vg(aa I)ahj,k (Uv 'r) € S+(Ua I) (20)

Vi=0,1Vk=1,....p

where
€k (0) (110)% + (=1)/4C®) (0)B(0) — ¢
flo) = €&—v(o,7B(0))
glo,x) = —(Vuu(o,z)) Alo)x
hj ko, x) P, (v(o,x) — &, (=1)iCc® (o))

—ellz]3%. on

Before introducing the proof of this theorem, let us observe
that the structure of the Lyapunov function sought in Theorem
1 is defined by (19), which imposes that the Lyapunov function
is polynomial with monomials of a special form. In particular,
these monomials are homogeneous of degree d,, in the vector
variable o, and are locally quadratic (i.e., without constants
or linear terms) of degree up to 2d, in the vector variable z.
This structure is novel and generalizes the structures exploited
by the existing methods in the literature that consider only
common quadratic Lyapunov functions or common polynomial
Lyapunov functions by letting these functions depend on the
uncertainty through homogeneous polynomials of arbitrary
degree.

Also, let us observe that the condition (20) is equivalent
to a system of LMIs because the polynomials e; (o), f(o),
g(o,z) and hj (o, x) depend affine linearly on the decision
variables ¢ and v(o, ), and because the condition that any of
these polynomials is in the set S, (o, 2) can be equivalently
reformulated as an LMI in these decision variables and aux-
iliary variables as explained in Section II-B. The nonnegative
integers d, and d, define the degree and structure of v(o, ),
and have to be chosen a priori in order to build the system of
LMIs.

Lastly, as it will become clear in the proof, let us observe
that:

e ¢, (o) is introduced to impose the desired bound at time

t=0;

e f(0) is introduced to impose that the admissible impulse

responses start inside the considered sublevel set;

e g(o,x) is introduced to impose that the considered sub-

level set is invariant;

e hji(o,x) is introduced to impose that the considered

sublevel set does not intersect the states with the desired
bound.

Proof. Suppose that (19)-(21) hold. Since e;,(0) €
Sy (o, x), it follows from Definition 4 that

ej&k (0?) >0



where efk(a) = ®, (e;x(0),1,). Since Definition 3 im-
plies that ef&k(a) = ejr(o) for all ¢ € S, and since

{o?: o €R"} 2, it follows that
ejr(c) >0 Voes.

Similarly, f(o), g(o,z) and h; ;(o, z) are nonnegative for all
o € S and for all z € R™. Taking into account that e; (c) > 0
for all 0 € S and for all j = 0,1 and &k = 1,...,p, the
positivity of e implies that

|IC(a)yB(0)||loo <1 Vo € S.

Let us observe that, for any admissible impulse response, the
input u of the system (1) is the Dirac distribution, which has
the effect of moving the initial condition at ¢ = 0 from the
origin to B(o). This implies that

1
1Y(0)] < 5 VYo eS.

Since g(o,x) > 0 for all ¢ € S and for all = € R", it follows
that the time derivative of v(o, ) is nonpositive for u = 0.
Hence, any trajectory of the system (1) that starts in the set

V(o) ={z e R": v(o,z) <&}

remains in V(o) for u = 0. Moreover, the condition that
f(o) >0 for all ¢ € S implies that

vB(o) € V(o) Yo € S.

Since hj,k(a, x) > 0 for all o0 € S and for all z € R”, from
Definition 3 it follows that

v(oyx) — €~ EHCCHgdz >0 Ve e Tplo)Voes§
where
Tinlo) = {z e R CW(0)a = (-1}

Due to the positivity of &, and since 7} ; (o) does not contain
the origin, the previous condition implies that

v(o,z) > € VYo e T;r(o) Vo eS.

Since the above condition holds for all 7 = 0,1 and k£ =
1,...,p, it follows that

V(o) N T (o) =0

where
T(o)={xeR": ||C(o)x]s =1}.

Therefore, the trajectory of the system (1) starting at yB(o)
does not intersect the set of states for which the output has
infinity norm equal to 1. Since v = ¢!, and since the system
(1) is linear, it follows that the trajectory starting at B (o) does
not intersect the set of states for which the output has infinity
norm equal to c. Taking into account that this trajectory is
continuous and starts at a point for which the output has
infinity norm less than ¢, it can be concluded that (4) holds. [

IV. THE APPROACH: PART II

This section analyzes the nonconservatism of the proposed
approach, shows how upper bounds of the sought peak can be
obtained by solving SDPs, and proposes a tightness certificate
for these upper bounds.

A. Nonconservatism Analysis

Here we investigate the nonconservatism of the sufficient
condition provided by Theorem 1. The main steps for doing
this are two: firstly, to show the existence of a suitable
structured polynomial Lyapunov function in the state and
in the uncertainty, whose level sets embeds the admissible
impulse responses; secondly, to show that the condition of
Theorem 1 holds with such a Lyapunov function after a
suitable degree augmentation.

Theorem 2: Suppose that A(o) is Hurwitz for all o € S.

The condition (4) holds only if (19)—(21) hold for some € > 0
and v(o, z). Moreover, v(o,2) can be chosen homogeneous
also in z.
Proof. Suppose that (4) holds. From (21) define wy (o, z) =
ejx(0), wa(o,x) = f(o), ws(o,z) = g(o,z) and wy (o, x) =
hj (o, x), which depend on v(o, ) and . Since A(o) is Hur-
witz for all o € S, from [8] it follows that there exist ©(c, x),
homogeneous polynomial in = with coefficients depending on
o, and € > 0, such that, for all + = 1,...,4, 5 = 0,1 and
k=1,...,p,

Wi(0, x) — e|z)| 5 e S(p,x) VoeS

where v is an auxiliary variable introduced for considering in
the condition above polynomials that are sums of squares of
polynomials in x (but not necessarily in o), and

w; (Ua I) = w; (Uv I)|u(a,z):fz(o’,x),dc,:0 :

Since w;(o,x) is affine linear in ¥(o,z) and since
Wi(0,%)|5(5,2)=5(u,z) 15 Polynomial in o, it follows that the
condition above can be also satisfied with ©(c,2) homo-
geneous polynomial in x with coefficients that are contin-
uous functions of o. Moreover, since S is compact, these
coefficients can be approximated arbitrarily well over S by
polynomial functions. This implies that there exists a function
©(0, z), homogeneous polynomial in z and polynomial in o,
such that

ii(0,x) — el 55 D e S(y,2) VoeS
where

w; (07 ‘T) = w; (07 ‘T) |u(a,z):{;(o’,x),dc,:dcga (0(o,z))

Hence, (o, x) admits a positive definite Gram matrix W; (o)
forall o € S, ie.,

Wi(o,x) = bi(z) Wi(o)bi(x)
Wi(o) > 0 Voeds
for some vector polynomial b;(x). Let us observe that WW;(o)

is a matrix polynomial. Since 10 = 1 for all ¢ € S
and since 1).0 is linear, it follows that ¢(c,x) = ¥(o,x),



wi(o,x) = wi(o,x) and Wi(o) = W;(o) where o(0,),
w; (o, x) and W;(o) are homogeneous also in o. For [ € N
define the Lyapunov function

v(o,x) = (1.0)"(0, ).

It follows that w;(o, x) obtained from (21) with this v(o, z)
satisfies

UZ'(O', 117) = (I)o(wi(av x)vlT)

= bi(a:)’(l’rcr)lWi(cr)bi(:c).

Define 6; = deg, (w;(o, z)). From Polya’s theorem (see, e.g.,
[13]), it follows that there exists [ such that

(110)Wilo) = Y Uiao®

a€NT, 17 a=4;

where each U; , is a positive definite matrix. For such value
of [, it follows that

ui(o?,z) = bi(z) Z Uiao® | bi(2)

a€N", 1" a=4;

~ /
where b;(0) is a vector of monomials in o and Uj is a block
diagonal matrix whose diagonal blocks are the matrices U; ,.
This means that U; > 0 and, hence,

(o) = U2 (5io) 1) buto)|

)

ie., u;(0?,r) € S(o,z). Hence, u;(o,x) € Si(o,z), and
wi(o,x) € Sy(o,x). From the definition of w;(o,x), it is
concluded that (19)—(21) hold. 1

Theorem 2 states that the sufficient condition provided by
Theorem 1 is also necessary under the assumption that A(c)
is Hurwitz for all o € S. This is a mild assumption because, if
not satisfied, the admissible impulse responses of the system
(1) can be unbounded.

B. Upper Bounds

Here we address the solution of Problem 2. Let us start by
observing that a simple way to obtain an upper bound of p in
(5) consists of adopting a bisection search where the condition
of Theorem 1 is tested at each iteration for a fixed value of c.
Indeed, bisection can be adopted since the infeasibility of this
condition for ¢ = ¢; implies the infeasibility for all ¢ = ¢
with ¢y < ¢;.

However, a bisection search may require to test the con-
dition of Theorem 1 several times, which is undesirable, and
which is also a problem of our previous work [8]. In [8],
it is explained that the bisection search can be avoided by
restricting the common polynomial Lyapunov function to be
homogeneous. This can be done also for Theorem 1, in particu-
lar, by restricting the structured polynomial Lyapunov function
to be homogeneous in the state. Although this restriction is
not conservative as explained in [8], the degree required for
establishing a sought upper bound may be quite larger, hence
leading to a significant increment of the computational burden.

Hereafter we propose an alternative way to obtain an upper
bound of p in (5), which requires neither a bisection search
nor restricting v(c,x) to be homogeneous in z. The idea
consists of letting v in Theorem 1 be a decision variable,
and removing the nonlinearity originated by the product of
the Lyapunov function with v by introducing an auxiliary
variable and a polynomial in o and this auxiliary variable.

Theorem 3: Let v9 = 0 and pg = oo. For ¢ = 1,2,... one
has

p<0; <01 (22)

where

0i =" (23)

and ~y; is the solution of the SDP

Vi = sSup Y

7>0,6>0,6>0,0(0,)
(19) holds
q3(0,2) € Si(o, 2)
ejk(0),9(0,2),hj(0,x) € Sy (0, )
Vi=0,1Vk=1,....p

(24)

where z € R is an auxiliary quantity, and
& —v(o,2B(0))

(z—7)(z = vi—1)(1 + 2%)%=—1
q1(0,2) + q2(2).

q(o,z) =
@(z) =
q3(o,2) =

(25)

Proof. Suppose that the constraints in (24) hold. Let us observe
that

q3(0,7) = q3(0,7i-1) = f(o)

where f(o) is defined as in (21). Hence, the second constraint
in (24) implies that

5_ 1}(0’, VB(O'))vé. - U(Ua ’Yile(O')) € S+(0’, I)

Therefore, (19)-(21) hold, either as it is or by replacing -y
with 7;_1. This implies that v; > ~;_1 and, hence, 0; < 9;_1.

Moreover, by repeating the proof of Theorem 1 and taking
into account that & > 0, it follows that p < p;. ]

C. Tightness Certificate

Once that an upper bound of p in (5) has been found, a
question arises: is this upper bound tight? This problem is par-
ticularly important for uncertain systems because attempting
to establish tightness of the found upper bound by simulating
an impulse response does require a candidate worst-case value
of the uncertainty. In existing methods such as our previous
work [8], this problem is not addressed.

Hereafter, we propose a necessary and sufficient condition
for establishing if a computed upper bound p; is tight. Let
f*(0) and €, (o) be gs3(0,7;) and e; (o) evaluated for the
optimal values of the decision variables in (24). Also, let F’*



and £, be the positive semidefinite matrices used to establish
that f*(0), e} (o) € St (0, 2), ie.,

f#(UZ) _ bo(U)/F*bO(U)

26

{efk(ﬂ) = b(o) E;b(0) (20)
where by(o) and b(c) are homogeneous and
o) = Po(f*(0), 1)

27

{ejfk(a) = B,(el (o), 1), @7

The following theorem is based on the determination of
candidates for the worst-case values of the uncertainty, i.e.,
values of o for which the peak of the impulse response is
the computed upper bound. These candidates are obtained by
investigating the zeros over S of f*(o) and e, (o), whose
presence would imply that the sublevel set of the found
Lyapunov function may not be shrunk, or the bound imposed
at time ¢ = 0 may not be reduced. Taking into account
the expressions in (26)—(27) where F'* and EJ* j; are positive
semidefinite, it follows that the set of sought candidates can
be obtained by looking for values of o such that by(o'/?) and
b(c/?) are in the null spaces of F* and E7,. Hence, the set
of candidates is

S* = Sg @] U ;,k (28)
j=0,1, k=1,...,p
where
Sy = A{wwll3?: weWo\{0,}} 09)
Sik = {U’QHU’H;Q tw € Wi\ {0,}}
and Wy and W; ;. are the linear sets
Wo = {weR": bo(w) € ker(F*)}
30
Wik = {w eR": b(w) € ker(E;‘)k)} (30)

which can be determined through pivoting operations as
explained in [6] and references therein.

Theorem 4: Suppose that A(c) is Hurwitz for all o € S.
Assume without loss of generality that o; > 0. Then,

0i =p (31

if and only if there exists c* € §* such that

0i =sup | Y(t)] - |l oo - (32)
t>0

Proof. Let us start by supposing that (31) holds. From (5),
there exists 0* € S be such that (32) holds because S is
compact, the supremum is over the variable ¢, and Y (¢) is
bounded due to the fact that A(c) is Hurwitz for all o € S.
Let us suppose for contradiction that o* ¢ S*. This implies
that f*(c*) and e, (0*) are positive. Indeed, let us consider
f*(o*). Tt follows that:

17(0%) = £#(0") = bol(0)2) Fho((0%)1) > 0

since F'* > 0 and bo((0*)'/2) & ker(F*) due to the fact that
o* ¢ 8* and by(o) is homogeneous. The same proof can be

used to show that € x(0*) > 0. Therefore, there exists % such
that

p~t < §
0 < &—w(o*,7B(c"))
0 < 1+ (=1)73C® (6%)B(c*).

But this is impossible since it would imply that o; < p.
Next, let us suppose that there exists o* € S* such that
(32) holds. Then, (31) directly follows from (5). ]

V. THE APPROACH: PART III

This section analyzes the generality of the proposed ap-
proach, explaining how it can be extended to deal with non-
strictly proper systems, multi-input systems, uncertainty over
convex bounded polytopes, response to LTI signals, time-
varying uncertainties, and rational dependence on the uncer-
tainty.

A. Non-Strictly Proper Systems

Let us start by saying that there is no loss of generality in
considering that the system (1) is strictly proper (i.e., y(t) does
not depend directly on u(t)). Indeed, the impulse response of
a system that is proper but not strictly proper is unbounded.

B. Multi-Input Systems

The system (1) is a single-input system. Multi-input systems
can be considered by repeating Problems 1 and 2 for each input
channel. Specifically, suppose that the differential equation in
the system (1) is now replaced by

i(t) = A(o)x(t) + Blo)a(t) (33)

where 7(t) € R7 is the input and B(c) is a matrix polynomial.
In this case, the impulse response is defined for a chosen input
channel i, where ¢ = 1,...,q, by defining B(c) and u(t) in
the system (1) as the i-th column of B(c) and the i-th entry
of u(t). Hence, the results presented in Sections III-IV are
applied for computing the peak of the impulse response with
respect to the i-th input channel.

C. Uncertainty over Convex Bounded Polytopes

The set of admissible uncertainties in the system (1) is
the simplex. Convex bounded polytopes can be analogously
considered by introducing a parametrization through a linear
function over the simplex. Specifically, the system

i(t) = A(&)x(t) + B(5)u(t)
y(t) = C(@)a(t) (34)
6 € conv{vy,...,vq}

where & € R is the time-invariant uncertainty constrained in
the convex bounded polytope defined by the convex hull of
the vectors v1,...,v, € R”, and A(#), B(5) and C(5) are
matrix polynomials, can be transformed into the system (1)
by introducing the transformation

&:(vl,...,vq)a (35)



where o € R"” with r = ¢. See also [12] among the first works
to introduce convex bounded polytopes for the description of
uncertain systems. It is useful to notice that convex bounded
polytopes include multi-interval sets as a special case.

D. Response to LTI Signals

In the previous sections we have considered the impulse re-
sponse of the system (1). Other responses can be considered, in
particular, responses to LTI signals. Specifically, the response
of the system (1) for the initial condition x(0) = x( to a signal
obtainable as the impulse response of the LTI system

it) =
y(t) =
where Z(t) € R™, a(t) € R and §(t) € R, for some A, B, C
and D, can be addressed by suitably redefining A(o), B(o)

and C(o) through an augmentation that includes the signal
model (36) into the system (1).

Az(t) + Ba

Ci(t) + Du (36)

E. Time-Varying Uncertainty

The uncertainty considered in the system (1) is time-
invariant. In this section we explain how the proposed
approach can be extended to address the case of time-varying
uncertainty. In particular, we consider the following two cases.

1) Case I (Arbitrarily Time-Varying Uncertainty): Here we
suppose that the variation rate of the uncertainty o in the
system (1) is unbounded. In this case, Theorems 1 and 3 can
be used with d, = 0, which corresponds to the case of a
polynomial v(e, ) common to all uncertainties. Indeed, since
¢ is unbounded, v(c, x) has to be necessary independent on
o.

For d, = 0, the proposed approach contains the results
in our previous work [8] as special cases. In particular, the
sufficient condition provided by Theorem 1 is also necessary
whenever ¢ is arbitrarily time-varying under the assumption
that A(o) is robustly asymptotically stable for all o € S.

2) Case 2 (Bounded-Rate Time-Varying Uncertainty): Here
we suppose that a bound on the variation rate of the uncertainty
o in the system (1) is available. Such a bound is considered
through the constraint adopted in the literature

o € conv{Dy,...,Dy} (37)
where Dy, ..., D; € R" are such that
1,D,=0 Vi=1,...,h. (38)

In this case, Theorems 1 and 3 can be used by replacing the
constraint g(o, z) € S4 (o, x) with

gi(o,z) € Si(o,x) Vi=1,...,h (39)
where

gi(o,x) = — (Vu(o,2)) A(o)x — (Vev(o,z)) Dy, (40)

F. Rational Dependence

The system (1) is affected polynomially by the uncertainty.
In this section we explain how the proposed approach can
be extended to address the case of rational dependence on the
uncertainty. In particular, we consider the more general system

i(t) A(o)a(t) + B(o)u(t)
y(t) = Clo)x(t) (41)
c € S
where A(c), B(o) and C(o) are matrix rational functions

expressed as

A(O’) _ A(U) ’ B(O’) _ B(U) C(U)

¢a(0) ¢5(0) ¢c (o)
where A(o), B(o) and C(o) are matrix polynomials, and
oa(0o), (o) and ¢ (o) are polynomials. In the sequel,
C® (o) will denote the i-th row of C(0).

First of all, it is assumed that the system (41) is well-
posed, i.e., the polynomials ¢4 (o), ¢p(c) and ¢ (o) do not
vanish over S. Since S is connected and polynomials are
continuous functions, it can be assumed that these polynomials
are positive over S without loss of generality.

Hence, Theorem 1 can be used by replacing e; (o), f(o)
and h; (o, x) with the following expressions:

, Clo) = (42)

eik() = op(0)oc(o)((1a)i+
+H=1)"7CW () B(0) ~¢)
o) = oplo)t (¢—v(oB)) @3
hir(o.m) = dolo)(@u(v(o,0) — &,
(~1)7CW (o)) - ellal3™).

This change ensures that the newly defined e; (o), f(o) and
hjx(o,x) are polynomials, and their nonnegativity is equiv-
alent to the nonnegativity of the original e; (c), f(o) and
hj (o, x) that would have been obtained by simply replacing
A(o), B(0) and C(o) with A(c), B(o) and C(o). Analogous
changes can be made for the other theorems presented in the
paper and are omitted for brevity.

VI. EXAMPLES

In this section we present some numerical examples. The
toolbox SeDuMi [19] for Matlab is adopted to solve the SDPs.
The LMIs for constraining polynomials in the set S, (o, z)
are built as explained in Section II-B using algorithms for the
construction of the Gram matrices similar to those reported
in [6] and simplified taking into account the symmetries as
explained in [4]. For brevity, the examples show only the
upper bound in (23) for ¢ = 1, i.e., g1, which is obtained by
solving the SDP (24). The computational burden is measured
by the size of the problem solved by SeDuMi (denoted by
SeDuMi size), which consists of the triplet [eqs,order,dim].
For the SDP (24), eqs is the number of scalar LMI variables
plus one.
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Fig. 1. Example 1: impulse response trajectories (black solid lines), level sets
v(o,xz) =1 (red dotted lines) and ||C(0)z||cc = p (blue dash-dot line) for
some values of o € S. The thick lines denote the found worst-case value of
the uncertainty o = o*.

The proposed approach is compared with the existing meth-

ods discussed in Section I as follows:

o for [3], [18], the LMIs are repeated at the vertices of the
uncertainty set;

o for [8], by letting the uncertainty be arbitrarily time-
varying;

o for [16], by using the code available at github.com/
jarmill/peak based on Gloptipoly3 [14] and
YALMIP [15]. The initial condition and objective used
are B(0)||B(o)||ly* and (C(0)z||B(c)|2)? (the term
||B(c)]|2 is used to remove the presence of o from the
initial condition in Examples 2 and 3). The region of
interest is chosen as [—2, 2]™ in the state space and [0, 20]
in the time domain.

A. Example 1

In the first example we consider a second-order system
where the uncertainty affects one matrix only, specifically

(1) (_; é_f)x(f)—i—(i)u(f)

y(t) (2 —1)x@)
where 6@ € [0,1] is the uncertainty. This system can be
rewritten in the form of (1) by defining r = 2 and o5 = 6.

Table I shows the upper bound p; given by the SDP (24).
It turns out that p; for d, =1 and d, = 2 is tight, i.e., p =
1.586. This can be verified by exploiting Theorem 4. Indeed,
we find §§ = {(1,0)'}, and (32) holds with ¢* = (1,0)
(which corresponds to 6§ = 0).

Figure 1 shows the trajectories for some admissible impulse
responses, together with the level sets v(o,z) = 1 and
IC(0)ale = p.

Let us observe that the sought peak is obtained even if
A(o) is not Hurwitz for all o € S in this example. Indeed,
for o = (0,1)" (which corresponds to § = 1), the eigenvalues

do | dz 01 SeDuMi size [eqs,order,dim]

0 1 S [7,17,40]

0 2 2.219 [25,26,157]

1 1 1.674 [14,25,103]

1 2 1.586 (68,40,406]
TABLE I

EXAMPLE 1: UPPER BOUND g1 GIVEN BY THE SDP (24).

do dy 01 SeDuMi size [eqs,order,dim]
0 1 00 [19,27,146]

0 2 [ (145,60, 923]

1 1 0.666 [30, 31, 205]

1 2 0.603 (204, 68, 1206]

2 1 0.510 [45, 35, 284]

2 2 0.460 [272,76,1566]

TABLE 11

EXAMPLE 2: UPPER BOUND p1 GIVEN BY THE SDP (24).

of A(c) are —1 and 0. The fact that A(o) is not Hurwitz for
all 0 € S can be also seen from Figure 1, which shows a
trajectory that does not reach the origin and ends at the point

(0, -1

For comparison, we also test some existing LMI methods:

e [3], [18] are infeasible;

e [8] provides, for common polynomial Lyapunov func-
tions of degree 2,4,6, the conservative upper bounds
00, 2.015,1.679;

e [16] provides the correct value of p by using or-
der 2 LMI relaxations, for which the SeDuMi size is
[egs,order,dim]=[314,159,2686].

B. Example 2

In the second example we consider a second-order system
where the uncertainty affects all matrices, specifically
) utt

. 0 , 1 0
it = ( 10012, —1 )x(t) + ( 0.6+ 1.40
y(t) = (2-1.60, 0 )ax(t)
where 0 € [0,1] is the uncertainty. This system can be
rewritten in the form of (1) by defining » = 2 and o9 = 6.
Table II shows the upper bound p; given by the SDP (24). It
turns out that o, for d, = d, = 2 is tight, i.e., p = 0.460. This
can be verified by exploiting Theorem 4. Indeed, we find S =
{(0.377,0.623)'}, and (32) holds with o* = (0.377,0.623)’
(which corresponds to § = 0.623).
Figure 2 shows the trajectories for some admissible

impulse responses, together with the level sets v(o,x) = &
and | C()2]|o = p.

For comparison, we also test the existing LMI methods
discussed in Section I:
o [3], [18] are infeasible;
o [8]is infeasible for any degree of the Lyapunov function;
e [16] provides the correct value of p by using or-
der 3 LMI relaxations, for which the SeDuMi size is
[egs,order,dim]=[788,368,12937].
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Fig. 2. Example 2: impulse response trajectories (black solid lines), level sets
v(o, x) = & (red dotted lines) and ||C(0)z||sc = p (blue dash-dot line) for
some values of o € S. The thick lines denote the found worst-case value of
the uncertainty o = o*.
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Fig. 3. Example 3: electric circuit with variable inductor.

C. Example 3

In the third example we consider a physical system in order
to show a real application, specifically, the electric circuit in
Figure 3 which is a third-order system. Let i (¢) and i2(¢) be
the currents in the inductors L; and Lo, and let v.(t) be the
voltage of the capacitor C'. By choosing the state variables

10

do | dz 01 SeDuMi size [eqs,order,dim]

0 1 2.272 [14,23,107]

0 2 1.970 (116,50, 740]

1 1 1.221 [33, 34, 253]

1 2 0.950 (273,74,1617]
TABLE III

EXAMPLE 3, SCENARIO 1: UPPER BOUND p; GIVEN BY THE SDP (24).

Ry 1

_ 0 _ =

L’ T LL

Rs 1 1

#) = 2 £) + '
= o Lo lane| G [

1 1 0

- 0

c ’ c’
yt)=(0,0, 1 )xz().

We consider the case where Ry, Ro, Lo and C are constants,
in particular given by the plausible values

Ri=1, Ry=2, Ly=0.7, C=0.5,
and L; is a variable, in particular according to
L, €1]0.5,2].

This model can be rewritten in the form of (1) by defining
r=2and L;' = 2 — 1.505. We consider two scenarios as
follows.

1) Scenario 1 (Time-Invariant Uncertainty): Here we sup-
pose that the uncertainty is time-invariant. Table III shows
the upper bound p; given by the SDP (24). It turns out that
o1 found for d, = 1 and d, = 2 is tight, i.e., p = 0.950.
This can be verified by exploiting Theorem 4. Indeed, we
find S = {(1,0)’}, and (32) holds with o* = (1,0)" (which
corresponds to L; = 0.5).

Figure 4 shows the trajectories for some admissible impulse
responses, together with the level sets v(c*,x) = ¢ and
IC(0")allo = p.

For comparison, we also test the existing LMI methods
discussed in Section I:

o [3], [18] provide the upper bound 2.272;

o [8] provides the conservative upper bound 1.970 via a
sequence of LMI feasibility tests in a bisection search
using Lyapunov functions of degree 4;

e [16] provides the correct value of p by using or-
der 2 LMI relaxations, for which the SeDuMi size is
[egs,order,dim]=[657,255,6440].

2) Scenario 2 (Bounded-Rate Time-Varying Uncertainty):
Here we suppose that the uncertainty is time-varying with a
bounded variation rate according to

L <v

where v € [0,10]. This situation can be considered as
explained in Section V-E2, in particular by defining

8 1
D1:?<_1>, Dy = —D;s.



Fig. 4. Example 3, Scenario 1: impulse response trajectories (black solid
lines), level sets v(o*,x) = £ (red dotted lines) and ||C(0*)z||cc = p (blue
dash-dot line) for some values of o € S. The thick lines denote the found
worst-case value of the uncertainty o = o*.

2471

22+ o

Fig. 5. Example 3, Scenario 2: upper bound p; in (23) obtained for some
values of v and some degrees of v(o, x): do = 0 (red line), do = 1 (green
line), do = 2 (blue line), dr = 1 (dashed line) and d; = 2 (solid line).

Figure 5 shows the upper bound p; in (23) obtained for some
values of v and some degrees of v(o, ).

D. Example 4

Lastly, we consider a higher-order system, specifically the
fourth-order system

0 .1, 0 .0 0

. -2-100,-1, 1 ,0 1

z(t) = 0 0 0 1 x(t) + 0 u(t)
2,0 ,80-9,—-1 1

y(t) = (1,0,2,0 )x(t)

where 6 € [0, 1] is the uncertainty. This system can represent
two second-order systems connected in closed-loop, and can

11

do | dz 01 SeDuMi size [egs,order,dim]
0 1 oo [14,23,117]

0 2 o) (190, 56, 1186]

1 1 1.304 [40, 37, 331]

1 2 0.985 (532,93, 3135]

2 1 1.303 (102,51, 685]

2 2 0.978 [1083,130,6103]

TABLE IV
EXAMPLE 4: UPPER BOUND p1 GIVEN BY THE SDP (24).

be rewritten in the form of (1) by defining » = 2 and o9 = 6.
Table IV shows the upper bound g; given by the SDP (24).
It turns out that oy for d, = d, = 2 is tight, i.e., p = 0.978.
This can be verified by exploiting Theorem 4. Indeed, we
find S§ = {(0,1)'}, and (32) holds with ¢* = (0,1)" (which
corresponds to 6 = 1).

For comparison, we also test the existing LMI methods
discussed in Section I:

o [3], [18] are infeasible;

o [8]is infeasible for any degree of the Lyapunov function;

e [16] provides the correct value of p by using or-
der 3 LMI relaxations, for which the SeDuMi size is
[egs,order,dim]=[4388,1151,104904].

VII. CONCLUSIONS

This paper has proposed a novel LMI-based approach for
determining the peak of the response to an LTI signal of a
linear system whose system matrices are rational functions of
an uncertainty vector constrained into a convex bounded poly-
tope. The considered uncertainty can be time-variant, bounded-
rate time-varying or arbitrarily time-varying. As shown by
some numerical examples, the proposed approach may have
significant advantages with respect to the existing LMI meth-
ods in terms of conservatism or computational burden.

Specifically, the proposed approach can be significantly less
conservative than the existing LMI methods [3], [8], [18]
based on the use of common quadratic Lyapunov functions or
common polynomial Lyapunov functions, which are unable to
provide the correct peak in all numerical examples presented
in Section VI. Clearly, this advantage comes with a larger
computational burden, which is expectable since the proposed
approach exploits more sophisticated Lyapunov functions than
these methods, in particular, polynomial Lyapunov functions
polynomially parameterized by the uncertainty. Moreover, with
respect to the existing LMI method [16] based on occupation
measures, the proposed approach can present significant reduc-
tions of the computational burden as shown in all numerical
examples presented in Section VI, where the computational
burden (measured in terms of SeDuMi size) is, at least, halved.

The proposed approach can be applied to all real devices
that can be modeled as a continuous-time linear system
affected by structured uncertainty, which can be found in many
areas of science and engineering. Besides the electric circuit
presented in Example 3 in Section VI (where the peak of
interest is on the output voltage), other possible examples are
DC motors (where the peak of interest is on the rotor angle),
loudspeakers (where the peak of interest is on the cone shift),



read/write heads for disk drives (where the peak of interest
is on the head position), etc. The reader is referred to books
such as [11] for collections of such examples.

Several directions can be considered for future work. One of
these directions is the derivation of upper bounds on the degree
of the structured polynomial Lyapunov function in the state
and in the uncertainty required to achieve nonconservatism.
Another direction could consider the extension of the proposed
approach for determining the peak-to-peak gain of uncertain
systems. Also, it would be interesting to address the design of
feedback controllers for ensuring desired upper bounds on the
peak of the response of closed-loop uncertain systems. Lastly,
one could explore the possibility of extending the proposed
approach to the determination of the peak of the response of
uncertain 2D systems.
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