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LMI-based determination of the peak of the

response of structured polytopic linear systems

Graziano Chesi1, Fellow, IEEE, and Tiantian Shen2

Abstract—This paper addresses the problem of determining
the peak of the response to a linear time-invariant (LTI) signal
of a linear system whose system matrices are rational functions
of an uncertainty vector constrained into a convex bounded
polytope. The uncertainty can be time-invariant, bounded-rate
time-varying or arbitrarily time-varying. A novel approach based
on linear matrix inequalities (LMIs) is proposed for obtaining
upper bounds of the sought peak based on the construction of a
structured polynomial Lyapunov function in the state and in the
uncertainty. A priori and a posteriori conditions for establishing
optimality of the obtained upper bounds are also provided. As
shown by some numerical examples, which includes the model of
an electric circuit, the proposed approach may have significant
advantages with respect to the existing methods in terms of
conservatism or computational burden.

Index Terms—Output response; Peak; Uncertainty; LMI.

I. INTRODUCTION

Establishing upper bounds of the peak of the response of

a dynamical system is a fundamental problem in engineering.

Indeed, it is important that the physical quantities (e.g., cur-

rent, voltage, etc) of a real device remain within their operative

ranges in order to avoid malfunctioning or even destruction,

which means that upper bounds on the peak of the signals must

be known when designing the real device. Also, it is important

to be able to establish such upper bounds in the presence of

uncertainties since real devices cannot be modeled exactly

in general, due to impossibilities in measuring exactly the

coefficients of the various components, or due to the fact that

these coefficients may change. Moreover, it is important that

these upper bounds are as less conservative as possible, since

conservative upper bounds make more difficult the realization

of real devices, and it is important that these upper bounds can

be computed efficiently, in order to save computational time

and be able to consider systems with larger dimension.

This problem is challenging due to various reasons. The first

reason is that quadratic Lyapunov functions may be conserva-

tive in providing upper bounds of the peak of the response

even for second-order linear systems without uncertainty, see

for instance [3]. The second reason is that dynamical systems

are often affected by uncertainties, see for instance [1], [2] for
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classical references, and [5], [20]–[23] for recent contributions

in various areas such as 2D systems, event-triggered systems

and networked systems. In such a case, a family of possible

responses has to be considered, generally depending on the

temporal nature of the uncertainty (time-invariant or time-

varying) and on the way that the uncertainty affects the system

matrices (e.g., linear, polynomial, etc). The third reason is that

this family of possible responses cannot be considered via

simulations in practice since the set of admissible uncertainties

is continuous (and, hence, not finite).

This paper proposes a novel approach for this problem as

follows. Firstly, the paper starts by considering the impulse

response of a strictly proper single-input system, whose system

matrices are polynomial functions of a time-invariant uncer-

tain vector constrained in the simplex. A novel condition is

proposed in terms of feasibility of a system of LMIs for

establishing whether a chosen quantity is an upper bound

of the sought peak based on the construction of a structured

polynomial Lyapunov function in the state and in the uncer-

tainty through the use of polynomials that can be expressed

as sums of squares of polynomials and through the use of a

projection operator. The proposed condition is sufficient for

any chosen degree of this function, and also necessary for

some finite degree whenever the system is robustly asymptoti-

cally stable. Secondly, it is shown that the proposed condition

can be used to calculate upper bounds of the sought peak by

solving a semidefinite program (SDP) obtained by augmenting

the LMIs. Thirdly, a necessary and sufficient condition is

proposed for establishing whether a calculated upper bound

is tight through the determination of worst-case values of

the uncertainty. Lastly, several generalizations of the proposed

approach are presented, which include the extension to non-

strictly proper systems, multi-input systems, uncertainty over

convex bounded polytopes, response to LTI signals, time-

varying uncertainties, and systems with rational dependence

on the uncertainty.

It is useful to mention that the proposed approach is novel

because for this problem:

• polynomial Lyapunov functions in the state and in the

uncertainty have never been exploited;

• an LMI condition that is not only sufficient but also

necessary has never been proposed;

• the best upper bound guaranteed for chosen degrees of

the Lyapunov function can be obtained via a single LMI

optimization rather than a sequence of LMI optimizations

in a bisection algorithm as required by existing methods

that exploit nonhomogeneous Lyapunov functions;
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• a necessary and sufficient condition for establishing tight-

ness of the found upper bound has never been proposed.

This is also supported by the examples in Section VI, where

it is shown that the proposed approach presents significant

advantages with respect to the existing methods, in terms of

conservatism (by providing the sought peak when the existing

methods may return only a conservative upper bound of it or

no upper bound at all) or in terms of computational burden

(by allowing to find the sought peak with an SDP whose size

may be half of that of the existing methods).

It is important to mention that methods for the determination

of the peak of the response of dynamical systems have been

developed since long time, in particular based on LMIs, since

LMI methods can be solved with convex optimization and

since they may be extended in some cases to the synthesis of

feedback controllers, see [3] about LMIs. The main existing

LMI methods and the advantages of the proposed approach

with respect to such methods are as follows:

• the pioneering methods [3], [18]. These methods search

for a quadratic Lyapunov function in linear systems

without uncertainty, and can be used to search for a

common quadratic Lyapunov function in linear systems

depending linearly on polytopic uncertainty by repeating

the LMIs at the vertices of the uncertainty set. Compared

with the proposed approach, these methods have the

advantages of an easier implementation and a smaller

computational burden. On the other hand, the proposed

approach may provide less conservative results by using

polynomial Lyapunov functions, common or depending

on the uncertainty;

• our previous work [8]. The proposed approach contains

this previous work as a special case. Moreover, it has the

following advantages: 1) it considers systems that depend

not only linearly but also polynomially on the uncertainty;

2) it considers uncertainty that is not only arbitrarily time-

varying but also time-invariant or bounded-rate time-

varying; 3) it shows how an upper bound of the sought

peak can be obtained with a single SDP rather than a

sequence of LMI feasibility tests in a bisection search

even when the Lyapunov function is not restricted to be

homogeneous; 4) it proposes a necessary and sufficient

condition for establishing tightness of a calculated upper

bound. It is useful to mention that [8] includes our

previous work [7] where only systems without uncertainty

are considered, and where only the sufficiency of the LMI

condition is proved;

• the recent method [16] based on occupation measures.

Compared with the proposed approach, this method has

the advantage of being more general, for instance because

the dynamics can be not only linear but also nonlinear,

and because the uncertainty set can be not only a poly-

tope but also a semialgebraic set. On the other hand,

the proposed approach may have two advantages: 1) it

does not require knowledge of the region of interest of

the trajectories, which is a region that should contain

the response of the system and is typically unknown a

priori in the problem considered in this paper; 2) the

computational burden may be significantly smaller.

The paper is organized as follows. Section II reports the

preliminaries. Section III provides the first part of the proposed

approach, which is the condition for establishing upper bounds

of the sought peak. Section IV provides the second part of the

proposed approach, which investigates the nonconservatism

and the computation of the upper bounds. Section V provides

the generalizations. Lastly, Sections VI and VII present the

numerical examples and conclusions.

A preliminary conference version of this paper was pre-

sented as reported in [9]. This preliminary conference version

contains only the first part of the proposed approach (i.e.,

Section III) and some numerical examples.

II. PRELIMINARIES

This section introduces the problem formulation and some

preliminaries about polynomials.

A. Problem Formulation

The notation is as follows:

• N, R: sets of nonnegative integers and real numbers;

• 0n (respectively, 1n): n × 1 vectors with all entries 0
(respectively, 1);

• I: identity matrix of size specified by the context;

• A′: transpose of A;

• A⊗B: Kronecker product of A with B;

• A > 0, A ≥ 0: positive definite and positive semidefinite

matrix A;

• conv {A1, . . . ,An}: convex hull of A1, . . . , An;

• ∇xf(x, y): gradient of f(x, y) with respect to x;

• degx f(x, y): degree of f(x, y) in x;

• xy , with x, y ∈ Rn, is the quantity
∏n
i=1 x

yi
i ;

• xy , with x ∈ Rn and y ∈ R, is the vector (xy1 , . . . , x
y
n)

′;

• s.t.: subject to.

Let us start by considering the uncertain system1











ẋ(t) = A(σ)x(t) +B(σ)u(t)

y(t) = C(σ)x(t)

σ ∈ S

(1)

where t ∈ R is the time, x(t) ∈ Rn is the state, u(t) ∈ R is

the input, y(t) ∈ Rp is the output, σ ∈ Rr is the time-invariant

uncertainty, S is the simplex defined by

S = {σ ∈ R
r : 1′rσ = 1, σi ≥ 0 ∀i = 1, . . . , r} (2)

and A(σ), B(σ) and C(σ) are matrix polynomials.

Definition 1: An admissible impulse response of the system

(1), denoted as Y (t), is the solution y(t) for some σ ∈ S and
{

x(0−) = 0n

u(t) = δ(t)
(3)

where δ(t) is the Dirac distribution. �

1More general versions of this system will be considered in Section V.
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This paper addresses two main problems, namely,

establishing a desired upper bound on the largest peak of

the admissible impulse responses of the system (1), and

determining such a peak, which are formulated as follows.

Problem 1: Given c ∈ (0,∞), establish whether c is an

upper bound of the largest peak of the admissible impulse

responses of the system (1), i.e.,

‖Y (t)‖∞ < c ∀t ≥ 0 ∀σ ∈ S. (4)

�

Problem 2: Determine the largest peak of the admissible

impulse responses of the system (1), i.e.,

ρ = inf
c
c s.t. (4) holds. (5)

�

In the sequel of this paper, C(i)(σ) will denote the i-th row

of C(σ). Also, the dependence on the time t of the signals

will be omitted for brevity unless specified otherwise.

B. Polynomials

Here we provide some preliminaries about a class of poly-

nomials that will be exploited in the next sections. For σ ∈ Rr

and x ∈ Rn, let w(σ, x) be a polynomial, i.e.

w(σ, x) =
∑

a∈Nr, b∈Nn, 1′
r
a+1′

n
b≤2d

τa,b σ
axb (6)

where d ∈ N defines the upper bound 2d on the degree of

w(σ, x), and τa,b ∈ R is the coefficient of the monomial σaxb.

Let us gather all the coefficients τa,b into a vector τ . Then,

w(σ, x) can be expressed as

w(σ, x) = b(σ, x)′ (W (τ) + L(α)) b(σ, x) (7)

where b(σ, x) ∈ Rm is a vector whose entries are all the

monomials in the variables σ and x of degree less than or

equal to d, whose number is given by

m =
(r + n+ d)!

(r + n)!d!
, (8)

W (τ) ∈ Rm×m is a symmetric linear matrix function, and

L(α) ∈ Rm×m is a symmetric linear matrix function that

parameterizes the linear set

L =
{

L̃ = L̃′ : b(σ, x)′L̃b(σ, x) = 0
}

(9)

where α ∈ Rq is a free vector with length equal to the

dimension of L given by

q =
1

2
m(m+ 1)−

(r + n+ 2d)!

(r + n)!(2d)!
. (10)

The representation (7) is known as Gram matrix method of

w(σ, x) with respect to b(σ, x).

Definition 2: For w(σ, x) polynomial, the notation

w(σ, x) ∈ S(σ, x) (11)

means that w(σ, x) is a sum of squares of polynomials, i.e.,

there exist polynomials wi(σ, x), i = 1, . . . , k, such that

w(σ, x) =
k
∑

i=1

wi(σ, x)
2. (12)

�

The representation (7) is useful to establish if w(σ, x) ∈
S(σ, x). Indeed, w(σ, x) ∈ S(σ, x) if and only if the LMI

W (τ) + L(α) ≥ 0 (13)

is feasible for some α. Moreover, if τ depends affine linearly

on some auxiliary variables, the above condition is still an LMI

in such auxiliary variables and in α since W (τ) is linear. The

reader is refereed to [10], [17] for more information about

sums of squares of polynomials, and to [4], [6] for algorithms

for the construction of the Gram matrices and for formulas

about the complexity.

III. THE APPROACH: PART I

In this section we address the solution of Problem 1. Let

us start by introducing Definitions 3 and 4 which have the

following goals:

• for Definition 3, to obtain an equivalent representation of

a polynomial over an affine set through a homogeneous

polynomial;

• for Definition 4, to impose that a polynomial is nonneg-

ative over the simplex. This is done by imposing that the

homogeneous polynomial obtained in Definition 3 for a

suitable choice of the affine set is a sum of squares of

polynomials after a suitable change of variables.

The first definition that needs to be introduced is as follows.

Definition 3: For a polynomial w1 : Rr × Rn → R and a

vector w2 ∈ Rr, let us define

Φσ(w1(σ, x), w2) =
∑

a∈Nr, 1′
r
a≤dσ

τa(x)σ
a(w′

2σ)
dσ−1′

r
a (14)

where dσ = degσ(w1(σ, x)) and τa(x) is the coefficient of

the monomial σa in w1(σ, x), i.e.,

w1(σ, x) =
∑

a∈Nr, 1′
r
a≤dσ

τa(x)σ
a. (15)

�

Definition 3 introduces the function Φσ(w1(σ, x), w2)
which returns a polynomial homogeneous in σ that coincides

with w1(σ, x) on the affine set {σ : w′
2σ = 1}. Hence,

the function Φσ(w1(σ, x), w2) can be regarded as a projection

operator, in particular, projecting a polynomial onto an affine

set. This function has been exploited in different areas, see,

e.g., [6] and references therein. Similarly, Φx(w1(σ, x), w3),
w3 ∈ Rn, returns a polynomial homogeneous in x that

coincides with w1(σ, x) on the affine set {x : w′
3x = 1}.

In order to clarify Definition 3, let us introduce the

following simple numerical example.
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Example 0. Consider σ = (σ1, σ2)
′, x = (x1, x2)

′,

w1(σ, x) = 2x41 +2x22−σ1x
4
1 +σ2x

2
2 and w2 = (1, 1)′. Then,

from Definition 3,

Φσ(w1(σ, x), w2) = (σ1 + 2σ2)x
4
1 + (2σ1 + 3σ2)x

2
2

which is obtained by multiplying each monomial times a

power of σ1 + σ2 in order to achieve a polynomial that is

homogeneous in σ. �

The second definition that needs to be introduced is as

follows.

Definition 4: For w : Rr×Rn → R polynomial, the notation

w(σ, x) ∈ S+(σ, x) (16)

stands for

w#(σ2, x) ∈ S(σ, x) (17)

where

w#(σ, x) = Φσ (w(σ, x), 1r) . (18)

�

Definition 4 introduces the set S+(σ, x). A polynomial

w(σ, x) belongs to this set if the polynomial obtained from

w#(σ, x) by squaring all entries of σ is a sum of squares of

polynomials, where w#(σ, x) is the homogeneous polynomial

in σ that coincides with w(σ, x) on the simplex and has

the same degree of w(σ, x). It should be mentioned that the

parametrization of nonnegative polynomials over the simplex

through the use of squared variables has been exploited in the

context of robust analysis, see [6] and references therein.

Similarly to Definition 3, let us clarify Definition 4 through

the following simple numerical example.

Example 0 (continued). For the polynomial w1(σ, x) pre-

viously seen, the condition w1(σ, x) ∈ S+(σ, x) introduced in

Definition 4 stands for

(σ2
1 + 2σ2

2)x
4
1 + (2σ2

1 + 3σ2
2)x

2
2 ∈ S(σ, x),

whose left hand side is obtained by replacing σ1 and σ2 with

σ2
1 and σ2

2 in the polynomial Φσ(w1(σ, x), w2). �

Hereafter we formulate the first result of the paper, which

provides a sufficient LMI condition for Problem 1. In order to

reduce the conservatism of the existing methods [3], [8], [18],

or to not require a priori information about the trajectories of

the system (1) as done by the existing method [16], this result

searches for a structured polynomial Lyapunov function in

the state and in the uncertainty, whose sublevel sets are used

to embed the admissible impulse responses of the system (1)

and to evaluate their peak. To this aim, the projection operator

introduced in Definition 3, the set of polynomials introduced

in Definition 4, and sums of squares of polynomials are

exploited to build the LMI condition.

Theorem 1: Let us define γ = c−1 and ξ = 1. The condition

(4) holds if there exist ε > 0 and a polynomial v : Rr×R
n →

R of the form

v(σ, x) =
∑

a∈N
r, 1′

r
a=dσ

b∈N
n, 2≤1′

n
b≤2dx

ζa,b σ
axb, (19)

with dσ, dx ∈ N and ζa,b ∈ R, such that

ej,k(σ), f(σ), g(σ, x), hj,k(σ, x) ∈ S+(σ, x)

∀j = 0, 1 ∀k = 1, . . . , p
(20)

where






























ej,k(σ) = (1′rσ)
dσ + (−1)jγC(k)(σ)B(σ) − ε

f(σ) = ξ − v(σ, γB(σ))

g(σ, x) = − (∇xv(σ, x))
′
A(σ)x

hj,k(σ, x) = Φx
(

v(σ, x) − ξ, (−1)jC(k)(σ)′
)

−ε‖x‖2dx2 .
(21)

Before introducing the proof of this theorem, let us observe

that the structure of the Lyapunov function sought in Theorem

1 is defined by (19), which imposes that the Lyapunov function

is polynomial with monomials of a special form. In particular,

these monomials are homogeneous of degree dσ in the vector

variable σ, and are locally quadratic (i.e., without constants

or linear terms) of degree up to 2dx in the vector variable x.

This structure is novel and generalizes the structures exploited

by the existing methods in the literature that consider only

common quadratic Lyapunov functions or common polynomial

Lyapunov functions by letting these functions depend on the

uncertainty through homogeneous polynomials of arbitrary

degree.

Also, let us observe that the condition (20) is equivalent

to a system of LMIs because the polynomials ej,k(σ), f(σ),
g(σ, x) and hj,k(σ, x) depend affine linearly on the decision

variables ε and v(σ, x), and because the condition that any of

these polynomials is in the set S+(σ, x) can be equivalently

reformulated as an LMI in these decision variables and aux-

iliary variables as explained in Section II-B. The nonnegative

integers dσ and dx define the degree and structure of v(σ, x),
and have to be chosen a priori in order to build the system of

LMIs.

Lastly, as it will become clear in the proof, let us observe

that:

• ej,k(σ) is introduced to impose the desired bound at time

t = 0;

• f(σ) is introduced to impose that the admissible impulse

responses start inside the considered sublevel set;

• g(σ, x) is introduced to impose that the considered sub-

level set is invariant;

• hj,k(σ, x) is introduced to impose that the considered

sublevel set does not intersect the states with the desired

bound.

Proof. Suppose that (19)–(21) hold. Since ej,k(σ) ∈
S+(σ, x), it follows from Definition 4 that

e
#
j,k(σ

2) ≥ 0
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where e
#
j,k(σ) = Φσ (ej,k(σ), 1r). Since Definition 3 im-

plies that e
#
j,k(σ) = ej,k(σ) for all σ ∈ S, and since

{

σ2 : σ ∈ Rr
}

⊇ S, it follows that

ej,k(σ) ≥ 0 ∀σ ∈ S.

Similarly, f(σ), g(σ, x) and hj,k(σ, x) are nonnegative for all

σ ∈ S and for all x ∈ Rn. Taking into account that ej,k(σ) ≥ 0
for all σ ∈ S and for all j = 0, 1 and k = 1, . . . , p, the

positivity of ε implies that

‖C(σ)γB(σ)‖∞ < 1 ∀σ ∈ S.

Let us observe that, for any admissible impulse response, the

input u of the system (1) is the Dirac distribution, which has

the effect of moving the initial condition at t = 0 from the

origin to B(σ). This implies that

‖Y (0)‖∞ <
1

γ
∀σ ∈ S.

Since g(σ, x) ≥ 0 for all σ ∈ S and for all x ∈ Rn, it follows

that the time derivative of v(σ, x) is nonpositive for u = 0.

Hence, any trajectory of the system (1) that starts in the set

V(σ) = {x ∈ R
n : v(σ, x) ≤ ξ}

remains in V(σ) for u = 0. Moreover, the condition that

f(σ) ≥ 0 for all σ ∈ S implies that

γB(σ) ∈ V(σ) ∀σ ∈ S.

Since hj,k(σ, x) ≥ 0 for all σ ∈ S and for all x ∈ Rn, from

Definition 3 it follows that

v(σ, x) − ξ − ε‖x‖2dx2 ≥ 0 ∀x ∈ Tj,k(σ) ∀σ ∈ S

where

Tj,k(σ) =
{

x ∈ R
n : C(k)(σ)x = (−1)j

}

.

Due to the positivity of ε, and since Tj,k(σ) does not contain

the origin, the previous condition implies that

v(σ, x) > ξ ∀x ∈ Tj,k(σ) ∀σ ∈ S.

Since the above condition holds for all j = 0, 1 and k =
1, . . . , p, it follows that

V(σ) ∩ T (σ) = ∅

where

T (σ) = {x ∈ R
n : ‖C(σ)x‖∞ = 1} .

Therefore, the trajectory of the system (1) starting at γB(σ)
does not intersect the set of states for which the output has

infinity norm equal to 1. Since γ = c−1, and since the system

(1) is linear, it follows that the trajectory starting at B(σ) does

not intersect the set of states for which the output has infinity

norm equal to c. Taking into account that this trajectory is

continuous and starts at a point for which the output has

infinity norm less than c, it can be concluded that (4) holds. �

IV. THE APPROACH: PART II

This section analyzes the nonconservatism of the proposed

approach, shows how upper bounds of the sought peak can be

obtained by solving SDPs, and proposes a tightness certificate

for these upper bounds.

A. Nonconservatism Analysis

Here we investigate the nonconservatism of the sufficient

condition provided by Theorem 1. The main steps for doing

this are two: firstly, to show the existence of a suitable

structured polynomial Lyapunov function in the state and

in the uncertainty, whose level sets embeds the admissible

impulse responses; secondly, to show that the condition of

Theorem 1 holds with such a Lyapunov function after a

suitable degree augmentation.

Theorem 2: Suppose that A(σ) is Hurwitz for all σ ∈ S.

The condition (4) holds only if (19)–(21) hold for some ε > 0
and v(σ, x). Moreover, v(σ, x) can be chosen homogeneous

also in x.

Proof. Suppose that (4) holds. From (21) define w1(σ, x) =
ej,k(σ), w2(σ, x) = f(σ), w3(σ, x) = g(σ, x) and w4(σ, x) =
hj,k(σ, x), which depend on v(σ, x) and ε. Since A(σ) is Hur-

witz for all σ ∈ S, from [8] it follows that there exist ṽ(σ, x),
homogeneous polynomial in x with coefficients depending on

σ, and ε > 0, such that, for all i = 1, . . . , 4, j = 0, 1 and

k = 1, . . . , p,

w̃i(σ, x) − ε‖x‖
deg

x
(w̃i(σ,x))

2 ∈ S(ψ, x) ∀σ ∈ S

where ψ is an auxiliary variable introduced for considering in

the condition above polynomials that are sums of squares of

polynomials in x (but not necessarily in σ), and

w̃i(σ, x) = wi(σ, x)|v(σ,x)=ṽ(σ,x),dσ=0 .

Since w̃i(σ, x) is affine linear in ṽ(σ, x) and since

w̃i(σ, x)|ṽ(σ,x)=ṽ(ψ,x) is polynomial in σ, it follows that the

condition above can be also satisfied with ṽ(σ, x) homo-

geneous polynomial in x with coefficients that are contin-

uous functions of σ. Moreover, since S is compact, these

coefficients can be approximated arbitrarily well over S by

polynomial functions. This implies that there exists a function

v̂(σ, x), homogeneous polynomial in x and polynomial in σ,

such that

ŵi(σ, x) − ε‖x‖
deg

x
(ŵi(σ,x))

2 ∈ S(ψ, x) ∀σ ∈ S

where

ŵi(σ, x) = wi(σ, x)|v(σ,x)=v̂(σ,x),dσ=deg
σ
(v̂(σ,x)) .

Hence, ŵi(σ, x) admits a positive definite Gram matrix Ŵi(σ)
for all σ ∈ S, i.e.,

{

ŵi(σ, x) = bi(x)
′Ŵi(σ)bi(x)

Ŵi(σ) > 0 ∀σ ∈ S

for some vector polynomial bi(x). Let us observe that Ŵi(σ)
is a matrix polynomial. Since 1′rσ = 1 for all σ ∈ S
and since 1′rσ is linear, it follows that v̂(σ, x) = v̄(σ, x),
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ŵi(σ, x) = w̄i(σ, x) and Ŵi(σ) = W̄i(σ) where v̄(σ, x),
w̄i(σ, x) and W̄i(σ) are homogeneous also in σ. For l ∈ N

define the Lyapunov function

v(σ, x) = (1′rσ)
lv̂(σ, x).

It follows that wi(σ, x) obtained from (21) with this v(σ, x)
satisfies

ui(σ, x) = Φσ(wi(σ, x), 1r)

= bi(x)
′(1′rσ)

lW̄i(σ)bi(x).

Define δi = degσ(wi(σ, x)). From Polya’s theorem (see, e.g.,

[13]), it follows that there exists l such that

(1′rσ)
lW̄i(σ) =

∑

a∈Nr , 1′
r
a=δi

Ui,aσ
a

where each Ui,a is a positive definite matrix. For such value

of l, it follows that

ui(σ
2, x) = bi(x)

′





∑

a∈Nr, 1′
r
a=δi

Ui,aσ
2a



 bi(x)

= bi(x)
′
(

b̃i(σ) ⊗ I
)′

Ui

(

b̃i(σ) ⊗ I
)

bi(x)

where b̃i(σ) is a vector of monomials in σ and Ui is a block

diagonal matrix whose diagonal blocks are the matrices Ui,a.

This means that Ui > 0 and, hence,

ui(σ
2, x) =

∥

∥

∥U
1/2
i

(

b̃i(σ)⊗ I
)

bi(x)
∥

∥

∥

2

2
,

i.e., ui(σ
2, x) ∈ S(σ, x). Hence, ui(σ, x) ∈ S+(σ, x), and

wi(σ, x) ∈ S+(σ, x). From the definition of wi(σ, x), it is

concluded that (19)–(21) hold. �

Theorem 2 states that the sufficient condition provided by

Theorem 1 is also necessary under the assumption that A(σ)
is Hurwitz for all σ ∈ S. This is a mild assumption because, if

not satisfied, the admissible impulse responses of the system

(1) can be unbounded.

B. Upper Bounds

Here we address the solution of Problem 2. Let us start by

observing that a simple way to obtain an upper bound of ρ in

(5) consists of adopting a bisection search where the condition

of Theorem 1 is tested at each iteration for a fixed value of c.

Indeed, bisection can be adopted since the infeasibility of this

condition for c = c1 implies the infeasibility for all c = c2
with c2 < c1.

However, a bisection search may require to test the con-

dition of Theorem 1 several times, which is undesirable, and

which is also a problem of our previous work [8]. In [8],

it is explained that the bisection search can be avoided by

restricting the common polynomial Lyapunov function to be

homogeneous. This can be done also for Theorem 1, in particu-

lar, by restricting the structured polynomial Lyapunov function

to be homogeneous in the state. Although this restriction is

not conservative as explained in [8], the degree required for

establishing a sought upper bound may be quite larger, hence

leading to a significant increment of the computational burden.

Hereafter we propose an alternative way to obtain an upper

bound of ρ in (5), which requires neither a bisection search

nor restricting v(σ, x) to be homogeneous in x. The idea

consists of letting γ in Theorem 1 be a decision variable,

and removing the nonlinearity originated by the product of

the Lyapunov function with γ by introducing an auxiliary

variable and a polynomial in σ and this auxiliary variable.

Theorem 3: Let γ0 = 0 and ̺0 = ∞. For i = 1, 2, . . . one

has

ρ ≤ ̺i ≤ ̺i−1 (22)

where

̺i = γ−1
i (23)

and γi is the solution of the SDP

γi = sup
γ>0,ξ>0,ε>0,v(σ,x)

γ

s.t.



















(19) holds

q3(σ, z) ∈ S+(σ, z)

ej,k(σ), g(σ, x), hj,k(σ, x) ∈ S+(σ, x)

∀j = 0, 1 ∀k = 1, . . . , p

(24)

where z ∈ R is an auxiliary quantity, and











q1(σ, z) = ξ − v(σ, zB(σ))

q2(z) = (z − γ)(z − γi−1)(1 + z2)dx−1

q3(σ, z) = q1(σ, z) + q2(z).

(25)

Proof. Suppose that the constraints in (24) hold. Let us observe

that

q3(σ, γ) = q3(σ, γi−1) = f(σ)

where f(σ) is defined as in (21). Hence, the second constraint

in (24) implies that

ξ − v(σ, γB(σ)), ξ − v(σ, γi−1B(σ)) ∈ S+(σ, x).

Therefore, (19)–(21) hold, either as it is or by replacing γ

with γi−1. This implies that γi ≥ γi−1 and, hence, ̺i ≤ ̺i−1.

Moreover, by repeating the proof of Theorem 1 and taking

into account that ξ > 0, it follows that ρ ≤ ̺i. �

C. Tightness Certificate

Once that an upper bound of ρ in (5) has been found, a

question arises: is this upper bound tight? This problem is par-

ticularly important for uncertain systems because attempting

to establish tightness of the found upper bound by simulating

an impulse response does require a candidate worst-case value

of the uncertainty. In existing methods such as our previous

work [8], this problem is not addressed.

Hereafter, we propose a necessary and sufficient condition

for establishing if a computed upper bound ̺i is tight. Let

f∗(σ) and e∗j,k(σ) be q3(σ, γi) and ej,k(σ) evaluated for the

optimal values of the decision variables in (24). Also, let F ∗
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and E∗
j,k be the positive semidefinite matrices used to establish

that f∗(σ), e∗j,k(σ) ∈ S+(σ, x), i.e.,

{

f#(σ2) = b0(σ)
′F ∗b0(σ)

e
#
j,k(σ

2) = b(σ)′E∗
j,kb(σ)

(26)

where b0(σ) and b(σ) are homogeneous and
{

f#(σ) = Φσ(f
∗(σ), 1r)

e
#
j,k(σ) = Φσ(e

∗
j,k(σ), 1r).

(27)

The following theorem is based on the determination of

candidates for the worst-case values of the uncertainty, i.e.,

values of σ for which the peak of the impulse response is

the computed upper bound. These candidates are obtained by

investigating the zeros over S of f∗(σ) and e∗j,k(σ), whose

presence would imply that the sublevel set of the found

Lyapunov function may not be shrunk, or the bound imposed

at time t = 0 may not be reduced. Taking into account

the expressions in (26)–(27) where F ∗ and E∗
j,k are positive

semidefinite, it follows that the set of sought candidates can

be obtained by looking for values of σ such that b0(σ
1/2) and

b(σ1/2) are in the null spaces of F ∗ and E∗
j,k. Hence, the set

of candidates is

S∗ = S∗
0 ∪

⋃

j=0,1, k=1,...,p

S∗
j,k (28)

where
{

S∗
0 =

{

w2‖w‖−2
2 : w ∈ W0 \ {0r}

}

S∗
j,k =

{

w2‖w‖−2
2 : w ∈ Wj,k \ {0r}

} (29)

and W0 and Wj,k are the linear sets

{

W0 = {w ∈ Rr : b0(w) ∈ ker(F ∗)}

Wj,k =
{

w ∈ Rr : b(w) ∈ ker(E∗
j,k)

} (30)

which can be determined through pivoting operations as

explained in [6] and references therein.

Theorem 4: Suppose that A(σ) is Hurwitz for all σ ∈ S.

Assume without loss of generality that ̺i > 0. Then,

̺i = ρ (31)

if and only if there exists σ∗ ∈ S∗ such that

̺i = sup
t≥0

‖Y (t)|σ=σ∗‖∞ . (32)

Proof. Let us start by supposing that (31) holds. From (5),

there exists σ∗ ∈ S be such that (32) holds because S is

compact, the supremum is over the variable t, and Y (t) is

bounded due to the fact that A(σ) is Hurwitz for all σ ∈ S.

Let us suppose for contradiction that σ∗ 6∈ S∗. This implies

that f∗(σ∗) and e∗j,k(σ
∗) are positive. Indeed, let us consider

f∗(σ∗). It follows that:

f∗(σ∗) = f#(σ∗) = b0((σ
∗)1/2)′F ∗b0((σ

∗)1/2) > 0

since F ∗ ≥ 0 and b0((σ
∗)1/2) 6∈ ker(F ∗) due to the fact that

σ∗ 6∈ S∗ and b0(σ) is homogeneous. The same proof can be

used to show that e∗j,k(σ
∗) > 0. Therefore, there exists γ̃ such

that 









ρ−1 < γ̃

0 ≤ ξ − v(σ∗, γ̃B(σ∗))

0 < 1 + (−1)j γ̃C(k)(σ∗)B(σ∗).

But this is impossible since it would imply that ̺i < ρ.

Next, let us suppose that there exists σ∗ ∈ S∗ such that

(32) holds. Then, (31) directly follows from (5). �

V. THE APPROACH: PART III

This section analyzes the generality of the proposed ap-

proach, explaining how it can be extended to deal with non-

strictly proper systems, multi-input systems, uncertainty over

convex bounded polytopes, response to LTI signals, time-

varying uncertainties, and rational dependence on the uncer-

tainty.

A. Non-Strictly Proper Systems

Let us start by saying that there is no loss of generality in

considering that the system (1) is strictly proper (i.e., y(t) does

not depend directly on u(t)). Indeed, the impulse response of

a system that is proper but not strictly proper is unbounded.

B. Multi-Input Systems

The system (1) is a single-input system. Multi-input systems

can be considered by repeating Problems 1 and 2 for each input

channel. Specifically, suppose that the differential equation in

the system (1) is now replaced by

ẋ(t) = A(σ)x(t) + B̃(σ)ũ(t) (33)

where ũ(t) ∈ Rq̃ is the input and B̃(σ) is a matrix polynomial.

In this case, the impulse response is defined for a chosen input

channel i, where i = 1, . . . , q̃, by defining B(σ) and u(t) in

the system (1) as the i-th column of B̃(σ) and the i-th entry

of ũ(t). Hence, the results presented in Sections III–IV are

applied for computing the peak of the impulse response with

respect to the i-th input channel.

C. Uncertainty over Convex Bounded Polytopes

The set of admissible uncertainties in the system (1) is

the simplex. Convex bounded polytopes can be analogously

considered by introducing a parametrization through a linear

function over the simplex. Specifically, the system










ẋ(t) = Ã(σ̃)x(t) + B̃(σ̃)u(t)

y(t) = C̃(σ̃)x(t)

σ̃ ∈ conv{v1, . . . , vq}

(34)

where σ̃ ∈ Rr̃ is the time-invariant uncertainty constrained in

the convex bounded polytope defined by the convex hull of

the vectors v1, . . . , vq ∈ Rr̃, and Ã(σ̃), B̃(σ̃) and C̃(σ̃) are

matrix polynomials, can be transformed into the system (1)

by introducing the transformation

σ̃ =
(

v1, . . . , vq
)

σ (35)
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where σ ∈ Rr with r = q. See also [12] among the first works

to introduce convex bounded polytopes for the description of

uncertain systems. It is useful to notice that convex bounded

polytopes include multi-interval sets as a special case.

D. Response to LTI Signals

In the previous sections we have considered the impulse re-

sponse of the system (1). Other responses can be considered, in

particular, responses to LTI signals. Specifically, the response

of the system (1) for the initial condition x(0) = x0 to a signal

obtainable as the impulse response of the LTI system
{

˙̃x(t) = Ãx̃(t) + B̃ũ

ỹ(t) = C̃x̃(t) + D̃ũ
(36)

where x̃(t) ∈ Rñ, ũ(t) ∈ R and ỹ(t) ∈ R, for some Ã, B̃, C̃

and D̃, can be addressed by suitably redefining A(σ), B(σ)
and C(σ) through an augmentation that includes the signal

model (36) into the system (1).

E. Time-Varying Uncertainty

The uncertainty considered in the system (1) is time-

invariant. In this section we explain how the proposed

approach can be extended to address the case of time-varying

uncertainty. In particular, we consider the following two cases.

1) Case 1 (Arbitrarily Time-Varying Uncertainty): Here we

suppose that the variation rate of the uncertainty σ in the

system (1) is unbounded. In this case, Theorems 1 and 3 can

be used with dσ = 0, which corresponds to the case of a

polynomial v(σ, x) common to all uncertainties. Indeed, since

σ̇ is unbounded, v(σ, x) has to be necessary independent on

σ.

For dσ = 0, the proposed approach contains the results

in our previous work [8] as special cases. In particular, the

sufficient condition provided by Theorem 1 is also necessary

whenever σ is arbitrarily time-varying under the assumption

that A(σ) is robustly asymptotically stable for all σ ∈ S.

2) Case 2 (Bounded-Rate Time-Varying Uncertainty): Here

we suppose that a bound on the variation rate of the uncertainty

σ in the system (1) is available. Such a bound is considered

through the constraint adopted in the literature

σ̇ ∈ conv{D1, . . . ,Dh} (37)

where D1, . . . , Dh ∈ R
r are such that

1′hDl = 0 ∀l = 1, . . . , h. (38)

In this case, Theorems 1 and 3 can be used by replacing the

constraint g(σ, x) ∈ S+(σ, x) with

gl(σ, x) ∈ S+(σ, x) ∀l = 1, . . . , h (39)

where

gl(σ, x) = − (∇xv(σ, x))
′
A(σ)x − (∇σv(σ, x))

′
Dl. (40)

F. Rational Dependence

The system (1) is affected polynomially by the uncertainty.

In this section we explain how the proposed approach can

be extended to address the case of rational dependence on the

uncertainty. In particular, we consider the more general system










ẋ(t) = Ã(σ)x(t) + B̃(σ)u(t)

y(t) = C̃(σ)x(t)

σ ∈ S

(41)

where Ã(σ), B̃(σ) and C̃(σ) are matrix rational functions

expressed as

Ã(σ) =
A(σ)

φA(σ)
, B̃(σ) =

B(σ)

φB(σ)
, C̃(σ) =

C(σ)

φC(σ)
(42)

where A(σ), B(σ) and C(σ) are matrix polynomials, and

φA(σ), φB(σ) and φC(σ) are polynomials. In the sequel,

C̃(i)(σ) will denote the i-th row of C̃(σ).
First of all, it is assumed that the system (41) is well-

posed, i.e., the polynomials φA(σ), φB(σ) and φC(σ) do not

vanish over S. Since S is connected and polynomials are

continuous functions, it can be assumed that these polynomials

are positive over S without loss of generality.

Hence, Theorem 1 can be used by replacing ej,k(σ), f(σ)
and hj,k(σ, x) with the following expressions:



















































ej,k(σ) = φB(σ)φC(σ)
(

(1′rσ)
dσ+

+(−1)jγC̃(k)(σ)B̃(σ) − ε
)

f(σ) = φB(σ)
2dx

(

ξ − v(σ, γB̃(σ))
)

hj,k(σ, x) = φC(σ)
2dx

(

Φx(v(σ, x) − ξ, . . .

(−1)jC̃(k)(σ)′)− ε‖x‖2dx2

)

.

(43)

This change ensures that the newly defined ej,k(σ), f(σ) and

hj,k(σ, x) are polynomials, and their nonnegativity is equiv-

alent to the nonnegativity of the original ej,k(σ), f(σ) and

hj,k(σ, x) that would have been obtained by simply replacing

A(σ), B(σ) and C(σ) with Ã(σ), B̃(σ) and C̃(σ). Analogous

changes can be made for the other theorems presented in the

paper and are omitted for brevity.

VI. EXAMPLES

In this section we present some numerical examples. The

toolbox SeDuMi [19] for Matlab is adopted to solve the SDPs.

The LMIs for constraining polynomials in the set S+(σ, x)
are built as explained in Section II-B using algorithms for the

construction of the Gram matrices similar to those reported

in [6] and simplified taking into account the symmetries as

explained in [4]. For brevity, the examples show only the

upper bound in (23) for i = 1, i.e., ̺1, which is obtained by

solving the SDP (24). The computational burden is measured

by the size of the problem solved by SeDuMi (denoted by

SeDuMi size), which consists of the triplet [eqs,order,dim].

For the SDP (24), eqs is the number of scalar LMI variables

plus one.
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Fig. 1. Example 1: impulse response trajectories (black solid lines), level sets
v(σ, x) = 1 (red dotted lines) and ‖C(σ)x‖∞ = ρ (blue dash-dot line) for
some values of σ ∈ S . The thick lines denote the found worst-case value of
the uncertainty σ = σ∗ .

The proposed approach is compared with the existing meth-

ods discussed in Section I as follows:

• for [3], [18], the LMIs are repeated at the vertices of the

uncertainty set;

• for [8], by letting the uncertainty be arbitrarily time-

varying;

• for [16], by using the code available at github.com/

jarmill/peak based on Gloptipoly3 [14] and

YALMIP [15]. The initial condition and objective used

are B(σ)‖B(σ)‖−1
2 and (C(σ)x‖B(σ)‖2)2 (the term

‖B(σ)‖2 is used to remove the presence of σ from the

initial condition in Examples 2 and 3). The region of

interest is chosen as [−2, 2]n in the state space and [0, 20]
in the time domain.

A. Example 1

In the first example we consider a second-order system

where the uncertainty affects one matrix only, specifically






ẋ(t) =

(

−1 1− θ

−2 θ − 1

)

x(t) +

(

1
1

)

u(t)

y(t) =
(

2 −1
)

x(t)

where θ ∈ [0, 1] is the uncertainty. This system can be

rewritten in the form of (1) by defining r = 2 and σ2 = θ.

Table I shows the upper bound ̺1 given by the SDP (24).

It turns out that ̺1 for dσ = 1 and dx = 2 is tight, i.e., ρ =
1.586. This can be verified by exploiting Theorem 4. Indeed,

we find S∗
0 = {(1, 0)′}, and (32) holds with σ∗ = (1, 0)′

(which corresponds to θ = 0).

Figure 1 shows the trajectories for some admissible impulse

responses, together with the level sets v(σ, x) = 1 and

‖C(σ)x‖∞ = ρ.

Let us observe that the sought peak is obtained even if

A(σ) is not Hurwitz for all σ ∈ S in this example. Indeed,

for σ = (0, 1)′ (which corresponds to θ = 1), the eigenvalues

dσ dx ̺1 SeDuMi size [eqs,order,dim]

0 1 ∞ [7, 17, 40]
0 2 2.219 [25, 26, 157]
1 1 1.674 [14, 25, 103]
1 2 1.586 [68,40,406]

TABLE I
EXAMPLE 1: UPPER BOUND ̺1 GIVEN BY THE SDP (24).

dσ dx ̺1 SeDuMi size [eqs,order,dim]

0 1 ∞ [19, 27, 146]
0 2 ∞ [145, 60, 923]
1 1 0.666 [30, 31, 205]
1 2 0.603 [204, 68, 1206]
2 1 0.510 [45, 35, 284]
2 2 0.460 [272,76,1566]

TABLE II
EXAMPLE 2: UPPER BOUND ̺1 GIVEN BY THE SDP (24).

of A(σ) are −1 and 0. The fact that A(σ) is not Hurwitz for

all σ ∈ S can be also seen from Figure 1, which shows a

trajectory that does not reach the origin and ends at the point

(0,−1)′.

For comparison, we also test some existing LMI methods:

• [3], [18] are infeasible;

• [8] provides, for common polynomial Lyapunov func-

tions of degree 2, 4, 6, the conservative upper bounds

∞, 2.015, 1.679;

• [16] provides the correct value of ρ by using or-

der 2 LMI relaxations, for which the SeDuMi size is

[eqs,order,dim]=[314,159,2686].

B. Example 2

In the second example we consider a second-order system

where the uncertainty affects all matrices, specifically






ẋ(t) =

(

0 , 1
10θ − 12 , −1

)

x(t) +

(

0
0.6 + 1.4θ

)

u(t)

y(t) =
(

2− 1.6θ , 0
)

x(t)

where θ ∈ [0, 1] is the uncertainty. This system can be

rewritten in the form of (1) by defining r = 2 and σ2 = θ.

Table II shows the upper bound ̺1 given by the SDP (24). It

turns out that ̺1 for dσ = dx = 2 is tight, i.e., ρ = 0.460. This

can be verified by exploiting Theorem 4. Indeed, we find S∗
0 =

{(0.377, 0.623)′}, and (32) holds with σ∗ = (0.377, 0.623)′

(which corresponds to θ = 0.623).

Figure 2 shows the trajectories for some admissible

impulse responses, together with the level sets v(σ, x) = ξ

and ‖C(σ)x‖∞ = ρ.

For comparison, we also test the existing LMI methods

discussed in Section I:

• [3], [18] are infeasible;

• [8] is infeasible for any degree of the Lyapunov function;

• [16] provides the correct value of ρ by using or-

der 3 LMI relaxations, for which the SeDuMi size is

[eqs,order,dim]=[788,368,12937].
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Fig. 2. Example 2: impulse response trajectories (black solid lines), level sets
v(σ, x) = ξ (red dotted lines) and ‖C(σ)x‖∞ = ρ (blue dash-dot line) for
some values of σ ∈ S . The thick lines denote the found worst-case value of
the uncertainty σ = σ∗ .

R1 L1

R2

L2

Cvin(t) vout(t)

i1(t)

i2(t)

Fig. 3. Example 3: electric circuit with variable inductor.

C. Example 3

In the third example we consider a physical system in order

to show a real application, specifically, the electric circuit in

Figure 3 which is a third-order system. Let i1(t) and i2(t) be

the currents in the inductors L1 and L2, and let vc(t) be the

voltage of the capacitor C. By choosing the state variables

{

x1(t) = i1(t), x2(t) = i2(t), x3(t) = vc(t)

u(t) = vin(t), y(t) = vout(t),

dσ dx ̺1 SeDuMi size [eqs,order,dim]

0 1 2.272 [14, 23, 107]
0 2 1.970 [116, 50, 740]
1 1 1.221 [33, 34, 253]
1 2 0.950 [273,74,1617]

TABLE III
EXAMPLE 3, SCENARIO 1: UPPER BOUND ̺1 GIVEN BY THE SDP (24).

this circuit can be modelled as






































ẋ(t)=















−
R1

L1
, 0 , −

1

L1

0 , −
R2

L2
,

1

L2

1

C
, −

1

C
, 0















x(t) +









1

L1

0

0









u(t)

y(t)=
(

0 , 0 , 1
)

x(t).

We consider the case where R1, R2, L2 and C are constants,

in particular given by the plausible values

R1 = 1, R2 = 2, L2 = 0.7, C = 0.5,

and L1 is a variable, in particular according to

L1 ∈ [0.5, 2].

This model can be rewritten in the form of (1) by defining

r = 2 and L−1
1 = 2 − 1.5σ2. We consider two scenarios as

follows.

1) Scenario 1 (Time-Invariant Uncertainty): Here we sup-

pose that the uncertainty is time-invariant. Table III shows

the upper bound ̺1 given by the SDP (24). It turns out that

̺1 found for dσ = 1 and dx = 2 is tight, i.e., ρ = 0.950.

This can be verified by exploiting Theorem 4. Indeed, we

find S∗
0 = {(1, 0)′}, and (32) holds with σ∗ = (1, 0)′ (which

corresponds to L1 = 0.5).

Figure 4 shows the trajectories for some admissible impulse

responses, together with the level sets v(σ∗, x) = ξ and

‖C(σ∗)x‖∞ = ρ.

For comparison, we also test the existing LMI methods

discussed in Section I:

• [3], [18] provide the upper bound 2.272;

• [8] provides the conservative upper bound 1.970 via a

sequence of LMI feasibility tests in a bisection search

using Lyapunov functions of degree 4;

• [16] provides the correct value of ρ by using or-

der 2 LMI relaxations, for which the SeDuMi size is

[eqs,order,dim]=[657,255,6440].

2) Scenario 2 (Bounded-Rate Time-Varying Uncertainty):

Here we suppose that the uncertainty is time-varying with a

bounded variation rate according to

|L̇1| ≤ ν

where ν ∈ [0, 10]. This situation can be considered as

explained in Section V-E2, in particular by defining

D1 =
8ν

3

(

1
−1

)

, D2 = −D1.
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Fig. 4. Example 3, Scenario 1: impulse response trajectories (black solid
lines), level sets v(σ∗ , x) = ξ (red dotted lines) and ‖C(σ∗)x‖∞ = ρ (blue
dash-dot line) for some values of σ ∈ S . The thick lines denote the found
worst-case value of the uncertainty σ = σ∗ .
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Fig. 5. Example 3, Scenario 2: upper bound ̺1 in (23) obtained for some
values of ν and some degrees of v(σ, x): dσ = 0 (red line), dσ = 1 (green
line), dσ = 2 (blue line), dx = 1 (dashed line) and dx = 2 (solid line).

Figure 5 shows the upper bound ̺1 in (23) obtained for some

values of ν and some degrees of v(σ, x).

D. Example 4

Lastly, we consider a higher-order system, specifically the

fourth-order system






















ẋ(t) =









0 , 1 , 0 , 0
−2− 10θ ,−1 , 1 , 0

0 , 0 , 0 , 1
−2 , 0 , 8θ − 9 ,−1









x(t) +









0
1
0
1









u(t)

y(t) =
(

1 , 0 , 2 , 0
)

x(t)

where θ ∈ [0, 1] is the uncertainty. This system can represent

two second-order systems connected in closed-loop, and can

dσ dx ̺1 SeDuMi size [eqs,order,dim]

0 1 ∞ [14, 23, 117]
0 2 ∞ [190, 56, 1186]
1 1 1.304 [40, 37, 331]
1 2 0.985 [532, 93, 3135]
2 1 1.303 [102, 51, 685]
2 2 0.978 [1083,130,6103]

TABLE IV
EXAMPLE 4: UPPER BOUND ̺1 GIVEN BY THE SDP (24).

be rewritten in the form of (1) by defining r = 2 and σ2 = θ.

Table IV shows the upper bound ̺1 given by the SDP (24).

It turns out that ̺1 for dσ = dx = 2 is tight, i.e., ρ = 0.978.

This can be verified by exploiting Theorem 4. Indeed, we

find S∗
0 = {(0, 1)′}, and (32) holds with σ∗ = (0, 1)′ (which

corresponds to θ = 1).

For comparison, we also test the existing LMI methods

discussed in Section I:

• [3], [18] are infeasible;

• [8] is infeasible for any degree of the Lyapunov function;

• [16] provides the correct value of ρ by using or-

der 3 LMI relaxations, for which the SeDuMi size is

[eqs,order,dim]=[4388,1151,104904].

VII. CONCLUSIONS

This paper has proposed a novel LMI-based approach for

determining the peak of the response to an LTI signal of a

linear system whose system matrices are rational functions of

an uncertainty vector constrained into a convex bounded poly-

tope. The considered uncertainty can be time-variant, bounded-

rate time-varying or arbitrarily time-varying. As shown by

some numerical examples, the proposed approach may have

significant advantages with respect to the existing LMI meth-

ods in terms of conservatism or computational burden.

Specifically, the proposed approach can be significantly less

conservative than the existing LMI methods [3], [8], [18]

based on the use of common quadratic Lyapunov functions or

common polynomial Lyapunov functions, which are unable to

provide the correct peak in all numerical examples presented

in Section VI. Clearly, this advantage comes with a larger

computational burden, which is expectable since the proposed

approach exploits more sophisticated Lyapunov functions than

these methods, in particular, polynomial Lyapunov functions

polynomially parameterized by the uncertainty. Moreover, with

respect to the existing LMI method [16] based on occupation

measures, the proposed approach can present significant reduc-

tions of the computational burden as shown in all numerical

examples presented in Section VI, where the computational

burden (measured in terms of SeDuMi size) is, at least, halved.

The proposed approach can be applied to all real devices

that can be modeled as a continuous-time linear system

affected by structured uncertainty, which can be found in many

areas of science and engineering. Besides the electric circuit

presented in Example 3 in Section VI (where the peak of

interest is on the output voltage), other possible examples are

DC motors (where the peak of interest is on the rotor angle),

loudspeakers (where the peak of interest is on the cone shift),
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read/write heads for disk drives (where the peak of interest

is on the head position), etc. The reader is referred to books

such as [11] for collections of such examples.

Several directions can be considered for future work. One of

these directions is the derivation of upper bounds on the degree

of the structured polynomial Lyapunov function in the state

and in the uncertainty required to achieve nonconservatism.

Another direction could consider the extension of the proposed

approach for determining the peak-to-peak gain of uncertain

systems. Also, it would be interesting to address the design of

feedback controllers for ensuring desired upper bounds on the

peak of the response of closed-loop uncertain systems. Lastly,

one could explore the possibility of extending the proposed

approach to the determination of the peak of the response of

uncertain 2D systems.
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