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Transducer arrays are a versatile tool for the contactless manipulation of spherical Rayleigh ob-
jects. Here, we propose an analytical model for stable levitation of axisymmetric Mie objects through
directly engineering the desired radiation force and torque. Acoustic contributions from multiple
transducers are superimposed through the translation addition theorem, and the non-spherical ob-
jects are mapped into a sphere using the conformal transformation technique so that the scattered
field can be asymptotically obtained. Then, we give the acoustic radiation force and torque applied
to a rigid non-spherical Mie object, which can be reconstructed as a series of quasi-explicit func-
tions of the transducer (amplitude and phase) parameters. Through specifying the desired radiation
force and torque exerted on the objects, a system of nonlinear equations is produced, which could
be iteratively solved to retrieve appropriate transducer parameters that stabilize the object in an
equilibrium position. Practically, we demonstrate several examples in stable levitation of a sphere,
a spheroid, and a disk with an averaged radius of a = 7 mm (size parameter of ka ~ 5.18) above
a transducer array. The absolute acoustic pressure field surrounding the objects simulated by the
finite element method is illustrated to verify the trapping results. The developed analytical model
provides an alternative approach to retrieve the transducer parameters for levitating macroscopic
non-spherical rigid objects, which may help design the systematic dynamical manipulation of Mie
particles.

I. INTRODUCTION

Time-averaged acoustic radiation force and torque on the levitated objects because of the momentum and angular
momentum transfers that arises from acoustic scattering and absorbing effects of the wave-particle interaction have
been derived from the integrations of Westervelt and Maidanik stresses [1-4]. Along this line, through the expression
of stress tensors in the form of the partial wave expansion series, many works have established theoretical frameworks
to evaluate the radiation force and torque exerted on a spherical particle in a viscous [5, 6] and an inviscid fluid [7—
10]. The theoretical methods were later extended to solve the interaction radiation force and torque among multiple
spherical objects [11-14].

For other non-spherical objects, the radial distance from the mass center of the object to the locus of any point
on the object surface is not a constant. The boundary conditions should be properly described so that the scattered
field and the resultant radiation force and torque could be evaluated. Generally, a surface shape function is thus
introduced to define the boundary surface of certain geometries, such as spheroid [15] and corrugated circular [16].
Additionally, the radiation effects on the prolate spheroid could be naturally estimated by introducing a spheroidal
coordinate system to exactly map the spheroidal surface [17]. The T-matrix method is also commonly applied to
investigate the acoustic scattering from non-spherical objects [18], thereby the radiation torque [19]. Alternatively, a
promising method to analytically formulate the radiation force and torque is the use of the conformal transformation
technique. An asymmetric geometry is mapped to a sphere in the mapping coordinate system [20], where the locus of
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FIG. 1. The direct and design (retrieval) problems. For the direct problems, transducer parameters are given, and the radiation
force and torque on a non-spherical particle can be evaluated [22, 29]. For the design (or retrieval) problems, the radiation
force and torque are given in advance, while the transducer parameters that result in the desired radiation force and torque
are unknown.

all points corresponding to the new radial coordinate being a constant exactly coincides with the scatterer surface. As
a result, the boundary conditions can be conveniently enforced, and the radiation force and torque are asymptotically
obtainable [21, 22].

Under the dominance of the radiation force and torque, ones can handle objects in a contamination-free and label-
free manner [23]. Ultrasound transducer array is widely used in containerless transportation [24, 25] or contactless
rotation [26] of micro-objects in the air. Typically, these acoustic tweezers or levitators handle objects with a radius
much smaller than the acoustic wavelength. This corresponds to the so-called Rayleigh scattering regime (i.e., the
long-wave limit). In this limitation, the scattering contribution is relatively small, and the acoustic radiation potential
can be expressed in terms of the external driving fields from transducers. The key to dynamically manipulating these
micro-objects is to provide an effective retrieval algorithm [24, 27, 28] that can efficiently retrieve the transducer
parameters (amplitude and phase) to obtain the desired spatial potential distribution.

Beyond the Rayleigh regime, the radiation force and torque heavily depend on the shape of the object, since their
geometric asymmetry strongly affects the scattering properties [21]. In other words, the geometric features become
a potential degree of freedom to tune acoustophoretic processes. The additional radiation force and torque due to
geometric asymmetry move the objects and constantly change their positions and orientations. Through embedding
the translation and rotation transformations to dynamically evaluate the radiation force and torque on the objects,
the time-varying trajectories of the non-spherical objects can be predicted [22], and a graphical user interface (GUI)
software is provided to implement prediction once the transducer parameters are given [29].

However, another significant problem is how to retrieve the transducer parameters that exert the desired radiation
force and torque on a non-spherical Mie object (Fig. 1). The radiation efficiency here depends not only on the
external driving field of the transducer array, but also on the geometric features of the object. Undoubtedly, a
systematic approach is demanded to retrieve the transducer parameters, bringing the desired radiation force and
torque on the non-spherical objects beyond the Rayleigh range. Recently, a numerical boundary hologram approach
was proposed to provide the desired radiation force and torque on a free-shaped object by designing and optimizing
the sound field around the object [30]. While they did not analytically and directly related the transducer parameters
to the radiation force and torque.

Here, with the aid of the translation addition theorem [31, 32], we rearrange the radiation force and torque into a set
of nonlinear partial-wave expressions, which are the quasi-explicit functions of the transducer (phase and amplitude)
parameters. By specifying a set of desired radiation force and torque, a corresponding system of nonlinear equations
with unknown transducer parameters is presented. Therefore, the problem of obtaining the desired radiation force
and torque is simplified to find a feasible solution that fulfills the system of nonlinear equations. Finally, several
cases of stable trapping of the non-spherical Mie objects above the transducer array are presented to demonstrate the
validity of the partial-wave-based retrieval method.

II. TRANSLATION POTENTIAL FIELD OF A TRANSDUCER ARRAY

With reference to Fig. 1, the time-harmonic acoustic waves generated by an ultrasound transducer array interact
with an axisymmetric particle that levitates in an inviscid fluid with ¢y the speed of sound. Each transducer is
regarded as a circular radiator, and its wave function can be approximated by the time-harmonic far-field expression
of a circular piston vibration source [33]. Here, as illustrated in Fig. 2, the pressure amplitude field generated from



FIG. 2. Geometric description of a particle-transducer system and its positional relationship. A reference coordinate system
(Oq) is established in terms of the levitated particle, and the center of mass of the irregular particle is set to coincide with
the origin of the reference coordinate system. A transformation is applied to translate the wave function from the transducer
systems (coordinates with subscript 't’) to their corresponding particle systems with distance vector d;. The probe (g-th)
system and the source (j-th) system can be related by a position vector 799 which enables the acoustic potential information
of any source system(s) to be expressed on the probe system with the help of the translation addition theorem.

the g-th transducer in terms of its reference coordinate system (Oy) is
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where 7 is the observation position vector, and cft is the distance vector between the center of the probe transducer
and the mass center of the levitated particle, used to transform the wave function from the transducer system to
the particle system. Symbol /(-) means the cosine angle of the corresponding vector therein, and power parameter

Py = %kd%o (unit: N m~!). Function j;(-) represents the Bessel function of the first kind. It can be found that
the transducer is characterized by its diameter d and complex amplitude of the radial velocity 0.

For simplicity, the incident and scattered waves are commonly described in terms, respectively, of the velocity
potential amplitudes dex (or gzgex(ﬁ) and o (or (;ASSC(F)), as functions of a position vector 7. These velocity potential
amplitude functions satisfy the Helmholtz wave equation (V2 + k;Q) (ﬁ = 0, with é = éex + ésc. The hat symbol ~

represents the complex amplitude of the corresponding variable, and k = % is the wavenumber with w the angular

—iwt §5 omitted. Without loss of generality, we assume that all

1.

frequency. For simplicity, the time dependence e
transducers have the same diameter d, while operating under different ultrasound transducer parameters A;e
(amplitude A; and phase a; of the ultrasound transducer excitation signal), i = 1,2, -, Ny with the total number of
transducers N;.

With respect to the probe (g-th) transducer, its potential amplitude field ééfins (or Berans (#9))) in terms of the g-th
coordinates depends on the transducer parameters A,e"“e and the observation position vector A9 = (r(q), 6@, gp(‘”)
with the radial distance (@), polar angle (2, and azimuthal angle ©(9). The potential amplitude function could be

expanded into a partial-wave series [34], as

qggg;ns = Aqei‘aq Z anmJ:ln(q)’ (2)
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where a,,, are the beam-shape coefficients, which can be determined by inverting the partial wave series through

the orthogonality relation of the spherical harmonics [as given later in Eq. (6)], and 9 = G (@)Y, (9D (D),
Jn(kr(@) is the spherical Bessel function of order n at a position (@ and Y;*(§(9), p(9)) is the spherical harmonic

N n
function of n-th order and m-th degree at the angular position (8@, 0(9)). Abbreviation 3. = 3. > |, where N is
n,m n=0m=—n
the truncation number for the summation series. Additionally, as illustrated in Fig. 2, the potential amplitude function
from the j-th transducer described in the j-th coordinates can be translated and consistently formulated by the g-th
coordinates with the aid of the translation addition theorem [14, 22, 32] and vector relationship of ) = 79 4 70



in which the relative position vector of these two transducers 779 is given.

Dttans = Aje™ Z G )
A Zau Jmia 3)

where anm Za Sﬁ’,:n(l)(kf’(j@), defined as the translation beam-shape coefficients of the j-th transducer.

S,‘f,’ﬁl(l)(kf(” ) is the separation transform matrix of the first kind [32]. Note that if j = q, ald), = > av St (1)(0) =
o
Gy -
The total velocity potential amplitude from a whole transducer array can be obtained by a summation of the
contributions from all transducers:

(dex Z (btrans - Z [ ]nm'];n(q)’ (4)
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where the equivalent beam-shape coefficients [a]pm = > Aiel'o‘ia,(f,)n. And the corresponding scattering potential
i=1

amplitude in the far-field can be expressed in terms of a partial wave series as:

QBSC = anm[a]an;n(q)v (5)

n,m

where s,.,, the scalar scattering coefficients, are determined by the acoustic properties of the object and the sur-
rounding fluid, as well as the geometric features of the levitated object [refer to Egs. (7) and (8)].

III. EXPANSION COEFFICIENTS

The acoustic pressure amplitude function generated from a circular radiator in the corresponding particle coordinate

system follows Eq. (1), and it can be connected to its velocity potential amplitude field by étrans(F) = "; (:]). The

beam-shape coefficients defined in Eq. (2) may be numerically evaluated through the orthogonality properties of the
spherical harmonics:
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where R = (R, 0, ) specifies a spherical space with a radius of R that contains the scatterer, not the sound sources.
The superscript symbol -* means taking conjugation of the corresponding variable.

On the other hand, the scaled scattering coefficients defined in Eq. (5) will be determined by applying appropriate
boundary conditions to the fluid-particle interface [21, 22]. For Dirichlet (sound-soft) and Neumann (sound-hard)
boundary conditions, the scaled scattering coefficients are solved, respectively, by the following matrices
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Here, the structural functions I‘"/ m" and AZ/’T”/, and their partial derivatives along the radial coordinate, u, under the
mapping system, F:; 7 and A7 ;™ are given in Eqs. (A4) and (A5) of Appendix A. A detailed derivation of the above
matrices is given in Appendlx B of our previous work [22], where the conformal transformation approach is applied

to map the axisymmetric geometries in physical space to a sphere in mapped space, denoted as a quasi-spherical



coordinate system with u, w, and v, respectively, for the radial, polar angular, and azimuthal angular coordinates. In
this way, the separation of variables can be employed to solve the corresponding Helmholtz wave equation subjecting
to the spherical boundary conditions in the mapping coordinate system [21]. Note that these structural functions
contain the geometric features of the non-spherical objects during the mapping process, and thus the scalar scattering
coefficients inherit these geometric asymmetric features through the matrix (7) or (8). Note that merely sound-hard
or sound-soft materials are considered in this study. It can be conveniently extended to calculate the scalar scattering
coefficients for the compressible objects (with Cauchy boundary condition) satisfying that the pressure and particle
velocity of the exterior and interior surfaces of the scatterer are equal.

IV. ACOUSTIC RADIATION FORCE AND TORQUE

The acoustic radiation force and torque are caused by the transfer of, respectively, the time-averaged momentum
flux and angular momentum flux to the object [2, 3]. By integrating these time-averaged fluxes projected onto the
normal vector over the surface of the geometry, the radiation force and torque exerted on an axisymmetric irregular
object can be asymptotically obtained under the Cartesian coordinates [21, 22], as
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where operators Re{-} and Im{ } mean taking the real and imaginary parts of the expression, respectively. The
weighting coefficients A, B, C*, D) E™, F)* and GJ are given in Eq. (B2) of Appendix B.

In Egs. (9) and (10), the existence of real and imaginary operators brings additional complexity to describe
the relationship between the transducer parameters and the radiation force and torque. To eliminate the real and
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imaginary operators, we first decompose the expansion coefficients as their complex expressions by agm)n = a(z) +i-

and Sp;m = Opm + 1+ €um. Then, the combination coefficients can be described as
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where T() = a%}n Onm ,6’ m€nm and nnm = ﬁg}nanm + aﬁj}nenm Then, with the help of Eq. (12), further
considering the definition of the equivalent beam-shape coefficients [a],m = Zt Ajeli agf,)ﬂ and the relationship of
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Through inserting Eq. (13) into Egs. (9) and (10), we obtain expressions for the radiation force and torque, which



directly depend on the transducer parameters without involving real and imaginary operators, as:
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where abbreviations ij2:1 = Z; ]gl and a;; = (; — @ ), and the characteristic coefficients Ml(;i)’ NI(;;% Ml(;;)7 Nl(;;)’

Ml(pig), NI(,Z), M:(FZ), N:(Fii), Méjj), N:(Fi;), Méfg), and N:Efg) are listed in Eq. (B1) of Appendix B.

V. LYAPUNOV STABILITY CONDITIONS

To discuss the trapping stability, the Lyapunov stability theorem [35] is applied. We here consider a single object
that is trapped at a potential equilibrium position. Considering that the axisymmetric objects tend to tune their
orientations (by the additional radiation torque due to geometric asymmetry) and remain stable when their symmetry
of axis is parallel or perpendicular to the direction of wave propagation [21], only the positional stability is analyzed.
When all the forces exerted on the object balance and the viscous damping from the medium can be ignored, the
equation of motion becomes

d2AF S

where m represents the mass of the objects, and Ar is the disturbance of the object from its equilibrium position. In
the Lyapunov sense, the stability is fully governed by the eigenvalues VF , which should be non-positive real numbers
[30] for stable trapping. In this way, the minor fluctuations will gradually dissipate, thus maintaining the trapping
stability. Here, the stability along the x-, the y-, and the z-axes are discussed:

OF;
0i

<0;i=uw,y,z, (18)

where F; means the radiation force along the i-axis, referred to Eq. (15).

VI. SYSTEM OF NONLINEAR EQUATIONS FOR RETRIEVED TRANSDUCER PARAMETERS

One can specify the desired radiation force, F = (Fy,z, Fs 4y, Fs »), and radiation torque, T, = (Ts,2, Ts,y, Ts,») in Eqgs.
(15) and (16), and then the transducer parameters may be retrieved by solving the system of nonlinear equations.



Generally, the governing system becomes
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Note that there are six independent equations and three stability conditions presented in Eq. (19), while the number
of the unknown variables is up to 2 x Ny (NNV; amplitude parameter and Ny phase parameters). To solve the non-
square system (of the first six equations), a well-established Levenberg-Marquardt algorithm [36, 37] is applied. There
are numerous feasible solutions, and these solutions are significantly sensitive to the initial values of the transducer
parameters. The last three inequalities are used to find stable solutions from all the feasible results. Furthermore,
the above system can also be designed as an optimization problem: find the amplitude and phase distributions by
minimizing the stability conditions while maintaining the force and torque balance. This optimization problem is
solvable using the BFGS algorithm [26, 30].

It should be emphasized that the characteristic coefficients in Eq. (B1) are directly dependent on the beam-shape

coefficients, @, and the scalar scattering coefficients, s, [since Rm (i) and Ip, o u(” ) depend on a%)n, a,%) , and Spm

through Eq. (12), and a', or a%) is a function of aynm through Eq. (3)]. From Eq. (6), it can be found that ay,, are

independent of the transducer parameters. It can be further proven that for the spherical objects, scalar scattering
coefficients s, are reduced to s,, and are not dependent on the properties of the incident wave, as given in Eq. (7)
of [38] and Eq. (21) of [14] for rigid and compressible objects, and Eq. (30) of [39] for viscoelastic objects. Hence, for
the sphere, s, are not dependent on the transducer parameters, equation (19) is an explicit system in terms of the
transducer parameters. In this way, the transducer parameters to create the desired radiation force and torque on an
object could be directly obtained by solving Eq. (19) in terms of the unknown transducer parameters. Unfortunately,
for a general axisymmetric geometry, sy, are nonlinearly related to [a],.,, by matrix (7) or (8), while [a]n, involve
the contributions from the whole transducer array. As a result, s,,, are functions of the transducer parameters, and
Eq. (19) is never an explicit system in terms of the transducer parameters.

Considering that s,,,, are related to the transducer parameters for the non-spherical objects, we employ an iterative
algorithm to dynamically update Snm- The flowchart is summarized in Fig. 3. To engineer the desired radiation force
and torque (denoted as F, and T) on a levitated object, we need to initialize the inputting transducer parameters
(amplitude A; and phase &; ), used to determine the equivalent beam-shape coefficients, [a},,, and the scalar scattering
coefficients, s,,, for the current iterative step. Then, the characteristic coefficients can be obtained to establish the
system of nonlinear equations (Eq. (19)), which is used to solve the retrieved transducer parameters (amplitude A;
and phase &;). The retrieved radiation force and torque (F and T) are next evaluated by Eqs. (9) and (10) using
A; and &;. Finally, quantify the deviations between the desired and the retrieved data to determine if the iterative
process is complete:

bl
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(20)



Desired radiation force Equivalent beam-shape Characteristic Retrieval of the Retrieved force Errors between the
and torque: ﬁs; ’fS, coefficients and the scalar  coefficients in Eq. (B1) transducer and torque by retrieved results
.) scattering coefficients parameter by Egs. (9) and (10)  between two adjacent
//S M;if), N}gif)‘ M;iyj) solving Eq. (19)  based on 4; and &; steps in Eq. (20)
it | Cae) - Crr ) (|
e Mﬂ),Nﬁ),M%’,) vt : err(a;, &;)

Initial Values‘(_)t: the A ) N;;{)'M;Z)'N;?) err < Eg
transducer parameters: T (Convergence)
A a. (i=1,-,Ny) err = By

{AL’ A {Ai < A
a; < a;. a; « &.

FIG. 3. Flowchart of iteration for transducer parameters to desirably engineer the acoustic radiation force and torque on a non-
spherical object. Iteratively adjustment of the transducer parameters: at each iterative step, a series of expansion coefficients
are firstly calculated based on the transducer parameters retrieved in the previous step (or initial transducer parameters), and
these coefficients are used to solve the transducer parameters of the current step. The newly retrieved transducer parameters
are then employed to evaluate the radiation force and torque directly. Finally, the iterative errors are calculated to determine
if the iteration is convergent.
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FIG. 4. (a) Schematic diagram of the sphere-transducer system. (b) Theoretical (solid lines) and numerical calculations
(symbols) of the radiation force exerted on the sound-hard sphere, as a function of distance vector dy = (dn, 0, dy). The radial
velocity of transducers is set to 99 = 1.5 m/s, and the amplitude and phase parameters are 1 and 0 rad, respectively.

where £ is a relaxation factor. Here, when err is less than a threshold, said Ey = 0.5% for £ = 1, the iterative
process is convergent; otherwise, we replace the inputting transducer parameters with the newly retrieved transducer
parameters for the next iteration.

VII. ACOUSTIC TRAPS: ENGINEERING THE RADIATION FORCE AND TORQUE
A. Model preparation and validation

We would like to minimize the transducers used in later analysis to save computational resources. Therefore, the
sensitivity of the radiation force and geometric position of a transducer is discussed.

A sphere with a radius of ¢ = 2 mm is placed above a transducer with a diameter of d = 10 mm. The distance vector
dy = (dy, 0,dy), where vertical and horizontal distances are d, and dy,, respectively, as illustrated in Fig. 4(a). Here,
the transducer works at amplitude parameter A = 1 and phase parameter « = 0 rad. With the increase of distances
d, and/or dy, the total radiation force F' exerted on the sphere decreases, as shown in Fig. 4(b). The radiation force
is evaluated using Eq. (9) [solid lines in Fig. 4(b)] with the truncation number of N = 12 [21], and the codes are
open-accessed in Soundiation [29]. By contrast, the radiation force and torque based on the finite element method
(FEM) [symbols in Fig. 4(b)] are provided to validate the accuracy of Soundiation. It can be observed from Fig. 4(b)
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FIG. 5. Stable trapping of a sphere with a radius of @ = 7 mm above the center of a 5 X 5 array with a vertical distance of
dv = 50 mm. The distributions of the retrieved (a) amplitude parameters and (b) phase parameters for levitations of a sphere
by a single-sided 5 x 5 array; the detailed values are listed in Tab. 1. (c) z-axis displacement versus z-axis radiation force
applied to a sphere. (d) Relative displacement in z-axis versus the axial radiation force F applied to a sphere (dimensionless
with gravity G). Absolute acoustic pressure of field simulated by FEM on (e) zz-plane and (f) zy-plane when the array works
at the transducer parameters given in (a) and (b).

that the radiation force between our Soundiation and the FEM results are basically matched in the far-field region.
While there are some perceivable discrepancies when the distance between the object and the transducer gets smaller
(near-field region), this is because Eq. (1) holds when the object is far away from the circular radiator (far-field
region). We can find that the radiation force becomes tiny and insensitive when dj, is greater than 25 mm, so we
apply a 5 x 5 transducer array with the object levitated above its center as an example for the later demonstrations.

It should be emphasized that the computational performance of Soundiation has been fully discussed in [21, 22],
which presents superior computational accuracy, high geometric adaptivity, and good robustness to various geometric
features, while much less computational cost compared with the FEM using commercial software, such as COMSOL
Multiphysics. Hence, in the discussion and analysis that follows, Soundiation is used to evaluate the radiation force

and torque (F and T) to save the computational time.

B. Retrieved transducer parameters and trapping stability

This section retrieves the transducer parameters by solving Eq. (19) following the iterative process [Fig. 3] to stably
trap the non-spherical Mie objects above a 5 x 5 transducer array. The levitated objects are placed right above the
center of the array with a distance vector of d; = (0,0,50) mm (i.e., vertical distance of dy, = 50 mm). The symmetric
axis of the object is set to coincide with the z-axis. All transducers are compactly arranged as a square array, and
these circular radiators have the same diameter of d = 10 mm and all work at a frequency of 40 kHz. The gravity of
these objects can be approximately expressed as G = %71’&3 ppg, With @ = 7 mm its averaged radius and p, = 30 kg/m?
its density (expanded polystyrene particles [24, 26]). The necessary conditions for rigid-body trapped are as follows:
(1) the external forces, which are typically gravity and the acoustic radiation force, must be balanced; and (2) the net
moment must be zero. Therefore, the non-rotational trapping of the levitated object is equivalent to the cases where
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FIG. 6. Stable trapping of a spheroid with an averaged radius of @ = 7 mm above the center of a 5 x 5 array with a vertical
distance of dy = 50 mm. The geometric feature is specified by the mapping coefficients ¢, = [a,0, a/5], referred to Appendix
A and [21, 22]. (a)-(f) The same as described in Fig. 5, but the levitated object is a spheroid.

the desired radiation force and torque are, respectively, F‘s = (0,0,G) and T; = (0,0,0). Additionally, the Lyapunov
stability conditions should be satisfied for a stable equilibrium state, which are constrained in the governing equations
[in Eq. (19)].

The retrieved amplitude and phase patterns are illustrated in sub-figures (a) and (b) of Figs. 5, 6, and 7 for the
sphere, the spheroid, and the disk, respectively. Correspondingly, the detailed retrieved data is listed in Tab. I. Both
the amplitude and phase patterns are symmetric and similar to that of a bottle trap [26]. Considering the symmetries
of the patterns and the objects, the radiation torques vanish. Here, the objects are designed to be trapped above the
array at a height of d, = 50 mm. As can be found in sub-figure (c¢) of Figs. 5, 6, and 7, when the axial distance z
increases, the axial radiation force (F) exerted on the objects becomes smaller than their gravity (G) and vice versa.
As a result, the axial restoring force remains sufficient to balance the pushing force and achieves dynamic stability
at the targeting height (or axial equilibrium position) around z/d, = 0. Similarly, to realize horizontal stability, a
restoring force should be generated against positional fluctuation. As shown in sub-figure (d) of Figs. 5, 6, and 7,
the radiation force (i.e., the restoring force) exerted on the objects against the displacement around the horizontal
equilibrium positions [satisfying the stability condition in Eq. (18)], which eventually balance and stabilize at the
targeting points. Considering the axisymmetric physics in z- and y-directions, we only analyze the motion balance in
a-direction. Sub-figures (e) and (f) of Figs. 5, 6, and 7 show a FEM simulation of the absolute acoustic pressure of
the sphere, the spheroid, and the disk levitation fields on the vertical xz-plane and horizontal zy-plane. It is apparent
that the target objects are surrounded by a higher amplitude pressure field, which remains the object levitated in a
stable equilibrium position. Note that these FEM simulations are implemented on COMSOL Multiphysics 5.5.

To check the validity of the retrieved transducer parameters (in Figs. 5, 6, and 7), one can evaluate the radiation
force and torque (F' and T') using Eqgs. (9) and (10) based on the retrieved transducer parameters, and compare
these results with the desired force and torque (Fy and Tg). A dimensionless error errgr is introduced to quantify the
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FIG. 7. Stable trapping of a disk with an averaged radius of a = 7 mm above the center of a 5 x 5 array with a vertical distance
of dy = 50 mm. The geometric feature is specified by the mapping coefficients ¢, = [a,0, —a/2,0, —a/10,0, —a/30], referred to
Appendix A and [21, 22]. (a)-(f) The same as described in Fig. 5, but the levitated object is a disk.

retrieved performance:

err(Fy, F) = ‘ﬁaﬁs
err(T,, T') =

eIrrpT = max [err F’;,ﬁ),err(fg,f)] ,

T-T.| '
z

al=

(21)

and estimated errors are listed in Tab. I. It can be seen that the errors are smaller than 5%. Generally, the number
of iterations required to reach a solution is dependent to the initial values of the amplitude and phase parameters (A;
and @;), and these processes typically converge within 10 iteration steps, and each step will take around 1 to 5 mins,
depending on the number of the transducers.

Experimentally, the acoustic delay-lines method [40] can be used to realize different distribution of the phase
parameters (c;). The different distribution of the amplitude parameters (A;) can be achieved by applying different
voltages to the transducers. The acoustic pressure amplitude field of each transducer depends on the radial velocity
0o [based on Eq. (1)], and the final pressure amplitude field is a linear product with the amplitude parameters (A4;)
[referred to Eqgs. (2) and (3)]. Hence, the operating radial velocity should be proportional to the amplitude parameters
as 0; = 09 A;. Considering that the radial velocity is a function of the applied voltages to the transducers, ¢ = f(U), it
is possible to tune the applied voltages (U) on the array to modulate the distribution of amplitude parameters. Note
that the solutions listed in Figs. 5, 6, and 7 are merely one of the numerous feasible solutions. The existence of a
solution is not always guaranteed. That is, a solution satisfying the constraints cannot be found when the conditions
are physically unfeasible, or the objects are too complex for the given array. For example, for the non-axisymmetric
Mie objects, the retrieved transducer patterns are generally non-symmetric to balance the additional radiation torque
due to the geometric asymmetry. While the asymmetry of the incident wavefield will inevitably bring an unbalanced
radiation force, thus breaking the positional balance. As a result, solutions to stably trap these objects are usually
not found.
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TABLE I. The retrieved transducer parameters and the dimensionless errors defined in Eq. (21). The radiation force and
torque are evaluated using Egs. (9) and (10). The gravity is G & 422.4 uN for all objects with an averaged radius of a = 7 mm

and a density of p, = 30 kg/m>.

Sphere Spheroid Disk
0.30 0.30 0.31 0.30 0.30 0.49 0.51 0.40 0.51 0.49 2.46 2.40 2.37 2.40 2.46
0.30 2.39 2.16 2.39 0.30 0.51 2.75 3.56 2.75 0.51 2.40 1.38 0.28 1.38 2.40
A; 0.31 2.16 0.16 2.16 0.31 0.40 3.56 0.72 3.56 0.40 2.37 0.28 0.03 0.28 2.37
0.30 2.39 2.16 2.39 0.30 0.51 2.75 3.56 2.75 0.51 2.40 1.38 0.28 1.38 2.40
0.30 0.30 0.31 0.30 0.30 0.49 0.51 0.40 0.51 0.49 2.46 2.40 2.37 2.40 2.46
—3.08 3.04 307 304 -3.087[-3.09 305 306 305 —3.097[-3.08 3.04 3.07 304 —3.08
3.04 —2.34 246 —2.34 3.04 3.05 —2.37 —2.08 —2.37 3.05 3.04 —2.78 —2.82 —2.78 3.04
a; [rad] 3.07 —246 029 —246 3.07 3.06 —2.08 —1.16 —2.08 3.06 3.07 —2.82 125 -2.82 3.7
3.04 —2.34 —246 —2.34 3.04 3.05 —2.37 —2.08 —2.37 3.05 3.04 —2.78 —2.82 —2.78 3.04
—-3.08 3.04 307 304 -3.08]L[-3.09 305 306 305 —3.09][-3.08 3.04 3.07 3.04 -—3.08
F [uN] [~0 ~0 4186 ] [~0 ~0 4158 ] [~0 ~0 4314
T [N - m] [7 3 3] %10 [435]x107" [43 —5]x107%°
errgT 0.9 % 1.6 % 2.1 %

VIII. CONCLUSION AND DISCUSSION

This work theoretically demonstrates the ability to stably trap the macroscopic axisymmetric objects at a specific
axial distance from the ultrasound transducer array. To achieve this, we obtain the acoustic scattered field around
a non-spherical object with the help of the conformal transformation approach, and further formulate the radiation
force and torque. The force and torque are then reconstructed and explicitly related to the transducer parameters,
assembled into a system of nonlinear equations. Finally, the amplitude and phase patterns are obtained iteratively
through the inverse solution of the nonlinear system to balance all the desired force and torque, while satisfying the
constraints of Lyapunov stability conditions.

Specifically, we demonstrate that the macroscopic non-spherical objects with an averaged radius of ¢ = 7 mm (or
ka =~ 5.18) can be stably trapped at a specified axial height [for sphere, spheroid, and disk in Figs. 5, 6, and 7,
respectively]. This indicates that we can apply higher-frequency waves to manipulate the non-spherical Mie objects
rather than deliberately employing lower-frequency waves to impair the scattering contributions for the Rayleigh
objects. Moreover, the desired radiation force and torque here are quasi-explicitly related to the transducer parameters
through a system of nonlinear equations [Eq. (19)] instead of indirect control by implementing the gradient of the
Gor’kov potential, which points the micro-objects to the destination locations of the potential wells [24, 26, 28].

It is worth mentioning that, throughout this paper, we assume the transducers as circular radiators [Eq. (1)], while
the transducers could be extended to any kind of sound source by simply providing the desired velocity potential
function to estimate the beam-shape coefficients in Eq. (6).

Note that the results discussed in this paper are under the premise that the symmetric axis of the levitated objects is
consistent with the direction of wave propagation [or z-axis in Fig. 2]. With the help of the concept that the rotation
of the object above the transducer array is mathematically equivalent to the inverse rotation of the array when the
object is fixed [22], the proposed method could be extended to accommodate the cases that the axisymmetric objects
are initially levitated in arbitrary orientations. While the pressure amplitude field [Eq. (1)], the relative position
vector 799 and the radiation force and torque [Egs. (15) and (16)] should be properly rotationally transformed

[according to Eqgs. (4), (7), (25), and (26) in [22]].
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Appendix A: EXPRESSIONS FOR THE STRUCTURE FUNCTIONS

The general structural functions le’m/ and Aﬁ/’m', as functions of radial coordinate u, are given as [21, 22]

T = [ (k) QP (cos§) P (cosw) sinwdw (A1)
AR = g B (k) QB (cos0) Py (cosw) sinwdw
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where Pj:?/ (+) represents the associated Legendre function of n’-th order and m’-th degree for the variable therein,

and Q' = (Z’Z:l) En;m;, The physical coordinates r and 6 are connected with the mapping coordinates u and w
by

{ \/f )* + g(u, w)” ’ (A2)

) = cos™ g(u w)/r (u,w))

and the mapping functions g(u,w) and f(u,w) are introduced to trigonometry prescribe of the body surface, in the
physical space through the mapping coefficients c,,:

(oo}

glu,w) = c_1e" cos(w) + > c,e” ™ cos(nw)

n20 . (A3)
fu,w) = c_qe¥sin(w) — > cpe” ™ sin(nw)

n=0

In the mapping coordinate system, the object surface can be delscrébed as u = ug. Hence, for the objects with
Dirichlet boundary condition in Eq. (7), the structural functions I' ™ and A’ ™ become

n',m’ n’m’
I =Ty

‘o Y R (A4)
AZ ,m AZ ,m

U=uog

Consistently, for the objects with Neumann boundary condition in Eq. (8), the partial derivatives of the structural
functions in terms of u-direction are

Fn’,m’ — 81“11"”
U ou
U=UQ (A5)
n',m’ _ OAR™
n,u - ou
u=ugp

For different geometries, the mapping coefficients ¢, are varied significantly. A method to solve the mapping
coefficients ¢,, is provided in [41]. Generally, the mapping coefficients for typical sphere, spheroid, cone, dia-
mond, and disk are, respectively, ¢, = [a,0], ¢, = [a,0,a/5], ¢, = [a,0,0,a/8], ¢, = [a,0,0,0,a/10], and ¢, =
[a,0,—a/2,0,—a/10,0, —a/30] [21, 22], where a is the averaged radius used to proportionally stretch the size of the
geometry. The first element in ¢, describes the averaged radius, and the other elements capture the information of
the non-spherical features.



Appendix B: EXPRESSIONS FOR THE COEFFICIENTS

The characteristic coefficients in terms of the i-th and j-th systems are calculated by:

Mgi) = Z (A?jllRZ’r:’rl_l(ij) _ B;njllRm,m-;-l(ij)

n,n—1
n,m
m—1 pm,m—1(ij) m—1 pm,m—1(ij)
+Cn+1 Rn,nJrl - anl Rn,nfl )
(i) _ mA1 pmamA1(ij) _ pmel pmame(i)
NFm - Z An+1 In,nJrl - anl In,nfl
n,m
m—1 ym,m—1(ij) m—1 ym,m—1(ij)
+Cn+1 In,n+1 - anl In,nfl ’
(i5) _ m+1 pm,m+1(ij) m+1 pm,m4+1(ij)
MFy - Z An—i—l Rn,7z+1 - Bn—l Rn,n—l
n,m
m—1 pm,m—1(ij) m—1 pm,m—1(ij)
_Cn+1 Rn,n—i—l + Dn—l Rn,n—l )
(i5) _ m+1 pm,m+1(i5) m~+1 pm,m+1(ij)
NFy - Z An—i—l In,n-i—l - Bn—l In,n—l
n,m
m—1 ym,m—1(ij) m—1 ym,m—1(ij)
_Cn+1 In,n+1 + Dn—l In,n—l ’
M(ij) _ Em Rm,m(ij) _pm Rm,m(ij)
Fz — n+1+tn,n+1 n—1'n,n—1 ’
n,m
(i) _ m m,m(ij) m m,m(ij)
NFz - Z En+1]n,n+1 - anlln,n—l ’

Mp =37 (G R G R ),

n,n

(
(

NG =S (Gmlm,m+1(ij) n G;mjg?hm_l(ij)>’
(

MZ("Z;) _ Z GTRZ];;:TLJFl(Z‘]) _ G«;Lm}%m,mfl(ij))7

n,m

N’Z(};) _ Z (Gmlm,m+1(ij) - G;Lml;rlr?hmfl(z]))’

n tn,n
n,m
(ij) _ m,m(ij)
My, mRn’n ,

L =
n,m

Ny =S ),

where Rp') and 177309 are defined in Eq. (12), and the weighting coefficients are

m _ _ov—m o (n+m_1)(n+m)
An G = \/(2n—1)(2n+1) ’

m_ pe—m _ (n—m+2)(n—m-+1)
By’ = =Dy _\/ 2n+1)(2n+3)

E F"—l\/(zn—l)(2n+1)’

G =\/(n—m)(n+m+1).
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