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Lane-based estimation of travel time distributions by vehicle type via 

vehicle re-identification using low-resolution video images 

Travel time estimation plays an essential role in the high-granular traffic control 

and management of urban roads with distinct lane-changing conditions among 

lanes. However, little attention has been given to the estimation of distributions of 

travel times among different lanes and different vehicle types in addition to their 

expected values. This paper proposes a new method for estimating lane-based 

travel time distributions with consideration of different vehicle types through 

matching low-resolution vehicle video images taken by conventional traffic 

surveillance cameras. The vehicle type classification is based on vehicle sizes and 

deep learning features extracted by densely connected convolutional neural 

networks, and the vehicle re-identification is conducted through a lane-based 

bipartite graph matching technique. A case study is carried out on a congested 

urban road in Hong Kong. Results show that the proposed method performs well 

in estimating the lane-level travel time distributions by vehicle type which can be 

very helpful for various lane-based and vehicle type-specific traffic management 

schemes. 

Keywords: lane-based travel time distribution, vehicle type, vehicle re-

identification, lane changing behaviors, video images 

1. Introduction 

Travel time information is a crucial requirement for many Intelligent Transportation 

Systems (ITS) applications, such as traffic monitoring, traffic management and path 

navigation. However, in real world, comprehensive and extensive travel time information 

on urban roads may not be available due to the limitation of existing traffic 

detectors/video cameras installed in urban road networks (Chen et al., 2016; Tam & Lam, 

2011). Due to site constraints especially in densely developed urban areas in Hong Kong, 

it is difficult to set up video cameras at upstream and downstream locations with the 

same/similar angles of view, as illustrated in Figure 1. Also, license plate numbers of 

vehicles cannot be identified from the low-resolution video images. 
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{Insert Figure 1 here} 

The provision of lane-based travel time information is important for urban roads, 

because different lanes of the same road segment may have distinctive traffic conditions. 

As illustrated in Figure 1, there was a long queue in Lane 4 (the far-side lane) while other 

lanes were less congested. A lane-based travel time estimation can clearly distinguish 

such differences, so that path navigation can provide more accurate travel time 

information for vehicles in different lanes. Additionally, urban roads have more frequent 

lane changes and various vehicle types. An accurate estimation of the lane-based travel 

time by vehicle type can help to better understand the lane-changing effects by vehicle 

type, which provides support for traffic management of lane-changing behaviors (e.g. 

using lane markings). Therefore, it is necessary to estimate the lane-based travel times by 

vehicle type with use of the low-resolution video images from different angles of view. 

Various methods of travel time estimation have been developed for different data 

sources (Mori et al., 2015). Owing to the wide deployment of point detectors, typically 

loop detectors, a variety of methodologies were based on speed, flow and occupancy data 

collected at fixed points (Celikoglu, 2013; Li et al., 2006). However, traffic states vary 

significantly at different locations along a congested urban road. Point detector data 

cannot represent the whole road section (Soriguera & Robusté, 2011). Therefore, travel 

time estimations based on point detector data do not perform well under congestion (Jiang 

et al., 2017). 

Probe vehicles with Global Positioning Systems (GPS) or cell phones can collect 

position and speed data at a regular time interval (e.g., 30 seconds). Using GPS data, 

vehicles can be tracked and travel time data of vehicle samples between two positions 

can be obtained. This brings more information for travel time estimation. Nevertheless, 

sparse GPS data are common in real world (Prokhorchuk et al., 2020; Sanaullah et al., 
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2016). Besides the low sampling frequency, it is usual that GPS data are only available 

from specific vehicle types such as taxis (Jenelius & Koutsopoulos, 2013) and buses (Uno 

et al., 2009). Moreover, GPS positional accuracy usually cannot reach the lane level. With 

the advancement of sensing and communication technologies, the collection of lane-level 

vehicle trajectories will become possible under connected vehicle environments. 

However, such data are not yet available on most urban roads (Lu et al., 2021). 

Interval detectors are composed of a pair of detectors deployed at two fixed 

locations. They are capable to match the same vehicle at different locations, which 

enables direct collection of travel time data between two locations. Using automatic 

vehicle identification (AVI) techniques (Tam & Lam, 2011) or Bluetooth technologies 

(Araghi et al., 2016), vehicle matching can be easy as each vehicle has a unique identifier 

(e.g., a Media Access Control address in the case of Bluetooth). However, the low 

penetration rate and limited number of fixed detectors limit the number of valid matching 

data for travel time estimation in practice. 

Vehicle re-identification (V-ReID) is another important technique of interval 

detectors to obtain travel time data (Yu et al., 2015). It is to match the same vehicle at 

different locations by vehicle features (e.g. length and type) rather than unique identifiers. 

As anonymous approaches, V-ReID techniques have been developed for various 

detectors/sensors, including loop detectors (Coifman & Cassidy, 2002), video cameras 

(Sun et al., 2004), wireless magnetic sensors (Kwong et al., 2009) and weigh-in-motion 

sensors (Basar et al., 2018). Owing to the wide deployment of video cameras in many 

cities around the world, video-based V-ReID has received much attention recently for 

real-time traffic data collection (Khan & Ullah, 2019). Visual features such as color, 

length, and type of the recorded vehicles can be captured by most video cameras (Sumalee 

et al., 2012). With a high-resolution camera and carefully set-up camera views, license 
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plate numbers (Oliveira-Neto et al., 2012) and other specific features such as annual 

inspection labels, tissue boxes, and ornaments (Bai et al., 2018) can be captured for V-

ReID. However, the use of these features in V-ReID may not be practical owing to privacy 

issues and the limited availability of high-resolution video images in reality. Besides 

travel time data collected through V-ReID, heterogeneous data fusion has also received 

attention for more accurate travel time estimation (Fu et al., 2019; Guo & Yang, 2020; Li 

et al., 2016; Shi et al., 2017). 

Recently, there has been increasing interests in not only mean travel time 

estimation but also the estimation of standard deviation and travel time distributions, 

especially for urban road networks (Lu et al., 2021; Prokhorchuk et al., 2020; Shi et al., 

2017; Zheng & Van Zuylen, 2014). Parametric models, e.g. Gaussian mixture models 

(Tang et al., 2020; Yang et al., 2017), and non-parametric models, e.g. kernel density 

estimation (Chiou et al., 2021; Duan et al., 2020), have been employed to estimate travel 

time distributions. Spatial-temporal correlations between road links have been taken into 

consideration using Markov chains (Ma et al., 2017; Tang et al., 2020) and copula models 

(Chen et al., 2018; Samara et al., 2021; Yun et al., 2019). Other advanced models, such 

as Bayesian probabilistic model (Tang et al., 2018), Generative Adversarial Network 

(Zhang et al., 2019) and Monte Carlo Simulation (Filipovska et al., 2021), have also been 

applied to the estimation of travel time distributions. 

Nevertheless, little attention has been given to estimate travel time distributions 

for different types of vehicles traveling in different lanes particularly on urban roads with 

various lane-changing maneuvers. However, it is important to distinguish travel time 

distribution by traffic lane and vehicle type for different traffic management purposes in 

practice. For example, these information can be very helpful to determine the entry and 

exit locations of bus-only lane; to change lane markings for controlling the 
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merging/diverging of different vehicles; and to estimate the traffic emission/fuel 

consumption by vehicle types etc. 

As summarized in Table 1, most of the existing methods failed to distinguish the 

differences of travel times by traffic lane on road segments. Lu et al. (2021) estimated 

lane-level travel time distributions using connected vehicles data in a simulation testbed, 

but the unavailability of real-world data limits their application. Zhang et al. (2021) 

utilized real video images to estimate lane-level travel time distributions but they did not 

distinguish their results by vehicle types. 

{Insert Table 1 here} 

To fill the aforementioned gaps, this study extends Zhang et al. (2021)’s work to 

estimate lane-level travel time distributions by vehicle type using widespread low-

resolution video images on urban roads but from different angles of view. As illustrated 

in Figure 2, the travel time is estimated via vehicle re-identification (V-ReID) using video 

images collected at selected upstream and downstream locations. The lane locations of 

vehicles are identified and vehicle types are classified based on vehicle images to enable 

travel time estimation in a more detailed and fine-grained manner. In contrast to the 

existing literature, the method of estimating travel times proposed in this study aims to 

find the actual travel times instead of the instantaneous travel times of vehicles passing 

through an urban road network. 

{Insert Figure 2 here} 

The rest of this paper is organized as follows. Section 2 briefly describes related 

work on vehicle re-identification using low-resolution video images from different angles 

of view, Section 3 introduces the proposed lane-based travel time estimation by vehicle 

type, Section 4 presents experiments for the analysis of the performance of the proposed 
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method, and Section 5 summarizes the main findings of the study and provides 

recommendations for further research. 

2. Related work  

Due to the wide deployment of video surveillance cameras in many cities, a lot of video-

based V-ReID methods have been proposed. The V-ReID is to identify each vehicle in 

upstream video images and to re-identify the same vehicle in downstream video images, 

as illustrated in Figure 2. Based on the V-ReID results, the actual travel times of all re-

identified vehicles are collected for travel time estimation. The framework of travel time 

estimation via V-ReID includes four major steps as follows. 

2.1 Step 1: Vehicle feature extraction 

For all vehicles passing through the upstream section (𝑈𝑈) and downstream section (𝐷𝐷), 

their vehicle features including vehicle color (𝐶𝐶), vehicle type (𝑇𝑇), vehicle length (𝐿𝐿), 

arrival time (𝜏𝜏) and spot speed (𝑣𝑣) are extracted using video image processing techniques 

(Sun et al., 2004; Wang et al., 2014). Each upstream vehicle 𝑖𝑖 ∈ 𝑈𝑈 is then represented 

by (𝐶𝐶𝑖𝑖 𝑈𝑈,𝑇𝑇𝑖𝑖 𝑈𝑈, 𝐿𝐿𝑖𝑖 𝑈𝑈, 𝜏𝜏𝑖𝑖 𝑈𝑈 , 𝑣𝑣𝑖𝑖 𝑈𝑈)  and each downstream vehicle 𝑗𝑗 ∈ 𝐷𝐷  is represented by 

(𝐶𝐶𝑗𝑗 
𝐷𝐷,𝑇𝑇𝑗𝑗 

𝐷𝐷 ,𝐿𝐿𝑗𝑗 
𝐷𝐷 , 𝜏𝜏𝑗𝑗 

𝐷𝐷 , 𝑣𝑣𝑗𝑗 
𝐷𝐷). 

2.2 Step 2: Construction of travel time window 

A travel time window refers to the lower bound (𝐿𝐿𝐿𝐿) and upper bound (𝑈𝑈𝑈𝑈) of expected 

travel times. In most V-ReID studies, the travel time window [𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈] has been adopted 

to determine the search space of candidate vehicle matches. The time difference between 

feasible vehicle matches (𝑖𝑖, 𝑗𝑗) should satisfy the constraint of travel time window, i.e. 

𝜏𝜏𝑗𝑗𝐷𝐷 − 𝜏𝜏𝑖𝑖𝑈𝑈 ∈ [𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈], where 𝜏𝜏𝑖𝑖𝑈𝑈 is the arrival time of vehicle 𝑖𝑖 at the upstream section 

and 𝜏𝜏𝑗𝑗𝐷𝐷 is the arrival time of vehicle 𝑗𝑗 at the downstream section. 
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The construction of travel time window is important because it affects the number 

of vehicles within the search space. If the range of travel time window is too large, too 

many candidates will reduce the possibility of finding the correct match. On the contrary, 

if the range of travel time window is too small, the correct match may be filtered out from 

the search space. Thus, appropriate travel time windows should be constructed for V-

ReID. Fixed travel time windows have been determined according to historical travel time 

distribution of study sites (Basar et al., 2018; Sumalee et al., 2012). An adaptive strategy 

was further introduced to adjust travel time windows depending on real-time traffic 

conditions (Wang et al., 2014). 

2.3 Step 3: Vehicle matching 

Within the search space, vehicle matching is to determine optimal matches between 

upstream and downstream vehicles based on their vehicle similarities. In general, the 

calculation of similarity between an upstream vehicle and a downstream vehicle can be 

classified into two categories: distance-based methods and probabilistic methods. 

Distance-based methods describe the similarities of candidate vehicle pairs for re-

identification through various distance measures of vehicle features, such as color 

features, type features, length features and deep learning features (Sun et al., 2004; Tang 

et al., 2018).  

Probabilistic methods have been proposed to address the issue of measurement 

noise of vehicle features (Kwong et al., 2009). Rather than a deterministic distance 

measure, a matching probability is calculated for two vehicles using a Bayesian model. 

In addition to the matching probability determined by distance measures from vehicle 

features, the historical or real-time estimated travel time distribution was regarded as a 

prior matching probability in determining the posterior probability to be used for V-ReID 

(Sumalee et al., 2012; Wang et al., 2014). The lane changing probability of vehicles 
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between upstream and downstream locations was also incorporated for V-ReID (Zhang 

et al., 2021). 

This vehicle matching problem is then formulated as a bipartite graph matching 

problem (Sumalee et al., 2012; Wang et al., 2014; Zhang et al., 2021). In this bipartite 

graph, the upstream and downstream vehicle sets are represented by two parts of vertices. 

The edges between two vertices refer to the similarity between two vehicles. The optimal 

matching aims to maximize overall similarities of the bipartite graph. To improve the 

accuracy of vehicle matching, vehicle platoons are re-identified for each lane under the 

assumption that vehicles seldom change lanes between upstream and downstream 

locations (Coifman & Cassidy, 2002; Sun et al., 2004). 

2.4 Step 4: Travel time estimation 

Based on the vehicle matching results, the travel time is determined by the time difference 

of matched, or re-identified, vehicles detected at selected upstream and downstream 

locations. These travel time samples are utilized for travel time estimation. 

2.5 Discussion on existing methods 

The existing methods can provide reasonable estimations of mean travel times on 

freeways. Under the assumption that vehicles seldomly change lanes in a freeway section, 

vehicle can be re-identified for each lane and thus candidate vehicle matches are 

substantially reduced. However, this assumption may not be valid for urban roads with 

frequent lane changing movements. Moreover, for urban roads, frequent lane changes and 

the mix of different vehicle types are common. As such, travel time variations are larger 

by lane and vehicle type. Thus, following the existing methods, the range of the travel 

time window for re-identification may be large, which poses challenges in V-ReID for 

travel time estimation as they increase the likeliness of incorrect matching. The high 
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similarity of different vehicles (e.g., sedans produced by the same manufacturer and taxis) 

and the difference in appearance of the same vehicle as viewed by the upstream and 

downstream cameras (with the upstream camera capturing the front of the vehicle and the 

downstream camera capturing the back) also brings challenges. Consequently, travel time 

samples resulted from the existing methods are not sufficient for lane-based estimation 

of travel time distributions by vehicle type. 

This study aims to estimate lane-level travel time distributions by vehicle type 

using widespread low-resolution video images on urban roads with different angles of 

view at the upstream and downstream locations. The key contributions of this study are 

summarized as follows. A lane-based travel time estimation framework is proposed for 

different vehicle types, which considers lane changing behaviors, to model the travel time 

distributions in different lanes for different types of vehicles. The proposed method re-

identifies vehicles more accurately by adopting a lane-based time window approach. The 

use of the lane-based time window screens out invalid vehicles more efficiently and thus 

improves the accuracy of the travel time estimation with consideration of the spatial-

temporal information of upstream and downstream locations. Travel time distributions 

and the probability of the downstream lane used by a vehicle, which are estimated from 

the vehicles’ lane changing behaviors upstream, are considered as the prior knowledge 

together with visual features (e.g., the vehicle color, length, and type) extracted from 

video images with different angles of view for calculating the matching probability. An 

optimal matching problem, which maximizes the matching probabilities, is formulated 

and solved to re-identify the vehicles. In addition, vehicle type classification is proposed 

based on vehicle sizes and deep learning features of vehicle images. 
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3. Methodology 

The proposed method simultaneously classifies vehicles into different vehicle types and 

re-identifies them by matching low-resolution video images taken at selected upstream 

and downstream locations. The proposed method for vehicle classification and re-

identification comprises five major steps; a flowchart of the proposed framework is 

shown in Figure 3. Step 1 extracts the vehicle features and information to be used in the 

classification and re-identification in the later steps. With the extracted vehicle features, 

Step 2 classifies the vehicles identified in Step 1 into different vehicle types. Step 3 

determines the lane-based travel time windows at the downstream location to serve as the 

search space for the efficient V-ReID to be carried out in Step 4. With the re-identification 

results from Step 4, the lane-based travel time distributions of different types of vehicles 

are estimated in Step 5. Details of the five steps are described in the following sub-

sections. 

{Insert Figure 3 here} 

3.1 Step 1: Vehicle feature extraction 

With the use of video image processing techniques, all of the vehicles passing through 

the upstream and downstream sections are identified (see Figure 2) and their vehicle 

visual features and mobility statuses are extracted. The extracted visual features of the 

vehicles are the vehicle color (C), vehicle type (T), and vehicle length (L) and the 

extracted mobility statuses of the vehicles are the arrival time (τ), lane location (l), spot 

speed (v), and lane changing pattern (LC). Compared to the existing methods, lane 

location (l) and lane changing pattern (LC) are also extracted for the proposed lane-based 

framework. 

The proposed methodology integrates the You Only Look Once (YOLOv3) 

algorithm for vehicle detection (Redmon & Farhadi, 2018) and the Deep Simple Online 
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and Realtime Tracking (Deep SORT) algorithm for multiple-vehicle tracking using the 

same camera view (Wojke et al., 2017). Images of the detected vehicles are extracted 

from the video and analyzed for the extraction of the visual features (Wang et al., 2014). 

The mobility statuses of each vehicle in the upstream and downstream locations are 

extracted by tracking the vehicle’s trajectory in the corresponding video using Deep 

SORT. On the basis of the above analysis carried out through image processing, a set of 

vehicles in the upstream section (𝑈𝑈) is identified, and each upstream vehicle 𝑖𝑖 (i.e., 𝑖𝑖 ∈

𝑈𝑈) is then represented by (𝐶𝐶𝑖𝑖 𝑈𝑈,𝑇𝑇𝑖𝑖 𝑈𝑈, 𝐿𝐿𝑖𝑖 𝑈𝑈 , 𝜏𝜏𝑖𝑖 𝑈𝑈 , 𝑙𝑙𝑖𝑖 𝑈𝑈, 𝑣𝑣𝑖𝑖 𝑈𝑈 , 𝐿𝐿𝐿𝐿𝑖𝑖 𝑈𝑈). Similarly, a set of vehicles in the 

downstream section (𝐷𝐷) is identified, and each downstream vehicle 𝑗𝑗 (i.e., 𝑗𝑗 ∈ 𝐷𝐷) is 

represented by (𝐶𝐶𝑗𝑗 
𝐷𝐷,𝑇𝑇𝑗𝑗 

𝐷𝐷 ,𝐿𝐿𝑗𝑗 
𝐷𝐷 , 𝜏𝜏𝑗𝑗 

𝐷𝐷 , 𝑙𝑙𝑗𝑗 
𝐷𝐷 ,𝑣𝑣𝑗𝑗 

𝐷𝐷). 

3.2 Step 2: Vehicle type classification 

In this step, template matching, which is based on the distance measures—or similarity—

of the given vehicle image and the template images of different vehicle types, is adopted 

for vehicle type classification. In this study, features extracted/learned from the vehicle 

images and vehicle length are simultaneously considered in the template matching. 

Densely Connected Convolutional Networks (DenseNet), which has shown good 

performance in computer vision (Huang et al., 2017), is adopted to extract deep learning 

features (denoted by ℱ) from the image of a detected vehicle and to compare those 

features with features extracted from the template images. The vehicle length (𝐿𝐿) is 

represented by the image height of the captured vehicle, which is normalized for different 

viewing angles of the upstream and downstream cameras (Zhang et al., 2021). 

For each vehicle type (e.g., sedans, minibuses, or trucks), multiple template images 

are included to ensure a wide variety of vehicle features (e.g., color and shape). This is 

considered to enhance the classification accuracy. Suppose that 𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥 is a template 
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image for vehicle type 𝜅𝜅  and image index 𝑥𝑥 . Then, given a vehicle image 𝐼𝐼 , the 

distance measures of this image (𝐼𝐼) and template 𝑥𝑥 of vehicle type 𝜅𝜅 (𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥) can be 

calculated. For each vehicle type 𝜅𝜅 (𝑥𝑥 = 1, . . .𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡), the distance measure of vehicle 

image 𝐼𝐼  relative to vehicle type 𝜅𝜅  is taken as an average of these 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡  template 

images. The distance measure for a deep learning feature, 𝐷𝐷ℱ(𝜅𝜅), is thus defined as 

 𝐷𝐷ℱ(𝜅𝜅) = avg
𝑥𝑥=1,...𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

��ℱ(𝐼𝐼) − ℱ�𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥��
2
� (1) 

where ℱ(𝐼𝐼) and ℱ�𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥� are respectively the deep learning features for vehicle 

image 𝐼𝐼 and template image 𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥. The distance measure of vehicle length, 𝐷𝐷𝐿𝐿(𝜅𝜅), is 

defined as 

 𝐷𝐷𝐿𝐿(𝜅𝜅) = avg
𝑥𝑥=1,...𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

��𝐿𝐿(𝐼𝐼)−𝐿𝐿�𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥�
𝐿𝐿�𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥�

�
2
� (2) 

where 𝐿𝐿(𝐼𝐼) and 𝐿𝐿�𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥� are respectively the vehicle lengths for vehicle image 𝐼𝐼 

and template image 𝑇𝑇𝑇𝑇𝑇𝑇𝜅𝜅,𝑥𝑥 . The overall distance measure, 𝐷𝐷(𝜅𝜅), is defined as the 

weighted sum of the above two distance measures 𝐷𝐷ℱ(𝜅𝜅) and 𝐷𝐷𝐿𝐿(𝜅𝜅): 

 𝐷𝐷(𝜅𝜅) = 𝐷𝐷ℱ(𝜅𝜅) ∙ (1 − 𝑤𝑤) + 𝐷𝐷𝐿𝐿(𝜅𝜅) ∙ 𝑤𝑤 (3) 

where 𝑤𝑤 is the fusion weight of the vehicle length. The number of template images 

(𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡) and the fusion weight (𝑤𝑤) are then calibrated using the training dataset. The 

objective is to find the optimal values of 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑤𝑤  such that the classification 

accuracy, 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡, is maximized. 

Using the calibrated parameters (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑤𝑤) and extracted features (ℱ and 𝐿𝐿), 

a distance measure 𝐷𝐷(𝜅𝜅) can be calculated for a given vehicle image (𝐼𝐼) relative to each 
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vehicle type 𝜅𝜅. A vehicle, which gives the vehicle image (𝐼𝐼), is then assigned to the 

vehicle type with the minimum distance measure (or maximum similarity): 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐼𝐼) = argmin
𝜅𝜅

𝐷𝐷(𝜅𝜅) (4) 

We categorize the vehicles into six types, namely sedans, taxis, vans, minibuses, 

trucks, and buses. Thus, for each vehicle image, six distance measures (i.e., 𝐷𝐷(𝜅𝜅), ∀𝜅𝜅 ∈

[1,6]) are calculated. The distance measures relative to all six vehicle types of the vehicle 

image in Table 2 are calculated using Equation (1) – (3) and given in the same table. This 

vehicle is classified as a truck as it has the minimum distance measure (0.9241) relative 

to truck templates. 

{Insert Table 2 here} 

3.3 Step 3: Construction of lane-based travel time windows 

This step constructs lane-based travel time windows, or ranges of travel time between the 

upstream and downstream sections. The constructed travel time windows help to delimit 

feasible matches between upstream and downstream vehicles. This extends the previous 

link-based travel time window construction step (Wang et al., 2014) by explicitly 

considering distinct traffic conditions in different lanes. 

For each lane 𝑙𝑙 and each time period 𝑡𝑡, a travel time window �𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡�, where 

𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡 and 𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡 are respectively the lower and upper bounds of the travel time window, 

is derived from the predicted travel time distribution 𝑇𝑇�𝑙𝑙,𝑡𝑡(𝜇𝜇�𝑙𝑙,𝑡𝑡,𝜎𝜎�𝑙𝑙,𝑡𝑡,𝜋𝜋�𝑙𝑙,𝑡𝑡), with 𝜇𝜇�𝑙𝑙,𝑡𝑡, 𝜎𝜎�𝑙𝑙,𝑡𝑡, 

and 𝜋𝜋�𝑙𝑙,𝑡𝑡  respectively being the mean, standard deviation, and type (e.g., normal or 

lognormal) of the predicted travel time for lane 𝑙𝑙 and each time period 𝑡𝑡. With the 

predicted travel time distribution (𝑇𝑇�𝑙𝑙,𝑡𝑡 ) for lane 𝑙𝑙  and period 𝑡𝑡  and the required 

confidence interval (𝛼𝛼), the corresponding travel time window �𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡� is defined 
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as �Φ𝑇𝑇�𝑙𝑙,𝑡𝑡
−1 (1−𝛼𝛼

2
),Φ𝑇𝑇�𝑙𝑙,𝑡𝑡

−1 (1+𝛼𝛼
2

)� , with Φ𝑇𝑇�𝑙𝑙,𝑡𝑡
−1 (∙)  being the inverse of the cumulative 

distribution function of 𝑇𝑇�𝑙𝑙,𝑡𝑡.  

For the predicted travel time (𝑇𝑇�𝑙𝑙,𝑡𝑡) following a normal distribution, the travel time 

window, �𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡�, is defined as 

 �𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡� = �𝜇𝜇�𝑙𝑙,𝑡𝑡 + z(1−𝛼𝛼
2

)𝜎𝜎�𝑙𝑙,𝑡𝑡,𝜇𝜇�𝑙𝑙,𝑡𝑡 + z(1+𝛼𝛼
2

)𝜎𝜎�𝑙𝑙,𝑡𝑡� (5) 

where z(∙) is the z-score at a given confidence level which can be obtained from the 

standard normal distribution table. 

Otherwise, if 𝑇𝑇�𝑙𝑙,𝑡𝑡  follows a lognormal distribution, the travel time window, 

�𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡�, is defined as 

 �𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡,𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡� = �𝑒𝑒𝜇𝜇�𝑙𝑙,𝑡𝑡
log+ z(1−𝛼𝛼2 )𝜎𝜎�𝑙𝑙,𝑡𝑡

log
, 𝑒𝑒𝜇𝜇�𝑙𝑙,𝑡𝑡

log+ z(1+𝛼𝛼2 )𝜎𝜎�𝑙𝑙,𝑡𝑡
log
� (6) 

where 𝜇𝜇�𝑙𝑙,𝑡𝑡
log and 𝜎𝜎�𝑙𝑙,𝑡𝑡

log are respectively the mean and standard deviation of the logarithm 

of 𝑇𝑇�𝑙𝑙,𝑡𝑡. 

Given the arrival time of vehicle 𝑖𝑖 in the upstream section (𝜏𝜏𝑖𝑖 𝑈𝑈), the feasible 

arrival time window for the downstream lane 𝑙𝑙  is determined as �𝜏𝜏𝑖𝑖 𝑈𝑈 + 𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡, 𝜏𝜏𝑖𝑖 𝑈𝑈 +

𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡� . Accordingly, the set of feasible matches in downstream lane 𝑙𝑙  of upstream 

vehicle 𝑖𝑖 is denoted by 𝑆𝑆𝑙𝑙(𝑖𝑖) and expressed as 

 𝑆𝑆𝑙𝑙(𝑖𝑖) = �𝑗𝑗�𝜏𝜏𝑗𝑗𝐷𝐷 ∈ [𝜏𝜏𝑖𝑖 𝑈𝑈 + 𝐿𝐿𝐿𝐿�𝑙𝑙,𝑡𝑡, 𝜏𝜏𝑖𝑖 𝑈𝑈 + 𝑈𝑈𝑈𝑈�𝑙𝑙,𝑡𝑡]� (7) 

where 𝜏𝜏𝑗𝑗𝐷𝐷 is the arrival time of vehicle 𝑗𝑗 in the downstream section. The whole set of 

feasible matches in the downstream section, 𝑆𝑆(𝑖𝑖), is obtained as the union of 𝑆𝑆𝑙𝑙(𝑖𝑖) for 

all of the lanes. 
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3.4 Step 4: Lane-based bipartite graph matching 

This step determines optimal matches between upstream and downstream vehicles using 

a lane-based bipartite graph matching technique. First, a matching probability 𝑃𝑃𝑖𝑖𝑖𝑖  is 

calculated for each feasible vehicle match (𝑖𝑖, 𝑗𝑗) within the search space 𝑆𝑆(𝑖𝑖) as defined 

by Equation (7). Adopting the Bayesian approach, the matching probability 𝑃𝑃𝑖𝑖𝑖𝑖  is 

formulated as 

 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝛿𝛿𝑖𝑖𝑖𝑖 = 1�𝑑𝑑𝑖𝑖𝑖𝑖  � = 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖|𝛿𝛿𝑖𝑖𝑖𝑖=1�𝑃𝑃�𝛿𝛿𝑖𝑖𝑖𝑖=1�
𝑃𝑃(𝑑𝑑𝑖𝑖𝑖𝑖)

 (8) 

where 𝛿𝛿𝑖𝑖𝑖𝑖 denotes whether vehicles 𝑖𝑖 and 𝑗𝑗 match; i.e., 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 indicates that vehicle 

𝑖𝑖  in the upstream section matches vehicle 𝑗𝑗 in the downstream section and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0 

indicates that the vehicles i and j do not match. 𝑑𝑑𝑖𝑖𝑖𝑖 is the dis-similarity measures of these 

two vehicles based on their visual features of color (𝐶𝐶), type (𝑇𝑇), and length (𝐿𝐿) (Wang 

et al., 2014). The calculation of 𝑃𝑃𝑖𝑖𝑖𝑖  depends on likelihood functions 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 1� 

and 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 0�  and the prior probability function 𝑃𝑃(𝛿𝛿𝑖𝑖𝑖𝑖 = 1� . The likelihood 

functions, 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 1�  and 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 0� , can be calibrated using the visual 

features, i.e. the color (𝐶𝐶), type (𝑇𝑇) and length (𝐿𝐿), of the matched vehicle pairs from the 

training dataset. Apart from the probability defined by vehicle features (𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 1� 

and 𝑃𝑃�𝑑𝑑𝑖𝑖𝑖𝑖�𝛿𝛿𝑖𝑖𝑖𝑖 = 0�), this study also considers the probability of the two vehicles (i.e., 

vehicle 𝑖𝑖 upstream and vehicle 𝑗𝑗 downstream) being the same vehicle in a spatial and 

temporal manner. The prior probability 𝑃𝑃(𝛿𝛿𝑖𝑖𝑖𝑖 = 1) is the probability that the detected 

vehicles 𝑖𝑖 and 𝑗𝑗 are the same vehicle given their lane locations and arrival time at the 

upstream (vehicle 𝑖𝑖) and downstream (vehicle 𝑗𝑗) locations. This prior probability is 

formulated by explicitly considering the lane changing behaviors of vehicles and their 

arrival time probability at the downstream location. 
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Having obtained the probabilities of each upstream vehicle matching its feasible 

matches (𝑃𝑃𝑖𝑖𝑖𝑖), the optimal matching (i.e., V-ReID) is realized by solving a maximization 

problem on the constructed bipartite graph: 

 max  ∑ ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∀𝑗𝑗∈𝐷𝐷∀𝑖𝑖∈𝑈𝑈  (9) 

 s. t.     𝛿𝛿𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖 ∈ 𝑈𝑈,∀𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) (10) 

 ∑ 𝛿𝛿𝑖𝑖𝑖𝑖∀𝑗𝑗∈𝐷𝐷 ≤ 1,∀𝑖𝑖 ∈ 𝑈𝑈 (11) 

 ∑ 𝛿𝛿𝑖𝑖𝑖𝑖∀𝑖𝑖∈𝑈𝑈 ≤ 1,∀𝑗𝑗 ∈ 𝐷𝐷 (12) 

Equation (9) is the objective of the optimization problem that aims to maximize 

the total matching probability. Equation (10) indicates the decision variables as binary 

integers. Equation (11) ensures that any upstream vehicle 𝑖𝑖 can only be matched with at 

most one downstream vehicle, whereas Equation (12) ensures that any downstream 

vehicle 𝑗𝑗 can only be matched with at most one upstream vehicle. This bipartite graph 

matching problem can be solved efficiently using a well-developed algorithm proposed 

by Galil (1986). 

3.5 Step 5: Estimation of the lane-based travel time distributions by vehicle type 

Using the V-ReID results from Step 4 (i.e., 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 or 0), travel time samples for each 

matched pair of vehicles 𝑖𝑖 and 𝑗𝑗 (𝑇𝑇𝑖𝑖𝑖𝑖) are defined as 

 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑗𝑗 
𝐷𝐷 − 𝜏𝜏𝑖𝑖 𝑈𝑈,     if 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 (13) 

Note that the above 𝑇𝑇𝑖𝑖𝑖𝑖 is one of the travel time samples for these vehicles (𝑖𝑖 and 

𝑗𝑗 at upstream and downstream locations respectively) by vehicle type, which is classified 

in Step 2. The above 𝑇𝑇𝑖𝑖𝑖𝑖 is also one of the travel time samples in a particular lane, which 
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is based on the lane location of the matched vehicle at the upstream section. Travel time 

samples are then aggregated by lane and by vehicle type to generate the corresponding 

travel time distributions. The travel time distributions reflect the variation of travel times 

for a certain vehicle type from a given lane at the upstream section to the downstream 

section. 

4. Results and discussion 

The accuracy of the proposed method for lane-based travel time estimation by vehicle 

type is examined by conducting a case study having different lane markings for different 

lanes of a congested urban road in Hong Kong. The vehicle type classification accuracy, 

vehicle re-identification accuracy, and accuracy of the estimation of travel time 

distributions, means, and standard deviations are described and discussed in the following.  

A cutting-edge existing method (Wang et al., 2014) using the same low-resolution 

video images is implemented for comparative analysis. This existing method adopted the 

same travel time window for re-identification of vehicles travelling in different lanes. 

Also, the existing method did not specifically consider appreciable differences of travel 

times in different lanes for different types of vehicles, which implied that different types 

of vehicles in different lanes have the same travel time estimation in their method. 

4.1 Test site 

The experiment of this case study is conducted on a four-lane urban road in Hong Kong 

(Chatham Road South, Westbound, Figure 4a). The lane markings of different lanes in 

this selected road segment are shown in Figure 2. It is seen that vehicles in Lane 1 are 

allowed to change lane to their right (Lane 2) in the upstream section but they are not 

allowed to change lane in the downstream section. Vehicles in Lane 2 are only allowed 

to change lane to their right (Lane 3) in the upstream section but are allowed to change 
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lane both to the left (Lane 1) and right (Lane 3) in the downstream section. Vehicles in 

Lane 3 are allowed to change lane to both their left (Lane 2) and right (Lane 4) in both 

upstream and downstream sections. Vehicles in Lane 4 are allowed to change lane to their 

left (Lane 3) in the upstream section but they are not allowed to change lane in the 

downstream section. In addition, the exit of the far-side lane (Lane 4) at the selected site 

leads to a flyover connecting to a major urban expressway for traffic traveling between 

urban areas in the east and west of Kowloon Peninsula in Hong Kong.  

Two video cameras are installed on a footbridge that spans the selected road and 

connects the Innovation Tower and Block Z building of The Hong Kong Polytechnic 

University (Figure 4b). As shown in Figure 2, one of the cameras captures the upstream 

vehicles from the front whereas the other camera captures the downstream vehicles from 

the back. 

{Insert Figure 4 here} 

In this case study, the recorded videos have a resolution of 1920 × 1080 pixels 

and a frame rate of 25 frames per second. However, the camera views at the upstream and 

downstream locations are set to capture the whole four-lane section of the selected road. 

As a result, the image size/resolution of each identified vehicle is small (around 140 × 

140 pixels). The license plate numbers of vehicles cannot be identified from these low-

resolution video images. 

The proposed method of estimating the travel time is implemented using data 

collected during a Wednesday morning peak hour (i.e., 8:00 to 9:00 a.m. on January 8, 

2020). The results of the proposed method are compared against the ground truth obtained 

from the manual labeling of vehicle types and manual matching of the same vehicles for 

all vehicles in the peak hour. The proposed method is also compared with the existing 

method (Wang et al., 2014) using the same low-resolution video images. 
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4.2 Sample size 

Manual matching and the removal of outliers (i.e., samples with a travel time longer than 

the 99.5th percentile or shorter than the 0.5th percentile) give 1996 pairs of matched 

samples within the study period. These samples are firstly classified into the six vehicle 

classes (sub-types): sedans, taxis, vans, minibuses, buses, and trucks. This classification 

is adopted in the discussion of the accuracies of vehicle type classification (sub-section 

4.3) and vehicle re-identification (sub-section 4.4). 

Table 3 shows the actual sample sizes by lane and by vehicle class. It is revealed 

that sedans have the largest proportion (52.1%) while minibuses have the smallest 

proportion (2.4%) among the six classes of vehicle. Empirical studies have found that the 

travelling speeds of small passenger cars (e.g. sedans and taxis) are distinctive from those 

of light commercial vehicles (e.g. vans and minibuses) and heavy commercial vehicles 

(e.g. buses, and trucks), while light and heavy commercial vehicles have similar travelling 

speeds (Chathoth & Asaithambi, 2018; Sil et al., 2020). The six vehicle classes are thus 

grouped into two vehicle types—small (sedans and taxis) and other (vans, minibuses, 

buses, and trucks) vehicles—for the analysis of travel time estimations in sub-sections 

4.5 to 4.7. 

{Insert Table 3 here} 

To ensure sufficient samples for an objective representation of the lane-based 

travel time distribution by vehicle type, the required sample size 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 (Ernst et al., 2014; 

Yun & Qin, 2019) is determined as 

 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 > �𝑧𝑧𝛼𝛼 2⁄ ∙𝜎𝜎 
𝜀𝜀∙𝜇𝜇

�
2
 (14) 
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where 𝑧𝑧𝛼𝛼 2⁄ = 1.645 is the z-statistic for a confidence level of 1 − 𝛼𝛼 = 90%, 𝜀𝜀 is the 

permitted error percentage of the mean and is set as 10% in this case study, 𝜇𝜇 is the mean 

travel time, and 𝜎𝜎 is the standard deviation of the mean. 

With the mean travel time (𝜇𝜇) and standard deviation of the mean (𝜎𝜎) for each 

lane and vehicle type obtained from manual matching, the required sample size by lane 

and by vehicle type is found using Equation (14). A comparison of actual and required 

sample sizes in Table 4 shows that there are sufficient samples for each vehicle type (i.e., 

small and other vehicles) in each lane. 

{Insert Table 4 here} 

4.3 Accuracy of vehicle type classification 

In this study, the accuracy of vehicle type classification (𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡) is defined by  

 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 = 𝑁𝑁𝑐𝑐𝑡𝑡

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
𝑡𝑡 × 100% (15) 

where 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  is the total number of identified vehicles and 𝑁𝑁𝑐𝑐𝑡𝑡 is the number of vehicles 

with their vehicle classes correctly classified. As discussed in sub-section 3.2, a training 

data set is used to calibrate the number of template images (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡) and the fusion weight 

(𝑤𝑤). In this experiment, it is found that 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 = 8 and 𝑤𝑤 = 0.11 give the maximum 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 in the training data set. 

With the calibrated 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑤𝑤, the proposed vehicle type classification (Step 

2) is carried out. Table 5 presents the confusion matrix of the six-vehicle-class 

classification. Each row in the table shows the distribution of estimated vehicle classes 

(resulted from Step 2) for that class of vehicle (ground truth). For example, the percentage 

3.4% in the first row of Table 5 indicates that 3.4% of sedans are wrongly classified as 

taxis when using the proposed method (Step 2). The proposed classification method is 
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generally accurate as the classification accuracies range from 78.3% to 100% for different 

vehicle classes. Among the six vehicle classes, the classifications of taxis and buses are 

completely successful (100%) as taxis are distinct from other vehicle classes by color 

(i.e., taxis are red in urban areas of Hong Kong) while buses are relatively distinct in 

terms of their size. Compared with those two vehicle classes, sedans (78.3%) and trucks 

(80.0%) have low accuracies owing to their wide ranges of size and color. When all six 

vehicle classes are grouped together, the overall accuracy for the proposed classification 

approach is 85.6%. This vehicle type classification was not considered in the existing 

method (Wang et al., 2014). 

{Insert Table 5 here} 

4.4 Vehicle re-identification accuracy 

Besides the classification accuracy, the accuracy of vehicle re-identification (vehicle 

matching) between the upstream and downstream locations is considered and analyzed. 

In this study, the vehicle re-identification accuracy (𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚) is defined by 

 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 = 𝑁𝑁𝑐𝑐𝑚𝑚

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
𝑚𝑚 −𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑚𝑚 × 100% (16) 

where 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚  is the total number of vehicles in the upstream section, 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚  is the number 

of vehicles that are not re-identified with any downstream vehicle, and 𝑁𝑁𝑐𝑐𝑚𝑚  is the 

number of vehicles that are correctly re-identified. The re-identification accuracies of the 

proposed and the existing methods are respectively provided in Tables 6a and 6b. 

Table 6a gives the accuracy of the proposed V-ReID for each of the six vehicle 

classes and each of the four traffic lanes. As expected, re-identifying the same vehicle in 

the upstream and downstream locations is more difficult than classifying the vehicles into 

correct vehicle classes. Thus, the re-identification accuracy of the proposed method 
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(Table 6a) is generally lower than the classification accuracy (Table 5). Despite the 

difficulties of V-ReID, 52.4% of vehicles are correctly re-identified, which provides 

accurate travel time data for the estimation of the travel time distribution by lane and 

vehicle type.  

The re-identification accuracy (all lanes) ranges from 42.4% to 81.2% for the six 

vehicle classes. Table 6a reveals that vehicle classes with larger size (i.e., trucks and 

buses) generally have a higher re-identification accuracy (62.5%–81.2%) than vehicle 

classes with smaller size (i.e., sedans, taxis, and vans; re-identification accuracy ranging 

42.4%–59.8%). The reason for such a difference is that larger vehicles are more distinct 

in appearance and thus have greater probability of a correct match (Equation 8). 

Minibuses, which are a type of public transportation mode in Hong Kong, have high re-

identification accuracy (70.2%) owing to their unique shape and color despite being of 

similar size to vans.  

A comparison of the V-ReID accuracy among different lanes reveals that the 

accuracy for Lane 4 is generally lower than the accuracies for the other lanes. This can 

be explained by the highly varied travel time distributions of this lane (see Figure 5a), 

which result in a larger travel time window (Equations 5 and 6). The larger travel time 

window can include more vehicles as feasible matches (Equation 7) but also increases the 

chance of incorrect matching, which lowers the re-identification accuracy. 

Compared to the proposed method, the existing method has lower V-ReID 

accuracy in general (37.3%). For deeper analysis, Table 6b provides the V-ReID accuracy 

by lane and by vehicle class, despite that the existing method neither identified vehicles’ 

lane locations nor classified vehicle types. The V-ReID accuracies are especially low for 

Lane 4, ranging from 2.1% to 27.3% for the six vehicle classes. The reason is that the 

existing method used the same travel time window for different lanes, while travel times 
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in Lane 4 are much longer than other lanes. As a result, many correct matches are not 

included by the travel time window of the existing method. 

{Insert Table 6 here} 

In general, the proposed V-ReID outperforms the existing method due to more 

accurate lane-based travel time windows. Since the proposed method explicitly considers 

differences of travel times among lanes, the travel time variations and the travel time 

windows for each lane are obviously smaller than those for all vehicles. More invalid 

vehicle matches are thus screened out by the proposed method to improve the V-ReID 

accuracies. 

4.5 Travel time distribution 

For each pair of re-identified vehicles, including both correct and incorrect matches, 

travel time samples are estimated using Equation (13). Grouping these travel time 

samples for different vehicle types and lanes, the corresponding travel time distributions 

can be estimated. As previously discussed, the six vehicle classes are grouped into two 

vehicle types (i.e., small vehicles and other vehicles) to provide sufficient samples for the 

analysis of travel times. Figure 5a shows the ground truth of travel time distributions by 

the four lanes and two vehicle types for the study period (8:00 to 9:00 a.m. on Wednesday 

January 8, 2020). Figures 5b and 5c respectively present the travel time distributions 

estimated by the proposed and existing methods. Each of the histograms shown in Figure 

5 has a bin width of 15 seconds. The figure reveals that the travel time distributions vary 

by lane and vehicle type. 

{Insert Figure 5 here} 

The ground truth of travel time distributions (Figure 5a) reveals that the travel 

times (for small vehicles and other vehicles) in Lane 1 are the least varied among the 

lanes. This low variation is due to traffic being prevented from merging into Lane 1 by 
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the lane markings between Lanes 1 and 2 in the upstream section and non-overlapping 

area (see Figure 2 and the ground truth demands from other lanes to Lane 1 in Table 10a). 

As a result, traffic in Lane 1 is less disrupted and can maintain uniform travel times. In 

Figure 5a, the ground-truth travel time distributions for Lane 3 are relatively long and 

more spread-out than those for Lane 2. This result is due to traffic in Lane 3 being allowed 

to change to Lanes 2 and 4 whereas traffic in Lane 2 is only allowed to change to Lane 3 

in the upstream section and the non-overlapping area (see lane markings in Figure 2). 

Thus, there is potentially more lane-changing traffic in Lane 3 (see ground truth demands 

from Lane 3 in Table 10a), which generally has a longer travel time than Lane 2 (see 

ground truth mean travel times in Table 9), and the traffic staying in Lane 3 has a higher 

chance of being affected by the lane-changing vehicles. As a result, travel times for Lane 

3 are longer and more varied than those for Lane 2. Additionally, as Lane 4 is relatively 

congested (see the longer and more spread-out travel time distribution in Figure 5a), it 

takes more time for vehicles to leave Lane 3 and merge into Lane 4. Thus, the impact of 

traffic merging into Lane 4 is larger than that for the other lanes and leads to a more 

spread-out travel time of Lane 3 than that of Lane 2. The ground-truth travel times of 

Lane 4 (Figure 5a) are much longer than those of the other three lanes and follow a 

different distribution. This result can be explained by the fact that the downstream of Lane 

4 is connected to a major urban expressway. Congestion on this major urban expressway 

propagates back and substantially increases the mean and variance of travel times in Lane 

4. The above comparisons and discussions of the travel time distributions of different 

lanes reveal that travel times increase and become more varied with the presence/increase 

of lane-changing traffic. In other words, the design of lane markings, which governs the 

possibilities of lane changing, affects the travel times within a section and is thus worthy 

of further investigation. 
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The Hellinger distance (HD) (Prokhorchuk et al., 2020; Yun & Qin, 2019) is 

adopted to measure the distances/dis-similarities between the estimated travel time 

distributions (Figures 5b and 5c) and the ground truth (Figure 5a): 

 𝐻𝐻𝐻𝐻 = 1
√2
�∑ ��𝑌𝑌𝚤𝚤� − �𝑌𝑌𝑖𝑖�

2
𝑛𝑛
𝑖𝑖=1  (17) 

where 𝑛𝑛 is the number of bins of the travel time histogram, 𝑖𝑖 is the index of the bin, 

and 𝑌𝑌𝚤𝚤�  and 𝑌𝑌𝑖𝑖  are respectively the probability (or relative frequency) of the true and 

estimated travel times in bin 𝑖𝑖. The value of HD ranges from 0 to 1, where HD = 0 

indicates that two distributions are the same and HD = 1 represents no similarity between 

two distributions. Therefore, the less the HD, the higher accuracy is the estimated 

distribution. Using Equation (17), the HDs of each pair of histograms for ground truth 

and estimated travel times (Figure 5) are calculated. The results of the proposed and 

existing methods are respectively shown in Tables 7a and 7b. 

Table 7a shows that the travel time distributions estimated by the proposed 

method are generally accurate, with the HDs being less than 0.189 for all vehicle types 

and lanes. The maximum distance of 0.189 occurs for other vehicles (i.e., vans, minibuses, 

buses, and trucks) traveling in Lane 3. On average, the HD by lane and by vehicle type is 

0.137 for the proposed method (the average of the first four rows of Table 7a). The HDs 

in the last row of Table 7a represent general estimation accuracy for the two vehicle types. 

The small and other vehicles respectively have HDs of 0.079 and 0.052, which reflects 

high accuracy of the estimations. 

Table 7b shows that the estimations of travel time distributions are less accurate 

by the existing method. The HD by lane and by vehicle type is averagely 0.321 (the 

average of the first four rows of Table 7b), which are 2.3 times as large as that of the 

proposed method. This can be attributed to the implicit assumption that different types of 
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vehicles in different lanes have the same travel time distribution. As shown in Figure 5c, 

the same estimations of travel time distributions are generally close to the ground truth 

for Lanes 1 and 2, with the HDs being less than 0.184. However, the estimation errors are 

larger for more congested lanes, especially for Lane 4, where the HDs are respectively 

0.746 and 0.738 for small and other vehicle types. 

{Insert Table 7 here} 

Compared to the existing method, the proposed method has higher V-ReID 

accuracy and thus more valid samples can be collected for the estimations of travel time 

distributions, including travel time samples for Lane 4, i.e. the relatively congested lane. 

Also, the proposed method distinguishes these travel time samples by vehicle types and 

by lane locations, and therefore differences of travel times among vehicle types and lanes 

are reflected and the estimations of travel time distributions are more detailed and more 

accurate. 

4.6 Means of travel times 

Using travel time samples of re-identified vehicles for different lanes and vehicle types, 

the means of travel times are estimated and the corresponding accuracy is evaluated. 

Table 8a shows the estimated mean travel times of the proposed method. The absolute 

percentage errors, as compared with the ground truth, range from 0.1% to 4.1%. The mean 

travel times estimated for Lanes 3 and 4 generally have larger errors (2.8%–4.1%) than 

those estimated for Lanes 1 and 2 (0.1%–3.7%). This can be explained by the fact that 

congestion in Lane 4, which is due to the bottleneck at the exit, and more lane-changing 

maneuvers in Lane 3 lead to longer and more varied travel times (Figure 5). The 

congestion and maneuvers result in longer travel time windows (Equations 5 and 6) for 

Lanes 3 and 4 and lower corresponding V-ReID accuracy. As a result, travel time samples 

for Lanes 3 and 4 include more noise from incorrect matching.  
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The mean estimations of travel times resulted from the proposed method are more 

accurate than those from the existing method. As shown in Table 8b, the existing method 

adopted the same mean estimation for all vehicles, which leads to large estimation errors. 

Take Lane 4 for example, the absolute percentage errors reach 77.5% and 78.2% for two 

types of vehicles. The absolute percentage errors for small and other vehicle types in all 

lanes are also not accurate, respectively 44.2% and 46.6%. In contrast, the proposed 

method collects more valid travel time samples and divides these samples by vehicle type 

and by lane for mean estimations. Similar to the estimations of travel time distributions, 

the mean estimations of the proposed method are more accurate. 

{Insert Table 8 here} 

Table 8a reveals that the estimated mean travel times increase from Lane 1 to 

Lane 4, which confirms the observations in Figure 5 and can be explained by the reasons 

relating to lane markings and downstream congestion discussed in sub-section 4.5. A 

comparison of the estimated mean travel times of different vehicle types (Table 8a) 

reveals that the small vehicles generally have smaller errors (2.3%) than the other vehicles 

(3.9%). In terms of the estimated mean travel times, as expected, the small vehicles have 

shorter travel times than the other vehicles in all lanes, except for Lane 3. In Lane 3, the 

estimated mean travel time of the small vehicles is 22.8 seconds, which is longer than that 

of the other vehicles (19.7 seconds).  

The mean travel times obtained from the manual matching (i.e., the ground truth) 

of the small and other vehicles between lanes (Table 9) are further investigated to explain 

this unexpected result for different vehicle types. A comparison of Tables 9a and 9b 

reveals that the small vehicles have shorter travel times than the other vehicles in most 

cases. Among vehicles that do not change lane (i.e., the diagonal values in Table 9a and 

9b), the travel times of the small vehicles in Lanes 1, 2, 3, and 4 are respectively 8.8, 10.9, 
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25.1, and 57.2 seconds, all of which are shorter than the corresponding times for the other 

vehicles (i.e., 9.1, 12.7, 27.0, and 58.6 seconds respectively). In the definition of vehicle 

types (sub-section 4.2), the small vehicles (sedans and taxis) are passenger cars while the 

other vehicles (vans, minibuses, buses, and trucks) are heavy vehicles. Many empirical 

studies have found that heavy vehicles travel at lower speeds and have longer travel times 

because of their limited maneuverability, such as their limited acceleration and 

deceleration (Cao et al., 2016; Moridpour et al., 2015), and they improve their fuel 

economy by traveling at lower speed (Zhou et al., 2018). Thus, the observed longer travel 

times of the other vehicles, as compared with the small vehicles, are consistent with the 

empirical findings in the literature in the case that there is no lane changing (i.e., the 

diagonal values in Table 9b). 

Nevertheless, when there is lane changing between the upstream and downstream 

sections (i.e., the off-diagonal values in Tables 9a and 9b), there are cases in which small 

vehicles have longer travel times (e.g., vehicles traveling from Lane 2 upstream to Lane 

4 downstream). The travel times of these lane-changing vehicles comprise the duration 

of travel in the lanes and the duration of lane-changings. Previous studies have used 

empirical data to reveal that in some cases heavy vehicles may take less time than small 

vehicles (Aghabayk et al., 2011; Toledo & Zohar, 2007). 

The shorter lane-changing duration of heavy vehicles can be explained by the 

lane-changing behaviors and characteristics of the heavy vehicles. Under heavy traffic 

conditions, drivers change lane either through the courteous yielding of the following 

vehicle or by forcing the following vehicle to slow down (Yang et al., 2019). For the 

following vehicles, the analysis of naturalistic driving data has shown that some drivers 

of the following vehicle brake urgently to yield to the lane-changing vehicle and avoid a 

collision (Wang et al., 2019). Heavy vehicles, owing to their large size and weight, 
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impose both physical and psychological effects on surrounding vehicles (Moridpour et 

al., 2015). Additionally, owing to the lower maneuverability of heavy vehicles, empirical 

data show that they maintain a more constant speed during the lane-changing maneuver 

than small vehicles do (Aghabayk et al., 2011; Moridpour et al., 2010). Thus, owing to 

the physical/psychological effect and low maneuverability of heavy vehicles, the 

following vehicles will be more cautious in responding to the lane-changing of heavy 

vehicles and yield to the heavy vehicles because of safety concerns (Toledo & Zohar, 

2007). As a result, it could be easier for heavy vehicles to change lanes, which would 

shorten their lane-changing duration. In addition, drivers of the other vehicles (i.e., vans, 

minibuses, buses, and trucks) are usually professional drivers with more experience in 

lane-changing, especially when there is congestion, and they will therefore have a shorter 

lane-changing duration (Aghabayk et al., 2011; Toledo & Zohar, 2007). The above 

explains that it is possible for the small vehicles to have longer travel times than other 

vehicles, when there are lane-changing maneuvers between the upstream and downstream 

sections (i.e., the off-diagonal values in Tables 9a and 9b). 

{Insert Table 9 here} 

The mean travel time of each lane (the last columns in Tables 9a and 9b) is the 

weighted average of travel times to all downstream lanes with the weight taken as the 

corresponding vehicle proportion. Tables 10a and 10b respectively give the number, and 

proportion in brackets, of the small and other vehicles for different lanes from manual 

matching (i.e., ground truth). Despite the small vehicles having shorter travel times when 

traveling from Lane 3 (upstream) to Lane 3 (downstream) (Tables 9a and 9b), their 

proportion (35.5% for the small vehicles and 30.5% for the other vehicles) is not sufficient 

to outweigh the long travel times (see Table 9a and 9b for Lane 3 to Lane 2 and Lane 3 

to Lane 4) of lane-changing vehicles (with a proportion of 64.5% for small vehicles and 
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69.5% for other vehicles). Thus, in Table 9, the ground-truth travel time of the small 

vehicles in Lane 3 (23.8 seconds), which is the weighted average of all maneuvers, is 

longer than that of the other vehicles (20.5 seconds). These findings of ground-truth travel 

times for Lane 3 suggest that the proposed travel time estimations for the small and other 

vehicles in Lane 3 (Table 8a) are reasonable. 

{Insert Table 10 here} 

4.7 Standard deviations of travel times 

The standard deviation of travel times is estimated using travel time samples of 

re-identified vehicles for different lanes and vehicle types. The results of the proposed 

and existing methods are respectively shown in Tables 11a and 11b. Table 11a reveals 

that the standard deviations of travel times estimated by the proposed method increase 

from Lane 1 to Lane 4. This can be explained by lane markings and downstream 

congestion as discussed in sub-section 4.5. As expected, the errors of standard deviation 

estimation are generally larger than those of the mean estimation but still fall in an 

acceptable range with a maximum error of 10.7%. The aggregated estimation errors of 

each vehicle type (i.e., the last row of Table 11a) are less than 4.3%. 

The proposed method outperforms the existing method in the estimations of 

standard deviation, similar to the estimations of travel time distributions and mean travel 

times. As previously discussed, more travel time samples are obtained by the proposed 

method due to its higher V-ReID accuracy. In contrast, the existing method collect limited 

samples especially in Lane 4 where travel time distributions varied most highly (see 

Figure 5a). Consequently, the standard deviations estimated by the existing method are 

smaller than those resulted from the proposed method. 

{Insert Table 11 here} 
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5. Conclusions and future research 

This paper proposes a lane-based V-ReID and travel time estimation framework by 

vehicle type for congested urban roads with lane-changing maneuvers. Lanes of the same 

road segment can have distinct lane-changing conditions, and differences in travel times 

between different vehicle types and different traffic lanes were thus investigated. The 

proposed method enhances the V-ReID accuracy, and therefore more travel time samples 

are collected for the accurate estimation of travel time distributions by lane and by vehicle 

type. These information can be very helpful for various traffic management purposes such 

as determining the entry and exit locations of bus-only lane; changing lane markings for 

controlling the merging/diverging of different vehicles; and estimating the traffic 

emission/fuel consumption by vehicle types etc. 

A four-lane urban road with different lane markings for different lanes in Hong 

Kong was taken as a test site for a case study. The proposed method was implemented in 

the case study to estimate travel times by vehicle type and traffic lane. A cutting-edge 

existing method using the same low-resolution video images was also implemented for 

comparative analysis. Results showed that the proposed method outperforms the existing 

method and the estimation results are generally accurate. The classification accuracies 

ranged from 78.3% for sedans to 100% for taxis and buses. The V-ReID accuracies 

ranged from 42.4% for sedans to 81.2% for buses. Larger vehicles (e.g., buses and trucks) 

had a higher re-identification accuracy. In the estimation of travel time distributions, it 

was found that the Hellinger distances between the estimated travel time distributions and 

the ground truth are less than 0.189 for all vehicle types and lanes. The average of 

Hellinger distances is 0.137, which is 57% less than that of the existing method. The 

errors of the corresponding mean estimates ranged from 0.1% for the other vehicles in 

Lane 1 to 4.1% for the small vehicles in Lane 3. The errors of the standard deviation 
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estimates ranged from 1.6% for the other vehicles in Lane 4 to 10.7% for the other 

vehicles in Lane 2. It was shown in this case study that the estimation errors of the travel 

time distributions are varied by lane and vehicle type on the four-lane road segment with 

different lane-changing maneuvers. 

In future work, the proposed V-ReID can be extended to road segments of longer 

distance for travel time estimation. More spatial-temporal information, such as the vehicle 

sequence, can be considered to filter out invalid vehicles for a road segment with many 

entries/exits. On a congested road segment, there are far fewer discretionary lane-

changing maneuvers. The vehicle sequence of each traffic lane should remain stable, 

except that some vehicles enter their target lanes or exit their initial lanes because of 

mandatory lane changing. For example, if a downstream vehicle cannot be matched to an 

upstream vehicle with similar leading and following vehicles, this vehicle probably enters 

in the middle of the road segment and thus should be filtered out. Additionally, in view 

of low-resolution video images having different angles of view, it would be worthwhile 

to make use of more vehicle appearance information, such as the roof patterns, side views, 

and/or advertisements of the vehicles, in improving the quality of V-ReID. Moreover, 

since video images are sensitive to low illumination conditions (e.g. adverse weather), 

further studies are required to extend the proposed V-ReID method by using other data 

sources such as thermal images and axle-weight measurements (Basar et al., 2018; Li et 

al., 2020). Heterogeneous data fusion is encouraged to enhance the robustness of V-ReID. 

As for the investigation of lane-changing effects and travel time distributions, this 

case study revealed that the travel times of different vehicle types varied according to the 

traffic lanes, the lane markings of which differed in, for example, their locations and 

lengths. In the field of urban road design and/or traffic management, the effect of lane 

markings, which govern the possibility of lane changing, on travel time distributions 
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should be further investigated to balance the efficiency and flexibility of the urban road 

design. Moreover, the effects of vehicle types on the lane-changing duration and thus the 

lane-based travel time deserve further studies. The effects of various factors, such as the 

traffic density, traffic signal timing, and relative speed of the lane-changing vehicle, on 

lane-changing behaviors and duration are also worthy of further investigation. To observe 

and model lane-changing effects in a more detailed and fine-grained manner, vehicle 

trajectory data should be collected and analyzed. Last but not least, the integration of 

model-based and data-driven approaches can be further investigated to improve the 

estimation of the travel time distribution by vehicle type for the entire road network in 

practice. 
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Table 1. Summary of key studies on travel time estimation* 

 Data sources Real 
data 

Travel time estimation 
Study 
sites Overall By lane 

By 
vehicle 

type 

Li et al. (2006) Loop detector 
data √ Mean   Freeways 

Tam & Lam (2011) AVI data √ Mean 
Std. 

  Urban 
roads 

Wang et al. (2014) Video images √ Mean 
Std. 

  Freeways 

Sanaullah et al. (2016) GPS data √ Mean   Freeways 

Li et al. (2016) 
Loop detector 
data and GPS 

data 
√ Mean   Urban 

roads 

Shi et al. (2017) Video images 
and AVI data √ 

Mean 
Std. 
Dist. 

  Urban 
roads 

Ma et al. (2017) AVI data √ 
Mean 
Std. 
Dist. 

  

Freeways 
and 

urban 
roads 

Zhang et al. (2019) GPS data √ 
Mean 
Std. 
Dist. 

  

Freeways 
and 

urban 
roads 

Tang et al. (2020) Microwave 
detector data √ 

Mean 
Std. 
Dist. 

  Freeways 

Lu et al. (2021) Connected 
vehicle data 

 
Mean 
Std. 
Dist. 

Mean 
Std. 
Dist. 

 Urban 
roads 

Zhang et al. (2021) 
Video images 
from different 
angles of view 

√ 
Mean 
Std. 
Dist. 

Mean 
Std. 
Dist. 

 Urban 
roads 

The proposed method 
Video images 
from different 
angles of view 

√ 
Mean 
Std. 
Dist. 

Mean 
Std. 
Dist. 

Mean 
Std. 
Dist. 

Urban 
roads 

*Std. = Standard deviation; Dist. = Distribution 
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Table 2. Distance measures between a given vehicle image and template images (an 

example) 

Template 
images  

Sedan 
 

Taxi 
 

Van 
 

Minibus 
 

Bus 
 

Truck 

 
Vehicle 
image 

2.1207 1.9752 1.2851 0.9523 0.9679 0.9241 
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Table 3. Actual sample size by lane and by vehicle class 

 
Small  Other 

Sedan Taxi  Van Minibus Bus Truck 
Lane 1 236 19  32 9 57 37 
Lane 2 354 147  64 23 91 55 
Lane 3 293 129  39 11 56 48 
Lane 4 157 39  28 5 6 61 

All lanes 1040 334  163 48 210 201 
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Table 4. Actual and required sample size by lane and by vehicle type 

 
Small Other 

Actual Required Actual Required 
Lane 1 255 123 135 130 
Lane 2 501 160 233 201 
Lane 3 422 197 154 136 
Lane 4 196 50 100 48 

All lanes 1374 233 622 235 
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Table 5. Confusion matrix of the 6-vehicle-class classification 

Estimate 
Truth Sedan Taxi Van Minibus Bus Truck 

Sedan 78.3% 3.4% 17.7% 0.6% 0.0% 0.0% 
Taxi 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 
Van 4.5% 0.0% 95.5% 0.0% 0.0% 0.0% 

Minibus 0.0% 0.0% 0.0% 92.3% 7.7% 0.0% 
Bus 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 

Truck 0.0% 0.0% 8.0% 8.0% 4.0% 80.0% 
Overall: 85.6% 
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Table 6.  Vehicle re-identification accuracy by lane and by vehicle class resulted from 

(a) Proposed method and (b) Existing method 

(a) 

 Sedan Taxi Van Minibus Bus Truck 
Lane 1 50.0% 80.2% 47.9% 62.4% 92.5% 49.7% 
Lane 2 48.1% 56.9% 40.1% 75.5% 76.3% 73.3% 
Lane 3 37.5% 55.9% 42.2% 76.3% 81.1% 59.8% 
Lane 4 29.1% 75.7% 39.2% 60.6% 44.4% 63.8% 

All lanes 42.4% 59.8% 42.6% 70.2% 81.2% 62.5% 
Overall: 52.4% 

 

(b) 

 Sedan Taxi Van Minibus Bus Truck 
Lane 1 33.0% 47.2% 33.6% 62.4% 77.9% 47.1% 
Lane 2 38.2% 49.2% 35.7% 75.5% 60.1% 58.1% 
Lane 3 26.1% 51.4% 17.3% 62.5% 71.5% 42.9% 
Lane 4 2.1% 16.9% 8.3% 27.3% 21.3% 6.8% 

All lanes 27.5% 46.2% 26.5% 64.7% 66.9% 36.8% 
Overall: 37.3% 
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Table 7. Hellinger distance between the ground truth and the estimated travel time 

distributions by lane and by vehicle type resulted from (a) Proposed method and (b) 

Existing method 

 (a) 

 Small Other 
Lane 1 0.103  0.114  
Lane 2 0.124  0.122  
Lane 3 0.154  0.189  
Lane 4 0.155  0.134  

All lanes 0.079  0.052  
 

(b) 

 Small Other 
Lane 1 0.077  0.102  
Lane 2 0.125  0.184  
Lane 3 0.322  0.271  
Lane 4 0.746  0.738  

All lanes 0.290  0.296  
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Table 8. Mean of estimated travel times (sec) by lane and by vehicle type resulted from 

(a) Proposed method and (b) Existing method* 

 (a) 

 Small Other 
Lane 1 11.2 (0.3%) 12.0 (0.1%) 
Lane 2 13.7 (0.2%) 16.2 (3.7%) 
Lane 3 22.8 (4.1%) 19.7 (3.9%) 
Lane 4 53.5 (2.8%) 54.7 (4.0%) 

All lanes 21.7 (2.3%) 22.3 (3.9%) 
 

(b) 

 Small Other 
Lane 1 12.4 (11.3%) 12.4 (3.4%) 
Lane 2 12.4 (9.7%) 12.4 (26.5%) 
Lane 3 12.4 (47.9%) 12.4 (39.6%) 
Lane 4 12.4 (77.5%) 12.4 (78.2%) 

All lanes 12.4 (44.2%) 12.4 (46.6%) 
*Values in parenthesis are absolute % errors as compared to ground truth 
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Table 9. Ground truth mean travel time (sec) of (a) small and (b) other vehicles between 

lanes 

(a) 

Travel Time of 
Small Vehicles 
between lanes 

To Lane 1 
(downstream) 

To Lane 2 
(downstream) 

To Lane 3 
(downstream) 

To Lane 4 
(downstream) Total 

From Lane 1 
(upstream) 8.8 13.4 19.3 / 11.1 

From Lane 2 
(upstream) / 10.9 26.5 58.8 13.7 

From Lane 3 
(upstream) / 13.4 25.1 58.3 23.8 

From Lane 4 
(upstream) / 17.7 22.4 57.2 55.0 

 

(b) 

Travel Time of 
Other Vehicles 
between lanes 

To Lane 1 
(downstream) 

To Lane 2 
(downstream) 

To Lane 3 
(downstream) 

To Lane 4 
(downstream) Total 

From Lane 1 
(upstream) 9.1 15.2 22.8 / 12.0 

From Lane 2 
(upstream) / 12.7 27.5 56.4 16.9 

From Lane 3 
(upstream) / 11.8 27.0 51.5 20.5 

From Lane 4 
(upstream) / 10.0 29.3 58.6 57.1 
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Table 10. Ground truth number of (a) small and (b) other vehicles between lanes* 

(a) 

No. of Small 
Vehicles 
between 

lanes 

To Lane 1 
(downstream) 

To Lane 2 
(downstream) 

To Lane 3 
(downstream) 

To Lane 4 
(downstream) Total 

From Lane 1 
(upstream) 157 (61.6%) 78 (30.6%) 20 (7.8%) 0 (0.0%) 255 (100%) 

From Lane 2 
(upstream) 0 (0.0%) 427 (85.2%) 66 (13.2%) 8 (1.6%) 501 (100%) 

From Lane 3 
(upstream) 0 (0.0%) 213 (50.5%) 150 (35.5%) 59 (14.0%) 422 (100%) 

From Lane 4 
(upstream) 0 (0.0%) 3 (1.5%) 9 (4.6%) 184 (93.9%) 196 (100%) 

*Values in parenthesis are vehicle proportions for each lane 

 (b) 

No. of Other 
Vehicles 
between 

lanes 

To Lane 1 
(downstream) 

To Lane 2 
(downstream) 

To Lane 3 
(downstream) 

To Lane 4 
(downstream) Total 

From Lane 1 
(upstream) 86 (63.7%) 37 (27.4%) 12 (8.9%) 0 (0.0%) 135 (100%) 

From Lane 2 
(upstream) 0 (0.0%) 180 (77.3%) 46 (19.7%) 7 (3.0%) 233 (100%) 

From Lane 3 
(upstream) 0 (0.0%) 91 (59.1%) 47 (30.5%) 16 (10.4%) 154 (100%) 

From Lane 4 
(upstream) 0 (0.0%) 2 (2.0%) 2 (2.0%) 96 (96.0%) 100 (100%) 

*Values in parenthesis are vehicle proportions for each lane 
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Table 11. Standard deviation of estimated travel times (sec) by lane and by vehicle type 

resulted from (a) Proposed method and (b) Existing method* 

(a) 

 Small Other 
Lane 1 7.0 (7.4%) 8.6 (4.0%) 
Lane 2 11.2 (6.5%) 13.0 (10.7%) 
Lane 3 18.2 (10.2%) 15.6 (7.2%) 
Lane 4 26.2 (10.2%) 24.2 (1.6%) 

All lanes 21.5 (4.3%) 21.2 (1.9%) 
 

(b) 

 Small Other 
Lane 1 6.8 (9.8%) 6.8 (18.4%) 
Lane 2 6.8 (35.8%) 6.8 (53.4%) 
Lane 3 6.8 (66.6%) 6.8 (53.5%) 
Lane 4 6.8 (71.5%) 6.8 (71.6%) 

All lanes 6.8 (67.1%) 6.8 (68.7%) 
*Values in parenthesis are absolute % errors as compared to ground truth 
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Figure 1. Video images from different camera views: (a) upstream and (b) downstream  

 
(a) 

 
(b) 
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Figure 2. An illustration of vehicle re-identification on an urban road segment with 

different lane markings and different vehicle types 
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Figure 3. Framework of the proposed methodology 
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Figure 4. Test site in Hong Kong: (a) Road layout and (b) Site photo 
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Figure 5. Travel time distributions by lane and by vehicle type (a) Ground truth (b) 

Estimated by the proposed method (c) Estimated by the existing method 
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