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Lane-based estimation of travel time distributions by vehicle type via

vehicle re-identification using low-resolution video images

Travel time estimation plays an essential role in the high-granular traffic control
and management of urban roads with distinct lane-changing conditions among
lanes. However, little attention has been given to the estimation of distributions of
travel times among different lanes and different vehicle types in addition to their
expected values. This paper proposes a new method for estimating lane-based
travel time distributions with consideration of different vehicle types through
matching low-resolution vehicle video images taken by conventional traffic
surveillance cameras. The vehicle type classification is based on vehicle sizes and
deep learning features extracted by densely connected convolutional neural
networks, and the vehicle re-identification is conducted through a lane-based
bipartite graph matching technique. A case study is carried out on a congested
urban road in Hong Kong. Results show that the proposed method performs well
in estimating the lane-level travel time distributions by vehicle type which can be
very helpful for various lane-based and vehicle type-specific traffic management

schemes.

Keywords: lane-based travel time distribution, vehicle type, vehicle re-

identification, lane changing behaviors, video images

1. Introduction

Travel time information is a crucial requirement for many Intelligent Transportation
Systems (ITS) applications, such as traffic monitoring, traffic management and path
navigation. However, in real world, comprehensive and extensive travel time information
on urban roads may not be available due to the limitation of existing traffic
detectors/video cameras installed in urban road networks (Chen et al., 2016; Tam & Lam,
2011). Due to site constraints especially in densely developed urban areas in Hong Kong,
it is difficult to set up video cameras at upstream and downstream locations with the
same/similar angles of view, as illustrated in Figure 1. Also, license plate numbers of

vehicles cannot be identified from the low-resolution video images.



{Insert Figure 1 here}

The provision of lane-based travel time information is important for urban roads,
because different lanes of the same road segment may have distinctive traffic conditions.
As illustrated in Figure 1, there was a long queue in Lane 4 (the far-side lane) while other
lanes were less congested. A lane-based travel time estimation can clearly distinguish
such differences, so that path navigation can provide more accurate travel time
information for vehicles in different lanes. Additionally, urban roads have more frequent
lane changes and various vehicle types. An accurate estimation of the lane-based travel
time by vehicle type can help to better understand the lane-changing effects by vehicle
type, which provides support for traffic management of lane-changing behaviors (e.g.
using lane markings). Therefore, it is necessary to estimate the lane-based travel times by
vehicle type with use of the low-resolution video images from different angles of view.

Various methods of travel time estimation have been developed for different data
sources (Mori et al., 2015). Owing to the wide deployment of point detectors, typically
loop detectors, a variety of methodologies were based on speed, flow and occupancy data
collected at fixed points (Celikoglu, 2013; Li et al., 2006). However, traffic states vary
significantly at different locations along a congested urban road. Point detector data
cannot represent the whole road section (Soriguera & Robusté, 2011). Therefore, travel
time estimations based on point detector data do not perform well under congestion (Jiang
etal., 2017).

Probe vehicles with Global Positioning Systems (GPS) or cell phones can collect
position and speed data at a regular time interval (e.g., 30 seconds). Using GPS data,
vehicles can be tracked and travel time data of vehicle samples between two positions
can be obtained. This brings more information for travel time estimation. Nevertheless,

sparse GPS data are common in real world (Prokhorchuk et al., 2020; Sanaullah et al.,



2016). Besides the low sampling frequency, it is usual that GPS data are only available
from specific vehicle types such as taxis (Jenelius & Koutsopoulos, 2013) and buses (Uno
etal., 2009). Moreover, GPS positional accuracy usually cannot reach the lane level. With
the advancement of sensing and communication technologies, the collection of lane-level
vehicle trajectories will become possible under connected vehicle environments.
However, such data are not yet available on most urban roads (Lu et al., 2021).

Interval detectors are composed of a pair of detectors deployed at two fixed
locations. They are capable to match the same vehicle at different locations, which
enables direct collection of travel time data between two locations. Using automatic
vehicle identification (AVI) techniques (Tam & Lam, 2011) or Bluetooth technologies
(Araghi et al., 2016), vehicle matching can be easy as each vehicle has a unique identifier
(e.g., a Media Access Control address in the case of Bluetooth). However, the low
penetration rate and limited number of fixed detectors limit the number of valid matching
data for travel time estimation in practice.

Vehicle re-identification (V-RelD) is another important technique of interval
detectors to obtain travel time data (Yu et al., 2015). It is to match the same vehicle at
different locations by vehicle features (e.g. length and type) rather than unique identifiers.
As anonymous approaches, V-RelD techniques have been developed for various
detectors/sensors, including loop detectors (Coifman & Cassidy, 2002), video cameras
(Sun et al., 2004), wireless magnetic sensors (Kwong et al., 2009) and weigh-in-motion
sensors (Basar et al., 2018). Owing to the wide deployment of video cameras in many
cities around the world, video-based V-RelD has received much attention recently for
real-time traffic data collection (Khan & Ullah, 2019). Visual features such as color,
length, and type of the recorded vehicles can be captured by most video cameras (Sumalee

et al., 2012). With a high-resolution camera and carefully set-up camera views, license



plate numbers (Oliveira-Neto et al., 2012) and other specific features such as annual
inspection labels, tissue boxes, and ornaments (Bai et al., 2018) can be captured for V-
RelD. However, the use of these features in V-RelD may not be practical owing to privacy
issues and the limited availability of high-resolution video images in reality. Besides
travel time data collected through V-RelD, heterogeneous data fusion has also received
attention for more accurate travel time estimation (Fu et al., 2019; Guo & Yang, 2020; Li
et al., 2016; Shi et al., 2017).

Recently, there has been increasing interests in not only mean travel time
estimation but also the estimation of standard deviation and travel time distributions,
especially for urban road networks (Lu et al., 2021; Prokhorchuk et al., 2020; Shi et al.,
2017; Zheng & Van Zuylen, 2014). Parametric models, e.g. Gaussian mixture models
(Tang et al., 2020; Yang et al., 2017), and non-parametric models, e.g. kernel density
estimation (Chiou et al., 2021; Duan et al., 2020), have been employed to estimate travel
time distributions. Spatial-temporal correlations between road links have been taken into
consideration using Markov chains (Ma et al., 2017; Tang et al., 2020) and copula models
(Chen et al., 2018; Samara et al., 2021; Yun et al., 2019). Other advanced models, such
as Bayesian probabilistic model (Tang et al., 2018), Generative Adversarial Network
(Zhang et al., 2019) and Monte Carlo Simulation (Filipovska et al., 2021), have also been
applied to the estimation of travel time distributions.

Nevertheless, little attention has been given to estimate travel time distributions
for different types of vehicles traveling in different lanes particularly on urban roads with
various lane-changing maneuvers. However, it is important to distinguish travel time
distribution by traffic lane and vehicle type for different traffic management purposes in
practice. For example, these information can be very helpful to determine the entry and

exit locations of bus-only lane; to change lane markings for controlling the



merging/diverging of different vehicles; and to estimate the traffic emission/fuel
consumption by vehicle types etc.

As summarized in Table 1, most of the existing methods failed to distinguish the
differences of travel times by traffic lane on road segments. Lu et al. (2021) estimated
lane-level travel time distributions using connected vehicles data in a simulation testbed,
but the unavailability of real-world data limits their application. Zhang et al. (2021)
utilized real video images to estimate lane-level travel time distributions but they did not
distinguish their results by vehicle types.

{Insert Table 1 here}

To fill the aforementioned gaps, this study extends Zhang et al. (2021)’s work to
estimate lane-level travel time distributions by vehicle type using widespread low-
resolution video images on urban roads but from different angles of view. As illustrated
in Figure 2, the travel time is estimated via vehicle re-identification (V-RelD) using video
images collected at selected upstream and downstream locations. The lane locations of
vehicles are identified and vehicle types are classified based on vehicle images to enable
travel time estimation in a more detailed and fine-grained manner. In contrast to the
existing literature, the method of estimating travel times proposed in this study aims to
find the actual travel times instead of the instantaneous travel times of vehicles passing
through an urban road network.

{Insert Figure 2 here}

The rest of this paper is organized as follows. Section 2 briefly describes related
work on vehicle re-identification using low-resolution video images from different angles
of view, Section 3 introduces the proposed lane-based travel time estimation by vehicle

type, Section 4 presents experiments for the analysis of the performance of the proposed



method, and Section 5 summarizes the main findings of the study and provides

recommendations for further research.

2. Related work

Due to the wide deployment of video surveillance cameras in many cities, a lot of video-
based V-RelD methods have been proposed. The V-RelD is to identify each vehicle in
upstream video images and to re-identify the same vehicle in downstream video images,
as illustrated in Figure 2. Based on the V-RelD results, the actual travel times of all re-
identified vehicles are collected for travel time estimation. The framework of travel time

estimation via V-RelD includes four major steps as follows.

2.1 Step 1: Vehicle feature extraction

For all vehicles passing through the upstream section (U) and downstream section (D),
their vehicle features including vehicle color (C), vehicle type (T), vehicle length (L),
arrival time (7) and spot speed (v) are extracted using video image processing techniques
(Sun et al., 2004; Wang et al., 2014). Each upstream vehicle i € U is then represented
by (¢/,TV,LY,7Y,v’) and each downstream vehicle j € D is represented by

D —nD yD . .D , D
(G T Ly 7 vp)-

2.2 Step 2: Construction of travel time window

A travel time window refers to the lower bound (Lb) and upper bound (Ub) of expected
travel times. In most V-RelD studies, the travel time window [Lb, Ub] has been adopted
to determine the search space of candidate vehicle matches. The time difference between

feasible vehicle matches (i,j) should satisfy the constraint of travel time window, i.e.

T]-D — 1/ € [Lb,Ub], where 7/ is the arrival time of vehicle i at the upstream section

and T]-D is the arrival time of vehicle j at the downstream section.



The construction of travel time window is important because it affects the number
of vehicles within the search space. If the range of travel time window is too large, too
many candidates will reduce the possibility of finding the correct match. On the contrary,
if the range of travel time window is too small, the correct match may be filtered out from
the search space. Thus, appropriate travel time windows should be constructed for V-
RelD. Fixed travel time windows have been determined according to historical travel time
distribution of study sites (Basar et al., 2018; Sumalee et al., 2012). An adaptive strategy
was further introduced to adjust travel time windows depending on real-time traffic

conditions (Wang et al., 2014).

2.3 Step 3: Vehicle matching

Within the search space, vehicle matching is to determine optimal matches between
upstream and downstream vehicles based on their vehicle similarities. In general, the
calculation of similarity between an upstream vehicle and a downstream vehicle can be
classified into two categories: distance-based methods and probabilistic methods.
Distance-based methods describe the similarities of candidate vehicle pairs for re-
identification through various distance measures of vehicle features, such as color
features, type features, length features and deep learning features (Sun et al., 2004; Tang
et al., 2018).

Probabilistic methods have been proposed to address the issue of measurement
noise of vehicle features (Kwong et al., 2009). Rather than a deterministic distance
measure, a matching probability is calculated for two vehicles using a Bayesian model.
In addition to the matching probability determined by distance measures from vehicle
features, the historical or real-time estimated travel time distribution was regarded as a
prior matching probability in determining the posterior probability to be used for V-RelD

(Sumalee et al., 2012; Wang et al., 2014). The lane changing probability of vehicles



between upstream and downstream locations was also incorporated for V-RelID (Zhang
et al., 2021).

This vehicle matching problem is then formulated as a bipartite graph matching
problem (Sumalee et al., 2012; Wang et al., 2014; Zhang et al., 2021). In this bipartite
graph, the upstream and downstream vehicle sets are represented by two parts of vertices.
The edges between two vertices refer to the similarity between two vehicles. The optimal
matching aims to maximize overall similarities of the bipartite graph. To improve the
accuracy of vehicle matching, vehicle platoons are re-identified for each lane under the
assumption that vehicles seldom change lanes between upstream and downstream

locations (Coifman & Cassidy, 2002; Sun et al., 2004).

2.4 Step 4: Travel time estimation

Based on the vehicle matching results, the travel time is determined by the time difference
of matched, or re-identified, vehicles detected at selected upstream and downstream

locations. These travel time samples are utilized for travel time estimation.

2.5 Discussion on existing methods

The existing methods can provide reasonable estimations of mean travel times on
freeways. Under the assumption that vehicles seldomly change lanes in a freeway section,
vehicle can be re-identified for each lane and thus candidate vehicle matches are
substantially reduced. However, this assumption may not be valid for urban roads with
frequent lane changing movements. Moreover, for urban roads, frequent lane changes and
the mix of different vehicle types are common. As such, travel time variations are larger
by lane and vehicle type. Thus, following the existing methods, the range of the travel
time window for re-identification may be large, which poses challenges in V-RelD for

travel time estimation as they increase the likeliness of incorrect matching. The high



similarity of different vehicles (e.g., sedans produced by the same manufacturer and taxis)
and the difference in appearance of the same vehicle as viewed by the upstream and
downstream cameras (with the upstream camera capturing the front of the vehicle and the
downstream camera capturing the back) also brings challenges. Consequently, travel time
samples resulted from the existing methods are not sufficient for lane-based estimation
of travel time distributions by vehicle type.

This study aims to estimate lane-level travel time distributions by vehicle type
using widespread low-resolution video images on urban roads with different angles of
view at the upstream and downstream locations. The key contributions of this study are
summarized as follows. A lane-based travel time estimation framework is proposed for
different vehicle types, which considers lane changing behaviors, to model the travel time
distributions in different lanes for different types of vehicles. The proposed method re-
identifies vehicles more accurately by adopting a lane-based time window approach. The
use of the lane-based time window screens out invalid vehicles more efficiently and thus
improves the accuracy of the travel time estimation with consideration of the spatial-
temporal information of upstream and downstream locations. Travel time distributions
and the probability of the downstream lane used by a vehicle, which are estimated from
the vehicles’ lane changing behaviors upstream, are considered as the prior knowledge
together with visual features (e.g., the vehicle color, length, and type) extracted from
video images with different angles of view for calculating the matching probability. An
optimal matching problem, which maximizes the matching probabilities, is formulated
and solved to re-identify the vehicles. In addition, vehicle type classification is proposed

based on vehicle sizes and deep learning features of vehicle images.



3. Methodology

The proposed method simultaneously classifies vehicles into different vehicle types and
re-identifies them by matching low-resolution video images taken at selected upstream
and downstream locations. The proposed method for vehicle classification and re-
identification comprises five major steps; a flowchart of the proposed framework is
shown in Figure 3. Step 1 extracts the vehicle features and information to be used in the
classification and re-identification in the later steps. With the extracted vehicle features,
Step 2 classifies the vehicles identified in Step 1 into different vehicle types. Step 3
determines the lane-based travel time windows at the downstream location to serve as the
search space for the efficient V-RelD to be carried out in Step 4. With the re-identification
results from Step 4, the lane-based travel time distributions of different types of vehicles
are estimated in Step 5. Details of the five steps are described in the following sub-
sections.

{Insert Figure 3 here}

3.1 Step 1: Vehicle feature extraction

With the use of video image processing techniques, all of the vehicles passing through
the upstream and downstream sections are identified (see Figure 2) and their vehicle
visual features and mobility statuses are extracted. The extracted visual features of the
vehicles are the vehicle color (C), vehicle type (7), and vehicle length (L) and the
extracted mobility statuses of the vehicles are the arrival time (7), lane location (/), spot
speed (v), and lane changing pattern (LC). Compared to the existing methods, lane
location (/) and lane changing pattern (LC) are also extracted for the proposed lane-based
framework.

The proposed methodology integrates the You Only Look Once (YOLOV3)

algorithm for vehicle detection (Redmon & Farhadi, 2018) and the Deep Simple Online

10



and Realtime Tracking (Deep SORT) algorithm for multiple-vehicle tracking using the
same camera view (Wojke et al., 2017). Images of the detected vehicles are extracted
from the video and analyzed for the extraction of the visual features (Wang et al., 2014).
The mobility statuses of each vehicle in the upstream and downstream locations are
extracted by tracking the vehicle’s trajectory in the corresponding video using Deep
SORT. On the basis of the above analysis carried out through image processing, a set of
vehicles in the upstream section (U) is identified, and each upstream vehicle i (i.e., i €
U) is then represented by (€7, TY, LY, 77,17, v?,LC/). Similarly, a set of vehicles in the
downstream section (D) is identified, and each downstream vehicle j (i.e., j € D) is

represented by (CP,TP,L?, 77,17, vP).

3.2 Step 2: Vehicle type classification

In this step, template matching, which is based on the distance measures—or similarity—
of the given vehicle image and the template images of different vehicle types, is adopted
for vehicle type classification. In this study, features extracted/learned from the vehicle
images and vehicle length are simultaneously considered in the template matching.
Densely Connected Convolutional Networks (DenseNet), which has shown good
performance in computer vision (Huang et al., 2017), is adopted to extract deep learning
features (denoted by F) from the image of a detected vehicle and to compare those
features with features extracted from the template images. The vehicle length (L) is
represented by the image height of the captured vehicle, which is normalized for different
viewing angles of the upstream and downstream cameras (Zhang et al., 2021).

For each vehicle type (e.g., sedans, minibuses, or trucks), multiple template images
are included to ensure a wide variety of vehicle features (e.g., color and shape). This is

considered to enhance the classification accuracy. Suppose that Tem, , is a template
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image for vehicle type k and image index x. Then, given a vehicle image I, the
distance measures of this image (I) and template x of vehicle type k (Tem,,) can be
calculated. For each vehicle type k (x = 1,... N¢op), the distance measure of vehicle
image [ relative to vehicle type k is taken as an average of these N, template

images. The distance measure for a deep learning feature, D (k), is thus defined as

Dr(k) = avg (||T(I)—T(Tem,€,x)||2) (1)

x=1,..Ntem

where F(I) and F (Tem,c'x) are respectively the deep learning features for vehicle
image I and template image Tem,,. The distance measure of vehicle length, Dj (k), is

defined as

L(D-L(Temyy)
L(Temyx)

x=1,...Ntem

D (k) = avg (

2
> 2)

where L(I) and L(Tem,c,x) are respectively the vehicle lengths for vehicle image [
and template image Tem,,. The overall distance measure, D(k), is defined as the

weighted sum of the above two distance measures Dy (k) and D; (k):
D(k) = Dp(k) - (1 —=w) + Dy(x) - w 3)

where w is the fusion weight of the vehicle length. The number of template images
(Ntem) and the fusion weight (w) are then calibrated using the training dataset. The
objective is to find the optimal values of N, and w such that the classification
accuracy, Acc;, is maximized.

Using the calibrated parameters (N¢.,,, and w) and extracted features (F and L),

a distance measure D (k) can be calculated for a given vehicle image (I) relative to each

12



vehicle type k. A vehicle, which gives the vehicle image (I), is then assigned to the

vehicle type with the minimum distance measure (or maximum similarity):

Type(I) = argmin D (k) 4)

We categorize the vehicles into six types, namely sedans, taxis, vans, minibuses,
trucks, and buses. Thus, for each vehicle image, six distance measures (i.e., D(k), Vk €
[1,6]) are calculated. The distance measures relative to all six vehicle types of the vehicle
image in Table 2 are calculated using Equation (1) — (3) and given in the same table. This
vehicle is classified as a truck as it has the minimum distance measure (0.9241) relative
to truck templates.

{Insert Table 2 here}

3.3 Step 3: Construction of lane-based travel time windows

This step constructs lane-based travel time windows, or ranges of travel time between the
upstream and downstream sections. The constructed travel time windows help to delimit
feasible matches between upstream and downstream vehicles. This extends the previous
link-based travel time window construction step (Wang et al., 2014) by explicitly

considering distinct traffic conditions in different lanes.

For each lane [ and each time period t, a travel time window [EBl,tr %l,t], where
l’:l;l,t and lﬁ)u are respectively the lower and upper bounds of the travel time window,
is derived from the predicted travel time distribution T, (f;, 61, 1), With e, Gy,
and 7, respectively being the mean, standard deviation, and type (e.g., normal or
lognormal) of the predicted travel time for lane [ and each time period t. With the
predicted travel time distribution (Tl,t) for lane [ and period t and the required

confidence interval (@), the corresponding travel time window [EBl,tr %l,t] is defined

13



as [dbgst(l_Ta),d)%;t(HTa)], with CD%;(-) being the inverse of the cumulative

distribution function of Tj;.

For the predicted travel time (T; ;) following a normal distribution, the travel time

window, [val,t, lfﬁal,t], is defined as

—_ o~ - 1-a, . - 1+a. .
[Lbl,tl Ubl,t] = [.Ul,t + Z(Ta)al,t'ﬂl,t + Z(Ta)al,t] (5)

where z(+) is the z-score at a given confidence level which can be obtained from the
standard normal distribution table.

Otherwise, if T‘l,t follows a lognormal distribution, the travel time window,

[Lby¢, Ub, 4], is defined as

— ~log 1-a.. log ~log 1+a,-.log
TI _ w, .+ z(—)o n,.°+z(——)o
[Lbl.ti Ubl,t] - [e Le ( 2 ) Lt et ¢ 2 Lt ] (6)

where ﬂi,otg and 6};“” are respectively the mean and standard deviation of the logarithm
of Tj;.

Given the arrival time of vehicle i in the upstream section (z/), the feasible
arrival time window for the downstream lane [ is determined as [TlU + EBLD ¥ +

%l,t]. Accordingly, the set of feasible matches in downstream lane [ of upstream

vehicle i is denoted by S;(i) and expressed as
$;(0) = {i|77 € [r + Lbys, 7 + Uby,J} (7)

where T]-D is the arrival time of vehicle j in the downstream section. The whole set of

feasible matches in the downstream section, S(i), is obtained as the union of S;(i) for

all of the lanes.
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3.4 Step 4: Lane-based bipartite graph matching

This step determines optimal matches between upstream and downstream vehicles using
a lane-based bipartite graph matching technique. First, a matching probability P;; is
calculated for each feasible vehicle match (i,j) within the search space S(i) as defined
by Equation (7). Adopting the Bayesian approach, the matching probability P;; is

formulated as

P(dij|8;;=1)P(8;;=1)
P(d;j)

Py =P(8; =1|d;; ) = (®)

where §;; denotes whether vehicles i and j match;i.e., §;; =1 indicates that vehicle
[ in the upstream section matches vehicle j in the downstream section and §;; = 0
indicates that the vehicles i and j do not match. d;; is the dis-similarity measures of these
two vehicles based on their visual features of color (C), type (T), and length (L) (Wang
et al., 2014). The calculation of P;; depends on likelihood functions P(di ]-|6l- = 1)
and P(d;;|6;j =0) and the prior probability function P(8;; =1). The likelihood
functions, P(dl-j|6i]- = 1) and P(di]-|6l-j = 0), can be calibrated using the visual
features, i.e. the color (C), type (T) and length (L), of the matched vehicle pairs from the
training dataset. Apart from the probability defined by vehicle features (P (dl- i |6l- = 1)
and P(dl- j|5i = 0)), this study also considers the probability of the two vehicles (i.e.,

vehicle i upstream and vehicle j downstream) being the same vehicle in a spatial and
temporal manner. The prior probability P(8;; = 1) is the probability that the detected
vehicles i and j are the same vehicle given their lane locations and arrival time at the
upstream (vehicle i) and downstream (vehicle j) locations. This prior probability is
formulated by explicitly considering the lane changing behaviors of vehicles and their

arrival time probability at the downstream location.

15



Having obtained the probabilities of each upstream vehicle matching its feasible
matches (P;;), the optimal matching (i.e., V-RelD) is realized by solving a maximization

problem on the constructed bipartite graph:

max Yviey Lvjep Pijdij ©)

s.t. 6;; €{0,1},Vie U,Vj € S(i) (10)
Svien Oy S LVi€U 11
dvieu 6 < 1,Vj €D (12)

Equation (9) is the objective of the optimization problem that aims to maximize
the total matching probability. Equation (10) indicates the decision variables as binary
integers. Equation (11) ensures that any upstream vehicle i can only be matched with at
most one downstream vehicle, whereas Equation (12) ensures that any downstream
vehicle j can only be matched with at most one upstream vehicle. This bipartite graph

matching problem can be solved efficiently using a well-developed algorithm proposed

by Galil (1986).

3.5 Step 5: Estimation of the lane-based travel time distributions by vehicle type

Using the V-RelD results from Step 4 (i.e., §;; = 1 or 0), travel time samples for each

matched pair of vehicles i and j (T;;) are defined as

Note that the above T;; is one of the travel time samples for these vehicles (i and
J atupstream and downstream locations respectively) by vehicle type, which is classified

in Step 2. The above Tj; is also one of the travel time samples in a particular lane, which

16



is based on the lane location of the matched vehicle at the upstream section. Travel time
samples are then aggregated by lane and by vehicle type to generate the corresponding
travel time distributions. The travel time distributions reflect the variation of travel times
for a certain vehicle type from a given lane at the upstream section to the downstream

section.

4. Results and discussion

The accuracy of the proposed method for lane-based travel time estimation by vehicle
type is examined by conducting a case study having different lane markings for different
lanes of a congested urban road in Hong Kong. The vehicle type classification accuracy,
vehicle re-identification accuracy, and accuracy of the estimation of travel time
distributions, means, and standard deviations are described and discussed in the following.

A cutting-edge existing method (Wang et al., 2014) using the same low-resolution
video images is implemented for comparative analysis. This existing method adopted the
same travel time window for re-identification of vehicles travelling in different lanes.
Also, the existing method did not specifically consider appreciable differences of travel
times in different lanes for different types of vehicles, which implied that different types

of vehicles in different lanes have the same travel time estimation in their method.

4.1 Test site

The experiment of this case study is conducted on a four-lane urban road in Hong Kong
(Chatham Road South, Westbound, Figure 4a). The lane markings of different lanes in
this selected road segment are shown in Figure 2. It is seen that vehicles in Lane 1 are
allowed to change lane to their right (Lane 2) in the upstream section but they are not
allowed to change lane in the downstream section. Vehicles in Lane 2 are only allowed

to change lane to their right (Lane 3) in the upstream section but are allowed to change
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lane both to the left (Lane 1) and right (Lane 3) in the downstream section. Vehicles in
Lane 3 are allowed to change lane to both their left (Lane 2) and right (Lane 4) in both
upstream and downstream sections. Vehicles in Lane 4 are allowed to change lane to their
left (Lane 3) in the upstream section but they are not allowed to change lane in the
downstream section. In addition, the exit of the far-side lane (Lane 4) at the selected site
leads to a flyover connecting to a major urban expressway for traffic traveling between
urban areas in the east and west of Kowloon Peninsula in Hong Kong.

Two video cameras are installed on a footbridge that spans the selected road and
connects the Innovation Tower and Block Z building of The Hong Kong Polytechnic
University (Figure 4b). As shown in Figure 2, one of the cameras captures the upstream
vehicles from the front whereas the other camera captures the downstream vehicles from
the back.

{Insert Figure 4 here}

In this case study, the recorded videos have a resolution of 1920 x 1080 pixels
and a frame rate of 25 frames per second. However, the camera views at the upstream and
downstream locations are set to capture the whole four-lane section of the selected road.
As a result, the image size/resolution of each identified vehicle is small (around 140 X
140 pixels). The license plate numbers of vehicles cannot be identified from these low-
resolution video images.

The proposed method of estimating the travel time is implemented using data
collected during a Wednesday morning peak hour (i.e., 8:00 to 9:00 a.m. on January 8§,
2020). The results of the proposed method are compared against the ground truth obtained
from the manual labeling of vehicle types and manual matching of the same vehicles for
all vehicles in the peak hour. The proposed method is also compared with the existing

method (Wang et al., 2014) using the same low-resolution video images.
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4.2 Sample size

Manual matching and the removal of outliers (i.e., samples with a travel time longer than
the 99.5™ percentile or shorter than the 0.5™ percentile) give 1996 pairs of matched
samples within the study period. These samples are firstly classified into the six vehicle

classes (sub-types): sedans, taxis, vans, minibuses, buses, and trucks. This classification

is adopted in the discussion of the accuracies of vehicle type classification (sub-section
4.3) and vehicle re-identification (sub-section 4.4).

Table 3 shows the actual sample sizes by lane and by vehicle class. It is revealed
that sedans have the largest proportion (52.1%) while minibuses have the smallest
proportion (2.4%) among the six classes of vehicle. Empirical studies have found that the
travelling speeds of small passenger cars (e.g. sedans and taxis) are distinctive from those
of light commercial vehicles (e.g. vans and minibuses) and heavy commercial vehicles
(e.g. buses, and trucks), while light and heavy commercial vehicles have similar travelling
speeds (Chathoth & Asaithambi, 2018; Sil et al., 2020). The six vehicle classes are thus
grouped into two vehicle types—small (sedans and taxis) and other (vans, minibuses,
buses, and trucks) vehicles—for the analysis of travel time estimations in sub-sections
4.5t04.7.

{Insert Table 3 here}

To ensure sufficient samples for an objective representation of the lane-based
travel time distribution by vehicle type, the required sample size n,,,;;, (Ernstetal.,2014;
Yun & Qin, 2019) is determined as

P > (Z227) (14)
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where z,,, = 1.645 is the z-statistic for a confidence level of 1 —a =90%, € is the
permitted error percentage of the mean and is set as 10% in this case study, u is the mean
travel time, and o is the standard deviation of the mean.

With the mean travel time (u) and standard deviation of the mean (o) for each
lane and vehicle type obtained from manual matching, the required sample size by lane
and by vehicle type is found using Equation (14). A comparison of actual and required
sample sizes in Table 4 shows that there are sufficient samples for each vehicle type (i.e.,
small and other vehicles) in each lane.

{Insert Table 4 here}

4.3 Accuracy of vehicle type classification

In this study, the accuracy of vehicle type classification (ACC;) is defined by

t
Acc, = =% 100% (15)

all

where N[;; is the total number of identified vehicles and Nf is the number of vehicles
with their vehicle classes correctly classified. As discussed in sub-section 3.2, a training
data set is used to calibrate the number of template images (N¢.,,) and the fusion weight
(w). In this experiment, it is found that N, =8 and w = 0.11 give the maximum
Acc, in the training data set.

With the calibrated Ng.,, and w, the proposed vehicle type classification (Step
2) is carried out. Table 5 presents the confusion matrix of the six-vehicle-class
classification. Each row in the table shows the distribution of estimated vehicle classes
(resulted from Step 2) for that class of vehicle (ground truth). For example, the percentage
3.4% in the first row of Table 5 indicates that 3.4% of sedans are wrongly classified as

taxis when using the proposed method (Step 2). The proposed classification method is
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generally accurate as the classification accuracies range from 78.3% to 100% for different
vehicle classes. Among the six vehicle classes, the classifications of taxis and buses are
completely successful (100%) as taxis are distinct from other vehicle classes by color
(i.e., taxis are red in urban areas of Hong Kong) while buses are relatively distinct in
terms of their size. Compared with those two vehicle classes, sedans (78.3%) and trucks
(80.0%) have low accuracies owing to their wide ranges of size and color. When all six
vehicle classes are grouped together, the overall accuracy for the proposed classification
approach is 85.6%. This vehicle type classification was not considered in the existing
method (Wang et al., 2014).

{Insert Table 5 here}

4.4 Vehicle re-identification accuracy

Besides the classification accuracy, the accuracy of vehicle re-identification (vehicle
matching) between the upstream and downstream locations is considered and analyzed.

In this study, the vehicle re-identification accuracy (ACC,,) is defined by

ACCy, = = x 100% (16)

all™Ynull

where N[}, is the total number of vehicles in the upstream section, N;,; is the number

of vehicles that are not re-identified with any downstream vehicle, and N/* is the
number of vehicles that are correctly re-identified. The re-identification accuracies of the
proposed and the existing methods are respectively provided in Tables 6a and 6b.

Table 6a gives the accuracy of the proposed V-RelD for each of the six vehicle
classes and each of the four traffic lanes. As expected, re-identifying the same vehicle in
the upstream and downstream locations is more difficult than classifying the vehicles into

correct vehicle classes. Thus, the re-identification accuracy of the proposed method
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(Table 6a) is generally lower than the classification accuracy (Table 5). Despite the
difficulties of V-RelD, 52.4% of vehicles are correctly re-identified, which provides
accurate travel time data for the estimation of the travel time distribution by lane and
vehicle type.

The re-identification accuracy (all lanes) ranges from 42.4% to 81.2% for the six
vehicle classes. Table 6a reveals that vehicle classes with larger size (i.e., trucks and
buses) generally have a higher re-identification accuracy (62.5%—81.2%) than vehicle
classes with smaller size (i.e., sedans, taxis, and vans; re-identification accuracy ranging
42.4%-59.8%). The reason for such a difference is that larger vehicles are more distinct
in appearance and thus have greater probability of a correct match (Equation 8).
Minibuses, which are a type of public transportation mode in Hong Kong, have high re-
identification accuracy (70.2%) owing to their unique shape and color despite being of
similar size to vans.

A comparison of the V-RelD accuracy among different lanes reveals that the
accuracy for Lane 4 is generally lower than the accuracies for the other lanes. This can
be explained by the highly varied travel time distributions of this lane (see Figure 5a),
which result in a larger travel time window (Equations 5 and 6). The larger travel time
window can include more vehicles as feasible matches (Equation 7) but also increases the
chance of incorrect matching, which lowers the re-identification accuracy.

Compared to the proposed method, the existing method has lower V-RelD
accuracy in general (37.3%). For deeper analysis, Table 6b provides the V-RelD accuracy

by lane and by vehicle class, despite that the existing method neither identified vehicles’

lane locations nor classified vehicle types. The V-RelD accuracies are especially low for
Lane 4, ranging from 2.1% to 27.3% for the six vehicle classes. The reason is that the

existing method used the same travel time window for different lanes, while travel times
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in Lane 4 are much longer than other lanes. As a result, many correct matches are not
included by the travel time window of the existing method.

{Insert Table 6 here}

In general, the proposed V-RelD outperforms the existing method due to more
accurate lane-based travel time windows. Since the proposed method explicitly considers
differences of travel times among lanes, the travel time variations and the travel time
windows for each lane are obviously smaller than those for all vehicles. More invalid
vehicle matches are thus screened out by the proposed method to improve the V-RelD

accuracies.

4.5 Travel time distribution

For each pair of re-identified vehicles, including both correct and incorrect matches,
travel time samples are estimated using Equation (13). Grouping these travel time
samples for different vehicle types and lanes, the corresponding travel time distributions
can be estimated. As previously discussed, the six vehicle classes are grouped into two
vehicle types (i.e., small vehicles and other vehicles) to provide sufficient samples for the
analysis of travel times. Figure 5a shows the ground truth of travel time distributions by
the four lanes and two vehicle types for the study period (8:00 to 9:00 a.m. on Wednesday
January 8, 2020). Figures 5b and 5c respectively present the travel time distributions
estimated by the proposed and existing methods. Each of the histograms shown in Figure
5 has a bin width of 15 seconds. The figure reveals that the travel time distributions vary
by lane and vehicle type.

{Insert Figure 5 here}

The ground truth of travel time distributions (Figure 5a) reveals that the travel
times (for small vehicles and other vehicles) in Lane 1 are the least varied among the

lanes. This low variation is due to traffic being prevented from merging into Lane 1 by
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the lane markings between Lanes 1 and 2 in the upstream section and non-overlapping
area (see Figure 2 and the ground truth demands from other lanes to Lane 1 in Table 10a).
As a result, traffic in Lane 1 is less disrupted and can maintain uniform travel times. In
Figure 5a, the ground-truth travel time distributions for Lane 3 are relatively long and
more spread-out than those for Lane 2. This result is due to traffic in Lane 3 being allowed
to change to Lanes 2 and 4 whereas traffic in Lane 2 is only allowed to change to Lane 3
in the upstream section and the non-overlapping area (see lane markings in Figure 2).
Thus, there is potentially more lane-changing traffic in Lane 3 (see ground truth demands
from Lane 3 in Table 10a), which generally has a longer travel time than Lane 2 (see
ground truth mean travel times in Table 9), and the traffic staying in Lane 3 has a higher
chance of being affected by the lane-changing vehicles. As a result, travel times for Lane
3 are longer and more varied than those for Lane 2. Additionally, as Lane 4 is relatively
congested (see the longer and more spread-out travel time distribution in Figure 5a), it
takes more time for vehicles to leave Lane 3 and merge into Lane 4. Thus, the impact of
traffic merging into Lane 4 is larger than that for the other lanes and leads to a more
spread-out travel time of Lane 3 than that of Lane 2. The ground-truth travel times of
Lane 4 (Figure 5a) are much longer than those of the other three lanes and follow a
different distribution. This result can be explained by the fact that the downstream of Lane
4 is connected to a major urban expressway. Congestion on this major urban expressway
propagates back and substantially increases the mean and variance of travel times in Lane
4. The above comparisons and discussions of the travel time distributions of different
lanes reveal that travel times increase and become more varied with the presence/increase
of lane-changing traffic. In other words, the design of lane markings, which governs the
possibilities of lane changing, affects the travel times within a section and is thus worthy

of further investigation.
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The Hellinger distance (HD) (Prokhorchuk et al., 2020; Yun & Qin, 2019) is
adopted to measure the distances/dis-similarities between the estimated travel time

distributions (Figures 5b and 5¢) and the ground truth (Figure 5a):

Hp =L s, (VT - 7))’ (a7

where n is the number of bins of the travel time histogram, i is the index of the bin,
and Y, and Y; are respectively the probability (or relative frequency) of the true and
estimated travel times in bin i. The value of HD ranges from 0O to 1, where HD = 0
indicates that two distributions are the same and HD = 1 represents no similarity between
two distributions. Therefore, the less the HD, the higher accuracy is the estimated
distribution. Using Equation (17), the HDs of each pair of histograms for ground truth
and estimated travel times (Figure 5) are calculated. The results of the proposed and
existing methods are respectively shown in Tables 7a and 7b.

Table 7a shows that the travel time distributions estimated by the proposed
method are generally accurate, with the HDs being less than 0.189 for all vehicle types
and lanes. The maximum distance of 0.189 occurs for other vehicles (i.e., vans, minibuses,
buses, and trucks) traveling in Lane 3. On average, the HD by lane and by vehicle type is
0.137 for the proposed method (the average of the first four rows of Table 7a). The HDs
in the last row of Table 7a represent general estimation accuracy for the two vehicle types.
The small and other vehicles respectively have HDs of 0.079 and 0.052, which reflects
high accuracy of the estimations.

Table 7b shows that the estimations of travel time distributions are less accurate
by the existing method. The HD by lane and by vehicle type is averagely 0.321 (the
average of the first four rows of Table 7b), which are 2.3 times as large as that of the

proposed method. This can be attributed to the implicit assumption that different types of
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vehicles in different lanes have the same travel time distribution. As shown in Figure 5c,
the same estimations of travel time distributions are generally close to the ground truth
for Lanes 1 and 2, with the HDs being less than 0.184. However, the estimation errors are
larger for more congested lanes, especially for Lane 4, where the HDs are respectively
0.746 and 0.738 for small and other vehicle types.

{Insert Table 7 here}

Compared to the existing method, the proposed method has higher V-RelD
accuracy and thus more valid samples can be collected for the estimations of travel time
distributions, including travel time samples for Lane 4, i.e. the relatively congested lane.
Also, the proposed method distinguishes these travel time samples by vehicle types and
by lane locations, and therefore differences of travel times among vehicle types and lanes
are reflected and the estimations of travel time distributions are more detailed and more

accurate.

4.6 Means of travel times

Using travel time samples of re-identified vehicles for different lanes and vehicle types,
the means of travel times are estimated and the corresponding accuracy is evaluated.
Table 8a shows the estimated mean travel times of the proposed method. The absolute
percentage errors, as compared with the ground truth, range from 0.1% to 4.1%. The mean
travel times estimated for Lanes 3 and 4 generally have larger errors (2.8%—4.1%) than
those estimated for Lanes 1 and 2 (0.1%—-3.7%). This can be explained by the fact that
congestion in Lane 4, which is due to the bottleneck at the exit, and more lane-changing
maneuvers in Lane 3 lead to longer and more varied travel times (Figure 5). The
congestion and maneuvers result in longer travel time windows (Equations 5 and 6) for
Lanes 3 and 4 and lower corresponding V-RelD accuracy. As aresult, travel time samples

for Lanes 3 and 4 include more noise from incorrect matching.
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The mean estimations of travel times resulted from the proposed method are more
accurate than those from the existing method. As shown in Table 8b, the existing method
adopted the same mean estimation for all vehicles, which leads to large estimation errors.
Take Lane 4 for example, the absolute percentage errors reach 77.5% and 78.2% for two
types of vehicles. The absolute percentage errors for small and other vehicle types in all
lanes are also not accurate, respectively 44.2% and 46.6%. In contrast, the proposed
method collects more valid travel time samples and divides these samples by vehicle type
and by lane for mean estimations. Similar to the estimations of travel time distributions,
the mean estimations of the proposed method are more accurate.

{Insert Table 8 here}

Table 8a reveals that the estimated mean travel times increase from Lane 1 to
Lane 4, which confirms the observations in Figure 5 and can be explained by the reasons
relating to lane markings and downstream congestion discussed in sub-section 4.5. A
comparison of the estimated mean travel times of different vehicle types (Table 8a)
reveals that the small vehicles generally have smaller errors (2.3%) than the other vehicles
(3.9%). In terms of the estimated mean travel times, as expected, the small vehicles have
shorter travel times than the other vehicles in all lanes, except for Lane 3. In Lane 3, the
estimated mean travel time of the small vehicles is 22.8 seconds, which is longer than that
of the other vehicles (19.7 seconds).

The mean travel times obtained from the manual matching (i.e., the ground truth)
of the small and other vehicles between lanes (Table 9) are further investigated to explain
this unexpected result for different vehicle types. A comparison of Tables 9a and 9b
reveals that the small vehicles have shorter travel times than the other vehicles in most
cases. Among vehicles that do not change lane (i.e., the diagonal values in Table 9a and

9b), the travel times of the small vehicles in Lanes 1, 2, 3, and 4 are respectively 8.8, 10.9,
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25.1, and 57.2 seconds, all of which are shorter than the corresponding times for the other
vehicles (i.e., 9.1, 12.7, 27.0, and 58.6 seconds respectively). In the definition of vehicle
types (sub-section 4.2), the small vehicles (sedans and taxis) are passenger cars while the
other vehicles (vans, minibuses, buses, and trucks) are heavy vehicles. Many empirical
studies have found that heavy vehicles travel at lower speeds and have longer travel times
because of their limited maneuverability, such as their limited acceleration and
deceleration (Cao et al., 2016; Moridpour et al., 2015), and they improve their fuel
economy by traveling at lower speed (Zhou et al., 2018). Thus, the observed longer travel
times of the other vehicles, as compared with the small vehicles, are consistent with the
empirical findings in the literature in the case that there is no lane changing (i.e., the
diagonal values in Table 9b).

Nevertheless, when there is lane changing between the upstream and downstream
sections (i.e., the off-diagonal values in Tables 9a and 9b), there are cases in which small
vehicles have longer travel times (e.g., vehicles traveling from Lane 2 upstream to Lane
4 downstream). The travel times of these lane-changing vehicles comprise the duration
of travel in the lanes and the duration of lane-changings. Previous studies have used
empirical data to reveal that in some cases heavy vehicles may take less time than small
vehicles (Aghabayk et al., 2011; Toledo & Zohar, 2007).

The shorter lane-changing duration of heavy vehicles can be explained by the
lane-changing behaviors and characteristics of the heavy vehicles. Under heavy traffic
conditions, drivers change lane either through the courteous yielding of the following
vehicle or by forcing the following vehicle to slow down (Yang et al., 2019). For the
following vehicles, the analysis of naturalistic driving data has shown that some drivers
of the following vehicle brake urgently to yield to the lane-changing vehicle and avoid a

collision (Wang et al., 2019). Heavy vehicles, owing to their large size and weight,
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impose both physical and psychological effects on surrounding vehicles (Moridpour et
al., 2015). Additionally, owing to the lower maneuverability of heavy vehicles, empirical
data show that they maintain a more constant speed during the lane-changing maneuver
than small vehicles do (Aghabayk et al., 2011; Moridpour et al., 2010). Thus, owing to
the physical/psychological effect and low maneuverability of heavy vehicles, the
following vehicles will be more cautious in responding to the lane-changing of heavy
vehicles and yield to the heavy vehicles because of safety concerns (Toledo & Zohar,
2007). As a result, it could be easier for heavy vehicles to change lanes, which would
shorten their lane-changing duration. In addition, drivers of the other vehicles (i.e., vans,
minibuses, buses, and trucks) are usually professional drivers with more experience in
lane-changing, especially when there is congestion, and they will therefore have a shorter
lane-changing duration (Aghabayk et al., 2011; Toledo & Zohar, 2007). The above
explains that it is possible for the small vehicles to have longer travel times than other
vehicles, when there are lane-changing maneuvers between the upstream and downstream
sections (i.e., the off-diagonal values in Tables 9a and 9b).

{Insert Table 9 here}

The mean travel time of each lane (the last columns in Tables 9a and 9b) is the
weighted average of travel times to all downstream lanes with the weight taken as the
corresponding vehicle proportion. Tables 10a and 10b respectively give the number, and
proportion in brackets, of the small and other vehicles for different lanes from manual
matching (i.e., ground truth). Despite the small vehicles having shorter travel times when
traveling from Lane 3 (upstream) to Lane 3 (downstream) (Tables 9a and 9b), their
proportion (35.5% for the small vehicles and 30.5% for the other vehicles) is not sufficient
to outweigh the long travel times (see Table 9a and 9b for Lane 3 to Lane 2 and Lane 3

to Lane 4) of lane-changing vehicles (with a proportion of 64.5% for small vehicles and
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69.5% for other vehicles). Thus, in Table 9, the ground-truth travel time of the small
vehicles in Lane 3 (23.8 seconds), which is the weighted average of all maneuvers, is
longer than that of the other vehicles (20.5 seconds). These findings of ground-truth travel
times for Lane 3 suggest that the proposed travel time estimations for the small and other
vehicles in Lane 3 (Table 8a) are reasonable.

{Insert Table 10 here}

4.7 Standard deviations of travel times

The standard deviation of travel times is estimated using travel time samples of
re-identified vehicles for different lanes and vehicle types. The results of the proposed
and existing methods are respectively shown in Tables 11a and 11b. Table 11a reveals
that the standard deviations of travel times estimated by the proposed method increase
from Lane 1 to Lane 4. This can be explained by lane markings and downstream
congestion as discussed in sub-section 4.5. As expected, the errors of standard deviation
estimation are generally larger than those of the mean estimation but still fall in an
acceptable range with a maximum error of 10.7%. The aggregated estimation errors of
each vehicle type (i.e., the last row of Table 11a) are less than 4.3%.

The proposed method outperforms the existing method in the estimations of
standard deviation, similar to the estimations of travel time distributions and mean travel
times. As previously discussed, more travel time samples are obtained by the proposed
method due to its higher V-RelD accuracy. In contrast, the existing method collect limited
samples especially in Lane 4 where travel time distributions varied most highly (see
Figure 5a). Consequently, the standard deviations estimated by the existing method are
smaller than those resulted from the proposed method.

{Insert Table 11 here}
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5. Conclusions and future research

This paper proposes a lane-based V-RelD and travel time estimation framework by
vehicle type for congested urban roads with lane-changing maneuvers. Lanes of the same
road segment can have distinct lane-changing conditions, and differences in travel times
between different vehicle types and different traffic lanes were thus investigated. The
proposed method enhances the V-RelD accuracy, and therefore more travel time samples
are collected for the accurate estimation of travel time distributions by lane and by vehicle
type. These information can be very helpful for various traffic management purposes such
as determining the entry and exit locations of bus-only lane; changing lane markings for
controlling the merging/diverging of different vehicles; and estimating the traffic
emission/fuel consumption by vehicle types etc.

A four-lane urban road with different lane markings for different lanes in Hong
Kong was taken as a test site for a case study. The proposed method was implemented in
the case study to estimate travel times by vehicle type and traffic lane. A cutting-edge
existing method using the same low-resolution video images was also implemented for
comparative analysis. Results showed that the proposed method outperforms the existing
method and the estimation results are generally accurate. The classification accuracies
ranged from 78.3% for sedans to 100% for taxis and buses. The V-RelD accuracies
ranged from 42.4% for sedans to 81.2% for buses. Larger vehicles (e.g., buses and trucks)
had a higher re-identification accuracy. In the estimation of travel time distributions, it
was found that the Hellinger distances between the estimated travel time distributions and
the ground truth are less than 0.189 for all vehicle types and lanes. The average of
Hellinger distances is 0.137, which is 57% less than that of the existing method. The
errors of the corresponding mean estimates ranged from 0.1% for the other vehicles in

Lane 1 to 4.1% for the small vehicles in Lane 3. The errors of the standard deviation
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estimates ranged from 1.6% for the other vehicles in Lane 4 to 10.7% for the other
vehicles in Lane 2. It was shown in this case study that the estimation errors of the travel
time distributions are varied by lane and vehicle type on the four-lane road segment with
different lane-changing maneuvers.

In future work, the proposed V-RelD can be extended to road segments of longer
distance for travel time estimation. More spatial-temporal information, such as the vehicle
sequence, can be considered to filter out invalid vehicles for a road segment with many
entries/exits. On a congested road segment, there are far fewer discretionary lane-
changing maneuvers. The vehicle sequence of each traffic lane should remain stable,
except that some vehicles enter their target lanes or exit their initial lanes because of
mandatory lane changing. For example, if a downstream vehicle cannot be matched to an
upstream vehicle with similar leading and following vehicles, this vehicle probably enters
in the middle of the road segment and thus should be filtered out. Additionally, in view
of low-resolution video images having different angles of view, it would be worthwhile
to make use of more vehicle appearance information, such as the roof patterns, side views,
and/or advertisements of the vehicles, in improving the quality of V-RelD. Moreover,
since video images are sensitive to low illumination conditions (e.g. adverse weather),
further studies are required to extend the proposed V-RelD method by using other data
sources such as thermal images and axle-weight measurements (Basar et al., 2018; Li et
al., 2020). Heterogeneous data fusion is encouraged to enhance the robustness of V-RelD.

As for the investigation of lane-changing effects and travel time distributions, this
case study revealed that the travel times of different vehicle types varied according to the
traffic lanes, the lane markings of which differed in, for example, their locations and
lengths. In the field of urban road design and/or traffic management, the effect of lane

markings, which govern the possibility of lane changing, on travel time distributions
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should be further investigated to balance the efficiency and flexibility of the urban road
design. Moreover, the effects of vehicle types on the lane-changing duration and thus the
lane-based travel time deserve further studies. The effects of various factors, such as the
traffic density, traffic signal timing, and relative speed of the lane-changing vehicle, on
lane-changing behaviors and duration are also worthy of further investigation. To observe
and model lane-changing effects in a more detailed and fine-grained manner, vehicle
trajectory data should be collected and analyzed. Last but not least, the integration of
model-based and data-driven approaches can be further investigated to improve the
estimation of the travel time distribution by vehicle type for the entire road network in

practice.
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Table 1. Summary of key studies on travel time estimation™

Travel time estimation

Data sources Real By St.udy
data  Overall By lane vehicle sites
type
Li et al. (2006) Loop detector v Mean Freeways
data
Mean Urban
Tam & Lam (2011) AVI data v Std. roads
Wang et al. (2014) Video images v l\gfgn Freeways
Sanaullah et al. (2016) GPS data v Mean Freeways
Loop detector
Li et al. (2016) dataand GPS vV Mean Urban
roads
data
. . Mean
. Video images Urban
Shi et al. (2017) and AVI data v SFd. roads
Dist.
Mean Freeways
Ma et al. (2017) AVI data v Std. and
Dist urban
' roads
Mean Freeways
Zhang et al. (2019) GPS data v Std. agd
Dist urban
) roads
Microwave Mean
Tang et al. (2020) detector data v SFd. Freeways
Dist.
Mean Mean
Lu et al. (2021) Vceﬁ?(ﬂ:‘ﬁzfa Std.  Std. [rjcf:;:
Dist. Dist.
Video images Mean Mean Urban
Zhang et al. (2021) from different v Std. Std.
) : . roads
angles of view Dist. Dist.
Video images Mean Mean  Mean Urban
The proposed method from different v Std. Std. Std. roads
angles of view Dist. Dist. Dist.

*Std. = Standard deviation; Dist. = Distribution
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Table 2. Distance measures between a given vehicle image and template images (an

example)
Template
images \ | : R 7
Taxi Van Minibus Bus Truck
2.1207 1.9752 1.2851 0.9523 0.9679 0.9241
Vehicle
image
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Table 3. Actual sample size by lane and by vehicle class

Small Other
Sedan  Taxi Van  Minibus Bus  Truck
Lane 1 236 19 32 9 57 37
Lane 2 354 147 64 23 91 55
Lane 3 293 129 39 11 56 48
Lane 4 157 39 28 5 6 61

All lanes 1040 334 163 48 210 201
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Table 4. Actual and required sample size by lane and by vehicle type

Small Other
Actual  Required  Actual  Required
Lane 1 255 123 135 130
Lane 2 501 160 233 201
Lane 3 422 197 154 136
Lane 4 196 50 100 48

All lanes 1374 233 622 235
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Table 5. Confusion matrix of the 6-vehicle-class classification

m Sedan Taxi Van Minibus Bus Truck
Sedan 78.3% 3.4% 17.7% 0.6% 0.0% 0.0%
Taxi 0.0%  100.0%  0.0% 0.0% 0.0% 0.0%
Van 4.5% 0.0% 95.5% 0.0% 0.0% 0.0%
Minibus 0.0% 0.0% 0.0% 92.3% 7.7% 0.0%
Bus 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%
Truck 0.0% 0.0% 8.0% 8.0% 4.0% 80.0%

Overall: 85.6%
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Table 6. Vehicle re-identification accuracy by lane and by vehicle class resulted from

(a) Proposed method and (b) Existing method

(a)

Sedan Taxi Van Minibus Bus Truck

Lane 1 50.0% 80.2% 47.9% 62.4% 92.5% 49.7%

Lane 2 48.1% 56.9% 40.1% 75.5% 76.3% 73.3%

Lane 3 37.5% 55.9% 42.2% 76.3% 81.1% 59.8%

Lane 4 29.1% 75.7% 39.2% 60.6% 44.4% 63.8%

All lanes  42.4% 59.8%  42.6% 70.2% 81.2% 62.5%
Overall: 52.4%

(b)

Sedan Taxi Van Minibus Bus Truck

Lane 1 33.0% 47.2% 33.6% 62.4% 77.9% 47.1%

Lane 2 38.2% 49.2% 35.7% 75.5% 60.1% 58.1%

Lane 3 26.1% 51.4% 17.3% 62.5% 71.5% 42.9%

Lane 4 21% 16.9% 8.3% 27.3% 21.3% 6.8%

Alllanes 27.5%  46.2%  26.5% 64.7% 66.9% 36.8%
Overall: 37.3%
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Table 7. Hellinger distance between the ground truth and the estimated travel time
distributions by lane and by vehicle type resulted from (a) Proposed method and (b)
Existing method

(2)

Small Other

Lane 1 0.103 0.114
Lane 2 0.124 0.122
Lane 3 0.154 0.189
Lanc 4 0.155 0.134
All lanes  0.079 0.052

(b)

Small Other

Lane 1 0.077 0.102
Lane 2 0.125 0.184
Lane 3 0.322 0.271
Lane 4 0.746 0.738
All lanes  0.290 0.296
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Table 8. Mean of estimated travel times (sec) by lane and by vehicle type resulted from

(a) Proposed method and (b) Existing method*

(a)

Small

Other

Lane 1 11.2 (0.3%) 12.0 (0.1%)
Lane 2 13.7 (0.2%) 16.2 (3.7%)
Lane 3 22.8 (4.1%) 19.7 (3.9%)
Lane 4 53.5(2.8%) 54.7 (4.0%)
All lanes 21.7 (2.3%) 22.3 (3.9%)
(b)
Small Other
Lane 1 12.4 (11.3%) 12.4 (3.4%)
Lane 2 12.4 (9.7%) 12.4 (26.5%)
Lane 3 12.4 (47.9%) 12.4 (39.6%)
Lane 4 12.4 (77.5%) 12.4 (78.2%)
All lanes 12.4 (44.2%) 12.4 (46.6%)

*Values in parenthesis are absolute % errors as compared to ground truth
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Table 9. Ground truth mean travel time (sec) of (a) small and (b) other vehicles between

lanes
(a)
Travel Tlme of To Lane 1 To Lane 2 To Lane 3 To Lane 4
Small Vehicles Total
= (downstream) (downstream) (downstream) (downstream)
between lanes
From Lane 1 8.8 13.4 193 / 11.1
(upstream)
From Lane 2 / 10.9 26.5 58.8 13.7
(upstream)
From Lane 3 / 13.4 25.1 58.3 23.8
(upstream)
From Lane 4 / 17.7 224 57.2 55.0
(upstream)
(b)
Travel Tlme of To Lane 1 To Lane 2 To Lane 3 To Lane 4
Other Vehicles Total
—b (downstream) (downstream) (downstream) (downstream)
etween lanes
From Lane 1 9.1 15.2 228 / 12.0
(upstream)
From Lane 2 / 12.7 275 56.4 16.9
(upstream)
From Lane 3 / 11.8 27.0 51.5 20.5
(upstream)
From Lane 4 / 10.0 293 58.6 57.1
(upstream)
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Table 10. Ground truth number of (a) small and (b) other vehicles between lanes*

(a)
No. of Small
Vehicles To Lane 1 To Lane 2 To Lane 3 To Lane 4 Total
between (downstream) (downstream) (downstream) (downstream)
lanes
From Lane 1 o . . . .
(upstream) 157 (61.6%) 78 (30.6%) 20 (7.8%) 0 (0.0%) 255 (100%)
From Lane 2 0 . . . .
(upstream) 0 (0.0%) 427 (85.2%) 66 (13.2%) 8 (1.6%) 501 (100%)
From Lane 3 o . . . .
(upstream) 0 (0.0%) 213 (50.5%) 150 (35.5%) 59 (14.0%) 422 (100%)
From Lane 4 0 . . , .
(upstream) 0 (0.0%) 3 (1.5%) 9 (4.6%) 184 (93.9%) 196 (100%)
*Values in parenthesis are vehicle proportions for each lane
(b)
No. of Other
Vehicles To Lane 1 To Lane 2 To Lane 3 To Lane 4 Total
between (downstream) (downstream) (downstream) (downstream)
lanes
From Lane 1 0 . . ) .
(upstream) S0 (63-7%)  37(274%)  12(8.9%) 0(0.0%) 135 (100%)
From Lane 2 0 . . . .
(upstream) 0 (0.0%) 180 (77.3%) 46 (19.7%) 7 (3.0%) 233 (100%)
From Lane 3 0 . . . .
(upstream) 0 (0.0%) 91 (59.1%) 47 (30.5%) 16 (10.4%) 154 (100%)
From Lane 4 0 . . . .
(upstream) 0 (0.0%) 2(2.0%) 2 (2.0%) 96 (96.0%) 100 (100%)

*Values in parenthesis are vehicle proportions for each lane
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Table 11. Standard deviation of estimated travel times (sec) by lane and by vehicle type

resulted from (a) Proposed method and (b) Existing method*

(a)
Small Other
Lane 1 7.0 (7.4%) 8.6 (4.0%)
Lane 2 11.2 (6.5%) 13.0 (10.7%)
Lane 3 18.2 (10.2%) 15.6 (7.2%)
Lane 4 26.2 (10.2%) 24.2 (1.6%)
All lanes 21.5 (4.3%) 21.2 (1.9%)
(b)
Small Other
Lane 1 6.8 (9.8%) 6.8 (18.4%)
Lane 2 6.8 (35.8%) 6.8 (53.4%)
Lane 3 6.8 (66.6%) 6.8 (53.5%)
Lane 4 6.8 (71.5%) 6.8 (71.6%)
All lanes 6.8 (67.1%) 6.8 (68.7%)

*Values in parenthesis are absolute % errors as compared to ground truth
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Figure 1. Video images from different camera views: (a) upstr
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Figure 2. An illustration of vehicle re-identification on an urban road segment with

different lane markings and different vehicle types
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Figure 3. Framework of the proposed methodology
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Figure 4. Test site in Hong Kong: (a) Road layout and (b) Site photo
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Figure 5. Travel time distributions by lane and by vehicle type (a) Ground truth (b)

Estimated by the proposed method (c) Estimated by the existing method
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