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Abstract

It is shown how to set up, conduct, and analyze large simulation studies with the
new R package simsalapar (= simulations simplified and launched parallel). A simulation
study typically starts with determining a collection of input variables and their values
on which the study depends. Computations are desired for all combinations of these
variables. If conducting these computations sequentially is too time-consuming, parallel
computing can be applied over all combinations of select variables. The final result object
of a simulation study is typically an array. From this array, summary statistics can be
derived and presented in terms of flat contingency or IWTEX tables or visualized in terms
of matrix-like figures.

The R package simsalapar provides several tools to achieve the above tasks. Warn-
ings and errors are dealt with correctly, various seeding methods are available, and run
time is measured. Furthermore, tools for analyzing the results via tables or graphics are
provided. In contrast to rather minimal examples typically found in R packages or vi-
gnettes, an end-to-end, not-so-minimal simulation problem from the realm of quantitative
risk management is given. The concepts presented and solutions provided by simsalapar
may be of interest to students, researchers, and practitioners as a how-to for conducting
realistic, large-scale simulation studies in R.
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1. Introduction

Realistic mathematical or statistical models are often complex and not analytically tractable,
thus require to be evaluated by simulation. In many areas such as finance, insurance, or
statistics, it is therefore necessary to set up, conduct, and analyze simulation studies. Apart
from minimal examples which address particular tasks, one often faces more difficult setups.
For example, if a comparably small simulation already reveals an interesting result, it is often
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desired to conduct a larger study, involving more parameters, a larger sample size, or more
simulation replications. However, run time for sequentially computing results for all variable
combinations may now be too large. It may thus be beneficial to apply parallel computing for
select variable combinations, be it on a multi-core processor with several central processing
units (cores), or on a network (cluster) with several computers (nodes). This adds another level
of difficulty to solving the initial task. Users such as students, researchers, or practitioners are
typically not primarily interested in the technical details of parallel computing, especially when
it comes to more involved tasks such as correctly advancing a random number generator stream
to guarantee reproducibility while having different seeds on different nodes. Furthermore,
numerical issues often distort simulation results but remain undetected, especially if they
happen rarely or are not captured correctly. These issues are either not, or not sufficiently
addressed in examples, vignettes, or other packages one would consult when setting up a
simulation study.

In what follows, we work with the statistical software R, see R Core Team (2015) and
Venables, Smith, and R Core Team (2015) for an introduction. We introduce and present
the new R package simsalapar — available from the Comprehensive R Archive Network at
https://CRAN.R-project.org/package=simsalapar — and show how it can be used to set
up, conduct, and analyze a simulation study. It extends the functionality of several other
R packages, such as simSummary (see Gorjanc 2012), ezsim (see Chan 2014), harvestr (see
Redd 2014), and simFrame (see Alfons, Templ, and Filzmoser 2010), where e.g., none of
these capture warning messages, and only harvestr does save errors (for further treatment),
where we excel at this. Our emphasis, more than in these packages, is to nicely deal with
“multi-factor”! simulation setups,

In our view, a simulation study typically consists of the following parts:

1. Setup: The scientific problem; how to translate it to a setup of a simulation study;
breaking down the problem into different layers and implementing the main, problem-
specific function. These tasks are addressed in Sections 2.2-2.6 after introducing our
working example in the realm of quantitative risk management in Section 2.1.

2. Conducting the simulation: Here, approaches of how to conduct computations in parallel
with R are presented. They depend on whether the simulation study is run on one
machine (node) with a multi-core processor or on a cluster with several nodes. This is
addressed in Section 3.

3. Analyzing the results: How results of a simulation study can be presented with tables or
graphics. This is done in Section 4.

After a conclusion in Section 5, we show additional and more advanced functions and com-
putations in the appendix. They are not necessary for understanding the paper and rather
emphasize what is going on “behind the scenes” of simsalapar, provide further functional-
ity, explanations of our approach, and additional checks conducted. As a working example
throughout the paper, we present a simulation problem from the realm of quantitative risk
management. The example is minimal in the sense that it can still be run sequentially
(non-parallel) on a standard computer. However, it is not too minimal in that it covers a wide
range of possible variables and tasks a simulation study might depend on and involve. We

"Multi-factor: more than one “grid” variable in the variable list, see, e.g., Table 1.
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believe this to be useful for users like students, researchers, and practitioners, who often need
to implement simulation studies of similar kind, but miss guidance and accompanying tools
such as an R package of how this can be achieved.

2. How to set up and conduct a simulation study

2.1. The scientific problem

As a simulation problem, we consider the task of estimating quantiles of the distribution
function of the sum of dependent random variables. This is a statistical problem from the
realm of quantitative risk management, where the distribution function under consideration
is that of the losses a bank faces over a predetermined time horizon in the future. The
corresponding quantile function is termed wvalue-at-risk; see McNeil, Frey, and Embrechts
(2005, p. 38). According to the Basel II rules of banking supervision, banks have to compute
value-at-risk at certain high quantiles as a measure of risk they face and money they have to
put aside in order to account for such losses and to avoid bankruptcy.

In the language of mathematics, this can be made precise as follows. Let S; ; denote the value
of the jth of d stocks at time ¢t > 0. The value of a portfolio with these d stocks at time ¢ is
thus

d
Vi=_B;S;,
=1

where i, ..., 54 denote the number of shares of stock j in the portfolio. Considering the
logarithmic stock prices as risk factors, the risk-factor changes are given by
Xit1,j = log(Sit1,5) — log(St;) =1og(Se41,5/Sej), 7€ {1,...,d}, (1)

that is, as the log-returns. Assume that all quantities at time point ¢, interpreted as today,
are known and we are interested in the time point ¢ 4 1, for example one year ahead. The loss
of the portfolio at ¢ + 1 can therefore be expressed as

d d
Livi = —=(Vigr = Vi) = =Y Bi(Ses1 — Stj) = — Y B Sk (exp(Xip1,5) — 1)
j=1 j=1
d
== wyj(exp(Xq1) — 1), (2)
j=1

that is, in terms of the known weights w;; = 3;S5;; and the unknown risk-factor changes
Xiy1,5, J €1{1,...,d}. Value-at-risk (VaRg) of Liy; at level o € (0,1) is given by
VaRa(Lt+1) = Fr

Liya

() =inf{z e R: I, (v) > a}, (3)

that is, the a-quantile of the distribution function F,, , of L;;1; see Embrechts and Hofert
(2013) for more details about such functions.

For simplicity, we drop the time index ¢ + 1 in what follows. Let X = (Xi,...,Xy) be
the d-dimensional vector of (possibly) dependent risk-factor changes. By Sklar (1959), its
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distribution function H can be expressed as
H(x) = C(Fi(21),...,Fa(zq)), xR,

for a copula C' and the marginal distribution functions Fi,...,F; of H. A copula is a
distribution function with standard uniform univariate margins; for an introduction to copulas,
see Nelsen (2006). Our goal is to simulate losses L for margins Fi, ..., Fy (assumed to be
standard normal), a given vector w = (wq,...,wy) of weights (assumed to be w = (1,...,1)),
and different

sample sizes n;

¢ dimensions d;

copula families C' (note that we slightly abuse notation here and in what follows, using
C' to denote a parametric copula family, not only a fixed copula);

copula parameters, expressed in terms of the concordance measure Kendall’s tau 7;

and then to compute VaR, (L) for different levels a. This is a common setup and problem
from quantitative risk management. Since neither Fp, nor its quantile function and thus
VaR (L) are known explicitly, we estimate VaR,, (L) empirically based on n simulated losses
L;, i€ {1,...,n}, of L. This method for estimating VaR, (L) is also known as Monte Carlo
stmulation method; see McNeil et al. (2005, Section 2.3.3). We repeat it Ny, times to be able
to provide an error measure of the estimation via bootstrapped percentile confidence intervals.

2.2. Translating the scientific problem to R

To summarize, our goal is to simulate, for each sample size n, dimension d, copula family
C, and strength of dependence Kendall’s tau 7, Ng;p, times n losses Lg;, k € {1,..., Ngim},
i€{l1,...,n}, and to compute in the kth of the Ny;,, replications VaR, (L) as the empirical
a-quantile of Lg;, i € {1,...,n}, for each « considered. Since different a-quantiles can
(and should!) be estimated based on the same simulated losses, we do not have to generate
additional samples for different values of a, VaR (L) can be estimated simultaneously for all
a under consideration.

Variable Expression Type Value

n.sim Nsim N 32
n n grid 64, 256
d d grid 5, 20, 100, 500
varWgts w frozen 1,1, 1,1
qF F1 frozen qF
family C grid Clayton, Gumbel
tau T grid 0.25, 0.50
alpha « inner  0.950, 0.990, 0.999

Table 1: Variables which determine our simulation study.
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(Physical) grid Virtual grid
n d C T n d C T
64 5 Clayton 0.25 (Physical) grid 1
256 5 Clayton 0.25
64 20 Clayton 0.25 | sub-job (Physical) grid 2
266 20 Clayton 0.25
64 100 Clayton 0.25
0.25

2566 100 Clayton

64 500 Gumbel 0.50

256 500 Gumbel 0.50 (Physical) grid Ny

Figure 1: (Physical) vs. virtual grid.

Table 1 provides a summary of all variables involved in our simulation study, their names in
R, ATEX expressions, type, and the corresponding values we choose. Note that this table is
produced entirely with simsalapar’s toLatex(varList, ....); see page 6. For the moment,
let us focus on the type. Available are:

N: The variable Ny, gives the number of simulation (“bootstrap”) replications in our study.

This variable is present in many statistical simulations and allows one to provide an error
measure of a statistical quantity such as an estimator. Because of this special meaning,
it gets the type “N”, and there can be only one variable of this type in a simulation
study. If it is not given, it will implicitly be treated as 1.

frozen: The variable w is a list of length equal to the number of dimensions considered, where

grid:

each entry is a vector (in our case a value which will be sufficiently often recycled by R)
of length equal to the corresponding dimension. Variables such as w (or the marginal
distribution functions) remain the same throughout our whole simulation study, but one
might want to change them if the study is conducted again. Variables of this type are
assigned the type “frozen”, since they remain fixed throughout the whole study.

Variables of type “grid” are used to build a (physical) grid. In R this grid is implemented
as a data frame. Each row in this data frame contains a unique combination of variables
of type “grid”. The number of rows n¢g of this grid, is thus the product of the lengths of
all variables of type “grid”. The simulation will iterate Ng;,, times over all ng rows and
conduct the required computations. Conceptually, this corresponds to visiting each of
the Ngim X ng rows of a virtual grid seen as N, copies of the grid pasted together; see
Figure 1. The computations for one row in this virtual grid are viewed as one sub-job. If
computing all sub-jobs sequentially turns out to be time-consuming and profiling of the
code did not reveal major possible improvements such as removing deeply nested ’for’
loops, we can apply parallel computing and distribute the sub-jobs over several cores of
a multi-core processor or several machines (nodes) in a cluster.

inner: Finally, variables of type “inner” are all dealt with within a sub-job for reasons such

as convenience, speed, or load balancing. As mentioned before, in our example, « plays
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such a role since VaR, (L) can be estimated simultaneously for all o under consideration
based on the same simulated losses.

As result object of a simulation, we naturally obtain an array. This array has one dimension
for each variable of type “grid” or “inner”, and one additional dimension if N, > 1. Besides
the variable names, their type, and their values, we also define R expressions for each variable.
These expressions are later used to label tables or plots when the simulation results are
analyzed.

We are now ready to start writing an R script which can be run on a single computer or on
a computer cluster. Since cluster types and interfaces are quite different, we only focus on
how to write the R script here?. The first task is to implement the variable list presented
above. Note that varlist () is a constructor for an object of the S4 class "varlist", which is
only little more than the usual 1ist () in R. For more details, use require("simsalapar"),
then ?varlist, getClass("varlist"), or class?varlist. Given a user-provided variable
list of class "varlist", a table such as Table 1 can be automatically generated with the
toLatex.varlist method.

R> require("simsalapar")
R> varList <- varlist(
n.sim = list(type = "N", expr = quote(N[sim]), value = 32),
n = list(type = "grid", value = c(64, 256)),
d = list(type = "grid", value = c(5, 20, 100, 500)),
varWgts = list(type = "frozen", expr = quote(bold(w)),
value = list("5" = 1, "20" = 1, "100" = 1, "500" = 1)),
qF = list(type = "frozen", expr = quote(F~{-1}),
value = list(qF = gnorm)),
family = list(type = "grid", expr = quote(C),
value = c("Clayton", "Gumbel")),
tau = list(type = "grid", value = c(0.25, 0.5)),
alpha = list(type = "inner", value = c(0.95, 0.99, 0.999)))
R> tolLatex(varList, label = "tab:var",
+ caption = "Variables which determine our simulation study.")

+ + + + + + + + + + +

One actually does not need to specify a type for n.sim or variables of type “frozen” as the
default chosen is “frozen” unless the variable is n.sim in which case it is “N”.

The function getE1() can be used to extract elements of a certain type from a variable list
(defaults to all values).

2As an example of how to run an R script simu.R on different nodes on a computer cluster, let us consider
the cluster Brutus at ETH Zurich. It runs an LSF batch system. Once logged in, one can submit the script
simu.R via bsub -N -W 01:00 -n 48 -R "select[model==0pteron8380]" -R "span[ptile=16]" mpirun -n
1 R CMD BATCH simu.R, for example, where the meaning of the various options is as follows: -N sends an
email to the user when the batch job has finished; -W 01:00 submits the job to the queue with maximal
wall-clock run time of one hour; the option -n 48 asks for 48 cores, one is used as manager and 47 as workers;
-R "select[model==0pteron8380]" specifies X86_ 64 nodes with AMD Opteron 8380 CPUs for the sub-jobs
to be run (this is important if run-time comparisons are required, since one has to make sure that the same
architecture is used when computations are carried out in parallel); the option -R "span[ptile=16]" specifies
that 16 cores are used on a single node; mpirun specifies an Open MPI job which runs only one copy (-n 1) of
the program; and finally, R CMD BATCH simu.R is the standard call of the R script simu.R in batch mode.
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R> str(getEl(varList, "grid"))

List of 4
$n : num [1:2] 64 256
$ 4 : num [1:4] 5 20 100 500
$ family: chr [1:2] "Clayton" "Gumbel"
$ tau : num [1:2] 0.25 0.5

R> str(getEl(varList, "inner"))

List of 1
$ alpha: num [1:3] 0.95 0.99 0.999

To have a look at the (physical) grid for our working example which contains all combinations
of variables of type “grid”, the function mkGrid() can be used as follows.

R> pGrid <- mkGrid(varList)
R> str(pGrid)

'data.frame': 32 obs. of 4 variables:

$n : num 64 256 64 256 64 256 64 256 64 256 ...

$ d :num 5 5 20 20 100 100 500 500 5 5 ...

$ family: chr "Clayton" "Clayton" "Clayton" "Clayton"

$ tau :num 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ...

2.3. The result of a simulation

Our route from here is to conduct the simulations required for each line of the virtual grid.
As an important point, note that each computational result naturally consists of the following
components:

value: The actual value. This is can be a scalar, numeric vector, or numeric array whose
dimensions depend on variables of type “inner”. The computed entries also depend on
variables of type “frozen”, but they do not enter the array as additional dimensions.

error: It isimportant to adequately track errors during simulation studies. If one computation
fails, we lose all results computed so far and thus have to do the work again (fix the
error, move the files to the cluster, wait for the simulation job to start, wait for it to fail
or to finish successfully in this next trial run etc.). To avoid this, we capture the errors
to be able to deal with them after the simulation has been conducted. This also allows
us to compute statistics about errors, such as percentages of runs producing errors etc.

warning: Similar to errors, warnings are important to catch. They may indicate non-
convergence of an algorithm or a maximal number of iterations reached and therefore
impact reliability of the results.
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time: Measured run time can also be an indicator of reliability in the sense that if computations
are too fast or too slow, there might be a programming error such as a wrong logical
condition leading the program to end up in a wrong case. If the value computed from
this case is not suspicious, and if there were no warnings and errors, then run time is
the only indicator of a possible bug in the code. Furthermore, measuring run time is
also helpful for benchmarking or determining whether a computation or algorithm runs
sufficiently fast on a notebook.

.Random.seed: The random seed right before the user-specified computations are carried out.
This is useful for reproducing single results for debugging purposes.

In many simulation studies, also on an academic level, focus is put on value only. We therefore
particularly stress all of these components, since they become more and more important for
obtaining reliable results the larger the conducted simulation study is. Furthermore, error,
warning, and .Random.seed are important to consider especially during experimental stage
of the simulation, for checking an implementation, and testing it for numerical stability.

The paradigm of simsalapar is that the user only has to take care of how to compute the value,
that is, the statistic the user is most interested in. All other components addressed above are
automatically dealt with by simsalapar. We will come back to this in Section 2.5, after having
thought about how to compute the value for our working example in the following section.

2.4. Implementing the problem-specific function doOne ()

Programming in R is about writing functions. Our goal is now to implement the workhorse of
the simulation study: doOne (). This function has to be designed for the particular simulation
problem at hand. It computes the component value (a numeric vector of VaR,,) for the given
arguments n (sample size), d (dimension), gF (marginal quantile function), family (copula
family), tau (Kendall’s tau), alpha (vector of VaR, levels), and varWgts (vector of weights).
For functions doOne () for other simulation examples, we refer to the demos of simsalapar,
see for example demo (TGforecasts) for reproducing the simulation conducted by Gneiting
(2011).

R> doOne <- function(n, d, qF, family, tau, alpha, varligts, names = FALSE)
{
w <- varligts[[as.character(d)]]
stopifnot (require("copula"), sapply(list(w, alpha, tau, d), is.numeric))
simRFC <- function(n, d, gqF, family, tau) {
theta <- getAcop(family)@iTau(tau)
cop <- onacopulal (family, list(theta, 1:d))
gF (rCopula(n, cop))
}
X <- simRFC(n, d = d, gqF = gqF[["qF"]], family = family, tau = tau)
L <- -rowSums (expml(X) * matrix(rep(w, length.out = d),
nrow = n, ncol = d, byrow = TRUE))
quantile(L, probs = alpha, names = names)

+ + + + 4+ + + + + + + + o+
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, doMclapply (), dOClu
N

O > i S}
o> subjob() Do
$ &5
doCallWE ()
doOne ()

Figure 2: Layers of functions involved in a simulation study. simsalapar provides all but
doOne ().

2.5. Putting the pieces together: The do*() functions

To conduct the main simulation, we only need one more function which iterates over all
sub-jobs and calls doOne (). There are several options: sequential (see Section 2.6) versus
various approaches for parallel computing (see Section 3), for which we provide the do*()
functions explained below. Since these functions are quite technical and lengthy, we will
present the details in the appendix. For the moment, our goal is to understand the functions
they call in order to understand how the simulation works. Figure 2 visualizes the main
functions involved in conducting the simulation. These functions break down the whole task
into smaller pieces. This improves readability of the code and simplifies debugging when
procedures fail.

We have already discussed the innermost, user-provided function doOne(). The auxiliary
function doCallWE() captures the values computed by doOne (), errors, warnings, and run
times when calling doOne (). This already provides us with a list of four of the five components
of a result as addressed in Section 2.3. The component .Random.seed may® then be added by
the function which calls doCallWE(), namely subjob(). The aim of subjob() is to compute
one sub-job, that is, one row of the virtual grid. A large part of this function deals with
correctly setting the seed. It also provides a monitor feature.

As mentioned before, there are several choices available for the outermost layer of functions,
depending on whether and what kind of parallel computing should be used to deal with the
rows of the virtual grid. In particular, simsalapar provides the following functions:

doLapply (): a wrapper for the non-parallel function lapply (). This is useful for testing the
code with a small number of different parameters so that the simulation still runs locally
on the computer at hand.

doForeach(): a wrapper for the function foreach() of the R package foreach to conduct
computations in parallel on several cores or nodes; see Revolution Analytics and Weston
(2015b) and Kane, Emerson, and Weston (2013).

doRmpi (): a wrapper for the function mpi.apply () or its load-balancing version mpi . applyLB()

3subjob’s default keepSeed=FALSE has been chosen to avoid large result objects.
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(default) from the R package Rmpi for parallel computing on several cores or nodes; see
Yu (2002).

doMclapply(): a wrapper for the function mclapply () (with (default) or without load-
balancing) of the base R package parallel for parallel computing on several cores; see
vignette("parallel"). Note that this approach is not available on Windows.

doClusterApply (): a wrapper for the function clusterApply () or its load-balancing version
clusterApplyLB() (default) of the R package parallel for parallel computing on several
cores or nodes.

The user of simsalapar can call one of the above functions do* () to finally run the whole
simulation study; see Sections 2.6 and 3. To this end, these functions iterate over all sub-jobs
and finally call the function saveSim(). saveSim() tries to convert the resulting list of lists
of length four or five containing the components value, error, warning, time, and, possibly,
.Random.seed to an array of lists of length four or five and saves it in the .rds file specified
by the argument sfile. If this non-trivial conversion fails?, the raw list of lists of length
four or five is saved instead, so that results are not lost. This behavior can also be obtained
by directly specifying doAL = FALSE when calling the do* () functions. To further avoid
that the conversion fails, the functions do*() conduct a basic check of the correctness of
the return value of doOne () by calling the function doCheck(). This can also be called by
the user after implementing doOne () to verify the correctness of doOne (); see, for example,
demo (VaRsuperadd).

2.6. Running the simulation sequentially: doLapply() based on lapply()

In Section 3 and the appendix, we will compare different approaches for parallel computing
in R. To make this easier to follow, we start with doLapply() which is a wrapper for the
sequential function lapply () to iterate over all rows of the virtual grid. This approach is
often the first choice to try in order to check whether the simulation actually does what it
should or for debugging purposes based on a smaller number of parameter combinations. If
sequential computations based on lapply () turn out to be too slow, one can easily use one of
the parallel computing approaches described in Section 3, since they share the same interface.
This is one major advantage of the functionality provided by simsalapar.

We now demonstrate the use of doLapply () to run the whole simulation. Note that names is
an optional argument to our doOne () and the argument monitor, passed to subjob(), allows
progress monitoring.

R> res <- doLapply(varList, sfile = "res_lapply_seq.rds", doOne = doOne,
+ names = TRUE, monitor = interactive())

The structure of the resulting object can briefly be analyzed as follows.

R> str(res, max.level = 2)

4Our flexible approach allows one to implement a function doOne () such that the order in which the “inner”
variables appear does not correspond to the order in which they appear in the variable list. Therefore, the
user-provided workhorse doOne () has to be written with care.
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List of 1024
$ :List of 4
..$ value : num [1:3(1d)] 3.18 3.6 4.02
.. ..— attr(*, "dimnames")=List of 1
..$ error : NULL
..$ warning: NULL
..$ time : num 11
$ :List of 4
..$ value : num [1:3(1d)] 3.36 4.35 4.68
.. ..— attr(*, "dimnames")=List of 1
..$ error : NULL
..$ warning: NULL
..$ time : num 1
[list output truncated]
- attr(*, "dim")= Named int [1:5] 2 4 2 2 32
..— attr(*, "names")= chr [1:5] "n" "d" "family" "tau"
- attr(*, "dimnames")=List of 5

..$n : chr [1:2] "e4" "256"

..$ 4 : chr [1:4] "5" "20" "100" "500"
..$ family: chr [1:2] "Clayton" "Gumbel"
..$ tau : chr [1:2] "0.25" "0.50"

..$ n.sim : NULL
- attr(*, "fromFile")= logi TRUE

R> str(dimnames (res))

List of 5
$n : chr [1:2] "64" "256"
$ d : chr [1:4] "5" "20" "100" "500"
$ family: chr [1:2] "Clayton" "Gumbel"
$ tau : chr [1:2] "0.25" "0.50"

$ n.sim : NULL

3. Parallel computing in R

For a tutorial on parallel computing in R, we refer the interested reader to Eugster, Knaus,
Porzelius, Schmidberger, and Vicedo (2011). Roughly speaking, the main idea behind paral-
lelization is to run independent parts of a program on several cores or nodes simultaneously in
order to reduce the overall run time. In this section, we show how simsalapar can be used to
conduct a simulation in parallel.

3.1. A word of warning

As a first remark, we would like to stress that parallel computing is not a panacea for all
computational problems. Indeed, a good design avoiding time bombs such as nested for-loops,
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proper profiling, and maybe implementing certain parts in C (such as rejection algorithms)
can already lead to a significantly reduced run time. If running a program sequentially is
feasible, this is the preferred way. If not, or if a user simply does not possess the knowledge to
implement parts in C, parallelization becomes interesting. However, if not applied properly,
parallel computing can even increase the run time if, for example, each sub-job takes less time
than the overhead of the communication between the workers; see also Appendix A.4.

Also, we would like to mention that there are other approaches to parallel computing not
discussed here, simsalapar simply considers the most common approaches for parallel computing
in R which do not require a significantly deeper knowledge outside R. An approach not
discussed here is based on Hadoop; see, for example, http://www.datadr.org/ or http:
//www.rdatamining.com/tutorials/r-hadoop-setup-guide.

3.2. Parallel computing with simsalapar

In the same way that doLapply () wraps around lapply (), simsalapar provides convenient
wrapper functions dox () for conducting computations in parallel. These functions use different
approaches for parallel computing. One should only use one of them in the same R session as
mixing several different ways of conducting parallel computations in the same R process may
lead to weird errors, conflicts of various kinds, or unreliable results at best.

The different approaches for parallel computing are useful under different setups and may
depend on the available computer architecture or different specifications of the simulation study
considered. The paradigm simsalapar follows is that one just needs to replace doLapply ()
above (Section 2.6) by one of its “parallelized” do* () versions listed in Section 2.5 in order to
conduct the computations in parallel. We will take doClusterApply () as an example here and
refer to Section A for a more in-depth analysis and comparison of the results obtained from
these different approaches to those from doLapply () to check their correctness, consistency,
and efficiency.

R> res5 <- doClusterApply(varList, sfile = "res5_clApply_seq.rds",
+ doOne = doOne, names = TRUE)

doClusterApply () produces the same result as doLapply() which can be verified with the
function doRes.equal() from simsalapar.

R> stopifnot(doRes.equal(res5, res))

Note that if there are special requirements, the (more technically inclined) user can implement
his/her own do* () function; see Appendix A.6 for an example.

4. Data analysis

After having conducted the main simulation, the final task is to analyze the data and present
the results. It seems difficult to provide a general solution for this part of a simulation
study. Besides the solutions provided by simsalapar however, it might therefore be required
to implement additional problem-specific functions. In this case, functions from simsalapar
may at least serve as a good starting point.


http://www.datadr.org/
http://www.rdatamining.com/tutorials/r-hadoop-setup-guide
http://www.rdatamining.com/tutorials/r-hadoop-setup-guide
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The function getArray() is a function from simsalapar which, given the result object of the
simulation and one of the components “value” (the default), “error”, “warning”, or “time”
creates an array containing the corresponding results. This is typically more convenient than
working with an array of lists as returned by one of the do*() functions. For the components
being “error” or “warning”, the array created contains by default boolean variables indicating
whether there was an error or warning, respectively; this behavior can be changed by providing
a suitable argument FUN to getArray(). Additionally, getArray() allows for an argument
err.value, defaulting to NA, for replacing values in case there was an error. As mentioned
before, each “value”, can be a scalar, a numeric vector, or a numeric array, often with
dimnames, for example, resulting from the outer product of variables of type “inner”. Note
that for conducting the simulation, variables sometimes can be declared as “inner” or “frozen”
interchangeably. However, this changes the dimension of the result object for the analysis in
the sense that variables of type “inner” appear as additional dimensions in the result array
and can thus serve as a proper quantity or dimension in a table or plot, whereas variables of
type “frozen” do not.

In the following, we work with the R object res as returned by doLapply ()°. To extract values,
error and warning indicators, and run times (in ms) from it, we simply apply getArray() to
res,

R> val <- getArray(res)
R> err <
R> warn <- getArray(res, "warning")
R> time <- getArray(res, "time")

getArray(res, "error")

and a data.frame can easily be produced from our array of values via array2df ():

R> df <- array2df (val)

R> str(df)

'data.frame': 3072 obs. of 7 variables:

$ alpha : Factor w/ 3 levels "95%","99%","99.9%": 1 231231231
$n : Factor w/ 2 levels "64","256": 1 112221112 ...

$d : Factor w/ 4 levels "5","20","100",..: 1111112222 ...
$ family: Factor w/ 2 levels "Clayton","Gumbel": 1 111111111

$ tau : Factor w/ 2 levels "0.25","0.50": 1111111111

$ n.sim : Factor w/ 32 levels "1","2","3","4" ., .: 1111111111
$ value : num 3.18 3.6 4.02 3.36 4.35 ...

As a first part of the analysis, we are interested in how reliable our results are. We thus
consider possible errors and warnings of the computations conducted. Flat contingency tables
allow us to conveniently get an overview of errors or warnings.

R> rv <- C(”family”, "dn)
R> CV <_ C(”tau", llnll)
R> ftable(100 * (err + warn), row.vars = rv, col.vars = cv)

5We have shown above that the other do<...>() functions produce the same object as res.
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tau 0.25 0.50
n 64 256 64 256
family d
Clayton 5 0 O 0 O
20 0 O 0 O
100 0 O 0 O
500 0 0 0 0
Gumbel 5 0 O 0 O
20 0 O 0 O
100 0 O 0 0
500 0 O 0 O

Since we do not have errors or warnings in our numerically non-critical example study here,
let us briefly consider the run times.

R> ftable(time, row.vars = rv, col.vars = cv)

tau 0.25 0.50
n 64 266 64 256
family d
Clayton 5 50 565 34 42
20 43 81 42 84
100 86 268 87 264
500 316 1380 318 1390
Gumbel 5 37 47 34 48
20 46 84 45 87
100 95 288 96 277
500 345 1574 444 1413

R> dtime <- array2df (time)
R> summary (dtime)

n d family tau n.sim
64 :512 5 :256 Clayton:512 0.25:512 1 1 32
256:512 20 :256 Gumbel :512 0.50:512 2 : 32

100:256 3 1 32

500:256 4 : 32

5 . 32

6 : 32

(Other) :832

value

Min. : 0.000
1st Qu.: 1.000
Median : 3.000
Mean 0 9.277
3rd Qu.: 9.000

Max. :145.000
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In what follows, we exclusively focus on the actual computed values, hence the array val. We
apply tools from simsalapar that allow us to create flexible IXTEX tables and sophisticated
graphs for representing these results.

4.1. Creating ETEX tables

In this section, we create ITEX tables of the simulation results. Our goal is to make this
process modular and flexible. We thus leave tasks such as formatting of table entries as much
as possible to the user. Note that there are already R packages available for generating ITEX
tables, for example the well-known xtable or the rather new tables; see Dahl (2016) and
Murdoch (2014), respectively. However, they do not fulfill the above requirements and come
with other unwanted side effects concerning the table headers or formatting of entries we do
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not want to cope with. We therefore present new tools for constructing tables with simsalapar.

For inclusion in KTEX documents, only the IATEX package tabularx, and (optionally, if using
the default booktabs = TRUE in the following functions), the IWTEX package booktabs have
to be loaded in the .tex document. Much more sophisticated alignment of column entries
for IATEX tables than we show here, possibly including units, can be achieved in combination
with the ITEX package siunitx. Note that these packages all come with standard KTEX
distributions.

After having computed arrays of robust value-at-risk estimates and robust standard deviations
via

R> non.sim.margins <- setdiff (names(dimnames(val)), "n.sim")
R> huber. <- function(x) MASS::huber (x)$mu

R> VaR <- apply(val, non.sim.margins, huber.)

R> VaR.mad <- apply(val, non.sim.margins, mad)

we format and merge the arrays. As just mentioned, we specifically leave this task to the user
to guarantee flexibility. As an example, we put the robust standard deviations in parentheses
and colorize® all entries corresponding to the largest level a.

R> fval <- formatC(VaR, digits = 1, format = "f")

R> fmad <- pasteO("(", format (round(VaR.mad, 1),

+ scientific = FALSE, trim = TRUE), ")")

R> nc <- nchar(fmad)

R> sm <- nc == min(nc)

R> fmad[sm] <- pasteO("\\ \\,", fmad[sm])

R> fres <- array(paste(fval, fmad), dim = dim(fval),

+ dimnames = dimnames (fval))

R> ia <- dim(fval)[1]

R> fres[ia, , , , ] <- paste("\\color{white!40!black}", fresl[ia, , , , 1)

Next, we create a flat contingency table from the array of formatted results fres. The
arguments row.vars and col.vars of ftable() specify the basic layout of Table 2 below.

5This requires the ITEX package xcolor with the option table to be loaded in the BTEX document. The
latter option even allows to use \cellcolor to modify the background colors of select table cells.
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T 0.25 0.50
e, n  dla 95% 99% 99.9% 95% 99% 99.9%
Clayton 64 5 3.1 (0.4) 3.8 (0.4) 4.0 (0.5) 3.6 (0.3) 4.2 (0.2) 4.4 u)
20 106 (1.4) 135 (1.5) 148 (22) 142 (1.6) 167 (1.0) 174 (1.0)
100 46.1 (9.1)  63.5(11.6) 685 (13.6) 70.7 (8.6) 837 (3.9) 86.7 ( 2)
500  224.8 (50.6) 307.8 (61.5) 336.0 (66.8) 350.0 (40.5) 4186( 3)  434.0 (21.4)
256 5 3.2 (0.2) 41 (0.2) 4.4 (0.2) 3.9 (0.2) 4 (0.1) 4.6 (0.1)
20 109 (1.0) 153 (1.2) 17.0 (0.9) 153 (0.7) 176 (0.5) 185 (0.6)
100 49.0 (5.5) 721 (7.7) 825 (4.8) 76.0 (3.4) 87.9 (2.7)  92.3 (3.0)
500  240.4 (27.0) 349.7 (35.3) 4085 (24.3) 378.8 (17.4) 439.4 (12.7) 461.7 (14.2)
Gumbel 64 5 2.7 (0.3) 3.3 (0.4) 3.4 (0.5) 3.3 (0.3) 3.8 (0.3) 4.0 (0.2)
20 7.3 (1.1) 94 (1.2) 101 (1.5) 122 (0.6) 140 (1.2) 146 (1.2)
100 26.0 (4.2) 358 (4.7) 385 (5.6) 57.7 (51) 677 (4.8) 703 (5.4)
500 117.2 (12.5) 154.4 (19.0) 1675 (18.2) 288.2 (18.0) 333.7 (23.0) 347.9 (20.7)
256 5 2.7 (0.2) 3.3 (0.2) 3.7 (0.2) 3.4 (0.2) 3.9 (0.1) 4.2 (0.1)
20 7.4 (0.5) 9.9 (0.8) 115 (0.9) 125 (0.4) 147 (0.7) 16.0 (0.6)
100 27.8 (2.8) 384 (3.1) 447 (3.2) 604 (23) 709 (25) 76.9 (3.5)
500  126.8 (10.3) 171.9 (11.2) 2023 (13.5) 299.1 (13.7) 353.8 (13.2) 380.0 (9.7)

Table 2: Simulation results; the table is the automatic Sweave rendering of tabL <-
toLatex(ft, ..), above.

R> ft <- ftable(fres, row.vars = c("family", "n", "d"),
+ col.vars = c("tau", "alpha"))

Table 2 shows the results of applying our toLatex() method”

R> tabL <- toLatex(ft, vList = varList, fontsize = "scriptsize",
+ caption = "Simulation results; the table is the automatic Sweave
+ rendering of \\code{tabL <- tolLatex(ft, ..)}, above.",

+ label = "tab:ft")

To summarize, using functions from simsalapar and packages from IXTEX, one can create
flexible IATEX tables. If the simulation results become sufficiently complicated, creating (at
least parts of) IATEX tables from R reduces a lot of work, especially if the simulation study
has to be repeated due to bug fixes, improvements, or changes in the implementation. Note
that the table header typically constitutes the main complication when constructing tables.
It might still be required to manually modify it in case our carefully chosen defaults are
insufficient. Package simsalapar provides many other functions not presented here, including
the currently non-exported function ftable2latex() and the exported and documented
functions fftable(), tablines() and wrapLaTable(). These auxiliary functions can be
useful if one encounters very specific requirements not covered by toLatex.ftable().

A crucial step in the development of tablines() was the correct formatting of an ftable
without introducing empty rows or columns. For this we introduced four different methods of
“compactness” of a formatted ftable which are available in format.ftable() from R version
3.0.0 and for earlier versions in simsalapar.

2. Graphical analysis

Next we show how simsalapar can be applied to visualize the results of our study. In modern

"The toLatex () method for "ftable"’s, i.e., toLatex.ftable().
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statistics, displaying results with graphics is typically preferred to tables, since it is easier to
see the story the data would like to tell us. For example, in a table, the human eye can only
compare two numbers at a time, in well-designed graphics much more information is visible.

There are various different approaches of how to create graphics in R, for example, with the
traditional graphics package, the lattice, or the ggplot2 package; see R Core Team (2015),
Sarkar (2008), and Wickham (2009), respectively. The most flexible approach is based on grid
graphics; see Murrell (2006). In what follows, we apply simsalapar’s mayplot () for creating a
plot matrix from an array of values. Within each cell of this conditioning plot a traditional
graphic is drawn to visualize the results; this is achieved using grid and graphics via gridBase,
see Murrell (2014).

In our example study, the strength of dependence in terms of Kendall’s tau determines the
columns of the matrix-like plot and the copula family determines its rows. In each cell, there
is an x and a y axis. For making comparisons easier, one typically would like to have the
same limits on the y axes across different rows of the plot matrix. Sometimes it makes sense
to have separate scales for the y axes in different rows. This behavior can be determined
with the argument ylim (being "global" (the default) or "local") of mayplot (). For our
working example, the x axis provides the different significance levels . We thus naturally
can depict three different input variables in such a layout (copula families, Kendall’s taus,
and significance levels «). The y axis may show point estimates or boxplots of the simulated
value-at-risk values as given in val.

All other variables (sample sizes n, dimensions d) then have to be depicted in the same cell,
visually distinguished by different line types or colors, for example; currently one such variable
is allowed, we chose d and fix n = 256. If more variables are involved, one might even want to
put more variables in one cell, rethink the design, or split different values of a variable over
separate plots. N, if available, enters the scene through a second label on the right side of
the graphic.
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With mayplot () it is easy to create a graphical result in the form of a pdf file, for example®.

Figures 3 and 4 display the results for n = 256.

R> v256 <- val[, n = "256",,,, ]
R> dimnames (v256) [["tau"]] <- pasteO("tau==", dimnames(v256)[["tau"]])

R> mayplot (v256, varList, row.vars = "family", col.vars = "tau", xvar = "d",
+ ylab = bquote(widehat (VaR) [alpha] (italic(L))),
+ pcol = c("black", "blue", "red"))

The former shows boxplots of all the Ny;,, simulated value-at-risk estimates \Za\Ra(L), whereas
the latter depicts corresponding robust Huber “means” and also demonstrates mayplot () for
Ngim = 1 or, equivalently, no N, at all. Overall, we see that a graphic such as Figure 3 is
easier to grasp and to infer conclusions from than Table 2.

R> varList. <- set.n.sim(varList, 1)
R> dimnames (VaR) [["tau"]] <- pasteO("tau==", dimnames(VaR) [["tau"]])

8Note that we use the system tool pdfcrop to crop the graph after it is generated. This allows one to
perfectly align the graph in a ¥TEX (.tex) or Sweave (.Rnw) document.
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Figure 3: Boxplots of the Ny, simulated VaR, (L) values for n = 256.

R> mayplot(VaR[, n = "256",,, 1, varlList., row.vars = "family",

+ col.vars = "tau", xvar = "d", type = "b", log = "y",

+ axlabspc = c(0.15, 0.08), ylab = bquote(widehat(VaR) [alpha] (italic(L))),
+ pcol = c("black", "blue", "red"))

4.3. Interpreting the results

Let us briefly interpret the results we have obtained in the context of our working example
from Section 2.1. For this, consider Figure 4. Up to the Monte Carlo error, we can infer the
following properties:

a: VaR, (L) is increasing in a.. This is easily verified as higher levels a correspond to larger
a-quantiles, thus VaR,(L).

7: VaR, (L) is increasing in 7. This can be verified numerically via:

R> stopifnot(VaR[, n = "256",,, "tau==0.25"] <=
+ VaR[, n = "256",,, "tau==0.50"])
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Figure 4: Plot of robust VaR, (L) estimates in log scale, that is, Huber “means” of Ny, values
of Figure 3 for n = 256.

To explain this behavior, note that for 6 converging to oo, both the Clayton and the
Gumbel copula converge (pointwise) to the upper Fréchet—Hoeffding bound (the copula
of a comonotone random vector). Since larger Kendall’s tau imply larger parameters
0 for the two copulas, a larger tau increases the probability that the components of
X = (Xy,...,Xy) are simultaneously small or large. By (2),

d
L= Z (1 —exp(X
7j=1

(4)

v

which directly implies that the tails of Fj, get heavier with larger tau. This in turn
implies a larger VaRq(L).

C: VaR, (L) for Clayton is larger than for Gumbel. This can be verified numerically via:

R> stopifnot(VaR[, n = "256",, "Gumbel",] <=
+ VaR[, n = "256",, "Clayton",])
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Figure 5: VaR, (L) estimates for d € {1,2,...,40} (Monte Carlo sample size 10°) for indepen-
dent Xq,...,Xy.

It follows from (4) that if all components of X are small simultaneously, then large
losses L result, which leads to a large VaR,(L). The former condition is also known as
lower tail dependence and is present for the Clayton, but not for the Gumbel copula.

d: VaR,(L) is increasing in d. This can be verified numerically via:

R> stopifnot(
+ VaR[, n
+ VaR[, n
+ VaR[, n

”256", 11511’ , J <= VaR[, n
"256", "20", , ] <= VaR[, n
"2566", "100", , ] <= VaR[, n

"256", 1120", s J s
”256", ”100", , ],
"256", 1150011’ , J)

This result is somewhat surprising as there is no reasonable explanation for this behavior.
Indeed, the mean of L is even decreasing in d as

E[L] = Ed:@ — Elexp(X;)]) = d(1 — e}/?) ~ —0.65d,
j=1

where we used X; ~ N (0,1). Furthermore, one can show numerically that also the median
is decreasing in d. For the extreme case of (complete) comonotonicity—corresponding
to Kendall’s tau being 1, and almost surely identical X;— we see that VaRq(L) is
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increasing in d for o > %, since

L:

d
Jj=

d
(1 —exp(X;)) < Z (1 —exp(X)) = d(1 — exp(®~1(V))),
1 =

which implies VaRo(L) = d(1 — exp(—®~!(a))); this is increasing in d for a > 1.
Consequently, a sufficiently large dependence may lead to VaR, (L) being increasing in
d. For independence, the other “extreme”, Fp, is not simply tractable as a convolution,
however we can approximate it or rather its inverse, the quantiles VaR,(L) by the

central limit theorem,
QLo (@) = B[L] + 0(L) - 20 =
= d(1—e'?) 4+ \/d(e? — €)zq ~ —0.6487d + 2.1612,Vd, (5)

Which is indeed increasing at first, before decreasing, when z, is clearly positive, i.e.,
o > 1.9 Figure 5 shows VaR(L) estimates for d € {1,2,...,40} (evaluated via Monte
Carlo based on n = 10° samples). Interestingly, VaR,(L) is increasing for small d at
first, then for larger d, it is decreasing, for a > % (where “small” and “large” depend on
Q).

5. Conclusion

The R package simsalapar allows one to easily set up, conduct, and analyze large-scale
simulations studies in R. The user of the package can proceed as follows to conduct his or her
own simulation study:

Step 1: Formulate the simulation problem and determine the input variables; see Section 2.1.

Step 2: Determine the type of each input variable and create the variable list with varlist ();
see Section 2.2.

Step 3: Implement the problem-specific function doOne () which computes the statistic of
interest for one combination of input variables; see Section 2.4.

Step 4: Run the simulation sequentially with doLapply () or in parallel with one of doForeach (),
doRmpi (), doMclapply(), or doClusterApply (); see Section 3 and the appendix. This
can involve replicates via a variable of type “N” as our n.sim (N, )-

Step 5: Analyze the results (values, errors, warnings, run time); see auxiliary functions and
the high-level functions toLatex() and mayplot() for creating sophisticated IXTEX
tables and matrix-like figures of the results presented in Section 4 and the appendix.

We explained and guided the reader through a working example end-to-end, which highlights
all of the above major steps. More explanations, tests, and further examples can be found in

9Requiring the derivative wrt d of qr,, (a) to be non-negative, is equivalent to the condition d < (62 —
e)/(2(e¥? —1))%2,2 ~ 2.77242, showing a maximum when a > 0.8 or so.



22 Parallel and Other Simulations in R Made Easy

the package itself, notably in the demos of simsalapar; use demo (package = "simsalapar")
to list them.

One of the main features of simsalapar is that important aspects of a simulation study such as
catching of errors and warnings, measuring run time, or dealing with seeds are automatically
taken care of or easily adjusted if required. This simplifies parallel computing significantly,
makes it accessible to a wider audience, and largely reduces the risk of obtaining unreliable
results due to a wrong implementation. Furthermore, the do* () functions provide very similar
“front-ends” to quite different approaches for parallel computing. This is a major advantage if
one has to repeat a simulation with a different operating system or hardware architecture, or
if an extension to the simulation study suddenly requires it to be run on a computer cluster
rather than multiple cores locally. Moreover, simsalapar provides useful tools to analyze and
present the results. Given how challenging the development of these tools is, there is more
to be expected in simsalapar in the future, notably resulting from feedback by package users
interested in even more approaches for parallelization.
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A. Behind the scenes: Advanced features of simsalapar

A.1. Select functions for conducting the simulation

The function doCallWE()

The R package simsalapar provides the following auxiliary function doCallWE() for computing
the components value, error, warning, and time as addressed in Section 2.3. It is called
from subjob() and based on tryCatch.W.E() which is part of R’s demo(error.catching)
for catching both warnings and errors.

doCallWE <- function(f, argl, timer = mkTimer(gcFirst = FALSE)) {
tim <- timer(res <- tryCatch.W.E(do.call(f, argl))) # compute f(<argl>)
is.err <- is(val <- res$value, "simpleError") # logical indicating an error
list(value = if(is.err) NULL else val, # value (or NULL in case of error)
error = if(is.err) val else NULL, # error (or NULL if okay)
warning = res$warning, # warning (or NULL)
time = tim) # time

The function subjob()

subjob() calls doOne () via doCallWE() for computing a sub-job, that is, a row of the virtual
grid. It is called by the do*() functions. Besides catching errors and warnings, and measuring
run time via calling doCallWE(), the main duty of subjob() is to correctly deal with the seed.
It also provides a monitor feature.

subjob <- function(i, pGrid, nonGrids, n.sim, seed, keepSeed = FALSE,
repFirst = TRUE, doOne,
timer = mkTimer (gcFirst = FALSE), monitor = FALSE, ...)
{
## i |-> (i.sim, j)
## determine corresponding i.sim and row j in the physical grid
if (repFirst) {

i.sim <= 1 + (i-1) %% n.sim ## == i when n.sim == 1

j <- 1+ (i-1) %/% n.sim ## row of pGrid

## Note: this case first iterates over i.sim, then over j:

## (i.sim,j) = (1,1), (2,1, B,0,..., 1,2), (2,2), (3,2),
} else {

ngr <- nrow(pGrid) # number of rows of the (physical) grid

j <- 1+ (i-1) %% ngr ## row of pGrid

i.sim <= 1 + (i-1) %/% ngr
## Note: this case first iterates over j, then over i.sim:
# (i.sim,j) = (1,1), (1,2), (1,2),..., (2,1), (2,2), (2,3),

## seeding

if(is.null(seed)) {
if (lexists(".Random.seed")) runif(1l) # guarantees .Random.seed exists
## => this is typically not reproducible

} else if(is.numeric(seed)) {
if (length(seed) != n.sim) stop("'seed' has to be of length ", n.sim)



Journal of Statistical Software

set.seed(seed[i.sim]) # same seed for all runs within the same i.sim
## => calculations based on same random numbers as much as possible
}
## else if (length(seed) == n.sim * ngr && is.numeric(seed)) {
##  set.seed(seed[i]) # different seed for *every* row of the virtual grid
##  always (?) suboptimal (more variance than necessary)

## ¥
else if(is.list(seed)) { # (currently) L'Ecuyer-CMRG
if (length(seed) != n.sim) stop("'seed' has to be of length ", n.sim)

if (lexists(".Random.seed"))
stop(".Random.seed does not exist - in 1'Ecuyer setting")
assign(".Random.seed", seed[[i.sim]], envir = globalenv())
} else if(is.na(seed)) {
keepSeed <- FALSE
} else {
if(!is.character(seed)) stop(.invalid.seed.msg)
switch(match.arg(seed, choices = c("seq")),
"seq" = { # sequential seed :
set.seed(i.sim) #same seed for all runs within the same i.sim
## => calculations based on the same random numbers
1,
stop("invalid character 'seed': ", seed))
}
## save seed, compute and return result for one row of the virtual grid
if (keepSeed) rs <- .Random.seed # save here in case it is advanced in doOne

## monitor checks happen already in caller!
if (isTRUE (monitor)) monitor <- printInfo[["default"]]
## doOne()'s arguments, grids, non-grids, and '...':
args <- c(pGrid[j, , drop=FALSE],
## [nonGrids is never missing when called from doLapply() etc.]
if (missing(nonGrids) || length(nonGrids) == 0)

list(...) else c(nonGrids, ...))
nmOne <- names(formals(doOne))
if('identical (nmOne, "..."))

args <- args[match(names(args), nmOne)] # adjust order for doOne()
r4 <- doCallWE(doOne, args, timer = timer)

## monitor (after computation)
if (is.function(monitor)) monitor(i.sim, j = j, pGrid = pGrid,
n.sim = n.sim, res4 = r4)

c(r4, if(keepSeed) list(.Random.seed = rs)) # 5th component .Random.seed

For the different seeding methods implemented, see ?subjob. If keepSeed=TRUE and seed is
not NA, subjob() saves .Random.seed as the fifth component of the output vector (besides
the four components returned by doCallWE()). This is useful for reproducing the result of
the corresponding call of doOne () for debugging purposes, for example.

The default seeding method in the do*() functions is "seq". This is a comparably simple
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default which guarantees reproducibility. Note, however, that for very large simulations,
there is no guarantee that the random-number streams are sufficiently “apart”. For this,
we recommend ’Ecuyer’s random number generator L’Ecuyer-CMRG; see Section A.3 for an
example.

The function doLapply ()

As mentioned before, doLapply () is essentially a wrapper for lapply () to iterate (sequentially)
over all rows in the virtual grid, that is, over all sub-jobs. As an important ingredient,
saveSim(), explained below, is used to deal with the raw result list.

doLapply <- function(vList, seed = "seq", repFirst = TRUE, sfile = NULL,
check = TRUE, doAL = TRUE, subjob. = subjob, monitor = FALSE, doOne, ...)
{
if (!is.null(r <- maybeRead(sfile))) return(r)
stopifnot(is.function(subjob.), is.function(doOne))
if (!(is.null(seed) || is.na(seed) || is.numeric(seed)
(is.list(seed) && all(vapply(seed, is.numeric, NA)))
is.character(seed)))
stop(.invalid.seed.msg)
if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)

## monitor checks {here, not in subjob()!}
if (!(is.logical(monitor) || is.function(monitor)))
stop(gettextf (" 'monitor' must be logical or a function like %s",
"printInfol[[\"default\"11"))

## variables

pGrid <- mkGrid(vList)

ngr <- nrow(pGrid)

ng <- get.nonGrids(vList) # => n.sim >= 1
n.sim <- ng$n.sim # get n.sim

## actual work

res <- lapply(seq_len(ngr * n.sim), subjob., pGrid = pGrid,
nonGrids = ng$nonGrids, repFirst = repFirst, n.sim = n.sim,
seed = seed, doOne = doOne, monitor = monitor, ...)

## convert result and save
saveSim(res, vList = vList, repFirst = repFirst, sfile = sfile,
check = check, doAL = doAL)

The functions saveSim() and maybeRead ()

After having conducted the main simulation with one of the do* () functions, we would like
to create and store the result array. It can then be loaded and worked on for the analysis of
the study which is often done on a different computer. For creating, checking, and saving the
array, simsalapar provides the function saveSim().

If possible, saveSim() creates an array of lists (via mkAL() ), where each element of the array

is a list of length four or five as returned by subjob(). If this fails, saveSim() simply takes
its input list. It then stores this array (or list) in the given .rds file (via saveRDS()) and
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returns it for further usage. In our working example, the array itself is five-dimensional, the
dimensions corresponding to n, d, C', 7, and Ng;p,.

saveSim <- function(x, vList, repFirst, sfile, check = TRUE, doAL = TRUE) {
if (doAL) {
a <- tryCatch(mkAL(x, vList, repFirst = repFirst, check = check),
error = function(e) e)
if (inherits(a, "error")) {

warning(paste("Relax..: The simulation result 'x' is being saved;",
"we had an error in 'mkAL(x, *)' ==> returning 'x' (argument, a list).",
" you can investigate mkAL(x, ..) yourself. The mkAL() err.message:",
conditionMessage(a), sep = "\n"))

a <-x

}
} else a <- x
if ('is.null(sfile)) saveRDS(a, file = sfile)
a

}
For creating the array, saveSim() calls mkAL () which is implemented as follows:

mkAL <- function(x, vList, repFirst, check = TRUE) {
grVars <- getEl(vList, "grid", NA)
n.sim <- get.n.sim(vList)
ngr <- prod(vapply(lapply(grVars, ~[[*, "value"), length, 1L)) # nrow(pGrid)
1x <- n.sim * ngr
if (check) {
stopifnot(is.list(x))
if (length(x) !'= 1x)
stop("varlist-defined grid variable dimensions do not match length(x)")
if (length(x) >= 1) {

x1 <- x[[1]]
stopifnot(is.list(x1),
c("value", "error", "warning", "time") %in’, names(x1))
}

}
if (repFirst) ## reorder x
x <- x[as.vector(matrix(seq_len(lx), ngr, n.sim, byrow = TRUE))]
iVals <- getEl(vList, "inner")
xval <- lapply(x, “[[*, "value")
ilLen <- vapply(iVals, length, 1L)
n.inVals <- prod(ilen)
if (check) {
## vector of all 'value' lengths
v.len <- vapply(xval, length, 1L)
## NB: will be of length zero, when an error occured !!

##' is N a true multiple of D? includes equality, but we also true vector
is.T.mult <- function(N, D) N >=D & {

q <- N/D

q == as.integer(q)
b

if ('all(eq <- is.T.mult(v.len, n.inVals))) {
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## ('all(len.divides <- v.len %% n.inVals == 0)) {
not.err <- vapply(lapply(x, ~[[*, "error"), is.null, NA)
if (!identical(eq, not.err)) {
msg <- gettextf (
"some \"value\" lengths differ from 'n.inVals'=Y%d without error",
n.inVals)
if (interactive()) {
## warning() instead of stop():
## had *lots* of computing till here --> want to
## investigate

warning(msg, domain = NA, immediate. = TRUE)
cat("You can investigate (v.len, xval, etc) now:\n")
browser ()
} else stop(msg, domain = NA)
}
if (all(v.len == 0))
warning(gettextf (

"All \"%s\"s are of length zero. The first error message is\n %s",
"value", dQuote(conditionMessage(x[[1]][["error"]]))), domain = NA)
}
}

if (length(iVals) > O && length(xval) > 0) {
## ensure that inner variable names are 'attached' to x's 'value's :
if (noArr <- is.null(di <- dim(xvall[1]])))
di <- length(xvall[[1]1)
rnk <- length(di) # true dim() induced rank
nl <- length(ilen) # = number of inner Vars; ilLen are their lengths
for (i in seq_along(xval)) {
n. <- length(xi <- xvall[[ill)

if (n. == 0) # 'if (check)' above has already ensured this is an 'error'
xi <- NA_real_
## else if (n. != n.inVals) warning(gettext('x[[/d]] is of wrong

## length (=)d) instead of %d', i, n., n.inVals), domain = NA)
dn.i <- if (noArr) {
if (nI == 1)
list(names(xi)) else rep.int(list(NULL), nI)
} else if (is.null(dd <- dimnames(xi)))
rep.int(1ist (NULL), rnk) else dd
## ==> rnk := length(di) == length(dn.i)
if (rnk == nI) { # = length(iVals) = length(ilen) -- simple matching case
names(dn.i) <- names(ilen)
} else { # more complicated as doOne() returned a full vector, matrix ...
if (rnk != length(dn.i)) warning(
"dim() rank, i.e., length(dim(.)), does not match dimnames() rank")
if (nI > rnk) { # or rather error?
warning("nI=length(iVals) larger than length(<dimnames>)")
} else {
# nI<rnk==length(di)==length(dn.i) =>
# find matching dim() assume inner variables
# match the *end* of the array
j <- seq_len(rnk - nI)
j <= which(dil[nI + j] == ilen[jl)



Journal of Statistical Software 29

if (is.null(names(dn.i)))
names(dn.i) <- rep.int("", rnk)
names(dn.i) [nI + j] <- names(ilen) [j]
}
}
x[[i]]1[["value"]] <- array(xi, dim = if (noArr)
ilen else di, dimnames = dn.i)
}
}

gridNms <- mkNms(grVars, addNms = TRUE)
dmn <- lapply(gridNms, sub, pattern = ".*= *" 6 replacement = "")
dm <- vapply(dmn, length, 1L)
if (n.sim > 1) {
dm <- c(dm, n.sim = n.sim)
dmn <- c(dmn, list(n.sim = NULL))
}
## build array
array(x, dim = dm, dimnames = dmn)

}

For reading a saved object of a simulation study, simsalapar provides the function maybeRead ().
If the provided .rds file exists, maybeRead() reads and returns the object. Otherwise,
maybeRead () does nothing (hence the name). This is useful for reading and analyzing the
result object at a later stage by executing the same R script containing both the simulation
and its analysis'C.

maybeRead <- function(sfile, msg = TRUE) {
if (is.character(sfile) && file.exists(sfile)) {

if (msg)
message("getting object from ", sfile)
structure(readRDS(sfile), fromFile = TRUE)

}
}

A.2. Select functions for the analysis

The function getArray ()

As promised in Section 4, we now present the implementation of the function getArray().
This function receives the result array of lists, picks out a specific component of the lists, and
returns an array containing these components. This is especially useful when analyzing the
results of a simulation.

getArray <- function(x, comp = c("value", "error", "warning", "time"),
FUN = NULL, err.value = NA)
{
comp <- match.arg(comp)
if (comp == "value") return(valArray(x, err.value = err.value, FUN = FUN))
## else :

dmn <- dimnames(x)

10Note that the first part of this paper is itself such an example.
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dm <- dim(x)
if (is.null(FUN)) {
FUN <- switch(comp, error = ,
warning = function(x) !vapply(x, is.null, NA), time = ul)
} else stopifnot(is.function(FUN))
array (FUN(lapply(x, “[[*, comp)), dim = dm, dimnames = dmn)

The method toLatex.ftable and related functions

The ftable method toLatex.ftable for creating IATEX tables calls several auxiliary functions,
detailed below.

First, the function ftable2latex() is called. It takes the provided flat contingency table,
converts R expressions in the column and row variables to IATEX expressions, and, unless they
are INTEX math expressions, escapes them (per default with the function escapeLatex()).
Furthermore, ftable2latex() takes the table entries and converts R expressions (and only
those) to WTEX expressions (which are escaped in case x.escape=TRUE; this is not the default).

ftable2latex <- function(x, vList
exprFUN = expr2latex, escapeFUN
{
## checks
stopifnot(is.function(exprFUN), is.function(escapeFUN))
cl <- class(x)
dn <- c(r.v <- attr(x, "row.vars"), c.v <- attr(x, "col.vars"))
if (is.null(vList)) {
nvl <- names(vList <- dimnames2varlist(dn))
} else {
stopifnot (names(dn) %in’% (nvl <- names(vList)))

NULL, x.escape,
escapelatex)

}

vl <- .vl.as.list(vList)

## apply escapeORmath() to expressions of column and row variables

names(c.v) <- lapply(lapply(vl[match(names(c.v), nvl)], “[[*, "expr"),
escapeORmath, exprFUN = exprFUN, escapeFUN = escapeFUN)

names(r.v) <- lapply(lapply(vl[match(names(r.v), nvl)], ~[[*, "expr"),
escapeORmath, exprFUN = exprFUN, escapeFUN = escapeFUN)

## for the entries of 'x' itself, we cannot apply exprFUN(.) everywhere,

## only "~ “where expr''

exprORchar <- function(u) {
lang <- vapply(u, is.language, NA) # TRUE if 'name', 'call' or 'expression'
ul[lang] <- exprFUN(u[langl) # apply (per default) expr2latex()
ul[!lang] <- as.character(ul[!lang]) # or format()?
u

}

x <- exprORchar(x) # converts expressions (and only those) to LaTeX

if (x.escape) x <- escapeFUN(x) # escapes LaTeX expressions

## now the transformed row and col names

attr(x, "row.vars") <- lapply(r.v, escapeFUN)

attr(x, "col.vars") <- lapply(c.v, escapeFUN)

class(x) <- cl

X
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The second function called, fftable (), formats the resulting flat contingency table (applying
a new version of format.ftable() which is available in base R from 3.0.0) and returns a flat
contingency table with two attributes ncv, nrv indicating the number of column variables and
the number of row variables, respectively.

Next, tablines() is called. It receives a character matrix with attributes ncv, nrv (typically)
obtained from fftable(). It then creates and returns a list with the components body,
body.raw, head, head.raw, align, and rsepcol. By default, body is a vector of character
strings containing the full rows (including row descriptions, if available) of the body of the
table, table entries (separated by the column separator csep), and the row separator as
specified by rsep. body.raw provides the row descriptions (if available) and the table entries
as a character matrix. Similar for head.raw which is a character matrix containing the entries
of the table header (the number of rows of this matrix is essentially determined by ncv);
typically, this is the header of the flat contingency table created by fftable (). head contains
a “collapsed” version of head.raw but in a much more sophisticated way. \multicolumn
statements for centering of column headings and title rules for separating groups of columns are
introduced (\cmidrule if booktabs = TRUE; otherwise \cline). The list component align
is a string which contains the alignment of the table entries (as accepted by IXTEX’s tabular
environment). The default implies that all columns containing row names are left-aligned and
all other columns are right-aligned. The component rsepcol is a vector of characters which
contain the row separators rsep or, additionally, \addlinespace commands for separating
blocks of rows belonging to the same row variables or groups of such. The default chooses a
larger space between groups of variables which appear in a smaller column number. In other
words, the “largest” group is determined by the variables which appear in the first column,
the second-largest by those in the second column etc. up to the second-last column containing
row variables. For more details we refer to the source code of tablines () in simsalapar.

Finally, the method toLatex.ftable calls wrapLaTable(). This function wraps a INTEX
table and tabular environment around, which can be put in a ITEX document.

tolLatex.ftable <- function(object, vList = NULL, x.escape = FALSE,
exprFUN = expr2latex, escapeFUN = escapelatex, align = NULL, booktabs = TRUE,
head = NULL, rsep = "\\\\", sp = if (booktabs) 3 else 1.25, rsep.sp = NULL,

csep = " & ", quote = FALSE, 1lsep = " \\textbar\\ ", do.table = TRUE,
placement = "htbp", center = TRUE, fontsize = "normalsize", caption = NULL,
label = NULL, ...)

{
## convert expressions, leave rest:
ft <- ftable2latex(object, vList, x.escape = x.escape, exprFUN = exprFUN,
escapeFUN = escapeFUN)
## ftable -> character matrix (formatted ftable) with attributes 'ncv' and
## 'nrv'
ft <- fftable(ft, quote = quote, lsep = lsep, ...)
## character matrix -> latex {head + bodyl}:

tlist <- tablines(ft, align = align, booktabs = booktabs, head = head,
rsep = rsep, Sp = Sp, rsep.sp = rsep.sp, csep = csep)

## wrap table and return 'Latex' object:

wrapLaTable (structure(tlist$body, head = tlist$head), do.table = do.table,

align = tlist$align, placement = placement, center = center,
booktabs = booktabs, fontsize = fontsize, caption = caption, label = label)
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Function mayplot () to visualize a 5D array

We will now present a bit more details about the function mayplot () for creating matrix-like
plots of arrays up to dimension five. Due to space limitations, we only describe mayplot ()
verbally here and refer to the source code of simsalapar for the exact implementation.

mayplot () utilizes the function grid.layout () to determine the matrix-like layout, including
spaces for labels; call mayplot () with show.layout=TRUE to see how the layout looks like.
pushViewport () is then used to put the focus on a particular cell of the plot matrix (or
several cells simultaneously, see the global y axis label, for example). The focus is released
via popViewport (). Within a particular cell of the plot matrix a panel function is chosen for
plotting. This is achieved by gridBase. The default panel function is either boxplot.matrix ()
or lines() depending on whether n.sim exists. We also display a background with grid lines
similar to the style of ggplot2. Axes (for the y axis in logarithmic scale using eaxis from
sfsmisc; see Méachler and others (2016)) are then printed depending on which cell the focus
is on; similar for the row and column labels of the cells, again in ggplot2-style. Due to the
flexibility of grid, we can also create a legend in the same way as in the plot. Finally, we
save initial graphical parameters with opar <- par(no.readonly=TRUE) and restore them
on function exit in order to not change graphical parameters for possible subsequent plots.

Overall, mayplot () is quite flexible in visualizing results contained in arrays of dimensions up
to five, see the corresponding help file for more customizations.

A.3. Alternative varlists and simulations

In addition to the basic example in Section 2.6, we now call doLapply () under various other
setups, seeding methods, etc., including the case of no replications, that is, n.sim = 1:

R> res0. <- doLapply(varList, seed = NULL, sfile = "resO_lapply_NULL.rds",
+ doOne = doOne) # seed = NULL (typically not reproducible)
R> raw0 <- doLapply(varList, sfile = "rawO_lapply_NULL.rds",

+ doAL = FALSE, # do not call mkAL() --> keep "raw" result
+ doOne = doOne, names = TRUE) # seed = "seq" (default)

R> varList.1 <- set.n.sim(varList, 1) # n.sim = 1

R> res01 <- doLapply(varList.l, sfile = "resOl1_lapply_seq.rds",
+ doOne = doOne, names = TRUE)

R> varList.2 <- set.n.sim(varList, 2) # n.sim = 2

R> LE.seed <- c(2, 11, 15, 27, 21, 26)

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> (n.sim <- get.n.sim(varList.2))

[1] 2

R> seedList <- LEseeds(n.sim)

R> system.time(

+ res02 <- doLapply(varList.2, seed = seedList,

+ sfile = "res02_lapply_LEc.rds", doUne = doOne, names = TRUE,
+ monitor = interactive()))
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user system elapsed
0.002 0.000 0.002

R> RNGkind ()
[1] "L'Ecuyer-CMRG" "Inversion"

R> old.seed -> .Random.seed
R> RNGkind ()

[1] "Mersenne-Twister" "Inversion"

A.4. A comment on load-balancing

In terms of load-balancing, one advantage of our approach is that each repeated simulation
has the same expected run time. Note, however, that thousands of fast sub-jobs might lead to
a comparably large overall run time due to both the waiting times for the jobs to start on
a cluster and due to the overhead in communication between the manager and the workers.
It might therefore be more efficient to send blocks of sub-jobs to the same core or node.
This feature is provided by the argument block.size in the do*() functions doForeach(),
doRmpi(), doMclapply (), or doClusterApply().

A.5. Using foreach

The wrapper doForeach () is based on the function foreach() of the package foreach. It allows
to carry out parallel computations on multiple nodes or cores. In principle, different parallel
backends can be used to conduct parallel computations with foreach’s foreach(); see Weston
(2015) or the various parallel adaptors (e.g., doMC, doMPI, doParallel, doRedis, doSNOW).
For example, SNOW cluster types could be specified with registerDoSNOW() from the package
doSNOW; see Revolution Analytics (2013). We use the package doParallel here which provides
an interface between foreach and the R package parallel; see Revolution Analytics and Weston
(2015a). The number of nodes can be specified via cluster.spec (defaulting to 1) and the
number of cores via cores.spec (defaulting to parallel’s detectCores()). For more details,
we refer to the package source code and the vignettes of foreach and doParallel.

doForeach <- function(vList, cluster = makeCluster(detectCores(), type = "PSOCK"),
cores = NULL, block.size = 1, seed "seq", repFirst = TRUE, sfile = NULL,
check = TRUE, doAL = TRUE, subjob. subjob, monitor = FALSE, doOne,
extraPkgs = character(), exports = character(), ...)
{
## Unfortunately, imports() ends not finding 'iter' from pkg 'iterators': -->
## rather strictly require things here:
getPkg <- function(pkg) if (!require(pkg, character.only = TRUE))
stop (sprintf (
"You must install the CRAN package 'Js' before you can use doForeach()",
pkg), call. = FALSE)
getPkg("foreach")
getPkg("doParallel")
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if ((is.null(cluster) && is.null(cores)) || (!is.null(cluster) &&
lis.null(cores))) stop("Precisely one of 'cluster' or 'cores' has to be not NULL")
if (!is.null(r <- maybeRead(sfile))) return(r)
stopifnot(is.function(subjob.), is.function(doOne))
if (!(is.null(seed) || is.na(seed) || is.numeric(seed) || (is.list(seed) &&
all(vapply(seed, is.numeric, NA))) || is.character(seed)))
stop(.invalid.seed.msg)
if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)
if (!is.null(cluster))
on.exit(stopCluster(cluster)) # shut down cluster and execution environment

## monitor checks {here, not in subjob()!}
if (!(is.logical(monitor) || is.function(monitor))) stop(gettextf (
"'monitor' must be logical or a function like %s", "printInfo[[\"default\"]]1"))

## variables
pGrid <- mkGrid(vList)
ngr <- nrow(pGrid)
ng <- get.nonGrids(vList) # => n.sim >= 1
n.sim <- ng$n.sim
stopifnot(l <= block.size, block.size <= n.sim)
if (n.sim)%%block.size != 0)
stop("block.size has to divide n.sim")

## Two main cases for parallel computing multiple cores ?registerDoParallel ->
## Details -> Unix + multiple cores => 'fork' is used
if (!is.null(cores)) {
stopifnot(is.numeric(cores), length(cores) == 1)
registerDoParallel(cores = cores) # register doParallel to be used with foreach
} else registerDoParallel(cluster) # multiple nodes;
# register doParallel to be used with foreach
if (check) cat(sprintf ("getDoParWorkers(): %d\n", getDoParWorkers()))

## actual work
n.block <- n.simj/%block.size
i <- NULL ## <- required for R CMD check ...
res <- ul(foreach(i = seq_len(ngr * n.block), .packages = c("simsalapar",
extraPkgs), .export = c(".Random.seed", "iter", "mkTimer", exports)) %dopar
{
lapply(seq_len(block.size), function(k) subjob.((i - 1) * block.size +
k, pGrid = pGrid, nonGrids = ng$nonGrids, repFirst = repFirst,
n.sim = n.sim, seed = seed, doOne = doOne, monitor = monitor,
D))
b
## convert result and save
saveSim(res, vList, repFirst = repFirst, sfile = sfile, check = check, doAL = doAL)

}

Let us call doForeach() for our working example, with seed = NULL, and n.sim = 1, respec-
tively.

R> resl <- doForeach(varList, sfile = "resl_foreach_seq.rds",

+ doOne = doOne, names = TRUE)
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R> system.time(
+ resl. <- doForeach(varList, seed = NULL, sfile = "resl foreach NULL.rds",
+ doOne = doOne))

user system elapsed
0.005 0.066 1.714

R> resl1l <- doForeach(varList.1, sfile = "resll_foreach_seq.rds",
+ doOne = doOne, names = TRUE)

Next, we demonstrate how I’Ecuyer’s random number generator can be used.

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> n.sim <- get.n.sim(varList.2)

R> seedList <- LEseeds(n.sim)

R> system.time(res12 <- doForeach(varList.2, seed = seedList,

+ sfile = "res12_lapply LEc.rds", doUne = doOne, names = TRUE,
+ monitor = interactive()))

user system elapsed
0.000 0.062 1.892

R> old.seed -> .Random.seed

To see that doForeach() and doLapply() lead the same result, let us check for equality
of res1 with res. We also check equality of res12 with res02 which shows the same for
I’Ecuyer’s random number generator.

R> stopifnot (doRes.equal(resl , res), doRes.equal(resl2, res02))

A.6. Using foreach with nested loops

The approach we present next is similar to doForeach(). However, it uses nested foreach()
loops to iterate over the grid variables and replications; see the vignettes of foreach for the
technical details. Since this is context-specific, doNestForeach() is not part of simsalapar.
Unfortunately, it is not possible to execute statements between different foreach() calls. This
would be interesting for efficiently computing those quantities which remain fixed in subsequent
foreach() loops only once. Note that this is also not possible for the other methods for
parallel computing and thus not a limitation of this method alone.

doNestForeach <- function(vList, cluster = makeCluster(detectCores(),
type = "PSOCK"), cores = NULL, block.size = 1, seed = "seq", repFirst = TRUE,
sfile = NULL, check = TRUE, doAL = TRUE, subjob. = subjob, monitor = FALSE,
doOne, extraPkgs = character(), exports = character(), ...)

stopifnot(require("doSNOW"), require("foreach"), require("doParallel"))
if ((is.null(cluster) && is.null(cores)) || ('is.null(cluster) && !is.null(cores)))
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stop("Precisely one of 'cluster' or 'cores' has to be not NULL")
if (!is.null(r <- maybeRead(sfile)))

return(r)

stopifnot(is.function(doOne))

if (!(is.null(seed) || is.na(seed) || is.numeric(seed) || (is.list(seed) &&
all(vapply(seed, is.numeric, NA))) || is.character(seed)))

stop(.invalid.seed.msg)
if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)
if (!is.null(cluster)) on.exit(stopCluster(cluster))

## monitor checks {here, not in subjob()!'}
if (!(is.logical(monitor) || is.function(monitor)))
stop(gettextf (" 'monitor' must be logical or a function like %s",
"printInfol[[\"default\"]11"))

## variables
pGrid <- mkGrid(vList)
ngr <- nrow(pGrid)
ng <- get.nonGrids(vList) # => n.sim >= 1
n.sim <- ng$n.sim
stopifnot(l <= block.size, block.size <= n.sim)
if (n.sim}%%block.size != 0)
stop("block.size has to divide n.sim")

## Two main cases for parallel computing multiple cores ?registerDoParallel ->
## Details -> Unix + multiple cores => 'fork' is used
if (!is.null(cores)) {
stopifnot(is.numeric(cores), length(cores) == 1)
registerDoParallel(cores = cores) # register doParallel to be used with foreach
} else registerDoParallel(cluster) # multiple nodes; register doParallel
## For using Rmpi, call with: cluster=makeCluster (max(2,
## Rmpi::mpi.universe.size()), type=type) would have to be shut down with:
## on.exit({ stopCluster(cluster) if(!interactive()) Rmpi::mpi.exit() 1})
if (check)
cat (sprintf ("getDoParWorkers(): %d\n", getDoParWorkers()))

## need all problem-specific variables here 'grid' variables
grVals <- getEl(vList, type = "grid")

nn <- length(n <- grVals$n)

nd <- length(d <- grVals$d)

nfamily <- length(family <- grVals$family)

ntau <- length(tau <- grVals$tau)

## 'inner' variables
inVals <- getEl(vList, type = "inner"
alpha <- inVals$alpha

## actual work (note, we use a different construction here)

n.block <- n.sim/block.size

xp0bj <- c(".Random.seed", "iter", "mkTimer", exports)

xpPkgs <- c("simsalapar", extraPkgs)

res <- ul(foreach(j = seq_along(tau), .packages = xpPkgs, .export = xp0bj) %:%
foreach(k = seq_along(family), .packages = xpPkgs, .export = xpObj) %:%
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foreach(l = seq_along(d), .packages = xpPkgs, .export = xpObj) %:%
foreach(m = seq_along(n), .packages = xpPkgs, .export = xpObj) %:%
foreach(i. = seq_len(n.block), .packages = xpPkgs, .export = xpObj) %dopar,
{
i <= i. + n.block * ((m - 1) + nn * ((1 - 1) + nd * ((k - 1) + nfamily *
G -1
lapply(seq_len(block.size), function(k.) subjob((i - 1) * block.size + k.,
pGrid = pGrid, nonGrids = ng$nonGrids, repFirst = repFirst, n.sim = n.sim,
seed = seed, doOne = doOne, ...))

B
## Now, res is a list with res[[IJJ[[JJLOIICLIIL[]] corresponding to (tau, family,
## d, n, n.sim) ==> need to unlist (exactly the correct number of times)
res <- ul(ul(ul(ul(res))))
## convert result and save
saveSim(res, vList, repFirst = repFirst, sfile, check = check, doAL = doAL)

}

Let us call doNestForeach() for our working example, with seed=NULL, and n.sim=1, respec-
tively.

R> res2 <- doNestForeach(varList, sfile = "res2 nested_seq.rds",
+ doOne = doOne, names = TRUE)

R> system.time(res2. <- doNestForeach(varList, seed = NULL,
+ sfile = "res2 nested_NULL.rds", doOne = doOne)

user system elapsed
0.016 0.061 1.698

R> res21 <- doNestForeach(varList.1, sfile = "res21_nested_seq.rds",
+ doOne = doOne, names = TRUE)

Next, we demonstrate how I’Ecuyer’s random number generator can be used.

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> n.sim <- get.n.sim(varList.2)

R> seedList <- LEseeds(n.sim)

R> system.time(res22 <- doNestForeach(varList.2, seed = seedList,
+ sfile = "res22_lapply_LEc.rds", doOne = doOne, names = TRUE))

user system elapsed
0.000 0.071 1.699

R> old.seed -> .Random.seed
To see that doNestForeach() and doLapply () lead the same result, let us check for equality

of res2 with res. Finally, we check equality of res22 with res02 which shows the same for
I’Ecuyer’s random number generator.
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R> stopifnot (doRes.equal (res2, res), doRes.equal(res22, res02))

A.7. Using Rmpi

The following wrapper function doRmpi () utilizes only tools from the R package Rmpi for
parallel computing on multiple nodes or cores in R via MPI. With load.balancing = TRUE
(the default), the load-balancing version mpi.applyLB() is utilized (otherwise mpi.apply())
which sends the next sub-job to a worker who just finished one.

doRmpi <- function(vList, nslaves = if ((sz <- Rmpi::mpi.universe.size()) <= 1)
detectCores() else sz, load.balancing = TRUE, block.size = 1, seed = "seq",
repFirst = TRUE, sfile = NULL, check = TRUE, doAL = TRUE, subjob. = subjob,
monitor = FALSE, doOne, exports = character(), ...)

## see
## http://cran.r-project.org/doc/manuals/r-devel/R-exts.html#Suggested-packages
if (!requireNamespace("Rmpi", quietly = TRUE))

stop("You must install the CRAN package 'Rmpi' before you can use doRmpi()")

if (!is.null(r <- maybeRead(sfile)))

return(r)

stopifnot(is.function(subjob.), is.function(doOne))

if (!(is.null(seed) || is.na(seed) || is.numeric(seed) || (is.list(seed) &&
all(vapply(seed, is.numeric, NA))) || is.character(seed)))

stop(.invalid.seed.msg)
if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)

## monitor checks {here, not in subjob()!'}
if (!(is.logical(monitor) || is.function(monitor)))
stop(gettextf (" 'monitor' must be logical or a function like %s",
"printInfol[[\"default\"]]1"))

## variables
pGrid <- mkGrid(vList)
ngr <- nrow(pGrid)
ng <- get.nonGrids(vList) # => n.sim >= 1
n.sim <- ng$n.sim
stopifnot(l <= block.size, block.size <= n.sim)
if (n.sim)%block.size != 0)
stop("block.size has to divide n.sim")

## use as many workers as available Note: mpi.comm.size(comm) returns the total
## number of members in a comm
comm <- 1 ## communicator number
if (!Rmpi::mpi.comm.size(comm)) {
## <==> no workers are running
Rmpi: :mpi.spawn.Rslaves(nslaves = nslaves)
}
## quiet = TRUE would omit successfully spawned workers
on.exit (Rmpi::mpi.close.Rslaves()) # close workers spawned by mpi.spawn.Rslaves()
## pass global required objects to cluster (required by mpi.apply())
Rmpi: :mpi.bcast.Robj2slave(.Random.seed)
Rmpi: :mpi.bcast.Robj2slave (mkTimer)



Journal of Statistical Software 39

for (e in exports) {
ee <- substitute(Rmpi::mpi.bcast.Robj2slave(EXP), list(EXP = as.symbol(e)))
eval(ee)

}

## instead of initExpr, this needs a 'initFunction' + 'initArgs'
## if ('missing(initExpr)) do.call(mpi.bcast.cmd, c(list(initFunction), ...))

## actual work
n.block <- n.sim%/%block.size
res <- ul((if (load.balancing)
Rmpi: :mpi.applyLB else Rmpi::mpi.apply) (seq_len(ngr * n.block),
function(i) lapply(seq_len(block.size),
function(k) subjob.((i - 1) * block.size + k, pGrid = pGrid,
nonGrids = ng$nonGrids, repFirst = repFirst, n.sim = n.sim, seed = seed,
doOne = doOne, monitor = monitor, ...))))

## convert result and save
saveSim(res, vList, repFirst = repFirst, sfile = sfile, check = check, doAL = doAL)

}

Similar as before, we now call doRmpi () for our working example, with seed = NULL, and
n.sim = 1, respectively. We also show here, that seed = NULL is typically non-reproducible.

R> res3 <- doRmpi(varList, sfile = "res3_Rmpi_seq.rds",
+ doOne = doOne, names = TRUE)

R> system.time(res3. <- doRmpi(varList, seed = NULL,
+ sfile = "res3_Rmpi_NULL.rds", doOne = doOne))

user system elapsed
0.016 0.000 0.019

R> ## shows that seed = NULL is non-reproducible here ==> warnings (2x)
R> set.seed(101)

R> system.time(res3N1 <- doRmpi(varList, seed = NULL,

+ sfile = "res3_RmpiN1_NULL.rds", doOne = do0ne))

user system elapsed
0.012 0.000 0.017

R> set.seed(101)
R> system.time (res3N2 <- doRmpi(varList, seed = NULL,
+ sfile = "res3_RmpiN2 NULL.rds", doOne = doOne))

user system elapsed
0.012 0.000 0.013

R> if(identical(res3N1, res3N2)) stop("identical accidentally 77")
R> str(all.equal(res3N1, res3N2)) # => differ quite a bit!
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chr [1:1607] "Component 1: Component 4: Mean relative difference:
0.01057269"

R> res31 <- doRmpi(varList.l1, sfile = "res31_Rmpi_seq.rds",

+ doOne = doOne, names = TRUE)

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> n.sim <- get.n.sim(varList.2)

R> seedList <- LEseeds(n.sim)

R> system.time(res32 <- doRmpi(varList.2, seed = seedList,

+ sfile = "res32_lapply LEc.rds", doUne = doOne, names = TRUE,
+ monitor = interactive()))

user system elapsed
0.002 0.000 0.003

R> old.seed -> .Random.seed

To see that doRmpi () and doLapply() lead the same result, let us check for equality of res3
with res. We also check equality of res32 with res02 which shows the same for I'Ecuyer’s
random number generator.

R> stopifnot (doRes.equal (res3, res), doRes.equal(res32, res02))

A.8. Using parallel with mclapply()

Our next wrapper doMclapply() is based on the function mclapply () of the recommended R
package parallel. Although it only parallelizes over multiple cores, it is especially interesting
to use if a larger computer cluster is not available or if such a cluster requires complicated
setup procedures. Since a cluster is not required for mclapply () and thus doMclapply () to
work, tools like MPI need not be installed on the computer at hand. As a drawback, this
method relies on forking and hence is not available on Windows (unless the number of cores is
specified as 1 and therefore calculations are not parallel anymore).

doMclapply <- function(vList, cores = if (.Platform$0S.type == "windows") 1 else
detectCores(), load.balancing = TRUE, block.size = 1, seed = "seq",
repFirst = TRUE, sfile = NULL, check = TRUE, doAL = TRUE, subjob. = subjob,
monitor = FALSE, doOne, ...)

if (!is.null(r <- maybeRead(sfile))) return(r)

stopifnot(is.function(subjob.), is.function(doOne))

if (!(is.null(seed) || is.na(seed) || is.numeric(seed) || (is.list(seed) &&
all(vapply(seed, is.numeric, NA))) || is.character(seed)))
stop(.invalid.seed.msg)

if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)

## variables
pGrid <- mkGrid(vList)
ngr <- nrow(pGrid)
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ng <- get.nonGrids(vList) # => n.sim >=1

n.sim <- ng$n.sim

stopifnot(l <= block.size, block.size <= n.sim)

if (n.sim%%block.size != 0) stop("block.size has to divide n.sim")

## monitor checks
if (!(is.logical(monitor) || is.function(monitor)))
stop(gettextf (" 'monitor' must be logical or a function like %s",
"printInfol[[\"default\"]11"))

## actual work
n.block <- n.sim%/%block.size
res <- ul(mclapply(seq_len(ngr * n.block), function(i) lapply(seq_len(block.size),
function(k) subjob.((i - 1) * block.size + k, pGrid = pGrid,
nonGrids = ng$nonGrids, repFirst = repFirst, n.sim = n.sim, seed = seed,
doOne = doOne, monitor = monitor, ...)), mc.cores = cores,
mc.preschedule = !load.balancing, mc.set.seed = FALSE))

## convert result and save
saveSim(res, vList, repFirst = repFirst, sfile = sfile, check = check, doAL = doAL)

}

Let us call doMclapply() for our working example, with seed = NULL, and n.sim = 1,
respectively.

R> ## not if it is only 'detectCores(): require(parallel)
R> options(mc.cores = parallel::detectCores())

R> res4 <- doMclapply(varList, sfile = "res4_mclapply_seq.rds",
+ doOne = doOne, names = TRUE)

R> system.time(res4. <- doMclapply(varList, seed = NULL,
+ sfile = "res4_mclapply NULL.rds", doOne = doOne))

user system elapsed
0.007 0.000 0.014

R> res41 <- doMclapply(varList.1, sfile = "res41_mclapply_seq.rds",
+ doOne = doOne, names = TRUE)

Next, we demonstrate how I’Ecuyer’s random number generator can be used.

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> n.sim <- get.n.sim(varList.2)

R> seedList <- LEseeds(n.sim)

R> system.time(res42 <- doMclapply(varList.2, seed = seedList,

+ sfile = "res42_lapply LEc.rds", doUne = doOne, names = TRUE,
+ monitor = interactive()))
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user system elapsed
0.001 0.000 0.011

R> old.seed -> .Random.seed

To see that doMclapply () and doLapply() yield the same result, let us check for equality
of res4 with res. We also check equality of res42 with res02 which shows the same for
I’Ecuyer’s random number generator.

R> stopifnot(doRes.equal (res4, res), doRes.equal(res42, res02))

A.9. Using parallel with clusterApply()

The final wrapper doClusterApply() is based on the function clusterApply() which is
the workhorse of various functions (parLapply(), parSapply (), parApply (), etc.) in the R
package parallel for parallel computations across different nodes or cores. In our setup, this
is more efficient than calling the more well-known wrapper function parLapply(); see the
vignette of parallel. With load.balancing=TRUE (the default), the load-balancing version
doClusterApplyLB() is utilized.

doClusterApply <- function(vList, cluster = makeCluster(detectCores(),
type = "PSOCK"), load.balancing = TRUE, block.size = 1, seed = "seq",
repFirst = TRUE, sfile = NULL, check = TRUE, doAL = TRUE, subjob. = subjob,
monitor = FALSE, doOne, initExpr, exports = character(), ...)

if (!is.null(r <- maybeRead(sfile))) return(r)

stopifnot(is.function(subjob.), is.function(doOne))

if (!(is.null(seed) || is.na(seed) || is.numeric(seed) || (is.list(seed) &&
all(vapply(seed, is.numeric, NA))) || is.character(seed)))
stop(.invalid.seed.msg)

if (check) doCheck(doOne, vList, nChks = 1, verbose = FALSE)

on.exit(stopCluster(cluster)) # shut down cluster and execution environment

## variables

pGrid <- mkGrid(vList)

ngr <- nrow(pGrid)

ng <- get.nonGrids(vList) # => n.sim >= 1

n.sim <- ng$n.sim

stopifnot(l <= block.size, block.size <= n.sim)

if (n.sim)%block.size != 0) stop("block.size has to divide n.sim")

## monitor checks
if (!(is.logical(monitor) || is.function(monitor)))
stop(gettextf (" 'monitor' must be logical or a function like %s",
"printInfol[[\"default\"]]1"))

clusterExport (cluster, varlist = c(".Random.seed", "mkTimer", exports))
if (!'missing(initExpr))

clusterCall(cluster, eval, substitute(initExpr))

## actual work
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n.block <- n.sim%/%block.size

res <- ul((if (load.balancing)
clusterApplyLB else clusterApply) (cluster, seq_len(ngr * n.block),
function(i) lapply(seq_len(block.size),
function(k) subjob.((i - 1) * block.size + k, pGrid = pGrid,
nonGrids = ng$nonGrids, repFirst = repFirst, n.sim = n.sim, seed = seed,
doOne = doOne, monitor = monitor, ...))))

## convert result and save
saveSim(res, vList, repFirst = repFirst, sfile = sfile, check = check, doAL = doAL)

}

Let us call doClusterApply () with seed=NULL and n.sim=1, respectively; note that we have
already called it for our working example in Section 3.

R> system.time(res5. <- doClusterApply(varList, seed = NULL,
+ sfile = "res5_clApply NULL.rds", doOne = doOne))

user system elapsed
0.006 0.004 0.010

R> resb1 <- doClusterApply(varList.1, sfile = "resb1_clApply_seq.rds",
+ doOne = doOne, names = TRUE)

Next, we demonstrate how I’Ecuyer’s random number generator can be used.

R> old.seed <- .Random.seed

R> set.seed(LE.seed, kind = "L'Ecuyer-CMRG")

R> n.sim <- get.n.sim(varList.2)

R> seedList <- LEseeds(n.sim)

R> system.time(res52 <- doClusterApply(varList.2, seed = seedList,
+ sfile = "resb52_clApply_LEc.rds", doUne = doUne, names = TRUE,
+ monitor = interactive()))

user system elapsed
0.001 0.000 0.002

R> old.seed -> .Random.seed

We already checked in Section 3 that doClusterApply () and doLapply () lead the same result,
so we only have left to check equality for I’Ecuyer’s random number generator.

R> stopifnot(doRes.equal(res52, res02))

B. Timing comparison of different parallelization methods

Note that we have measured elapsed times for our running example on half a dozen Linux
platforms with between 4 and 24 cores, always only on one (multi-core) machine. Our running
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example is clearly unrealistically small and hence, parallelization may well cost more than
running a single thread by doLapply ().

Running everything on a set of computers the (20% trimmed) mean values of elapsed times
for two machines were between 4 and 20 seconds, and scaled as multiples of doForeach are

R> toLatex(ftab(t(round(all.F[, c("ada-6", "lynne")], 1)),
+ dnms = c("mach", "f")), do.table = FALSE)

mach | f doForeach doNestForeach doMclapply doLapply doRmpi doClusterApply

ada-6 1.0 1.5 2.2 3.7 3.0 3.2
lynne 1.0 4.2 2.9 2.5 3.5 4.3

where ada-6 has been an old compute server (Quad-Core (8 threads) AMD Opteron 2380,
32 GB RAM) and lynne a (quite fast, summer 2014) 8 core Intel i7-4765T desktop with 16
GB RAM. Note that doNestForeach performed quite bad on lynne, contrary to all other
platforms considered, where it typically was close to doForeach. Further note that indeed, on
lynne, doLapply () was faster than all but doForeach, clearly showing that this demo running
example is not representative for realistic larger scale simulations.
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