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Abstract A goodness-of-fit transformation for Archimedean copulas is presented
fromwhich a test can be derived. In a large-scale simulation study it is shown that the
test performs well according to the error probability of the first kind and the power
under several alternatives, especially in high dimensions where this test is (still)
easy to apply. The test is compared to commonly applied tests for Archimedean
copulas. However, these are usually numerically demanding (according to precision
and runtime), especially when the dimension is large. The transformation underly-
ing the newly proposed test was originally used for sampling random variates from
Archimedean copulas. Its correctness is proven under weaker assumptions. It may
be interpreted as an analogon to Rosenblatt’s transformation which is linked to the
conditional distribution method for sampling random variates. Furthermore, the sug-
gested goodness-of-fit test complements a commonly used goodness-of-fit test based
on the Kendall distribution function in the sense that it utilizes all other components
of the transformation except the Kendall distribution function. Finally, a graphical
test based on the proposed transformation is presented.
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1 Introduction

From risk R management practice, there is an increasing interest in copula theory
and applications in high dimensions. One of the reasons is that vectors of risk factor
changes are typically high-dimensional and have to be adequately modeled; see
[23, Chap.2]. In high dimensions, the inherent model risk can be substantial. It
is, thus, of interest to test whether an estimated or assumed (dependence) model
is appropriate. One of our goals is, therefore, to present and explore goodness-of-
fit tests in high dimensions for a widely used class of copulas in practice, namely
Archimedean copulas. We also investigate the influence of the dimension on the
conducted goodness-of-fit tests and address the problems that arise specifically in
high dimensions.

It is clear that especially in high dimensions, the exchangeability of Archimedean
copulas becomes an increasingly strong assumption for certain applications. This
point of criticism applies equally well to all exchangeable copula models including
thewell-knownhomogeneousGaussian or t copulas.However, note that thesemodels
are indeed applied in banks and insurance companies, typically in high dimensions, in
order to introduce (tail-) dependence to joint models for risks as opposed to assuming
(tail) independence. We therefore believe that it is important to investigate such
models in high dimensions.

Archimedean copulas are copulas which admit the functional form

C(u) = ψ(ψ−1(u1) + · · · + ψ−1(ud)), u ∈ [0, 1]d , (1)

for an (Archimedean) generator ψ , i.e., a continuous, decreasing function ψ :
[0,∞] → [0, 1] which satisfies ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0, and which
is strictly decreasing on [0, inf{t : ψ(t) = 0}]. A necessary and sufficient condition
under which (1) is indeed a proper copula is that ψ is d-monotone, i.e., ψ is continu-
ous on [0,∞], admits derivatives up to the order d − 2 satisfying (−1)kψ(k)(t) ≥ 0
for all k ∈ {0, . . . , d − 2}, t ∈ (0,∞), and (−1)d−2ψ(d−2)(t) is decreasing and
convex on (0,∞), see [20] or [22]. For reasons why Archimedean copulas are used
in practice, see [9] or [19].

Goodness-of-fit techniques for copulas only more recently gained interest, see,
e.g., [5, 6, 8, 11–14], and references therein. Although usually presented in a d-
dimensional setting, only some of the publications actually try to apply goodness-
of-fit tests in more than two dimensions, including [5, 26] up to dimension d = 5
and [4] up to dimension d = 8. The common deficiency of goodness-of-fit tests for
copulas in general, but also for the class of Archimedean copulas, is their limited
applicability when the dimension becomes large. This is mainly due to the lack of
a simple or at least numerically accessible form as the dimension becomes large.
Furthermore, parameter estimation usually becomes much more demanding in high
dimensions; see [19].

As a general goodness-of-fit test, the transformation of [25] is well known.
It is important to note that the inverse of this transformation leads to a popular
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sampling algorithm, the conditional distribution method, see, e.g., [10]. In other
words, for a bijective transformation which converts d independent and identically
distributed (“i.i.d.”) standard uniform random variables to a d-dimensional random
vector distributed according to some copula C , the corresponding inverse transfor-
mation may be applied to obtain d i.i.d. standard uniform random variables from a
d-dimensional random vector following the copula C . In this work, we suggest this
idea for goodness-of-fit testing based on a transformation originally proposed by [29]
for sampling Archimedean copulas. With the recent work of [22] we obtain a more
elegant proof of the correctness of this transformation under weaker assumptions.
We then apply the first d − 1 components to build a general goodness-of-fit test for
d-dimensional Archimedean copulas. This complements goodness-of-fit tests based
on the dth component, the Kendall distribution function, see, e.g., [13, 26], or [14].
Our proposed test can be interpreted as an Archimedean analogon to goodness-of-fit
tests based on Rosenblatt’s transformation for copulas in general as it establishes a
link between a sampling algorithm and a goodness-of-fit test. The appealing property
of tests based on the inverse of the transformation of [29] for Archimedean copulas
is that they are easily applied in any dimension, whereas tests based on Rosenblatt’s
transformation, as well as tests based on the Kendall distribution function are typi-
cally numerically challenging. The transformation can also be conveniently used for
graphical goodness-of-fit testing as recently advocated by [16].

This paper is organized as follows. In Sect. 2, commonly used goodness-of-fit
tests for copulas in general are recalled. In Sect. 3, the new goodness-of-fit test for
Archimedean copulas is presented. Section4 contains details about the conducted
simulation study. The results are presented in Sect. 5 and the graphical goodness-of-fit
test is detailed in Sect. 6. Finally, Sect. 7 concludes.

2 Goodness-of-fit Tests for Copulas

Let X = (X1, . . . , Xd), d ≥ 2, denote a random vector with distribution function
H and continuous marginals F1, . . . , Fd . In a copula model for X, one would like to
know whether C is well represented by a parametric family C0 = {C(· ; θ) : θ ∈ Θ}
where Θ is an open subset of Rp, p ∈ N. In other words, one would like to test the
null hypothesis

H0 : C ∈ C0 (2)

based on realizations of independent copies Xi , i ∈ {1, . . . , n}, of X. For testing H0,
the (usually unknown) marginal distributions are treated as nuisance parameters and
are replaced by their slightly scaled empirical counterparts, the pseudo-observations
U i = (Ui1, . . . , Uid), i ∈ {1, . . . , n}, with

Ui j = n

n + 1
F̂n j (Xi j ), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, (3)
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where F̂n j (x) = 1
n

∑n
k=1 1{Xkj ≤x} denotes the empirical distribution function of

the j th data column (the data matrix consisting of the entries Xi j , i ∈ {1, . . . , n},
j ∈ {1, . . . , d}), see [14]. Following the latter approach one ends up with rank-
based pseudo-observations which are interpreted as observations of C (besides the
known issues of this interpretation, see Remark 1 below) and are, therefore, used for
estimating θ and testing H0.

In order to conduct a goodness-of-fit test, the pseudo-observations U i , i ∈
{1, . . . , n}, are usually first transformed to some variables U ′

i , i ∈ {1, . . . , n}, so
that the distribution of the latter is known and sufficiently simple to test under the
null hypothesis. For Rosenblatt’s transformation (see Sect. 2.1), U ′

i , i ∈ {1, . . . , n},
is also d-dimensional, for tests based on the Kendall distribution function (described
in Sect. 2.2), it is one-dimensional, and for the goodness-of-fit approach we propose
in Sect. 3, it is (d − 1)-dimensional. If not already one-dimensional, after such a
transformation, U ′

i , i ∈ {1, . . . , n}, is usually mapped to one-dimensional quantities
Yi , i ∈ {1, . . . , n}, such that the corresponding distribution FY is again known under
the null hypothesis. So indeed, instead of (2), one usually considers some adjusted
hypothesis H∗

0 : FY ∈ F0 under which a goodness-of-fit test can easily be carried
out in a one-dimensional setting. For mapping the variates to a one-dimensional
setting, different approaches exist, see Sect. 2.2. Note that if H∗

0 is rejected, so is H0.

Remark 1 As, e.g., [8] describe, there are two problems with the approach described
above. First, the pseudo-observations U i , i ∈ {1, . . . , d}, are neither realizations of
perfectly independent random vectors nor are the components perfectly following
univariate standard uniform distributions. This affects the null distribution of the test
statistic under consideration. All copula goodness-of-fit approaches suffer from these
effects since observations from the underlying copula are never directly observed
in practice. A solution may be a bootstrap to access the exact null distribution.
Particularly in high dimensions, it is often time-consuming, especially for goodness-
of-fit tests suggested in the copula literature so far. Second, using estimated copula
parameters additionally affects the null distribution.

2.1 Rosenblatt’s Transformation and a Corresponding Test

The transformation introduced by [25] is a standard approach for obtaining realiza-
tions of standard uniform random vectors U ′

i , i ∈ {1, . . . , n}, given random vectors
U i , i ∈ {1, . . . , n}, from an absolutely continuous copula C which can then be tested
directly or furthermapped to one-dimensional variates for testing purposes. Consider
a representative d-dimensional random vector U ∼ C . To obtain U ′ ∼ U[0, 1]d (i.e.,
a random vector with independent components, each uniformly distributed on [0, 1]),
[25] proposed the transformation R : U → U ′, given by
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U ′
1 = U1,

U ′
2 = C2(U2 | U1),

...

U ′
d = Cd(Ud | U1, . . . , Ud−1),

where for j ∈ {2, . . . , d}, C j (u j | u1, . . . , u j−1) denotes the conditional distribution
function of U j given U1 = u1, . . . , U j−1 = u j−1. We denote this method for
constructing goodness-of-fit tests by “R” in what follows.

Remark 2 Note that the inverse transformation R−1 of Rosenblatt’s transformation
leads to the conditional distribution method for sampling copulas, see, e.g., [10].
This link brings rise to the general idea of using sampling algorithms based on one-
to-one transformations to construct goodness-of-fit tests. This is done in Sect. 3 to
construct a goodness-of-fit test for Archimedean copulas based on a transformation
originally proposed by [29] for sampling random variates.

To find the quantities C j (u j | u1, . . . , u j−1), j ∈ {2, . . . , d}, for a specific copula
C (under weak conditions), the following connection between conditional distribu-
tions and partial derivatives is usually applied; see [27, p.20]. Assuming C admits
continuous partial derivatives with respect to the first d − 1 arguments, one has

C j (u j | u1, . . . , u j−1) = D j−1,...,1C (1,..., j)(u1, . . . , u j )

D j−1,...,1C (1,..., j−1)(u1, . . . , u j−1)
, j ∈ {2, . . . , d},

(4)

whereC (1,...,k) denotes the k-dimensional marginal copula ofC corresponding to the
first k arguments and D j−1,...,1 denotes the mixed partial derivative of order j − 1
with respect to the first j − 1 arguments. For a d-dimensional Archimedean copula
C with (d − 1)-times continuously differentiable generator ψ , one has

C j (u j | u1, . . . , u j−1) = ψ( j−1)
(∑ j

k=1 ψ−1(uk)
)

ψ( j−1)
(∑ j−1

k=1 ψ−1(uk)
) , j ∈ {2, . . . , d}. (5)

The problem when applying (4) or (5) in high dimensions is that it is usually quite
difficult to access the derivatives involved, the price which one has to pay for such a
general transformation. Furthermore, numerically evaluating the derivatives is often
time-consuming and prone to errors.

Genest et al. [14] propose a test statistic based on the empirical distribution func-
tion of the random vectors U ′

i , i ∈ {1, . . . , d}. As an overall result, the authors
recommend to use a distance between the distribution under H0, assumed to be
standard uniform on [0, 1]d , and the empirical distribution, namely
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SB
n,d = n

∫

[0,1]d

(Dn(u) − Π(u))2 du,

where Π(u) = ∏d
j=1 u j denotes the independence copula and Dn(u) = 1

n

∑n
i=1

1{U ′
i ≤u} the empirical distribution function based on the random vectors U ′

i , i ∈
{1, . . . , d}. We refer to this transformation as “SB

n,d” in what follows.

2.2 Tests in a One-Dimensional Setting

In order to apply a goodness-of-fit test in a one-dimensional setting one has to summa-
rize the d-dimensional pseudo-observations U i or U ′

i via one-dimensional quantities
Yi , i ∈ {1, . . . , n}, for which the distribution is known under the null hypothesis. In
what follows, some popular mappings achieving this task are described.

Nd : Under H0, the one-dimensional quantities Yi = Fχ2
d

(∑d
j=1 Φ−1(U ′

i j )
2
)
,

i ∈ {1, . . . , n}, should be i.i.d. according to a standard uniform distribution,
where Fχ2

d
denotes the distribution function of a χ2 distribution with d degrees

of freedom and Φ−1 denotes the quantile function of the standard normal dis-
tribution. This transformation can be found, e.g., in [8] and is denoted by “Nd”
in what follows.

KC : For a copula C let KC denote the Kendall distribution function, i.e., KC (t) =
P(C(U) ≤ t), t ∈ [0, 1], where U ∼ C , see [3] or [22]. Under H0 and
if KC is continuous, the random variables Yi = KC (C(U i )) should be i.i.d.
according to a standard uniform distribution. This approach for goodness-of-fit
testing will be referred to as “KC”. Note that in this case, no multidimensional
transformation of the data is performed beforehand.

KΠ : One can also consider the random vectors U ′
i , i ∈ {1, . . . , n}, in conjunc-

tion with the independence copula, i.e., define Ỹi = ∏d
j=1 U ′

i j , where Ỹi has

distribution function KΠ(t) = t
∑d−1

k=0
1
k! (− log t)k . Under H0, the sample

Yi = KΠ(Ỹi ), i ∈ {1, . . . , n}, should indicate a uniform distribution on the
unit interval. This approach is referred to as “KΠ”.

In the approaches Nd , KC , and KΠ we have to test the hypothesis that realizations
of the random variables Yi , i ∈ {1, . . . , n}, follow a uniform distribution on the unit
interval. This may be achieved in several ways, the following two approaches are
applied in what follows.

χ2: Pearson’s χ2 test, see [24, p. 391], shortly referred to as “χ2”.
AD: The so-called Anderson-Darling test, a specifically weighted Cramér-von

Mises test, see [1, 2]. This method is referred to as “AD”.
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3 A Goodness-of-fit Test for Archimedean Copulas

The goodness-of-fit test we now present is based on the following transformation
from [29] for generating random variates from Archimedean copulas. Note that we
present a rather short proof of this interesting result, under weaker assumptions.

Theorem 1 (The main transformation) Let U ∼ C, d ≥ 2, where C is an
Archimedean copula with d-monotone generator ψ and continuous Kendall dis-
tribution function KC . Then U′ ∼ U[0, 1]d , where

U ′
j =

(∑ j
k=1 ψ−1(Uk)

∑ j+1
k=1 ψ−1(Uk)

) j

, j ∈ {1, . . . , d − 1}, U ′
d = KC (C(U)). (6)

Proof As shown in [22], (ψ−1(U1), . . . , ψ
−1(Ud)) has an �1-norm symmetric dis-

tribution with survival copula C and radial distribution FR = W −1
d [ψ], whereWd [·]

denotes the Williamson d-transform. Hence, (ψ−1(U1), . . . , ψ−1(Ud))
d= RS,

where R ∼ FR and S ∼ U({x ∈ R
d+ | ||x||1 = 1}) are independent. For

Z(0) = 0, Z(d) = 1, and (Z1, . . . , Zd−1) ∼ U[0, 1]d−1, it follows from [7, p.

207] that S j
d= Z( j) − Z( j−1), j ∈ {1, . . . , d}, independent of R. This implies that

ψ−1(U j )
d= R(Z( j) − Z( j−1)), j ∈ {1, . . . , d}, and hence that U′ is in distribution

equal to W = (
(Z(1)/Z(2))

1, . . . , (Z(d−1)/Z(d))
d−1, KC (ψ(R))

)
. Since KC is con-

tinuous andψ(R) ∼ KC , KC (ψ(R)) is uniformly distributed in [0, 1]. Furthermore,
as a function in R, KC (ψ(R)) is independent of (W1, . . . , Wd−1). It therefore suf-
fices to show that (W1, . . . , Wd−1) ∼ U[0, 1]d−1, a proof of which can be found in
[7, p. 212].

The transformation T : U → U′ given in (6) can be interpreted as an analogon
to Rosenblatt’s transformation R specifically for Archimedean copulas. Both T and
R uniquely map d random variables to d random variables and can therefore be
used in both directions, for generating random variates and goodness-of-fit tests;
the latter approach for T is proposed in this paper. The advantage of this approach
for obtaining the random variables (or their realizations in form of given data) U′

i ∼
U[0, 1]d , i ∈ {1, . . . , n}, fromUi ∼ C , i ∈ {1, . . . , n}, in comparison toRosenblatt’s
transformation lies in the fact that it is typicallymuch easier to compute the quantities
in (6) than accessing the derivatives in (5). One can then proceed as for Rosenblatt’s
transformation and use any of the transformations listed in Sect. 2.2 to transform U′

i ,
i ∈ {1, . . . , n}, to the one-dimensional quantities Yi , i ∈ {1, . . . , n}, for testing H∗

0 .
A test involving the transformation T to obtain the random vectors U′

i ∼ U[0, 1]d ,
i ∈ {1, . . . , n}, is referred to as approach “Td” in what follows.

Note that evaluating the transformation T might only pose difficulties for the
last component U ′

d , the Kendall distribution function KC , whereas computing U ′
j ,

j ∈ {1, . . . , d − 1}, is easily achieved for any Archimedean copula with explicit
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generator inverse. Furthermore, for large d, evaluation of KC often gets more and
more complicated from a numerical point of view (see [18] for the derivatives
involved), except for specific cases such as Clayton’s family where all involved
derivatives of ψ are directly accessible, see, e.g., [29], and therefore KC can be
computed directly via1 KC (t) = ∑d−1

k=0(0 − ψ−1(t))kψ(k)(ψ−1(t))/k!, see, e.g.,
[3] or [22]. Moreover, note that applying Td for obtaining the transformed data U′

i ,
i ∈ {1, . . . , n}, requires n-times the evaluation of the Kendall distribution function
KC , which can be computationally intensive, especially in simulation studies involv-
ing bootstrap procedures. With the informational loss inherent in the goodness-of-fit
tests following the approaches addressed in Sect. 2.2 in mind, one may therefore
suggest to omit the last component Td of T and only consider T1, . . . , Td−1, i.e.,
using the data (U ′

i1, . . . , U ′
i d−1), i ∈ {1, . . . , n}, for testing purposes if d is large.

This leads to fast goodness-of-fit tests for Archimedean copulas in high dimensions.
A goodness-of-fit test based on omitting the last component of the transformation T
is referred to as approach “Td−1” in what follows.

4 A Large-Scale Simulation Study

4.1 The Experimental Design

In our experimental design, focus is put on two features, the error probability of
the first kind, i.e., if a test maintains its nominal level, and the power under several
alternatives. To distinguish between the different approaches we use either pairs or
triples, e.g., the approach “(Td−1, Nd−1, AD)” denotes a goodness-of-fit test based
on first applying our proposed transformation T without the last component, then
using the approach based on the χ2

d−1 distribution to transform the data to a one-
dimensional setup, and then applying the Anderson-Darling statistic to test H∗

0 ;
similarly, “(Td−1, SB

n,d−1)” denotes a goodness-of-fit test which uses the approach

SB
n,d−1 for reducing the dimension and testing H∗

0 .

In the conducted Monte Carlo simulation,2 the following ten different goodness-
of-fit approaches are tested:

1 It also follows from this formula that KC converges pointwise to the unit jump at zero for d → ∞.
2 All computations were conducted on a compute node (part of the bwGRiD Cluster Ulm) which
consists of eight cores (two four-core Intel Xeon E5440 Harpertown CPUs with 2.83GHz and 6MB
second level cache) and 16GB memory. The algorithms are implemented in C/C++ and compiled
using GCC 4.2.4 with option O2 for code optimization. Moreover, we use the algorithms of the
Numerical Algorithms Group, the GNU Scientific Library 1.12, and the OpenMaple interface of
Maple 12. For generating uniform random variates an implementation of the Mersenne Twister by
[28] is used. For the Anderson-Darling test, the procedures suggested in [21] are used.
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(Td−1, Nd−1, χ
2), (Td−1, Nd−1, AD), (Td−1, SB

n,d−1), (KC , χ2), (KC , AD),

(Td , Nd , AD), (Td , KΠ, AD), (Td , SB
n,d), (R, Nd , AD), (R, SB

n,d). (7)

Similar to [14], we investigate samples of size n = 150 and parameters of the copulas
such thatKendall’s tau equals τ = 0.25.Wework ind = 5andd = 20dimensions for
comparing the goodness-of-fit tests given in (7). For every scenario, we simulate the
correspondingArchimedean copulas ofAli-Mikhail-Haq (“A”), Clayton (“C”), Frank
(“F”), Gumbel (“G”), and Joe (“J”), see, e.g., [15], as well as the Gaussian (“Ga”)
and t copula with four degrees of freedom (“t4”); note that we use one-parameter
copulas (p = 1) in our study only for simplicity.Whenever computationally feasible,
N = 1,000 replications are used for computing the empirical level and power. In
some cases, see Sect. 5, less than 1,000 replications had to be used. For all tests, the
significance level is fixed at α = 5%. For the univariate χ2-tests, ten cells were used.

Concerning the use of Maple, we proceed as follows. For computing the first
d − 1 components T1, . . . , Td−1 of the transformation T involved in the first three
and the sixth to eighth approach listed in (7), Maple is only used if working under
double precision in C/C++ leads to errors. With errors, nonfloat values including
nan, -inf, and inf, as well as float values less than zero or greater than one are
meant. For computing the component Td , Maple is used to generate C/C++ code.
To decrease runtime, the function is then hard coded in C/C++, except for Clayton’s
family where an explicit form of all derivatives and hence KC is known, see [29]. The
same holds for computing KC for the approaches (KC , χ2) and (KC , AD). For the
approaches involving Rosenblatt’s transform, a computation in C/C++ is possible
for Clayton’s family in a direct manner, whereas again Maple’s code generator is
used for all other copula families to obtain the derivatives of the generator. If there
are numerical errors from this approach we use Maple with a high precision for the
computation. If Rosenblatt’s transformation produces errors even after computations
in Maple, we disregard the corresponding goodness-of-fit test and use the remaining
test results of the simulation for computing the empirical level and power.

Due to its well-known properties, we use the maximum likelihood estimator
(“MLE”) to estimate the copula parameters, based on the pseudo-observations of
the simulated random vectors Ui ∼ C , i ∈ {1, . . . , n}. Besides building the pseudo-
observations, note that parameter estimationmay also affect the null distribution. This
is generally addressed by using a bootstrap procedure for accessing the correct null
distribution, see Sect. 4.2 below.Note that a bootstrap can be quite time-consuming in
high dimensions, even parameter estimation already turns out to be computationally
demanding. For the bootstrap versions of the goodness-of-fit approaches involving
the generator derivatives, we were required to hard code the derivatives in order
to decrease runtime. Note that such effort is not needed for applying our proposed
goodness-of-fit test (Td−1, Nd−1, AD), since it is not required to access the generator
derivatives.
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4.2 The Parametric Bootstrap

For our proposed approach (Td−1, Nd−1, AD) it is not clear whether the bootstrap
procedure is valid from a theoretical point of view; see, e.g., [8] and [14]. However,
empirical results, presented in Sect. 5, indicate the validity of this approach, described
as follows.

1. Given the data Xi , i ∈ {1, . . . , n}, build the pseudo-observations Ui , i ∈
{1, . . . , n} as given in (3) and estimate the unknown copula parameter vector
θ by its MLE θ̂n .

2. Based on Ui , i ∈ {1, . . . , n}, the given Archimedean family, and the para-
meter estimate θ̂n , compute the first d − 1 components U ′

i j , i ∈ {1, . . . , n},
j ∈ {1, . . . , d −1}, of the transformation T as in Eq. (6) and the one-dimensional
quantities Yi = ∑d−1

j=1(Φ
−1(U ′

i j ))
2, i ∈ {1, . . . , n}. Compute the Anderson-

Darling test statistic An = −n − 1
n

∑n
i=1(2i − 1)[log(Fχ2

d−1
(Y(i))) + log(1 −

Fχ2
d−1

(Y(n−i+1)))].
3. Choose the number M of bootstrap replications. For each k ∈ {1, . . . , M} do:

a. Generate a random sample of size n from the given Archimedean copula with
parameter θ̂n and compute the corresponding vectors of componentwise scaled
ranks (i.e., the pseudo-observations) U∗

i,k , i ∈ {1, . . . , n}. Then, estimate the

unknown parameter vector θ by θ̂
∗
n,k .

b. Based on U∗
i,k , i ∈ {1, . . . , n}, the given Archimedean family, and the

parameter estimate θ̂
∗
n,k , compute the first d − 1 components U ′∗

i j,k , i ∈
{1, . . . , n}, j ∈ {1, . . . , d − 1}, of the transformation T as in Eq. (6) and
Y ∗

i,k = ∑d−1
j=1(Φ

−1(U ′∗
i j,k))

2, i ∈ {1, . . . , n}. Compute the Anderson-Darling

test statistic A∗
n,k = −n − 1

n

∑n
i=1(2i − 1)[log(Fχ2

d−1
(Y ∗

(i),k)) + log(1 −
Fχ2

d−1
(Y ∗

(n−i+1),k))].
4. An approximate p-value for (Td−1, Nd−1, AD) is given by 1

M

∑M
k=1 1{A∗

n,k>An}.

The bootstrap procedures for the other approaches can be obtained similarly. For
the bootstrap procedure using Rosenblatt’s transformation see, e.g., [14]. For our
simulation studies, we used M = 1,000 bootstrap replications. Note that, together
with the number N = 1,000 of test replications, simulation studies are quite time-
consuming, especially if parameters need to be estimated and especially if high
dimensions are involved.

Applying the MLE in high dimensions is numerically challenging and time-
consuming; see also [19]. Although our proposed goodness-of-fit test can be applied
in the case d = 100, it is not easy to use the bootstrap described above in such high
dimensions. We therefore, for d = 100, investigate only the error probability of the
first kind similar to the case A addressed in [8]. For this, we generate N = 1,000
100-dimensional samples of size n = 150 with parameter chosen such that Kendall’s
tau equals τ = 0.25 and compute for each generated data set the p-value of the test
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(Td−1, Nd−1, AD) as before, however, this time with the known copula parameter.
Finally, the number of rejections among the 1,000 conducted goodness-of-fit tests
according to the five percent level is reported. The results are given at the end of
Sect. 5.

5 Results

We first present selected results obtained from the large-scale simulation study con-
ducted for the 10 different goodness-of-fit approaches listed in (7). These results sum-
marize the main characteristics found in the simulation study. As an overall result,
we found that the empirical power against all investigated alternatives increases if
the dimension gets large. As expected, so does runtime.

We start by discussing the methods that show a comparably weak performance
in the conducted simulation study. We start with the results that are based on the
test statistics SB

n,d−1 or SB
n,d to reduce the dimension. Although keeping the error

probability of the first kind, the goodness-of-fit tests (Td−1, SB
n,d−1), (Td , SB

n,d), and

(R, SB
n,d) show a comparably weak performance against the investigated alternatives,

at least in our test setup as described in Sect. 4.1. For example, for n = 150, d = 5,
and τ = 0.25, the method (Td , SB

n,d) leads to an empirical power of 5.2% for testing
Clayton’s copula when the simulated copula is Ali-Mikhail-Haq’s, 11.5% for testing
theGaussian copula onFrank copula data, 7.7% for testingAli-Mikhail-Haq’s copula
on data from Frank’s copula, and 6.4% for testing Gumbel’s copula on data from
Joe’s copula. Similarly for the methods (Td−1, SB

n,d−1) and (R, SB
n,d). We therefore

do not further report on the methods involving SB
n,d−1 or SB

n,d in what follows. The
method (Td , KΠ, AD) also shows a rather weak performance for both investigated
dimensions and is therefore omitted. Since the cases of (KC , χ2) and (KC , AD) as
well as the approaches (Td−1, Nd−1, AD) and (Td−1, Nd−1, χ

2) do not significantly
differ, we only report the results based on the Anderson-Darling tests.

Now consider the goodness-of-fit testing approaches (Td−1, Nd−1, AD),
(KC , AD), and (Td , Nd , AD). Recall that (Td−1, Nd−1, AD) is based on the first
d − 1 components of the transformation T addressed in Eq. (6), (KC , AD) applies
only the last component of T , and (Td , Nd , AD) applies the whole transformation T
in d dimensions, where all three approaches use the Anderson-Darling test for testing
H∗
0 . The test results for the three goodness-of-fit tests with n = 150, τ = 0.25, and

d ∈ {5, 20} are reported in Tables1, 2, and 3, respectively. As mentioned above, we
use a bootstrap procedure to obtain approximate p-values and test the hypothesis
based on those p-values. We use N = 1,000 repetitions wherever possible. In all
cases involving Joe’s copula as H0 copula only about 650 repetitions could be fin-
ished. As Tables1 and 2 reveal, in many cases, (Td−1, Nd−1, AD) shows a larger
empirical power than (KC , AD) (for both d), but the differences in either direction
can be large (consider the case of the t4 copula when the true one is Clayton (both d)
and the case of the Frank copula when the true is one is Clayton (both d)). Overall,
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Table 1 Empirical power in % for (Td−1, Nd−1, AD) based on N = 1,000 replications with
n = 150, τ = 0.25, and d = 5 (left), respectively d = 20 (right)

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4

A 4.8 10.5 68.5 97.8 100.0 34.2 94.0 5.2 4.8 98.1 97.8 100.0 47.2 100.0

C 35.4 4.7 92.8 99.6 100.0 84.2 100.0 95.3 6.1 100.0 100.0 100.0 100.0 100.0

F 2.9 10.5 5.3 58.5 94.8 15.8 99.4 0.3 12.8 5.4 63.5 100.0 77.6 100.0

G 24.5 56.6 8.9 5.2 10.3 17.0 99.3 99.4 100.0 24.9 5.2 77.0 100.0 100.0

J 71.7 92.9 41.1 13.7 4.9 76.4 100.0 98.6 98.4 84.4 6.9 5.2 100.0 100.0

Table 2 Empirical power in % for (KC , AD) based on N = 1,000 replications with n = 150,
τ = 0.25, and d = 5 (left), respectively d = 20 (right)

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4

A 6.1 33.7 13.5 38.3 83.6 11.5 44.4 4.2 16.8 0.0 1.7 8.9 59.5 82.4

C 30.6 5.1 95.5 86.9 99.3 28.8 7.7 65.9 5.6 100.0 99.8 100.0 45.5 4.1

F 41.4 97.6 4.0 63.7 59.5 48.1 88.9 90.0 100.0 5.2 99.9 100.0 98.5 100.0

G 12.0 24.3 41.1 4.9 5.4 6.9 16.3 9.5 56.8 93.0 6.5 60.7 1.3 8.3

J 70.1 50.5 70.5 3.0 5.5 29.0 12.8 100.0 100.0 99.8 1.8 6.7 100.0 100.0

Table 3 Empirical power in % for (Td , Nd , AD) based on N = 1,000 replications with n = 150,
τ = 0.25, and d = 5 (left), respectively d = 20 (right)

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4

A 4.2 8.4 36.4 83.1 99.7 21.6 98.4 5.3 16.2 98.0 96.6 100.0 68.8 100.0

C 6.9 4.7 16.9 65.9 90.2 25.3 100.0 86.3 5.3 99.7 99.9 100.0 100.0 100.0

F 4.4 3.1 4.9 16.7 46.1 9.1 99.2 0.4 5.6 5.0 30.8 100.0 25.9 100.0

G 3.8 5.8 1.8 5.0 15.8 3.7 98.7 94.7 100.0 8.2 7.1 85.3 98.6 100.0

J 11.1 17.5 6.4 4.8 4.8 10.8 99.7 100.0 100.0 74.8 3.5 5.3 98.7 100.0

when the true copula is the t4 copula, (Td−1, Nd−1, AD) performs well. Given the
comparably numerically simple form of (Td−1, Nd−1, AD), this method can be quite
useful. Interestingly, by comparing Table1 with Table3, we see that if the transfor-
mation T with all d components is applied, there is actually a loss in power for the
majority of families tested (the cause of this behavior remains an open question).
Note that in Table2 for the case where the Ali-Mikhail-Haq copula is tested, the
power decreases in comparison to the five-dimensional case. This might be due to
numerical difficulties occurring when KC is evaluated in this case, since the same
behavior is visible for the method (KC , χ2).

Table4 shows the empirical power of the method (R, Nd , AD). In compar-
ison to our proposed goodness-of-fit approach (Td−1, Nd−1, AD), the approach
(R, Nd , AD) overall performs worse. For d = 5, there are only two cases where
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Table 4 Empirical power in % for (R, Nd , AD) based on N = 1,000 replications with n = 150,
τ = 0.25, and d = 5 (left), respectively d = 20 (right)

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4

A 4.5 8.9 46.9 79.1 98.8 11.0 94.2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
C 11.7 5.0 17.7 53.5 68.8 10.4 99.7 93.4 5.3 100.0 100.0 100.0 100.0 100.0

F 3.4 2.6 5.5 15.8 61.6 5.7 99.5 – – – – – – –

G 4.9 4.0 1.2 3.0 14.5 1.2 97.9 – – – – – – –

J 21.1 21.8 9.5 4.3 3.6 7.2 99.7 – – – – – – –

(R, Nd , AD) performs better than (Td−1, Nd−1, AD) which are testing the Ali-
Mikhail-Haq copula when the true copula is t4 and testing Joe’s copula when the
true one is Gumbel. In the high-dimensional case d = 20, only results for the
Clayton copula are obtained. In this case the actual number of repetitions for cal-
culating the empirical power is approximately 500. For the cases when testing the
Ali-Mikhail-Haq, Gumbel, Frank, or Joe copula, no reliable results were obtained
since only about 20 repetitions could be run in the runtime provided by the grid. This
is due to the high-order derivatives involved in this transformation, which slow down
computations considerably; see [19] for more details.

Another aspect, especially in a high-dimensional setup is numerical precision. In
going from the low- to the high-dimensional case we faced several problems dur-
ing our computations. For example, the approach (R, Nd , AD) shows difficulties in
testing the H0 copula of Ali-Mikhail-Haq for d = 20. Even after applying Maple
(with Digits set to 15; default is 10), the goodness-of-fit tests indicated numeri-
cal problems. The numerical issues appearing in the testing approaches (KC , AD)

and (Td , Nd , AD) when evaluating the Kendall distribution function were already
mentioned earlier, e.g., in Sect. 4.1. In principal, one could be tempted to choose
a (much) higher precision than standard double in order to obtain more reliable
testing results. However, note that this significantly increases runtime. Under such a
setup, applying a bootstrap procedure would not be possible anymore. In high dimen-
sions, only the approaches (Td−1, Nd−1, AD) and (Td−1, Nd−1, χ

2) can be applied
without facing computational difficulties according to precision and runtime.

Concerning the case d = 100, we checked if the error probability of the first
kind according to the 5%-level is kept. As results of the procedure described in
the end of Sect. 4.2, we obtained 4.6, 4.2, 5.0, 5.5, and 4.9% for the families of
Ali-Mikhail-Haq, Clayton, Frank, Gumbel, and Joe, respectively.

6 A Graphical Goodness-of-fit Test

A plot often provides more information than a single p-value, e.g., it can be used
to determine where deviations from uniformity are located; see [16] who advocate
graphical goodness-of-fit tests in higher dimensions. We now briefly apply the trans-
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Fig. 1 Data from a Gaussian (left) and t4 (right) copula with parameter chosen such that Kendall’s
tau equals 0.5, transformed with a Gumbel copula with parameter such that Kendall’s tau equals
0.5. The deviations from uniformity are small but visible, especially in the corners of the different
panels

formation T : U → U′ addressed in Theorem 1 to graphically check how well the
transformed variates indeed follow a uniform distribution. Figures1, 2, and 3 show
scatter-plot matrices of 1,000 generated three-dimensional vectors of random vari-
ates which are transformed with T under various assumed models (the captions are
self-explanatory). Since KC is easily computed in three dimensions, we also use this
last component of T .
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Fig. 2 Data from a Clayton (left) and Gumbel (right) copula with parameter chosen such that
Kendall’s tau equals 0.5, transformed with a Gumbel copula with parameter such that Kendall’s
tau equals 0.5. The deviation from uniformity for the Clayton data is clearly visible. Since the
Gumbel data is transformed with the correct family and parameter, the resulting variates are indeed
uniformly distributed in the unit hypercube
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Fig. 3 Data from a Gumbel copula with parameter chosen such that Kendall’s tau equals 0.5,
transformed with a Gumbel copula with parameter such that Kendall’s tau equals 0.2 (left) and 0.8
(right), respectively. Deviations from uniformity are easily visible

7 Conclusion and Discussion

Goodness-of-fit tests for Archimedean copulas, also suited to high dimensions were
presented. The proposed tests are based on a transformation T whose inverse is
known for generating random variates. The tests can, therefore, be viewed as analogs
to tests based onRosenblatt’s transformation, whose inverse is also used for sampling
(known as the conditional distribution method). The suggested goodness-of-fit tests
proceed in two steps. In the first step, the first d − 1 components of T are applied.
They provide a fast and simple transformation from d to d − 1 dimensions. This
complements known goodness-of-fit tests using only the dth component of T , the
Kendall distribution function, but which require the knowledge of the generator
derivatives. In a second step, the d − 1 components are mapped to one-dimensional
quantities, which simplifies testing. This second step is common to many goodness-
of-fit tests and hence any such test can be applied.

The power of the proposed testing approach was compared to other known
goodness-of-fit tests in a large-scale simulation study. In this study, goodness-of-
fit tests in comparably high dimensions were investigated. The computational effort
(precision, runtime) involved in applying commonly known testing procedures turned
out to be tremendous. The results obtained from these tests in higher dimensions have
to be handledwith care:Numerical issues for themethods forwhich not all repetitions
could be run without problems might have introduced a bias. To apply commonly
known goodness-of-fit tests in higher dimensions requires (much) more work in the
future, especially on the numerical side. Computational tools which systematically
check for numerical inaccuracies and which are implemented on the paradigm of
defensive programming might provide a solution here; see [17] for a first work in
this direction.
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In contrast, our proposed approach is easily applied in any dimension and its
evaluation requires only small numerical precision. Due to the short runtimes, it
could also be investigated with a bootstrap procedure, showing good performance
in high dimensions. Furthermore, it easily extends to the multiparameter case. To
reduce the effect of non-robustness with respect to the permutation of the arguments,
one could randomize the data dimensions as is done for Rosenblatt’s transformation,
see [4].

Finally, a graphical goodness-of fit test is outlined. This is a rather promising
field of research for high-dimensional data, since, especially in high dimensions,
none of the existing models fits perfectly, and so a graphical assessment of the parts
(or dimensions) of the model which fit well and those which do not is in general
preferable to a single p-value.
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