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Abstract: The new class of matrix-tilted Archimedean copulas is introduced. It combines properties
of Archimedean and elliptical copulas by introducing a tilting matrix in the stochastic representation
of Archimedean copulas, similar to the Cholesky factor for elliptical copulas. Basic properties of this
copula construction are discussed and a further extension outlined.
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1. Introduction

Elliptical distributions are among the most important multivariate distributions and
are widely used, for example, in finance, insurance, and risk management to model
multivariate risk factor changes. A d-dimensional random vector X is said to be elliptically
distributed with location vector 0, if it admits the stochastic representation

X = RAU, (1)

where the (random) radial part R ≥ 0 is independent of the random vector U which follows
a uniform distribution on the Euclidean unit sphere Sk−1 and A ∈ Rd×k is a matrix of
rank k (see Cambanis et al. (1981)); in what follows, we assume R ∼ FR with FR(0) = 0
and k = d. Elliptical copulas are the copulas arising from elliptical distributions via Sklar’s
Theorem; we assume the reader is familiar with the notion of copulas and related concepts
of measuring dependence between the components of a random vector (see Nelsen 2006 for
an introduction). Despite their popularity (partly due to the comparably simple simulation
approach based on the stochastic representation (1)), elliptical copulas suffer from well-
known limitations such as radial symmetry, which, in particular, implies that the lower
and upper tail dependence coefficients are equal. This is often an unrealistic assumption
from a practical point of view.

Another popular class of copulas are Archimedean copulas, which are copulas admitting
the representation

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), u ∈ [0, 1]d,

for some ψ : [0, ∞) → [0, 1] known as (Archimedean) generator. McNeil and Nešlehová
(2009) showed that a stochastic representation similar to (1) can be derived for Archime-
dean copulas. Archimedean copulas arise as survival copulas of random vectors X with
stochastic representation

X = RU, (2)

where the radial part R is as in (1), independent of U, but U is now uniformly distributed on
the standard simplex ∆d = {x = (x1, . . . , xd) ∈ Rd | xj ≥ 0, j = 1, . . . , d, x1 + · · ·+ xd = 1},
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that is, U ∼ U(∆d). The Archimedean generator ψ corresponds to the Williamson d-transform
Wd[FR] of the radial part distribution FR of F and is given by

ψ(t) =Wd[FR](t) =
∫
(t,∞)

(
1− t

r

)d−1
dFR(r), t ∈ [0, ∞). (3)

In contrast to elliptical copulas, Archimedean copulas are not restricted to radial
symmetry. They are often given explicitly and properties can typically be described in
terms of the generator ψ. However, one major drawback is that they are exchangeable,
which implies, for example, that all pairs of random variables share the same dependence
structure. This might be unrealistic from a practical point of view (see Embrechts and
Hofert 2011 for a discussion).

Analogously to the stochastic representation given in (1), the main contribution of this
paper is to introduce a matrix A in the stochastic representation (2) which allows one to
create asymmetric copulas which are limited to neither exchangeability nor radial symmetry.
The construction of this new class of copulas, referred to as matrix-tilted Archimedean copulas,
is given in Section 2. Section 3 discusses properties of matrix-tilted Archimedean copulas.
Further extensions are mentioned in Section 4, while Section 5 concludes. All proofs are
provided in the Appendix A. Other novel copula constructions not further discussed here
include, for example, those in (Genest et al. 2018; Krupskii and Joe 2013 2015; Quessy and
Durocher 2019; Quessy et al. 2016).

2. The Construction

We are interested in the survival copulas of multivariate random vectors of the form

X = RAU, (4)

where R and U ∼ U(∆d) are as above, and A = (aij)i,j=1,...,d is a (d× d)-matrix with real
entries aij ∈ R. The intuition behind the resulting dependence structure is the following.
Naturally, our construction allows for asymmetric copulas; the degree of asymmetry could
be quantified, for example, with the (scaled) supremal distance between the survival copula
and copula of (4) (see Rosco and Joe 2013). For positive entries in A, mass gets squeezed
towards the diagonal. For general entries, it is also possible to move mass towards the
secondary diagonal. Depending on the different conditions imposed on A, the dependence
structure of X can vary substantially, which can make this construction interesting for
scenario generation in risk applications. For example, Figures 1 and 2 show samples of the
empirical survival copula of X in (4) based on the same 1000 realizations of R and U but
tilted with different matrices A; note that all scatter plots of samples of such type in this
paper were generated in this way. The points are colored according to the quadrant the
corresponding realization of X lie in and the boundary curves of the support of the copula
density is depicted.
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Figure 1. Scatter plots of 1000 samples from matrix-tilted Archimedean copulas with different tilting matrices A but
otherwise equal realizations of R and U. The plot on the left simply corresponds to a Gumbel copula with parameter θ = 2
(Kendall’s tau 0.5). The plot on the right also displays the boundary curves (spanned by ẽ1, ẽ2; see Proposition 1 below).
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Figure 2. Similar to Figure 1 with other tilting matrices A.

In what follows, we discuss a number of interesting cases and properties of matrix-
tilted Archimedean copulas.
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3. Properties

For the sake of tractability of the calculations and the fact that properties of mul-
tivariate copulas are often studied for bivariate margins (measures of association, tail
dependence, symmetries, etc.), we focus on the bivariate case, that is, d = 2, and as-
sume that

a11 = a22 = 1, a12 ≤ 1, a21 ≤ 1, a12a21 < 1; (CPD)

Section 3.1 addresses why Assumption (CPD) is natural. It often turns out to be useful
to consider the random point

Ũ = AU, (5)

so the image of U under A. All such images are denoted by their respective notation using
a tilde. If A = I2, that is, the identity matrix in the bivariate case, then Ũ = AU = U. The
columns of A are e1, e2 in this case (the canonical basis vectors of R2) and our construction
simply leads to the class of Archimedean copulas. In the general case, A transforms e1, e2
to ẽ1, ẽ2. Figures 3 and 4 depict the space (randomly) spanned by (2) and (4), corresponding
to Figures 1 and 2.
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ẽ1

ẽ2
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ẽ2 = (a12 = 1/20, 1), respectively, corresponding to Figure 1.

x1

x2

0 a11 = 1

a22 = 1

a12

a21

ẽ1
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Risks 2021, 9, 68 5 of 24

3.1. Special Cases

In this section, we briefly address various special cases of our construction and explain
why Assumption (CPD) is natural.

First note that copulas are invariant under strictly increasing transformations of the
margins. We can thus always multiply each component of X by positive constants without
losing flexibility of our dependence model; the same scaling is commonly used for elliptical
copulas where one can assume A to be the Cholesky factor of a correlation (instead of a
more general covariance) matrix. Therefore, we can equally well assume that a11 = a22 = 1,
the first part of Assumption (CPD). The convex cone between the half-lines spanned
by ẽj, j ∈ {1, 2}, the columns of A, does not depend on the order of the columns in A.
We can thus fix the determinant to be positive, the last part of Assumption (CPD). The
assumptions a12 ≤ 1 and a21 ≤ 1 are for computational convenience. In the limiting case,
when a12 = a21 = 1, we obtain det A = 0 and the corresponding matrix-tilted Archimedean
copula is the upper Fréchet–Hoeffding bound M.

3.2. The Multivariate Survival Function

We can now provide the survival function of X = RAU under Assumption (CPD).

Theorem 1. Under Assumption (CPD), the joint survival function of Model (4) at (x1, x2) is
given as follows.

(i) If 0 ≤ a12 < 1 and 0 ≤ a21 < 1, then

1, if a21x1 ≥ x2 and a12x2 ≥ x1,
1−a12a21

(1−a12)(1−a21)
ψ
(
(1−a21)x1+(1−a12)x2

1−a12a21

)
− a12

1−a12
ψ
(

x1
a12

)
− a21

1−a21
ψ
(

x2
a21

)
, if a21x1 < x2 and a12x2 < x1,

1{x2≤0} +
1

1−a21

(
ψ(x2)− a21ψ

(
x2
a21

))
1{x2>0}, if a21x1 < x2 and a12x2 ≥ x1,

1{x1≤0} +
1

1−a12

(
ψ(x1)− a12ψ

(
x1
a12

))
1{x1>0}, if a21x1 ≥ x2 and a12x2 < x1.

(ii) If a12 < 0 and a21 < 0, then



1{x2>0}
(

a12
1−a12

ψ(x1/a12) +
1

1−a21
ψ(x2)

)
+1{x1>0}

(
a21

1−a21
ψ(x2/a21) +

1
1−a12

ψ(x1)
)

+1{x1≤0}1{x2≤0}
(

a12
1−a12

ψ(x1/a12) +
a21

1−a21
ψ(x2/a21) + 1

)
, if a21x1 ≥ x2 and a12x2 ≥ x1,

1−a12a21
(1−a12)(1−a21)

ψ
(
(1−a21)x1+(1−a12)x2

1−a12a21

)
, if a21x1 < x2 and a12x2 < x1,

1
1−a21

ψ(x2) +
a12

1−a12
ψ(x1/a12), if a21x1 < x2 and a12x2 ≥ x1,

1
1−a12

ψ(x1) +
a21

1−a21
ψ(x2/a21), if a21x1 ≥ x2 and a12x2 < x1.

(iii) If 0 ≤ a12 < 1 and a21 < 0, then



1{x2>0}
1

1−a21
ψ(x2) + 1{x2≤0}

(
1 + a21

1−a21
ψ(x2/a21)

)
, if a21x1 ≥ x2 and a12x2 ≥ x1,

1−a12a21
(1−a12)(1−a21)

ψ
(
(1−a21)x1+(1−a12)x2

1−a12a21

)
− a12

(1−a12)
ψ(x1/a12), if a21x1 < x2 and a12x2 < x1,

1
1−a21

ψ(x2), if a21x1 < x2 and a12x2 ≥ x1,
a21

1−a21
ψ(x2/a21) + 1{x1≤0}

+1{x1>0}
1

1−a12
(ψ(x1)− a12ψ(x1/a12)), if a21x1 ≥ x2 and a12x2 < x1.
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(iv) If a12 = 1 and 0 ≤ a21 < 1, then


1, if a21x1 ≥ x2 ≥ x1,

1
1−a21

((
1− x2

x1

)
F̄R(x1) +

x2
x1

ψ(x1)
)
− a21

1−a21
ψ(x2/a21), if a21x1 < x2 < x1,

1
1−a21

(ψ(x2)− a21ψ(x2/a21)), if a21x1 < x2 and x2 ≥ x1,

F̄R(max{0, x1}), if a21x1 ≥ x2 and x2 < x1.

(v) If a12 = 1 and a21 < 0, then
1{x2≤0}

(
1 + a21

1−a21
ψ(x2/a21)

)
+1{x2>0}

1
1−a21

ψ(x2), if a21x1 ≥ x2 ≥ x1,
1

1−a21

((
1− x2

x1

)
F̄R(x1) +

x2
x1

ψ(x1)
)

, if a21x1 < x2 < x1,
1

1−a21
ψ(x2), if a21x1 < x2 and x2 ≥ x1,

F̄R(max{0, x1}) + a21
1−a21

ψ(x2/a21), if a21x1 ≥ x2 and x2 < x1.

The remaining cases can be obtained by exchanging the roles of a12, a21 and x1, x2.

The following corollary considers two interesting special cases for the parameters a12
and a21.

Corollary 1. Suppose Assumption (CPD) holds. Then, the joint survival function of Model (4) is
given as follows.

(i) If a21 = 0 and a12 < 1, then
1, if 0 ≥ x2 and a12x2 ≥ x1,

1
1−a12

ψ(x1 + (1− a12)x2)− a12
(1−a12)

ψ(x1/a12), if 0 < x2 and a12x2 < x1,
1

1−a21
ψ(x2), if 0 < x2 and a12x2 ≥ x1,

1{x1≤0} + 1{x1>0}
1

1−a12
(ψ(x1)− a12ψ(x1/a12)), if 0 ≥ x2 and a12x2 < x1.

(ii) If a12 = a21 = a, then, for 0 ≤ a < 1, we have

1, if ax1 ≥ x2 and ax2 ≥ x1,
1

1−a

(
(1 + a)ψ

(
x1+x2
1+a

)
− aψ

(
x1
a

)
− aψ

(
x2
a

))
, if ax1 < x2 and ax2 < x1,

1{x2≤0} +
1

1−a

(
ψ(x2)− aψ

(
x2
a

))
1{x2>0}, if ax1 < x2 and ax2 ≥ x1,

1{x1≤0} +
1

1−a

(
ψ(x1)− aψ

(
x1
a

))
1{x1>0}, if ax1 ≥ x2 and ax2 < x1,

and, for a ∈ (−1, 0), we obtain that

1{x2>0}
(

a
1−a ψ(x1/a) + 1

1−a ψ(x2)
)

+1{x1>0}
(

a
1−a ψ(x2/a) + 1

1−a ψ(x1)
)

+1{x1≤0}1{x2≤0}
(

a
1−a ψ(x1/a) + a

1−a ψ(x2/a) + 1
)

, if ax1 ≥ x2 and ax2 ≥ x1,
1+a
1−a ψ

(
x1+x2
1+a

)
, if ax1 < x2 and ax2 < x1,

1
1−a ψ(x2) +

a
1−a ψ(x1/a), if ax1 < x2 and ax2 ≥ x1,

1
1−a ψ(x1) +

a
1−a ψ(x2/a), if ax1 ≥ x2 and ax2 < x1.

3.3. The Boundary of the Support of the Copula Density

The following proposition provides almost sure boundaries for X2, the second compo-
nent of X in (4). The statements are directly clear from Figures 3 and 4. The boundaries
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carry over to the boundaries for U in the unit square after the map with the correct marginal
survival functions (see also Figures 1 and 2).

Proposition 1. Under Assumption (CPD), the following inequalities hold almost surely for the
component X2 of X = (X1, X2) of Model (4).

(1) If a12 < 0, X2 ≥ x/a12 for all x < 0 and X2 ≥ a21x for all x ≥ 0.

(2) If a12 = 0, X2 ≥ a21x for all x ≥ 0.

(3) If 0 < a12 ≤ 1, a21x ≤ X2 ≤ x/a12 for all x ≥ 0.

3.4. Tail Dependence

In this section, we address the notion of tail dependence for the multivariate model as
given in (4). Tail dependence is a copula property, so the coefficients of tail dependence only
depend on the copula of (4). For the following result, note that a function h : (0, ∞)→ R is
called regularly varying at x0 ∈ [0, ∞] of index α ∈ R (denoted by h ∈ RVα) if

lim
x→x0

h(tx)
h(x)

= tα, t > 0.

Proposition 2. Let Assumption (CPD) hold and suppose that a12 = a21 = a. Furthermore, let
the marginal distribution of X1 and X2 be denoted by F = F1 = F2.

(1) Let a ∈ (0, 1). If F̄−(0) < ∞, then λL = 0. If F̄−(0) = ∞ and ψ′ ∈ RV−α at ∞, then

λL = 2
2−α(1 + a)α − aα

1− aα
.

If ψ′ ∈ RV−α at 0, then

λU = 2
1− 2−α(1 + a)α

1− aα
.

(2) Let a ∈ (−1, 0). If F̄−(0) < ∞, then λL = 0. If F̄−(0) = ∞ and ψ′ ∈ RV−α at ∞, then

λL = 2
(1 + a

2

)α
.

Furthermore, λU = 0.

Figure 5 shows λL and λU of Part (1) of Proposition 2 as functions of the parameter a
for various α.

Assessing λL and λU in the case F1 6= F2 is more difficult. At least, the symmetric case
a12 = a21 can provide bounds. For example, if F̄−1 (u) ≤ F̄−2 (u) for all u sufficiently small,
then (compare with the proof of Proposition 2)

λL = lim
u↓0

C(u, u)
u

= lim
u↓0

P(X1 > F̄−1 (u), X2 > F̄−2 (u))
P(X1 > F̄−1 (u))

≤ lim
u↓0

P(X1 > F̄−1 (u), X2 > F̄−1 (u))
P(X1 > F̄−1 (u))

(6)

and one can proceed as in the proof of Proposition 2 to evaluate (6); if F̄−1 (u) ≥ F̄−2 (u) for
all u sufficiently small, then the inequality leads to a lower bound for λL.
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Figure 5. λL and λU of Part (1) of Proposition 2 as functions of the parameter a for various α.

4. Randomization and Other Extensions

As shown above, tilting an Archimedean copula through a matrix A makes the model
more flexible by introducing different kinds of asymmetry. It is also possible to modify tail
dependence properties through A. However, some parameter choices reduce the support
of the copula to strict subsets of the unit square. This might be a desired feature for certain
applications (a classical example is the copula of (X1, X2) with X1 ≤ X2 almost surely),
but equally well unnatural in others. A possible remedy may be to randomize the tilting
matrix A; theoretical properties can then be derived by conditioning on A. While such
random-matrix-tilted Archimedean copulas allow for very flexible models, inference is an
open question.

As a first example, we revisit the right-hand side of Figure 1 and randomize the entry
a21 = 0.5 of A with a standard uniform distribution. The result is shown on the left-hand
side of Figure 6. Note that, although hardly visible here, the lower boundary as depicted
on the right-hand side of Figure 1 still exists but the upper one is “washed out”. If we ran-
domize both a12 and a21, then both boundaries disappear. The right-hand side of Figure 6
shows such a case, where a12 and a21 are (independently) randomized by Beta(1/10, 1)
and Beta(2, 1) distributions, respectively. Note that both of these randomizations satisfy
Assumption (CPD).

As another example, let us consider the right-hand side of Figure 2 and randomize
the entry a21 = −0.05 of A via a uniform distribution on [−10, 0] (see the left-hand side
of Figure 7) or via a21 = −0.1−min{E, 20} with E being standard exponential (see the
right-hand side of Figure 7). As above, both randomizations satisfy Assumption (CPD).

Another option not discussed here would be to make the randomized a12, a21 depen-
dent by another copula.

A different approach to tilting (2) by a matrix A that we do not explore is the following.
Consider a random vector

X = RAU, (7)

where R is a radial part as in (1), U is uniformly distributed on the `1-sphere {x =
(x1, . . . , xd) ∈ Rd | |x1|+ · · ·+ |xd| = 1} independently of R, and A is a d× d-matrix. Then,
one could consider the copula of the componentwise modulus |X| of X. Figures 8 and 9
show the copulas of |X| for R and A as chosen in Figures 2 and 7, respectively, and X
given by (7). One observes that, for a deterministic tilting matrix A (see Figure 8), the
construction does not seem to yield anything visually much different from a Gumbel copula
(in distribution). We do not have proof of this fact but we have seen this behavior in all
simulation examples.
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Figure 6. Scatter plots of 1000 samples from random-matrix-tilted Archimedean copulas with randomized entry
a21 ∼ U(0, 1) (left) and independent a12 ∼ Beta(1/10, 1), a21 ∼ Beta(2, 1) (right) based on the example displayed on
the right-hand side of Figure 1.
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Figure 7. Similar to Figure 6 based on the right-hand side of Figure 2, with a21 ∼ U(−10, 0) (left) and a21 = −0.1−
min{E, 20} with E being standard exponential (right).
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Figure 8. Scatter plots of the copulas of |X| corresponding to Figure 2.
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Figure 9. Scatter plots of the copulas of |X| corresponding to Figure 7.

The situation is more promising in the case of a randomized tiling matrix A (see
Figure 9, especially the left-hand side).

5. Conclusions

Inspired by the construction of elliptical copulas, we present a new class of matrix-
tilted Archimedean copulas, which generalize Archimedean copulas. Matrix-tilted Ar-
chimedean copulas are easy to simulate from and allow asymmetries to be modeled. In
the bivariate case, the joint survival function and boundaries of the support of the multi-
variate model which gives rise to matrix-tilted Archimedean copulas can be given, and,
in the case of equal margins and symmetric tilting matrix A, the tail dependence coeffi-
cients can be derived. Randomized tilting matrices A and the componentwise modulus
of the model provide interesting extensions. Although their theoretical treatment is not
straightforward, matrix-tilted Archimedean copulas are especially easy to incorporate into
simulation-based applications.



Risks 2021, 9, 68 11 of 24

The statistical estimation of matrix-tilted Archimedean copulas is an open problem for
future research. A natural idea seems to be an iterative estimation procedure that alternates
between finding an optimal Archimedean generator for the data given a specific tilting
matrix and finding a best-fitting tilting matrix given the Archimedean generator of the
previous step. In addition, random-matrix-tilted Archimedean copulas that do not limit the
support to a strict subset of the unit hypercube may be of interest, too, as they may allow
for likelihood optimization. Another avenue for future research is to introduce matrix
tilting to generalizations of Archimedean copulas. One immediate generalization is to
replace U ∼ U(∆d) in (4) by a Dirichlet distribution which would then lead to matrix-tilted
Liouville copulas.
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Appendix A

The following proposition provides the survival function of AU, a result which is
used in the proof of Theorem 1 below.

Proposition A1. Let U = (U1, U2) be uniformly distributed on ∆2. Under Assumption (CPD),
we obtain that

P(a11U1 + a12U2 > y1, a21U1 + a22U2 > y2)

=



1−max{y2,a21}
1−a21

1{y1<1}1{y2<1}, if a12 = 1, a21 < 1,

1−max{y1,a12}
1−a12

1{y1<1}1{y2<1}, if a12 < 1, a21 = 1,

1−a12a21−(1−a21)y1−(1−a12)y2
(1−a12)(1−a21)

1{y1<1}1{y2<1}1{(1−a12)(1−y2)−(1−a21)(y1−a12)>0}

− a12−y1
1−a12

1{y1≤a12}1{y2<1} − a21−y2
1−a21

1{y1<1}1{y2≤a21}, if a12 < 1, a21 < 1.

Proof. First, note that, for some U ∼ U(0, 1),

P(U1 + a12U2 > y1, a21U1 + U2 > y2) = P(U + a12(1−U) > y1, a21U + 1−U > y2)

= P((1− a12)U > y1 − a12, (a21 − 1)U > y2 − 1).

If a12 = 1 and a21 < 1, then

P(U1 + a12U2 > y1, a21U1 + U2 > y2) = 1{y1<1}P
(

U <
1− y2

1− a21

)
= 1{y1<1}1{y2<1}min

{
1,

1− y2

1− a21

}
= 1{y1<1}1{y2<1}

1−max{y2, a21}
1− a21

.
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Similarly, if a12 < 1 and a21 = 1, we can interchange the role of y1, y2 and a12, a21
and obtain

P(U1 + a12U2 > y1, a21U1 + U2 > y2) = 1{y1<1}1{y2<1}
1−max{y1, a12}

1− a12
,

which is as stated in the claim. From now on, assume a12 < 1 and a21 < 1, and let
t = (1− a12)(1− y2)− (1− a21)(y1 − a12). Then,

P(U1 + a12U2 > y1, a21U1 + U2 > y2)

= P
(

U >
y1 − a12

1− a12
, U <

1− y2

1− a21

)
= 1{ y1−a12

1−a12
<1
}1{ 1−y2

1−a21
>0
}1{ y1−a12

1−a12
<

1−y2
1−a21

}
·
(

min
{

1,
1− y2

1− a21

}
−max

{
0,

y1 − a12

1− a12

})
= 1{y1<1}1{y2<1}1{t>0}

(
1−max{y2, a21}

1− a21
− max{y1, a12} − a12

1− a12

)
.

In the remaining part of the proof, we rewrite this expression to obtain the form as
stated. Using 1{y1<1} = 1{y1≤a12} + 1{a12<y1<1} and 1{y2<1} = 1{y2≤a21} + 1{a21<y2<1},
multiplying out the terms, and noting that t > 0 for all except the last term D (which easily
follows from the bounds in the other indicators), we obtain that

P(U1 + a12U2 > y1, a21U1 + U2 > y2) = A + B + C + D,

where

A = 1{y1≤a12}1{y2≤a21},

B =
1− y1

1− a12
1{a12<y1<1}1{y2≤a21},

C =
1− y2

1− a21
1{y1≤a12}1{a21<y2<1},

D = 1{a12<y1<1}1{a21<y2<1}1{t>0}
1− a12a21 − (1− a21)y1 − (1− a12)y2

(1− a12)(1− a21)
.

Let

a =
1− a12a21

(1− a12)(1− a21)
, b =

(1− a21)y1 + (1− a12)y2

1− a12a21
,

x =
(1− a21)(a12 − y1)

1− a12a21
, x̃ =

(1− a12)(a21 − y2)

1− a12a21
.

Basic calculations show that

1− y1

1− a12
= a(1− b− x̃) = a(1− b)− ax̃,

1− y2

1− a21
= a(1− b− x) = a(1− b)− ax,

so that B = B1 − B2 with

B1 = a(1− b)1{a12<y1<1}1{y2≤a21}, B2 = ax̃1{a12<y1<1}1{y2≤a21}.

In addition, 1{a21<y2<1} = 1{y2<1} − 1{y2≤a21} implies that C = C1 − C2, with

C1 = a(1− b− x)1{y1≤a12}1{y2<1}, C2 = a(1− b− x)1{y1≤a12}1{y2≤a21}.
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As for B, we can decompose C1 into C11 − C12 with

C11 = a(1− b)1{y1≤a12}1{y2<1}, C12 = ax1{y1≤a12}1{y2<1}.

Furthermore, C2 can be written as C22 + A, where

C22 =
a21 − y2

1− a21
1{y1≤a12}1{y2≤a21}.

We thus obtain that

P(U1 + a12U2 > y1, a21U1 + U2 > y2)

= A + B + C + D = A + B1 − B2 + C11 − C12 − C22 − A + D

= (B1 + C11 + D)− C12 − (B2 + C22).

It is easy to see that B2 + C22 = a21−y2
1−a21

1{y1<1}1{y2≤a21}. Finally, we can multiply with
indicators that t > 0 and obtain that

B1 + C11 + D

= a(1− b)
(
1{a12<y1<1}1{y2≤a21} + 1{y1≤a12}1{y2<1}
+ 1{a12<y1<1}1{a21<y2<1}1{t>0}

)
= a(1− b)1{t>0}

(
1{a12<y1<1}1{y2≤a21} + 1{y1≤a12}1{y2<1}
+ 1{a12<y1<1}1{a21<y2<1}

)
.

By first taking out 1{a12<y1<1} and consecutively pulling together the terms, we ob-
tain that

B1 + C11 + D = a(1− b)1{y1<1}1{y2<1}1{t>0},

which, by a basic calculation, leads to the claim as stated.

The following lemma is an auxiliary result, which is also used in the proof of Theorem 1.

Lemma A1. Let ψ(t) =W2[FR](t) =
∫
(t,∞)(1− t/r) dFR(r) and −∞ ≤ a ≤ b ≤ ∞. Then,

∫
(t,∞)

1{a<r≤b}
(

1− t
r

)
dFR(r)

=
(

1− min{t, a}
a

)
F̄R(max{0, a}) + min

{ t
max{0, a} , 1

}
ψ(max{a, t})

−
(

1− min{t, b}
b

)
F̄R(max{0, b})−min

{ t
max{0, b} , 1

}
ψ(max{b, t}),

with the convention that min{t/ max{0, a}, 1} = 1 for a ≤ 0 (and similarly for the term
involving b).

Proof. First, assume 0 < a ≤ b. Writing 1{r≤b} = 1− 1{r>b}, we obtain that∫
(t,∞)

1{a<r≤b}
(

1− t
r

)
dFR(r)

=
∫
(t,∞)

1{r>a}
(

1− t
r

)
dFR(r)−

∫
(t,∞)

1{r>max{a,b}}
(

1− t
r

)
dFR(r),
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so it suffices to consider the first integral. For t ≥ a, this gives ψ(t). If t < a, we have∫
(a,∞)

(
1− t

r

)
dFR(r) =

∫
(a,∞)

(
1− t

a

)
+

t
a

(
1− a

r

)
dFR(r)

=
(

1− t
a

)
F̄R(a) +

t
a

ψ(a).

Hence,∫
(t,∞)

1{r>a}
(

1− t
r

)
dFR(r) =

(
1− min{t, a}

a

)
F̄R(a) + min

{ t
a

, 1
}

ψ(max{a, t}).

Applying the same idea with a replaced by max{a, b} and putting the pieces together,
we obtain that ∫

(t,∞)
1{a<r≤b}

(
1− t

r

)
dFR(r)

=
(

1− min{t, a}
a

)
F̄R(a) + min

{ t
a

, 1
}

ψ(max{a, t})

−
(

1− min{t, b}
b

)
F̄R(b)−min

{ t
b

, 1
}

ψ(max{b, t}).

Now, assume a ≤ 0 ≤ b. Then,∫
(t,∞)

1{a<r≤b}
(

1− t
r

)
dFR(r) =

∫
(t,∞)

1{0<r≤b}
(

1− t
r

)
dFR(r),

so that we can apply the formula for the case 0 < a ≤ b with a↘ 0 here. This implies that∫
(t,∞)

1{a<r≤b}
(

1− t
r

)
dFR(r)

= 0 · 1 + 1 · ψ(t)−
(

1− min{t, b}
b

)
F̄R(b)−min

{ t
b

, 1
}

ψ(max{b, t}),

which is of the form as stated in this case. Finally, if a ≤ b ≤ 0, then the integral is 0. Again,
it is easy to see that the result as stated is indeed 0 in this case.

We can now address the proof of Theorem 1.

Proof of Theorem 1. We consider several cases.
Case 1: a12 = 1 and a21 < 1.

By Proposition A1,

P(RU1 + a12RU2 > x1, a21RU1 + RU2 > x2)

=
∫
(0,∞)

P(U1 + a12U2 > x1/r, a21U1 + U2 > x2/r) dFR(r)

=
∫
(0,∞)

1−max{ x2
r , a21}

1− a21
1{r>max{x1,x2}} dFR(r).

The fraction in the integrand can be written as 1{ra21≥x2}+(1− x2
r )1{ra21<x2}/(1− a21)

and thus the whole integral as E + F/(1− a21), with

E =
∫
(0,∞)

1{ra21>x2}1{r>max{x1,x2}} dFR(r),

F =
∫
(0,∞)

1{ra21≤x2}1{r>max{x1,x2}}
(

1− x2

r

)
dFR(r).
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By distinguishing the cases a21 < 0, a21 = 0, and a21 > 0, we obtain that

E =
∫
(0,∞)

1{
r≤ x2

a21

}1{r>max{x1,x2}} dFR(r)1{x2<0}1{a21<0}

+
∫
(0,∞)

1{r>x1} dFR(r)1{x2≤0}1{a21=0}

+
∫
(0,∞)

1{
r> x2

a21

}1{r>x1} dFR(r)1{a21>0}.

Note that, if x2 ≤ 0, then 1{r>max{x1,x2}} = 1{r>max{0,x1,x2}} = 1{r>max{0,x1}}. This
implies that

E =
∫
(0,∞)

1{
max{0,x1}<r≤ x2

a21

} dFR(r)1{x2<0}1{a21<0}

+ F̄R(max{0, x1})1{x2≤0}1{a21=0} + F̄R

(
max

{
0, x1,

x2

a21

})
1{a21>0}

=
(

F̄R(max{0, x1})− F̄R

( x2

a21

))
1{ x2

a21
>max{0,x1}

}1{x2<0}1{a21<0}

+ F̄R(max{0, x1})1{x2≤0}1{a21=0} + F̄R

(
max

{
0, x1,

x2

a21

})
1{a21>0}.

By splitting up F in a similar fashion, we obtain that

F =
∫
(0,∞)

1{
r>max

{
0,x1,x2, x2

a21

}}(1− x2

r

)
dFR(r)1{a21<0}

+
∫
(0,∞)

1{r>max{x1,x2}}
(

1− x2

r

)
dFR(r)1{x2>0}1{a21=0}

+
∫
(0,∞)

1{
max{x1,x2}<r≤ x2

a21

}(1− x2

r

)
dFR(r)1{x2>0}1{a21>0}.

Distinguishing the cases of different sign of x2 in the last integral leads to

F =
∫
(x2,∞)

1{r>x1}
(

1− x2

r

)
dFR(r)1{x2>0}1{a21<0}

+
∫
(x2/a21,∞)

1{r>x1}
(

1− x2

r

)
dFR(r)1{x2≤0}1{a21<0}

+
∫
(x2,∞)

1{r>x1}
(

1− x2

r

)
dFR(r)1{x2>0}1{a21=0}

+
∫
(x2,∞)

1{
max{0,x1}<r≤ x2

a21

}(1− x2

r

)
dFR(r)1{x2>0}1{a21>0}

· 1{
max{0,x1}< x2

a21

}.

Note that the first and third integrald on the right-hand side of the last equation can
be pulled together. In addition, note that the second integral can be written as

a21

( ∫
(x2/a21,∞)

( 1
a21
− 1
)
1{r>x1} dFR(r)

+
∫
(x2/a21,∞)

1{r>x1}
(

1− x2/a21

r

)
dFR(r)

)
1{x2≤0}1{a21<0}

)
.

Applying Lemma A1 leads to

F =

((
1− min{x1, x2}

x1

)
F̄R(max{0, x1}) + min

{ x2

max{0, x1}
, 1
}
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· ψ(max{x1, x2})
)
1{x2>0}1{a21≤0}

+

((
1− min{max{0, x1}, x2}

max{0, x1}
)

F̄R(max{0, x1})

+ min
{ x2

max{0, x1}
, 1
}

ψ(max{0, x1, x2})

−
(

1− min{x2, x2/a21}
x2/a21

)
F̄R(max{0, x2/a21})

−min
{ x2

max{0, x2/a21}
, 1
}

ψ
(

max
{

x2,
x2

a21

}))
1{x2>0}1{a21>0}

· 1{
max{0,x1}< x2

a21

}
+ a21

(( 1
a21
− 1
)

F̄R

(
max

{
x1,

x2

a21

})
+
(

1− min{x1, x2/a21}
x1

)
· F̄R(max{0, x1}) + min

{ x2/a21

max{0, x1}
, 1
}

ψ
(

max
{

x1,
x2

a21

}))
· 1{x2≤0}1{a21<0}

=

((
1− min{x1, x2}

x1

)
F̄R(max{0, x1}) + min

{ x2

max{0, x1}
, 1
}

· ψ(max{x1, x2})
)
1{x2>0}

−
(
(1− a21)F̄R(x2/a21) + a21ψ

( x2

a21

))
1{x2>0}1{a21>0}1{x1<

x2
a21

}
+ a21

(( 1
a21
− 1
)

F̄R

(
max

{
x1,

x2

a21

})
+
(

1− min{x1, x2/a21}
x1

)
· F̄R(max{0, x1}) + min

{ x2/a21

max{0, x1}
, 1
}

ψ
(

max
{

x1,
x2

a21

}))
· 1{x2≤0}1{a21<0}.

Recalling that the result is E + F/(1− a21), we obtain the form as claimed.
Case 2: a12 < 1 and a21 = 1.

This case directly follows from Case 1 by interchanging a12 and a21, as well as x1 and
x2.
Case 3: a12 < 1 and a21 < 1.

Since P(RU1 + a12RU2 > x1, a21RU1 + RU2 > x2) =
∫
(0,∞) P(U1 + a12U2 > x1/r,

a21U1 + U2 > x2/r) dFR(r), let us first consider the integrand. By Proposition A1, we
have that

P(U1 + a12U2 > x1/r, a21U1 + U2 > x2/r) = A− B− C,

where

A =
1− a12a21 − (1− a21)

x1
r − (1− a12)

x2
r

(1− a12)(1− a21)
1{x1<r}1{x2<r}

· 1{ x1(1−a21)+x2(1−a12)
1−a12a21

<r
},

B =
a12 − x1

r
1− a12

1{x1≤ra12}1{x2<r}, C =
a21 − x2

r
1− a21

1{x1<r}1{x2≤ra21}.
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It is straightforward to check that

a21x1 ≥ x2 ⇐⇒ x1(1− a21) + x2(1− a12)

1− a12a21
≤ x1, (A1)

We now consider four different cases.
Case 3.1: a21x1 ≥ x2 and a12x2 ≥ x1. Condition (A1) and the last equivalence imply that

1{x1<r}1{ x1(1−a21)+x2(1−a12)
1−a12a21

<r
} = 1{x1<r},

so that

A =
1− a12a21 − (1− a21)

x1
r − (1− a12)

x2
r

(1− a12)(1− a21)
1{x1<r}1{x2<r}.

This can be rewritten as

A =
(

1 +
1

1− a12

(
a12 −

x1

r

)
+

1
1− a21

(
a21 −

x2

r

))
1{x1<r}1{x2<r}

= 1{x1<r}1{x2<r}

+
1

1− a12

(
a12 −

x1

r

)
1{x1<r}1{x2<r}1{a12≥0}

+
1

1− a12

(
a12 −

x1

r

)
1{x1<r}1{x2<r}1{a12<0}

+
1

1− a21

(
a21 −

x2

r

)
1{x1<r}1{x2<r}1{a21≥0}

+
1

1− a21

(
a21 −

x2

r

)
1{x1<r}1{x2<r}1{a21<0}.

Furthermore, x1 ≤ a12x2 implies that

1{a12≥0}1{x2<r}1{x1<ra12} = 1{a12≥0}1{x2<r},

so that

B =
1

1− a12

(
a12 −

x1

r

)(
1{a12≥0}1{x1≤ra12} + 1{a12<0}1{x1≤ra12}

)
1{x2<r}

=
1

1− a12

(
a12 −

x1

r

)(
1{a12≥0}1{x2<r} + 1{a12<0}1{x2<r≤ x1

a12

}).
Similarly, we obtain that

C =
1

1− a21

(
a21 −

x2

r

)(
1{a21≥0}1{x1<r} + 1{a21<0}1{x1<r≤ x2

a21

}).
Summarizing the terms leads to

A− B− C = 1{x1<r}1{x2<r}

+ 1{a12≥0}
1

1− a12

(
a12 −

x1

r

)(
1{x1<r}1{x2<r} − 1{x2<r}

)
+ 1{a12<0}

1
1− a12

(
a12 −

x1

r

)(
1{x1<r}1{x2<r} − 1{

x2<r≤ x1
a12

})
+ 1{a21≥0}

1
1− a21

(
a21 −

x2

r

)(
1{x1<r}1{x2<r} − 1{x1<r}

)
+ 1{a21<0}

1
1− a21

(
a21 −

x2

r

)(
1{x1<r}1{x2<r} − 1{

x1<r≤ x2
a21

}).
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Since 1{
x2<r≤ x1

a12

} = 1{x2<r}1{r≤ x1
a12

} and 1{
x1<r≤ x2

a21

} = 1{x1<r}1{r≤ x2
a21

}, we have

A− B− C = 1{x1<r}1{x2<r}

+
1

1− a12

(
a12 −

x1

r

)
1{x2<r}

(
1{a12<0}(1{x1<r}

− 1{
r≤ x1

a12

})− 1{a12≥0}1{x1≥r}
)

+
1

1− a21

(
a21 −

x2

r

)
1{x1<r}

(
1{a21<0}(1{x2<r}

− 1{
r≤ x2

a21

})− 1{a21≥0}1{x2≥r}
)
.

Consider the case a12 ≥ 0. If a12 = 0, then x1 ≤ a12x2 = 0, so that 1{x1≥r} = 0. If
a12 > 0 and x1 > 0, then our above assumptions imply that x1 > a12a21x1 ≥ a12x2 ≥ x1, a
contradiction. Thus, x1 ≤ 0 if a12 ≥ 0. Similarly, x2 ≤ 0 if a21 ≥ 0. This implies that

A− B− C = 1{x1<r}1{x2<r}

+
1

1− a12

(
a12 −

x1

r

)
1{a12<0}

(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r}

+
1

1− a21

(
a21 −

x2

r

)
1{a21<0}

(
1{x2<r} − 1{

r≤ x2
a21

})1{x1<r}.

For a12 < 0, we have x1 ≤ a12x2 ≤ 0 if x2 ≥ 0. Thus, for a12 < 0, we have that(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r} =
(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r}1{x1>0}1{x2≥0}

+
(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r}1{x1≤0}1{x2≥0}

+
(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r}1{x1>0}1{x2<0}

+
(
1{x1<r} − 1{

r≤ x1
a12

})1{x2<r}1{x1≤0}1{x2<0}

= 0 +
(
1− 1{

r≤ x1
a12

}) · 1 · 1 · 1{x2≥0}

+ (1{x1<r} − 0) · 1 · 1{x1>0}1{x2<0}
+
(
1− 1{

r≤ x1
a12

}) · 1 · 1{x1≤0}1{x2<0}

= 1{
r> x1

a12

}1{x2≥0} + 1{x1<r}1{x1>0}1{x2<0}

+ 1{
r> x1

a12

}1{x1≤0}1{x2<0}.

Similarly,(
1{x2<r} − 1{

r≤ x2
a21

})1{x1<r}

= 1{
r> x2

a21

}1{x1≥0} + 1{x2<r}1{x1<0}1{x2>0} + 1{
r> x2

a21

}1{x1<0}1{x2≤0}.

Integrating the terms now leads to∫
(0,∞)

(A− B− C) dFR(r)

=
∫
(0,∞)

1{r>max{x1,x2,0}} dFR(r)

+ 1{a12<0}1{x2≥0}
1

1− a12

∫
(0,∞)

1{
r> x1

a12

}(a12 −
x1

r

)
dFR(r)
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+ 1{a12<0}1{x1>0}1{x2<0}
1

1− a12

∫
(0,∞)

1{r>x1}
(

a12 −
x1

r

)
dFR(r)

+ 1{a12<0}1{x1≤0}1{x2<0}
1

1− a12

∫
(0,∞)

1{
r> x1

a12

}(a12 −
x1

r

)
dFR(r)

+ 1{a21<0}1{x1≥0}
1

1− a21

∫
(0,∞)

1{
r> x2

a21

}(a21 −
x2

r

)
dFR(r)

+ 1{a21<0}1{x1<0}1{x2>0}
1

1− a21

∫
(0,∞)

1{r>x2}
(

a21 −
x2

r

)
dFR(r)

+ 1{a21<0}1{x1<0}1{x2≤0}
1

1− a21

∫
(0,∞)

1{
r> x2

a21

}(a21 −
x2

r

)
dFR(r)

= F̄R(max{x1, x2, 0}) + 1{a12<0}1{x2≥0}
a12

1− a12
ψ(x1/a12)

+ 1{a12<0}1{x1>0}1{x2<0}
( 1

1− a12
ψ(x1)− F̄R(max{x1, 0})

)
+ 1{a12<0}1{x1≤0}1{x2<0}

a12

1− a12
ψ(x1/a12)

+ 1{a21<0}1{x1≥0}
a21

1− a21
ψ(x2/a21)

+ 1{a21<0}1{x1<0}1{x2>0}
( 1

1− a21
ψ(x2)− F̄R(max{x2, 0})

)
+ 1{a21<0}1{x1<0}1{x2≤0}

a21

1− a21
ψ(x2/a21).

Case 3.2: a21x1 < x2 and a12x2 < x1.
It is straightforward to check that, in this case,

x1(1− a21) + x2(1− a12)

1− a12a21
> max{x1, x2}

so that

A =
1− a12a21 − (1− a21)

x1
r − (1− a12)

x2
r

(1− a12)(1− a21)
1{ x1(1−a21)+x2(1−a12)

1−a12a21
<r
}

=
1− a12a21

(1− a12)(1− a21)

(
1− (1− a21)x1 + (1− a12)x2

r(1− a12a21)

)
1{ x1(1−a21)+x2(1−a12)

1−a12a21
<r
}.

For B, note that a12 < 0 and x1 ≤ ra12 imply that x2 > x1
a12
≥ r. For a12 = 0,

x1 > a12x2 = 0. Furthermore, a12 > 0, and x1 ≤ ra12 imply that x2 < x1
a12
≤ r. Therefore,

1{x1≤ra12}1{x2<r}1{a12<0} = 0,

1{x1≤ra12}1{x2<r}1{a12=0} = 1{x1≤0}1{x2<r}1{a12=0} = 0,

1{x1≤ra12}1{x2<r}1{a12>0} = 1{x1≤ra12}1{a12>0}.

Thus,

B =
a12 − x1

r
1− a12

1{x1≤ra12}1{x2<r} =
a12 − x1

r
1− a12

(1{x1≤ra12}1{x2<r}1{a12<0}

+ 1{x1≤ra12}1{x2<r}1{a12=0} + 1{x1≤ra12}1{x2<r}1{a12>0})

=
a12 − x1

r
1− a12

1{ x1
a12
≤r
}1{a12>0}.
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Similarly,

C =
a21 − x2

r
1− a21

1{ x2
a21
≤r
}1{a21>0}.

Note that, in our case here, (1− a21)x1 + (1− a12)x2 ≥ 0 because

0 > (1− a21)x1 + (1− a12)x2 ⇐⇒ x1 + x2 < x1a21 + x2a12,

but the right-hand side is less than or equal to x1 + x2. In addition, if a12 > 0, we have
that x1 ≥ 0, because, otherwise (x1 < 0), we have x2 < x1

a12
< 0, which then leads to

(1− a21)x1 + (1− a12)x2 < 0, a contradiction (note that a12a21 < 1). This implies that∫
(0,∞)

(A− B− C) dFR(r) =
1− a12a21

(1− a12)(1− a21)
ψ
( (1− a21)x1 + (1− a12)x2

1− a12a21

)
− a12

1− a12
1{a12>0}1{x1≥0}ψ

( x1

a12

)
− a21

1− a21
1{a21>0}1{x2≥0}ψ

( x2

a21

)
.

Case 3.3: a21x1 < x2 and a12x2 ≥ x1.
Let x2 < r. If a12 ≥ 0, then x1 ≤ a12x2 < a12r ≤ r, so 1{x1<r} = 1. If a12 < 0, then

a21x1 < x2 ≤ x1/a12, thus (a21 − 1/a12)x1 ≤ 0 and therefore (a12a21 − 1)x1 ≥ 0. This
implies that x1 ≤ 0 and thus that 1{x1<r} = 1, so this indicator drops out of the term
A. In addition, note that a12x2 ≥ x1 implies x1(1− a21) + x2(1− a12) ≤ x2(1− a12a21) <
r(1− a12a21) for x2 < r. Hence, the corresponding indicator in the term A is also always
one. We therefore obtain that

A =
1− a12a21 − (1− a21)

x1
r − (1− a12)

x2
r

(1− a12)(1− a21)
1{x2<r}.

By considering the cases of different signs for a12, we can write the term B as

B =
1

1− a12

(
a12 −

x1

r

)
1{x1≤ra12}1{x2<r}

=
1

1− a12

(
a12 −

x1

r

)(
1{a12≥0}1{x1≤ra12}1{x2<r} + 1{a12<0}1{x1≤ra12}1{x2<r}

)
.

If x2 < r and a12 ≥ 0, then x1 ≤ a12x2 < a12r, so 1{a12≥0}1{x1≤ra12}1{x2<r} =
1{a12≥0}1{x2<r} = (1− 1{a12<0})1{x2<r}. By summarizing the indicators, this yields

B =
1

1− a12

(
a12 −

x1

r

)(
1{x2<r} − 1{a12<0}1{x2<r}1{x1>ra12}

)
.

Since x2 ≤ x1/a12 < r if a12 < 0 and ra12 < x1, it follows that

B =
1

1− a12

(
a12 −

x1

r

)(
1{x2<r} − 1{a12<0}1{x1/a12<r}

)
.

Similarly, for C,

C =
1

1− a21

(
a21 −

x2

r

)(
1{a21>0}1{x1<r}1{x2≤ra21} + 1{a21≤0}1{x1<r}1{x2≤ra21}

)
.

Note that the indicator function 1{x1<r} drops out, since, if a21 > 0 and x2 ≤ ra21,
then x1 < x2/a21 ≤ r. The second summand of indicators completely vanishes, since, if
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a21 < 0 and x2 ≤ ra21, then a21x1 < x2 ≤ ra21 implies x1 > r. If a21 = 0, the contradiction
0 < x2 ≤ 0 follows. We thus obtain that

C =
1

1− a21

(
a21 −

x2

r

)
1{a21>0}1{x2≤ra21}.

Pulling the terms together, we obtain that

A− B− C

=
1

1− a21

(
1− x2

r

)
1{x2<r} +

1
1− a12

(
a12 −

x1

r

)
1{a12<0}1{x1/a12<r}

− 1
1− a21

(
a21 −

x2

r

)
1{a21>0}1{x2≤ra21}.

Distinguishing the cases x2 ≤ 0 and x2 > 0, we obtain that

A− B− C

=
1

1− a21

((
1− x2

r

)
1{x2≤0}1{x2<r} −

(
a21 −

x2

r

)
1{x2≤0}1{a21>0}1{x2≤ra21}

+ 1{x2>0}

((
1− x2

r

)
1{x2<r} −

(
a21 −

x2

r

)
1{a21>0}1{x2≤ra21}

))
+

1
1− a12

(
a12 −

x1

r

)
1{a12<0}1{ x1

a12
<r
}.

Note that 1{x2≤0}1{x2<r} = 1{x2≤0} and 1{x2≤0}1{a21>0}1{x2≤ra21} = 1{x2≤0}1{a21>0}
= 1{x2≤0}(1− 1{a21≤0}). We show next that 1{x2≤0}1{a21≤0} = 0. To this end, let x2 ≤ 0.
If a21 < 0, then a21x1 < x2 ≤ 0 implies that x1 > 0 and thus a12x2 ≥ x1 > 0. If x2 = 0,
then a contradiction follows immediately. Otherwise, we see that a12 < 0. This yields
a12a21 > 1 in contradiction to the assumption that 1 − a12a21 > 0. If a21 = 0, then
0 = a21x1 < x2 ≤ 0 yields a contradiction immediately. Therefore, 1{x2≤0}1{a21≤0} = 0
and hence 1{x2≤0}1{a21>0}1{x2≤ra21} = 1{x2≤0}. Similarly, if a12 < 0 and x1/a12 < r, we
show that x1 < 0. To this end, let x1 ≥ 0. Then, a12x2 ≥ x1 ≥ 0, so that x2 ≤ 0, and
thus a21x1 < x2 ≤ 0. The case x1 = 0 directly leads to a contradiction. If x1 > 0, then
a21 < 0, which implies that a12x2 ≥ x1 > x2/a21. As above, this leads to a contradiction
to the assumption that 1− a12a21 > 0. Thus, 1{a12<0}1{ x1

a12
<r
} = 1{a12<0}1{ x1

a12
<r
}1{x1<0}.

Plugging in these relations and summarizing the terms, we obtain that

A− B− C

= 1{x2≤0} +
1{x2>0}
1− a21

((
1− x2

r

)
1{r>x2} −

(
a21 −

x2

r

)
1{a21>0}1{x2≤ra21}

)
+

1
1− a12

(
a12 −

x1

r

)
1{a12<0}1{ x1

a12
<r
}1{x1<0}.

Integrating the terms now leads to∫
(0,∞)

(A− B− C) dFR(r)

= 1{x2≤0} +
(

1
1− a21

ψ(x2)−
a21

1− a21
ψ
( x2

a21

)
1{a21>0}

)
1{x2>0}

+
a12

1− a12
ψ
( x1

a12

)
1{a12<0}1{x1<0}.

Case 3.4: a21x1 ≥ x2 and a12x2 < x1.
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Interchanging the roles of a21, a12 and x1, x2, we obtain that∫
(0,∞)

(A− B− C) dFR(r)

= 1{x1≤0} +
(

1
1− a12

ψ(x1)−
a12

1− a12
ψ
( x1

a12

)
1{a12>0}

)
1{x1>0}

+
a21

1− a21
ψ
( x2

a21

)
1{a21<0}1{x2<0}.

Finally, here is the proof of Proposition 2.

Proof of Proposition 2. (1) Recall that U d
= (F̄1(X1), F̄2(X2)) for X = (X1, X2) as in (4).

Then,

C(u, u)
u

=
P(F̄1(X1) ≤ u, F̄2(X2) ≤ u)

P(F̄1(X1) ≤ u)
=

P(X1 > F̄−1 (u), X2 > F̄−2 (u))
P(X1 > F̄−1 (u))

.

Under the given assumptions, note that the distribution of (X1, X2) is supported
in the first quadrant, the marginal survival functions are equal (denoted by F̄), and,
for x ≥ 0, we have by Corollary 1 that

P(X1 > x, X2 > x) =
2

1− a

(1 + a
2

ψ
( 2

1 + a
x
)
− aψ

( x
a

))
, (A2)

F̄(x) = P(X1 > x) = P(X2 > x) =
1

1− a

(
ψ(x)− aψ

( x
a

))
. (A3)

Therefore, we obtain that

λL = lim
u↓0

C(u, u)
u

= 2 lim
x↑F̄−(0)

1 + a
2

ψ
( 2

1 + a
x
)
− aψ

( x
a

)
ψ(x)− aψ

( x
a

) . (A4)

Let F̄−(0) < ∞.
Since (1 + a)/2 ∈ (1/2, 1) and ψ is non-increasing, 1+a

2 ψ( 2
1+a x) < ψ(x) for all

x ∈ [0, F̄−(0)). Furthermore, there exists an x̃ ∈ [0, F̄−(0)) such that the numerator
of (A4) is zero but the denominator is greater than zero for all x ∈ [x̃, F̄−(0)). Hence
λL = 0.

If F̄−(0) = ∞, applying l’Hôpital’s Rule leads to

λL = 2 lim
x↑∞

ψ′
( 2x

1 + a

)
− ψ′

( x
a

)
ψ′(x)− ψ′

( x
a

) .

Dividing by ψ′(x) and using regular variation, we obtain that

λL = 2 lim
x↑∞

ψ′(x · 2/(1 + a))
ψ′(x)

− ψ′(x/a)
ψ′(x)

1− ψ′(x/a)
ψ′(x)

= 2

(1 + a
2

)α
− aα

1− aα
.
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Now, consider λU and note that

λU = lim
u↑1

1− 2u + C(u, u)
1− u

= 2− lim
u↑1

1− C(u, u)
1− u

= 2− lim
u↑1

1− P(X1 > F̄−(u), X2 > F̄−(u))
1− P(X1 > F̄−(u))

= 2− lim
x↓0

1− P(X1 > x, X2 > x)
1− P(X1 > x)

. (A5)

Using (A2) and (A3), and proceeding similarly as above (with regular variation
at 0), one obtains λU as stated.

(2) Under the given assumptions, using Corollary 1, we obtain that

P(X1 > x, X2 > x) =

{
2a

1−a ψ(x/a) + 1, if x ≤ 0,
1+a
1−a ψ(2x/(1 + a)), if x > 0,

F̄(x) = P(X1 > x) = P(X2 > x) =

{
a

1−a ψ(x/a) + 1, if x ≤ 0,
1

1−a ψ(x), if x > 0.

This yields

λL = lim
u↓0

C(u, u)
u

= lim
x↑F̄−(0)

(1 + a)ψ(2x/(1 + a))
ψ(x)

.

If F̄−(0) < ∞, then λL = 0. If F̄−(0) = ∞, then l’Hôpital’s Rule and regular
variation imply that

λL = 2 lim
x↑∞

ψ′
( 2

1 + a
x
)

ψ′(x)
= 2

( 2
1 + a

)−α
.

Now, consider λU and note that the margins live on R. Similar to above, we
obtain that

λU = 2− lim
x↓−∞

1− P(X1 > x, X2 > x)
1− P(X1 > x)

which is easily seen to be 0.
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