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Characterising routes of H5N1 and
H7N9 spread in China using Bayesian
phylogeographical analysis
Chau M. Bui1, Dillon C. Adam 1, Edwin Njoto1, Matthew Scotch1,2 and C. Raina MacIntyre1,2

Abstract
Avian influenza H5N1 subtype has caused a global public health concern due to its high pathogenicity in poultry and
high case fatality rates in humans. The recently emerged H7N9 is a growing pandemic risk due to its sustained high
rates of human infections, and recently acquired high pathogenicity in poultry. Here, we used Bayesian
phylogeography on 265 H5N1 and 371 H7N9 haemagglutinin sequences isolated from humans, animals and the
environment, to identify and compare migration patterns and factors predictive of H5N1 and H7N9 diffusion rates in
China. H7N9 diffusion dynamics and predictor contributions differ from H5N1. Key determinants of spatial diffusion
included: proximity between locations (for H5N1 and H7N9), and lower rural population densities (H5N1 only). For
H7N9, additional predictors included low avian influenza vaccination rates, low percentage of nature reserves and high
humidity levels. For both H5N1 and H7N9, we found viral migration rates from Guangdong to Guangxi and
Guangdong to Hunan were highly supported transmission routes (Bayes Factor > 30). We show fundamental
differences in wide-scale transmission dynamics between H5N1 and H7N9. Importantly, this indicates that avian
influenza initiatives designed to control H5N1 may not be sufficient for controlling the H7N9 epidemic. We suggest
control and prevention activities to specifically target poultry transportation networks between Central, Pan-Pearl River
Delta and South-West regions.

Introduction
Avian influenza (AI) is a threat to both animal and

human health in China. In the past, H5N1 strains have
caused global concern due to their high pathogenicity in
poultry and high reported case fatality rates in humans.
Since 2013 four novel zoonotic strains of AI have emerged
from Asia1. Of these, the H7N9 subtype has a high pan-
demic potential2. The H7N9 subtype was first reported in
humans in 2013 and caused large outbreaks in humans
every winter season in China3. Over 1500 H7N9 cases
have been reported over the past 5 years, whereas only
860 H5N1 cases have been reported over the past 20
years3,4. Recent studies comparing the epidemiology of
H5N1 and H7N9 show that human H7N9 cases report

lower levels of contact with sick or dead birds5, detection
rates in poultry are lower for H7N96, and the geographic
distribution of H7N9 outbreaks (in the first four waves)
have been much more limited to south-eastern regions of
China7 (including Guangxi, Guangdong, Hunan, Hubei,
Jiangxi, Fujian, Zhejiang, Anhui, Shanghai, Jiangsu, Henan
and Shandong administrative regions—i.e. Eastern and
South Central traditional regions as defined in Lu et al.8).
Genetic sequence data can be used to model the evo-

lutionary relationships between virus samples and help to
explain epidemiological patterns and uncover processes of
transmission. For example, Shi et al.9 used phylogenetic
analysis to show human infections of H7N9 originated
from poultry—they found high homology between H7N9
isolated from humans with those isolated from live
poultry markets. In rapidly evolving pathogens, such as
influenza viruses, evolution occurring over time can occur
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concurrently with geographic spread over time—by
incorporating evolutionary dynamics with temporal and
spatial attributes of individual sequences, spatial phylo-
dynamic processes can be described10,11. For example,
Lam et al.12 used phylogeographic analyses to infer the
origins and dispersal patterns of three separate clades of
H7N9. They found one clade spread outwards from
Zhejiang province (Yangtze River delta region), another
circulated extensively within the Pearl River Delta, while a
separate clade was widespread across eastern China.
Many other studies have utilised phylogeographic
approaches to characterise the geographic dispersal of
H5N1 13–17 and H7N9 18–20 viruses.
The direction and speed of AI virus spread is deter-

mined by a number of interdependent factors such as wild
bird migration, poultry trading routes, farming and live-
stock practices, human population density, avian popu-
lation density, mixing between humans and birds, and
climate21. The generalised linear model (GLM) is a
recently developed technique that incorporates these
factors into the phylogeographic network model and
measures their effect on the model22. GLM analyses have
been used to estimate the migratory patterns of influenza
A H7N7 in the Netherlands23, quantify economic-
agricultural predictors of AI spread in China8, identify
air travel and global mobility as key drivers of human
H3N2 diffusion22 and demonstrate that global live swine
trade strongly predicts spatial dissemination of influenza
A viruses in swine24. The GLM has also been used to
analyse H5N1 specifically. Beard et al.25 used the GLM
approach to confirm avian population density as a major
contributor to the viral diffusion of H5N1 clade 2.2.1.1 in
Egypt. Trovao et al.26 quantified predictors of
H5N1 spread within Asia and Russia using a modified
GLM that incorporated random effects to allow for spatial
transmission patterns that deviate from regular distance-
based dispersal dynamics. To the authors’ knowledge, this
is the first study to use a GLM approach in the context of
H7N9.
In this study we aimed to construct independent dis-

crete trait Bayesian phylogeographic models with exten-
ded GLM analysis to characterise routes of H7N9 and
H5N1 diffusion and quantify the contribution of potential
drivers of viral spread. Understanding the differences and
similarities of H7N9 and H5N1 diffusion across China can
be useful for planning targeted control and prevention
strategies.

Results
In Fig. 1 and Figure S1, we show the maximum clade

credibility (MCC) trees for H5N1 and H7N9. To improve
visualisation, Fig. 1 shows MCC trees with locations

grouped by economic division (grouping administrative
regions into economic divisions was conducted after
analyses were completed; hence, grouping had no effect
on the evolutionary trees themselves—Figure S1
shows MCC trees prior to grouping locations by
economic division). Grouping by economic zones was
chosen as the preferred grouping method, based on
similar GLM analyses conducted by Lu et al.8 which used
this grouping method (among others), and found it
amenable to demonstrating avian influenza diffusion
patterns. In Supplementary Files 1−2, we show animated
MCC trees of the H5N1 and H7N9 migration processes,
and these can be visualised using Google Earth. We show
that H5N1 and H7N9 evolutionary relationships exhibit
stronger clustering by administrative and economic
regions.
For H5N1, separate lineages appeared to have been

circulating at the same time over a spread of regions
(particularly central, south-western, Pearl River Delta
regions and North-western regions). Guangdong notably
plays an important role in seeding viral dissemination.
North-western regions do not seem to play a role for
further dissemination of virus in China. The most recently
sampled sequences (sampled from 2014 to 2015) appear
to cluster in the South-western regions, with evidence of
migration to North-western, Yangtze River Delta and
Central regions.
For H7N9, geographic dissemination appears more

concentrated to south-eastern regions of China compared
to H5N1. The Yangtze River Delta region was host to a
wide range of early ancestral H7N9 lineages which then
went on to circulate in the Pearl River Delta region.
Yangtze River Delta and Pearl River Delta regions harbour
most of the viral transmission, with only occasional
migrations occurring to other regions of China. The most
recent sequences (sampled between 2016 and 2017 and
representing the fifth wave of H7N9 outbreaks) pre-
dominantly form two separate clades: one is mostly cir-
culating in the Yangtze River Delta as well as Central and
Pearl River Delta regions, and the other is mostly circu-
lating in South-western regions of China.
We quantified patterns of H5N1 and H7N9 spatial

diffusion under a Bayesian stochastic search variable
selection (BSSVS) procedure. In Fig. 2, we show graphs of
the level of support for each of the transitions analysed,
using Bayes Factor (BF) cut-offs described in Lemey
et al.15, shown in Table S1. We found only two highly
(definitive and very strongly) supported transitions were
common to both H5N1 and H7N9: Guangdong to
Guangxi (definitive transition, BF > 100), and Guangdong
to Hunan (very strongly supportive transition, BF
30–100). For H5N1, most highly supported transitions
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originated from either Guangdong or Hunan whereas for
H7N9, most highly supported transitions originated from
Zhejiang.

GLM analysis
In Fig. 3 (and Tables S2-3), we show results of the GLM

analysis (we used BF cut-offs described in Lemey et al.15,
shown in Table S1). For H5N1, we found that distance
between two locations and rural population at the origin
location had definitive support (BF > 100) for inclusion
into the model. Both predictors were found to have a
negative mean coefficient—H5N1 viral dissemination is
associated with a decrease in distance between two loca-
tions, and a lower (rather than higher) rural population
density. We did not find any other predictor to have
support (BF > 3) for H5N1. For H7N9, only distance had
definitive support (BF > 100), and like H5N1, showed a
negative relationship (implying these factors have a pro-
tective effect) to viral transmission. We found six other
predictors to have marginal (BF > 3) to strong (BF > 30)
support, including: vaccination rate (at the destination),
sampling size (at both origin and destination locations),
nature reserves (at both origin and destination locations),

and the average relative humidity of major cities at the
destination location.

Discussion
Zoonotic avian influenza (AI) poses a major risk to both

human health and poultry production industries in China.
Our study used H5N1 and H7N9 sequence data to
explore transmission dynamics and identify potential
drivers of viral spread. Using discrete state Bayesian
phylogeography we demonstrate that H5N1 and H7N9
have different spatial patterns and drivers of diffusion. For
H5N1, we found Guangdong is primarily associated with
seeding viral dissemination while for H7N9 we found two
distinct groups circulating predominantly in the Pearl
River Delta and Yangtze River Delta regions. Determi-
nants of viral diffusion differed markedly between H5N1
and H7N9: proximity between locations was found to be a
strong predictor for H5N1 and H7N9; however, low rural
population density was only found to be a strong pre-
dictor for H5N1, and for H7N9, low avian influenza
vaccination rates at destination locations, low percentage
of nature reserves and high humidity levels at destination
locations were drivers of viral diffusion.

Fig. 1 Phylogeography models of H5N1 and H7N9. Bayesian MCC phylogeneies and between-region diffusion networks on HA gene segments of
H5N1 (left panel) and H7N9 (right panel) in China. The sequences are classified according to their location grouped by economic division. Bohai
Economic Rim (BER): Beijing, Hebei, Shandong; Central (CT): Anhui, Henan, Hubei, Hunan, Jiangxi, Shanxi; North-east (NE): Heilongjiang, Jilin, Liaoning;
North-west (NW): Gansu, Ningxia, Qinghai, Shaanxi, Xinjiang; Pan-Pearl River Delta (PRD): Fujian, Guangdong; South-west (SW): Guangxi, Guizhou,
Sichuan, Tibet, Yunnan, Chongqing; Yangtze-River Delta (YRD): Jiangsu, Shanghai, Zhejiang. Trees have been scaled according to taxa dates
(representing sample collection date)
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There is a general trend for AI outbreaks and spreading
dynamics of AI viruses to concentrate in south-eastern
regions. Previous phylogeography studies of multiple AI
subtypes have shown that spread primarily originates
from Yangtze River Delta, and South Central regions
towards the east coast areas8. With regards to H9N2,
Guangdong province and Jiangsu province were found to
be primary and secondary sources of seeding outbreaks27.
More detailed analyses of virus migrations show that
movement dynamics within the general south-eastern
region of China are complex, and these heterogeneous
dynamics differ for each subtype.
Together, the diffusion and GLM results strongly sug-

gest that there are fundamental differences in large-scale
transmission dynamics between the two subtypes that
reiterates the findings of our previous study exploring
static spatial distributions of H5N1 and H7N97. Tem-
porality may explain this difference—improvements in AI
diagnostic capabilities, reporting systems, as well as
improvements in AI awareness and control within the
poultry industry have likely changed how AI disseminated
across China over time. However, from a close examina-
tion of the dynamic maps of H5N1 and H7N9 spread,
there is little overlap in the speed or direction of each
subtypes’ movement. We recommend further examina-
tion of AI transmission dynamics at more specific, higher-
scale spatial resolutions—this will allow for a stronger
level of support of predictor contributions. Such analyses
can only be conducted if location metadata is annotated at
the level of secondary administrative regions or higher
and we recommend there be effort made to ensure
detailed recording of sequence metadata in genetic data
repositories.

It is known the three strong economic regions of China:
the Bohai Economic Rim, Pearl River Delta and Yangtze
River Delta regions are highly connected through
advanced transport infrastructures that facilitate regional
movement of live poultry28,29—our findings suggest that
transportation networks between Central, Pan-Pearl River
Delta and South-West regions should be considered key
routes for AI dissemination.
Previous studies show H5N1 and H7N9 movement

occurs mostly between regions in close proximity via
poultry trading, as opposed to movement over long dis-
tances via wild bird migration30. The spread of H7N9
across China primarily occurs through movements of
domestic poultry (as opposed to seasonal wild migratory
bird migrations). H7N9 has only very rarely been found in
wild birds and is only occasionally identified in live
poultry6. H5N1, on the other hand, has been shown to
have spread through seasonal wild bird migratory path-
ways; however, our analyses suggest this mechanism does
not play a significant role in dissemination of disease30–34.
The production and marketing of poultry in China

consists of a heterogenous network, made up of tradi-
tional farming mixed with commercial operations
and range considerably in size35. Live bird movements
along broiler and layer poultry supply chains (breeding,
hatching, fattening, feeding, slaughter, wholesale and
retail markets, consumption, and exporting) is
considered to be too complex to be characterised on both
national and provincial scales35. Our phylogeographic
networks for H5N1 and H7N9 are likely to be indicative
of poultry movements across China, hence could be a
potential data source for future network modelling
research.

Fig. 2 Level of Bayes Factor support for each transmission route. The left and right panels display the level of Bayes Factor (BF) support for each
of the transmission routes considered for H5N1 and H7N9 analyses respectively. The x-axis represents the origin location and the y-axis represents the
destination. Level of BF support is coloured according to classifications described in Table S1.
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AI remains an important global disease affecting both
human and animal populations. H5N1 has caused over
800 human cases over two decades of circulation, whereas
the novel H7N9 has caused over 1500 human cases over a
5-year period4. In the winter season of 2016–2017, there
was a significant increase in the number of H7N9 cases
reported during the fifth wave compared to all the other
waves combined36. An increased number of H7N9 cases
were found in rural and semi-urban regions in China.
Some of these regions had not previously reported H7N9
prior to the fifth wave. In the fourth and fifth waves, the
proportion of H7N9 cases from semi-urban and rural
residents has grown, comprising up to about 60% of the
cases; a steady rise from 39% reported during the first
wave36. The increased number of human infections
appears to be associated with wider geographic spread
and higher prevalence of Asian H7N9 viruses among
poultry rather than any increased incidence of poultry-to-
human transmission36. In Zhejiang, the increase in H7N9
cases in the fifth wave is attributed to spread to areas
where live bird markets were not permanently closed37.
There is more dispersed geographic incidence of human
cases in the fifth wave compared to highly geographically
clustered cases in the South-Eastern seaboard of China in
previous waves. In our phylogeography model, we find
that during the fifth wave there were new H7N9 trans-
mission routes occurring from Jiangsu to Guangxi,
and from Hunan to Henan and Guangxi—however
compared to H5N1, this spread is not as geographically
extensive. This may be due to a paucity of sequence data
available from the fifth wave outbreaks. This may limit the
interpretation of more recent diffusion in our model. It
will be useful for future research to explore the phylo-
dynamics of H7N9 fifth wave cases when they become
available.

This study is subject to certain limitations. Sequence
samples of H5N1 and H7N9 are unlikely to be repre-
sentative of every AI clade across each discrete region.
There are large discrepancies in the type (passive or
active) and quality of surveillance between provinces and
over time. It is likely that viruses sampled here are con-
centrated in high-risk areas potentially resulting in sam-
pling bias and therefore inaccurate ancestral
reconstruction processes38. We however, attempted to
characterise these biases in terms of spatial and temporal
distributions—presented in detail in Supplementary File 3.
The proportion of sequence data over time generally
reflects that of disease incidence, with the exception of
H5N1 prior to 2004, as incidence data were not available
prior to 2004 for this subtype. For H7N9, the ratio of
sequences to incidence data is much smaller due to the
large number of H7N9 human cases. There were much
greater discrepancies between the geographic distribution
of sequences and disease incidence data for both subtypes.
Compared to H5N1, there are much larger discrepancies
for H7N9.
We also attempted to reduce sampling biases by

downsampling in regions where there were too many
samples (n > 50), as previous studies have done39,40. The
geographic and temporal scale of our GLM analysis is
relative large (for example, our H5N1 analysis spanned
around 20 years), in addition the areas of primary
administrative regions in China are very diverse (for
example, Shanghai is 6340 km2 whilst Xinjiang is
1,664,900 km2). Predictor contributions at such a broad
scale of analysis may lose their statistical significance at
smaller scales, and there are many complexities in how
these predictors contribute to virus evolution which
cannot be accounted for. We also excluded regions for
which there were few sequences; however, we

Fig. 3 Generalised linear model. From left to right, the two panels show (i) Bayes Factor (BF), and (ii) Mean Coefficients (meanCeffects) and their
95% highest posterior credible intervals. Plots for H5N1 and H7N9 are displayed side by side. For all predictors excluding Distance, green and orange
colours represent origin and destination locations respectively. In the BF plots, the dashed line indicates BF= 3. In the meanCeffects plot, the dashed
line indicates 0. Note BF results are displayed on a log10 scale
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acknowledge that regions with small sequence sample size
may sometimes provide very significant genetic differ-
ences. A descriptive assessment of sampling biases and
their influence of tree topology is presented in Supple-
mentary File 3, which show our method of downsampling
did not affect tree topology. Future research should sta-
tistically evaluate the influence of sampling biases on tree
topology. In addition, we do not account for changes in
predictors over time. In future studies for example, rela-
tionships between virus evolution and vaccination rates
may be more evident with a time-series approach41 rather
than a geographic approach.
As H7N9 continues to cause human infections, and

other zoonotic AI continue to emerge, it becomes more
important for public health professionals to exploit find-
ings from evolutionary and spatiotemporal analyses to
develop more efficient control and prevention measures.
We recommend future research examine predictor con-
tributions at higher spatial resolutions to identify whether
predictor support remains the same for specific localities
—this can also more directly inform public health action.
We urge researchers, data analyst, epidemiologists, policy
makers, field surveillance officers to report more specific
location metadata in genetic data repositories to allow for
such analyses.

Materials and methods
Sequence collection, selection and alignment
We downloaded a total of 3305 full-length haemagglu-

tinin (HA) genes of H5N1 viruses and 1363 full-length
HA genes of H7N9 viruses from GISAID (from 1996 to
2017)42. We included sequences only from Mainland
China with discrete location metadata (to at least primary
administrative regions of province, municipalities or
autonomous regions). We additionally excluded regions
where only a small number of sequences were available
(H5N1 n < 7; H7N9 n < 4). We excluded 8 regions for
H5N1 and 12 for H7N9. In total, we selected
265 sequences across 15 discrete regions for inclusion
into the H5N1 study, and 371 sequences across 12 dis-
crete regions for inclusion into the H7N9 study (see
Table S4). For H7N9, we randomly down-sampled
sequences from regions which had over 50 sequences
(more details are available in Supplementary File 3). We
aligned sequences separately for H5N1 and H7N9 using
the MUSCLE plugin for Geneious 10.0.8 (Biomatters). We
describe additional details of the selection procedure in
Supplementary File 3.

Construction of the discrete state phylogeography models
We produced ultrametric phylogenetic trees using a

Bayesian Markov chain Monte Carlo (MCMC) approach
available in BEAST v1.8.443. We specified a reversible
continuous-time Markov chain (CTMC) model to

estimate transitioning among discrete location states
throughout evolutionary history15. Based on other H5N1
and H7N9 phylodynamic analyses14,18,19,41,44–50, we spe-
cified a range of nucleotide substitution models (GTR+G
(Γ4)+ I and SRD06)51, clock models (strict and relaxed
uncorrelated log normal molecular clock)52 and tree
models (constant, exponential, Bayesian Skygrid and
Bayesian Skyline) for model testing. We specified a priori
mean clock rates of normal distribution with mean of
4.29E-3 and 4.09E-3 for H5N1 and H7N9 respectively as
previously determined45,53,54. Initial root heights (of 20.5
and 4.5 years respectively for H5N1 and H7N9) were
specified by obtaining mean root heights from preliminary
phylogeny models which used a constant size demo-
graphic model.
For each model, we ran an MCMC for 108 generations

with subsampling every 104 iterations. We assessed con-
vergence of the MCMC and sufficient sampling from the
posterior (effective sample size > 200) using Tracer v1.6.
Model fit was assessed through log marginal likelihoods
obtained through Path Sampling and Stepping Stone
Sampling analysis between the prior and posterior55,56.
We quantified patterns of H5N1 and H7N9 spatial dif-
fusion under a BSSVS procedure.
For H5N1, we identified that the Bayesian Skygrid

coalescent model, relaxed clock model and GTR nucleo-
tide substitution model have the highest negative log
likelihood scores. For H7N9, we identified that the
Bayesian Skygrid coalescent model, relaxed clock model
and SDR06 nucleotide substitution model have the
highest negative log likelihood scores (Figure S2). For
each of the above final phylogeography models, we cre-
ated a MCC tree by discarding 10% burn-in from a pos-
terior set of 10,000 trees in TreeAnnotator v1.8.3. We
visualised the MCC trees using ggtree57. We used
SpreaD3 v0.9.658 to develop interactive visualisations of
the dispersal process through time and to compute a BF
test to assess the support for significant individual tran-
sitions between discrete geographic locations. SpreaD3
takes a rate matrix file for location states generated under
the BEAST analysis using the BSSVS procedure. The BF
test identifies support for non-zero transmission routes58.
We interpreted BF results according to Lemey et al.15, as
shown in Table S1. We used R to create plots showing
results of BF tests.

Construction of the generalised linear models (GLM)
To test the contribution of potential predictors for the

CTMC transition rate matrix between locations, we used
an extension of the phylogenetic diffusion model to
parameterise these rates as a log-linear function of a set of
predictor matrices within a GLM framework22,59. The
GLM approach is described in detail in Lemey et al.60.
Spatial patterns of viral diffusion are reconstructed at the
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same time as assessing potential contributing factors. We
identified potential predictors from previous studies, and
used correlation tests to create a set that achieved full
rank. Similar to Lu et al.8, we collated anthropogenic,
agricultural and environmental data from the 2013 China
statistical yearbook and the 2012 China agricultural
yearbook. Details are provided in Supplementary File 2
(pages 13–15).
For each virus, we selected eight predictor variables (see

Table 1). For our nonreversible model, we considered
each predictor as an origin and destination, except for
distance. We used a Python script developed by Magee
et al.39 to log-transform, standardise, and incorporate
model predictors into the phylogenetic diffusion model.
For each predictor, we obtained the mean posterior
probability of inclusion, BF support value, and contribu-
tion of each predictor to the log-linear rate matrix. We
used R to calculate the BF as described in previous ana-
lyses15,25. R (available from https://www.r-project.org/) is
a free language and software environment for statistical
computing and graphics.

Data availability
Data used in this analysis were compiled from publically available sources. We
have provided a reference where a data source is mentioned. Readers may
access the data through the links provided in each reference.
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