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On Sampling from the Multivariate ¢
Distribution

by Marius Hofert

Abstract The multivariate normal and the multivariate t distributions belong to the most widely used
multivariate distributions in statistics, quantitative risk management, and insurance. In contrast to
the multivariate normal distribution, the parameterization of the multivariate ¢ distribution does
not correspond to its moments. This, paired with a non-standard implementation in the R package
mvtnorm, provides traps for working with the multivariate ¢ distribution. In this paper, common
traps are clarified and corresponding recent changes to mvtnorm are presented.

Introduction

A supposedly simple task in statistics courses and related applications is to generate random variates
from a multivariate t distribution in R. When teaching such courses, we found several fallacies one
might encounter when sampling multivariate ¢ distributions with the well-known R package mvitnorm;
see Genz et al. (2013). These fallacies have recently led to improvements of the package (> 0.9-9996)
which we present in this paper'. To put them in the correct context, we first address the multivariate
normal distribution.

The multivariate normal distribution

The multivariate normal distribution can be defined in various ways, one is with its stochastic represen-
tation

X=p+AZ, 1)

where Z = (Z, ..., Zy) is a k-dimensional random vector with Z;, i € {1, ..., k}, being independent
standard normal random variables, A € R4k is an (d, k)-matrix, and p € RY is the mean vector. The
covariance matrix of X is ¥ = AAT and the distribution of X (that is, the d-dimensional multivariate
normal distribution) is determined solely by the mean vector # and the covariance matrix ¥; we can
thus write X ~ Ny (p, 2).

In what follows, we assume k = 4. If X is positive definite (thus has full rank and is therefore
invertible), X has density

fx(x) = WeXp(—;(x—ﬂ)Tzl(x—ﬂ)) xe R

Contours of equal density are ellipsoids; all so-called elliptical distributions which admit a density
share this property.

A positive definite (semi-definite) matrix > € R9*4 can be written as
»=LLT 2)

for a lower triangular matrix L with ij >0 (L]-]- >0)forallje {1,...,d}. Lisknown as the Cholesky
factor of the Cholesky decomposition (2).

The stochastic representation (1), together with the Cholesky decomposition of ¥, allows for a direct
sampling strategy of multivariate normal distributions Ny (g, £), which can easily be implemented in
R as follows.

> ## Setup

> mu <- 1:2 # mean vector of X

> Sigma <- matrix(c(4, 2, 2, 3), ncol=2) # covariance matrix of X

> n <- 1000 # sample size

> d <- 2 # dimension

> ## Step 1: Compute the Cholesky factor of Sigma

> L <- t(chol(Sigma)) # t() as chol() returns an upper triangular matrix
> ## Step 2: Generate iid standard normal random variates

! The accompanying R script may be obtained from the author upon request.
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> set.seed(271) # set seed for reproducibility

> Z <- matrix(rnorm(n*d), nrow=d, ncol=n) # (d,n)-matrix

> ## Step 3: Reconstruct the stochastic representation

> X <-mu+ L %% Z # (d,n)-matrix of realizations N_d(mu, Sigma)

This idea for sampling X ~ Ny (p, ) is available in the R package mvtnorm as follows:

> require(mvtnorm)

> set.seed(271)

> X. <= rmvnorm(n, mean=mu, sigma=Sigma, method="chol"”) # (n,d)-matrix
> stopifnot(identical(t(X), X.)) # check equality of the random numbers

The default method (method="eigen") utilizes the eigendecomposition of ¥, which also applies if some
eigenvalues are 0. The function mvrnorm() of the recommended R package MASS provides the same
approach; see Venables and Ripley (2013) or (Ripley, 1987, pp. 98). Note however, that although the
internally drawn independent standard normal random variates are identical, the two algorithms
compute different matrices A such that AAT = ¥ and thus do not lead to identical Ny(p, £) random
variates.

> require(MASS)
> X.. <= mvrnorm(n, mu=mu, Sigma=Sigma) # (n,d)-matrix

The multivariate t distribution

The left-hand side of Figure 1 displays 1000 log-returns of daily stock prices for BMW and Siemens in
the decade from 1985-01-02 to 1994-12-30; the data is available in the R package evir (Pfaff, 2012). This
time period includes various historically “extreme” events such as the stock market crash 1987 known
as “Black Monday” (1987-10-19), one of the Monday demonstrations in Leipzig (1989-10-16), and the
August Putsch attempt against Mikhail Gorbachev (1991-08-19).
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Figure 1: Log-returns for daily (BMW, Siemens) data from 1985-01-02 to 1994-12-30 (left). Correspond-
ingly many simulated data points from a fitted bivariate normal distribution (right).

A comparison with simulated data of the same sample size from a fitted bivariate normal distribu-
tion on the right-hand side of Figure 1 shows that the bivariate normal distribution is not an adequate
model here to account for such (joint) “extreme” events (in the upper right or lower left corner of the
bivariate distribution); this can also be checked with formal statistical or graphical goodness-of-fit
tests. The bivariate ¢ distribution typically captures such events better (mathematically speaking, it is
able to capture “tail dependence”) and has gained popularity in modeling such events, for example, in
quantitative risk management applications.
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Definition and density
The multivariate t distribution with v degrees of freedom can be defined by the stochastic representation
X =u+VWAZ, 3)

where W = v/x2 (x2 is informally used here to denote a random variable following a chi-squared
distribution with v > 0 degrees of freedom) is independent of Z and all other quantities are as in (1).

By introducing the additional random factor v/W, the multivariate ¢ distribution with v degrees of
freedom (denoted by t,(p, £)) is more flexible than the multivariate normal distribution (which can
be recovered by taking the limit v — o0) especially in the tails which are heavier for t,(u, Z) than for
N, (¢, Z). The density of X ~ t,(u, X) is given by

v+d

(Y (=) E =)\
L Ay Gl B

As for the multivariate normal distribution, the density (4) has ellipsoidal level sets and thus belongs
to the class of elliptical distributions.

InR

As the CRAN Task View “Distributions” reveals, the R packages mvtnorm and mnormt (see Azzalini,
2012, for the latter) provide functions for drawing random variates from the multivariate normal and ¢
distributions. The former is the most widely used among all non-recommended packages (measured
by Reverse Depends as of August 5, 2012; see Eddelbuettel, 2012). In what follows, we present
and discuss changes to mvtnorm (> 0.9-9996) which were inspired by the corresponding fallacies.
Afterwards, we will briefly address mnormt.

Fallacies when sampling the multivariate ¢ distribution

The left-hand side of Figure 2 shows 2608 simulated vectors from a bivariate ¢ distribution fitted to
the BMW-Siemens log-return data. The parameters are estimated as follows, utilizing the R package
ORM (Pfaff and McNeil, 2012).

> require(QRM)

> fit <- fit.mst(X, method = "BFGS") # fit a multivariate t distribution
> mu <- fit$mu # estimated location vector

> Sigma <- as.matrix(fit$Sigma) # estimated scale matrix

> nu <- fit$df # estimated degrees of freedom

In comparison to the sample from the multivariate normal distribution on the right-hand side of
Figure 1, the multivariate ¢ distribution shows significantly heavier tails. This is also indicated by the
estimated degrees of freedom parameter v ~ 3.02.

The task

We now turn to the task of generating vectors of random variates from a multivariate ¢ distribution
with v degrees of freedom, that is, generating samples such as shown on the left-hand side of Figure 2.

We assume
1 4 2
’l: (2), Z: (2 3), V:3, (5)

and try to generate n = 1000 samples.

Fallacy 1: Assuming it to work as expected

The obvious generalization of drawing n samples from N (u, X) via rmvnorm(n,mean=mu, sigma=Sigma)
(with n being 1, mu being p, and Sigma being ¥) to t, (4, ) would be to use rmvt(n,mean=mu, sigma=
Sigma,df=nu) (with nu being v):

> require(mvtnorm)
> n <- 1000
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Figure 2: Simulated data (sample size 2608) from a fitted bivariate ¢ distribution (v ~ 3.02) (left).
Simulated data (sample size 2608) from (5) with the approach described in Fallacy 1 (7) (right).

mu <- 1:2
Sigma <- matrix(c(4, 2, 2, 3), ncol=2)
nu <- 3

set.seed(271)
X1 <= try(rmvt(n, mean=mu, sigma=Sigma, df=nu)) # error; 'mean' not allowed anymore

V V V V V

In mvtnorm (> 0.9-9996), this generates an error and is thus not allowed.

To understand why it is dangerous not to throw an error in this situation, let us look at the mean.
Theoretically, the mean of X ~ t,(u, X) is given by

E[X] = E[ug+ VWAZ] = u+ E[VW]AE|Z] = 5, (6)

where we used that W and Z are independent, E[Z] = 0, and that v > 1 (so that E[v/ W] exists). In
previous versions of rmvt(), a specified argument mean was passed to the internal call of rmvnorm()
via the ellipsis “. . .”. This implies that one actually generated a sample from

X =VWy, @)
where Y ~ Ny (¢, ). The expectation of X in this case is
E[X] = E[VW]u

instead of #. /W has distribution function F ywx) = 1= Fa(v/ x?) with density f ) =
2vfoa(v/ x?)/x3. Using the fact that a x2 distribution is a T'(v/2,1/2) distribution with density

frewsai2)(x) = (1 /2)V/2xv/2 L exp(—x/2) /T (v/2), a rather tedious than complicated calculation
shows that

_ [vI((v=1)/2)
E[VW] = 2 T(v/2)

and thus that E[X] ~ (1.38, 2.76) rather than the required # = (1,2). Table 1 gives an intuition for how
fast E[v/W] converges to 1 for large v. In financial applications, one typically has v values between 3
and 5 which implies values of E[v/W] between 1.3820 and 1.1894, respectively.

v 1.0080 1.0794 1.7757 8.5417 76.0418 751.0417
E[VW] 101 11 2 1.1 1.01 1.001

Table 1: Values of v for E[vW] € {1410 : i € {2,1,0,—1,-2, -3} }.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 133

It follows from (1) and (7) that previous versions of rmvt () with specified argument mean actually
sampled from a random vector X with stochastic representation

X = VWu+VWAZ. 8)

The distribution of such X belongs to the class of normal mean-variance mixtures; see (McNeil et al., 2005,
Section 3.2.2). In general, such distributions are not elliptical distributions anymore. By looking at the
source code of rmvt (), we can still mimic this previous behavior of rmvt (n,mean=mu, sigma=Sigma, df=
nu) by

> set.seed(271)

> ## exactly the random variates drawn by rmvt(n, mean=mu, sigma=Sigma, df=nu)
> ## in versions of mvtnorm before 0.9-9996:

> X12 <- rmvt(n, sigma=Sigma, df=nu, delta=mu, type="Kshirsagar")

> colMeans(X12) # => wrong (sample) mean

[1] 1.5380 2.7955

The result is shown on the right-hand side of Figure 2. In contrast to many other sampling functions
in R (even including mnormt’s rmt ()), rmvt () does not have an argument mean and previous versions
of rmvt () thus generated random variates from (8) instead if this argument was provided.

Remark 1 * As we can see from the last chunk, rmvt () with type="Kshirsagar" specifically allows to
sample (8). For other applications of type="Kshirsagar", see ?rmvt.

* We saw in (6) that p is only the mean of X if v > 1. The parameter p of t,(u, ) is therefore referred to
as location vector (as opposed to “mean vector”).

Fallacy 2: Vector vs matrix

To properly specify the location vector, R users are often tempted to do the following:
> X2 <- mu + rmvt(n, sigma=Sigma, df=nu)

The problem with this approach is not visible for the human eye here! To make it more pronounced,
let us blow up the location vector:

> set.seed(271)
> X2 <= 20*mu + rmvt(n, sigma=Sigma, df=nu)

The left-hand side of Figure 3 reveals the problem. Indeed, we added the vector 20xmu to the matrix
returned by rmvt (). R solves this problem by sufficiently often repeating the vector elements to obtain
a matrix of the same size such that addition makes sense.

> head(matrix(20*mu, nrow=n, ncol=d))

[,11[,2]
[1,1 20 20
[2,] 40 40
[3,1] 20 20
[4,1 40 40
[5,1 20 20
[6,] 40 40

As we can see (and more experienced R users know this fact well), matrices are filled and worked on
column-wise. So every second sample has a different mean vector (alternating between (20, 20) and
(40, 40)). We thus sampled a mixture of two t distributions and again have left the class of elliptical
distributions. The left-hand side of Figure 3 clearly indicates this by showing the two clouds centered
around the two mean vectors. This problem is virtually impossible to detect here without the scaling
factor (and thus harbors risk of being overlooked).

In order to take care of the correct mean, there are several possibilities, some are:

set.seed(271)
X21 <- matrix(mu, nrow=n, ncol=d, byrow=TRUE) + rmvt(n, sigma=Sigma, df=nu)
set.seed(271)
X22 <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=nu)
set.seed(271)
X23 <- sweep(rmvt(n, sigma=Sigma, df=nu), MARGIN=2, STATS=mu, FUN="+")
stopifnot(identical (X21, X22),
identical (X21, X23)) # check equality of the random numbers

V V V V V V YV
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The last approach is implemented in rmvt () in terms of the argument delta (if the argument type
attains its default "shifted"):

> set.seed(271)
> X24 <- rmvt(n, sigma=Sigma, df=nu, delta=mu)
> stopifnot(identical (X21, X24))

Fallacy 3: The meaning of ¥ and sigma

After having taken care of the mean vector y, let us now consider X.

> set.seed(271)
> X3 <- rmvt(n, sigma=Sigma, df=nu, delta=mu)
> cov(X3)

(,11 [,2]
[1,7 9.8843 4.9204
[2,]7 4.9204 7.6861

As we see, the sample covariance matrix is not close to X as specified in (5).

For X ~ Ny (p, %) it is easy to see that E[X] = p and Cov[X] = %, so ¢ and X are indeed the mean
vector and covariance matrix of X, respectively. As we have already seen for y, this is not necessarily
true anymore for t, (s, X) due to the additional random factor /W in the stochastic representation (3).
The same applies to the covariance matrix of X. It follows from (3) that if IE[W] < oo, we have

Cov[X] = Cov[VWAZ] = E[(VWAZ)(VWAZ)"| = E[W]Cov[AZ] = E[W]%.

It is a basic exercise to show that W = v/x?2 implies that E[W] = 745 Therefore, the covariance
matrix of X only exists if v > 2 in which case it is Cov[X] = %%, not X. For this reason, X is referred
to as scale (or dispersion) matrix in order to distinguish it from the covariance matrix of X (which does
not have to exist). In our task (5) the covariance matrix of X is 3~ which is roughly what we see
above (and which can be confirmed by a larger sample size). X3 (displayed on the right-hand side of
Figure 3) therefore shows a sample from the correct distribution as specified by (5); note that the same
construction principle has been used to create the left-hand side of Figure 2.
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Figure 3: Simulated data from the approach described in Fallacy 2 (left) and Fallacy 3 (right).

Finally, let us mention that if v > 2, then
Cov[X;, X;]

Cor{X] = P = (py)jeqt, 4y, Where p; = |
ijlije{l,..d} " Var[X;] VaI'[Xj]
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Let X = (03); je(1,...4)- Since
Cov[X;, X;] = E[W]oy, i,je{l,...,d},
Var[Xy] = E[(VW(AZ);)?] = E[W] Var[(AZ);] = EW]ow, ke {1,...,d},
where (AZ); denotes the kth row of AZ, we obtain
E[W]o;; o
EW|oEW]o; Vi)

P,']' =

If v > 2, we see that although the covariance matrix Cov[X] is not equal to the scale matrix X, the
correlation matrix Cor[X] is equal to the correlation matrix P corresponding to the scale matrix X. This
can also be verified numerically:

> set.seed(271)
> ## sample correlation matrix of a t3 sample with scale matrix Sigma
> cor(rmvt(1e6, sigma=Sigma, df=3, delta=mu))

,1] [,2]
[1,1 1.00000 0.57667
[2,]1 0.57667 1.00000

> ## correlation matrix corresponding to Sigma
> cov2cor(Sigma)

[,1] [,2]
[1,1 1.00000 0.57735
[2,] 0.57735 1.00000

Remark 2 The user should also be aware of the fact that rmvt(n,delta=mu,sigma=Sigma,df=0,...) is
equivalent to rmvnorm(n, mean=mu, sigma=Sigma, ...). This is counter-intuitive as the multivariate normal
distribution arises as v — oo, not v.— 0+. This might be problematic for very small degrees of freedom
parameters v due to truncation to 0. Note that mvtnorm (> 0.9-9996) now also allows to specify df=Inf for
the (same) limiting multivariate normal distribution. The case df=0 remains for backward compatibility.

Comparison with mnormt

The R package mnormt provides the function rmt() for sampling from the multivariate ¢ distri-
bution. The call rmt(n,mean=mu,S=Sigma,df=nu) provides the correct answer to task (5). Note
that rmt () has an argument mean, but actually means the location vector (see ?rmt). Furthermore,
there is a subtle difference between mnormt and mvtnorm. mnormt’s rmnorm() uses a Cholesky
decomposition of . Even by starting with the same seed and calling mvtnorm’s rmvt() with
method="chol"”, the vectors of random variates generated by rmt(n,mean=mu, S=Sigma,df=nu) and
those by rmvt (n, sigma=Sigma,df=nu, delta=mu,method="chol") are not identical. The reason for this
is that the order in which the normal and the x?2 distributed random variates are generated differs for
rmt () and rmvt().

Summary and conclusion

Table 2 collects the various calls of rmvt() and corresponding stochastic representations of X we
encountered.

To summarize, let X ~ f,(p,2). Then:

1. The location vector p is not equal to IE[X] unless v > 1 and thus E[X] exists. The scale matrix &
is a covariance matrix but not equal to the covariance matrix of X.

2. X can be sampled via rmvt(n, sigma=Sigma,df=nu,delta=mu), where n is the sample size n, mu
the location vector p, Sigma the scale matrix %, and nu the degrees of freedom parameter v; this
holds for all v > 0 (watch out for very small ones, though).

3. The argument sigma of rmvt() denotes the scale matrix X of X. If the scale matrix ¥ is standard-
ized, it is a correlation matrix, but not necessarily the correlation matrix of X (the latter does not
have to exist). Only if v > 2, Cor[X] exists and equals the correlation matrix corresponding to
the scale matrix X (which can be computed via cov2cor()).
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Call Stochastic representation of X
X1 <= rmvt(n, mean=mu, sigma=Sigma, df=nu); gives an error
X12 <- rmvt(n, sigma=Sigma, df=nu, delta=mu, type="Kshirsagar"); X = \/W(;H—AZ)
X2 <= mu + rmvt(n, sigma=Sigma, df=nu); mixture of two t distributions (see text)
X21 <- matrix(mu, nrow=n, ncol=d, byrow=TRUE) + rmvt(n, sigma=Sigma, df=nu); as X3
X22 <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=nu); as X3
X23 <- sweep(rmvt(n, sigma=Sigma, df=nu), MARGIN=2, STATS=mu, FUN="+"); as X3
X24 <- rmvt(n, sigma=Sigma, df=nu, delta=mu); as X3
X3 <- rmvt(n, sigma=Sigma, df=nu, delta=mu); X:]l+\/WAZN ty(u, %)

Table 2: Calls of rmvt () and corresponding stochastic representations of X.
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