
A capping-independent function of MePCE in
stabilizing 7SK snRNA and facilitating the
assembly of 7SK snRNP
Yuhua Xue1,2, Zhiyuan Yang1, Ruichuan Chen2 and Qiang Zhou1,*

1Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA and
2Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences,
Xiamen University, Xiamen 361005, Fujian, China

Received July 17, 2009; Revised September 17, 2009; Accepted October 14, 2009

ABSTRACT

The 7SK snRNP represents a major reservoir of
activity where P-TEFb, a general transcription
factor key for RNA polymerase II elongation, can
be withdrawn to promote gene expression, cell
growth and development. Within this complex, 7SK
snRNA is a central scaffold that coordinates key
protein–protein interactions and maintains P-TEFb
in an inactive state. Although the stability of 7SK
directly affects the amount of active P-TEFb
in vivo, relatively little is known about how it is
maintained and how the 7SK methylphosphate
capping enzyme MePCE and LARP7, a La-related
protein associated with the 30-poly(U) of 7SK, con-
tribute to this process. Here, we show that 7SK is
capped by the LARP7-free MePCE and in probably a
co-transcriptional manner prior to its sequestration
into 7SK snRNP. However, upon interacting
with LARP7 within 7SK snRNP, MePCE loses its
capping activity, probably due to the occlusion of
its catalytic center by LARP7. Despite its lack of
capping activity in 7SK snRNP, MePCE displays
a capping-independent function to promote the
LARP7–7SK interaction, which in turn stabilizes
7SK and facilitates the assembly of a stable
MePCE–LARP7–7SK subcomplex. Our data indicate
that MePCE and LARP7 act cooperatively to stabi-
lize 7SK and maintain the integrity of 7SK snRNP.

INTRODUCTION

Recent global analyses indicate that the elongation phase
of RNA polymerase (Pol) II transcription plays a much
more important role in controlling metazoan gene

expression than previously thought (1). Composed of
Cdk9 and its regulatory subunit Cyclin T1 (CycT1) or
three other C-type cyclins (CycT2a/b and CycK),
the positive transcription elongation factor b (P-TEFb)
plays a key role during transcriptional elongation.
P-TEFb stimulates the processivity of Pol II through
phosphorylating the C-terminal domain of the largest
subunit of Pol II and a pair of negative elongation
factors. This leads to the synthesis of full-length RNA
transcripts and the coupling of transcription with other
pre-mRNA processing events (2,3). In human cells, not
only is P-TEFb critical for the expression of a vast array
of cellular genes, but is also an indispensable host cofactor
for efficient transcription of the HIV-1 genome (2,3).

Recent evidence indicates that most of cellular P-TEFb
exist in two mutually exclusive complexes that are
characterized by their different P-TEFb-associated
factors and Cdk9 kinase activity (2). A catalytically
inactive complex termed 7SK snRNP sequesters a major
fraction of nuclear P-TEFb and also contains the 7SK
snRNA and three nuclear proteins, HEXIM1 (or the
minor HEXIM2 protein), LARP7 (also termed PIP7S)
and MePCE (also known as BCDIN3) (4–11). Within
this complex, 7SK, an abundant 331-nt long transcript
produced by RNA Pol III and highly conserved in
vertebrates, functions as a molecular scaffold to coordi-
nate the interactions among key protein components and
maintain the integrity of 7SK snRNP (2). While HEXIM1
inhibits the Cdk9 kinase activity in a 7SK-dependent
manner (6,12), LARP7 and MePCE are known to
ensure the stability of 7SK (9,10,13). LARP7 is a
La-related protein that binds to the 30-UUUU-OH
sequence of 7SK and protects it against cleavage by
exonucleases (10,11,13). In the nucleus, nearly all the
7SK molecules are bound by LARP7, which explains the
observation that the depletion of LARP7 by specific short
hairpin (sh)RNA caused an almost complete co-depletion
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of 7SK (10,11,13). MePCE, on the other hand, contains a
methyltransferase domain and is responsible for adding a
unique g-monomethyl phosphate cap structure onto the
50-end of 7SK (9). It has been shown that the siRNA-
mediated silencing of MePCE reduced the cellular 7SK
level by about half (9).

In contrast to the P-TEFb sequestered in the inactive
7SK snRNP, another major portion of P-TEFb exists in
the transcriptionally active state through association with
the bromodomain protein Brd4, which recruits P-TEFb to
chromatin templates through interacting with acetylated
histones and/or the mediator complex (14,15). Recent data
indicate that the recruitment occurs at late mitosis and is
essential for promoting early G1 gene expression and cell
cycle progression (16). Thus, through alternatively inter-
acting with its positive and negative regulators, P-TEFb is
kept in a functional equilibrium (2). Accumulating
evidence indicates that this equilibrium can be dynami-
cally controlled by extracellular signals to modulate the
overall levels of active P-TEFb in the cell for optimal
gene expression, growth and development (2,17,18).
Notably, disrupting 7SK snRNP and shifting the
P-TEFb functional equilibrium toward the Brd4-bound,
active state can contribute to cardiac hypertrophy or
mammary epithelial transformation (13,19).

Despite the fact that 7SK snRNP represents a major
reservoir of activity from which P-TEFb can be with-
drawn to support elevated gene transcription and
accelerated cell growth, there still exist many knowledge
gaps about this complex and its components. For
example, among all the subunits of 7SK snRNP,
MePCE remains the least studied protein, of which little
is known about whether it is the only 7SK capping enzyme
in vivo, how it interacts with the rest of 7SK snRNP, how
its capping activity might be impacted by its presence
within this complex, and finally how it may contribute
to the assembly of 7SK snRNP. Here, we show that
7SK is capped by the LARP7-free MePCE and in
probably a co-transcriptional manner prior to its seques-
tration into 7SK snRNP. However, upon the interaction
with LARP7 within 7SK snRNP, MePCE loses its
capping activity, probably due to the occlusion of its
catalytic center by LARP7. Despite MePCE’s lack of
capping activity in 7SK snRNP, it displays a capping inde-
pendent function to promote the interaction of LARP7
with 7SK, which in turn stabilizes 7SK snRNA and
facilitates the assembly of a stable MePCE–LARP7–7SK
subcomplex within 7SK snRNP. Our data indicate that
MePCE and LARP7 act cooperatively to stabilize 7SK
snRNA and maintain the integrity of 7SK snRNP.

MATERIALS AND METHODS

Immunological reagents

Rabbit polyclonal anti-MePCE antibodies were generated
against the C-terminal sequence (RPVYLFHKARSPSH;
aa 676–689) of MePCE and affinity purified. Anti-
HEXIM1, anti-LARP7 antibodies have been described
earlier (6,13). All other antibodies were purchased from
Santa Cruz Biotechnology.

shRNA-mediated depletion of MePCE and LARP7

To generate the HeLa-based MePCE knockdown (KD)
cell line (H99-18), two DNA oligonucleotides (50-GATC
AAGCCAGAGCAGTTCAGTTCCTTCAAGAGAGG
AACTGAACTGCTCTGGCTTTTTA-30 and 50-AGCTT
AAAAAGCCAGAGCAGTTCAGTTCCTCTCTTGAA
GGAACTGAACTGCTCTGGCTT-30) for expressing
shMePCE were annealed and then cloned into pSuper-
retro-puro (Oligoengine, WA, USA). Retroviruses were
produced in the GP2-293 packaging cell line (Clontech,
CA, USA) and used to infect HeLa cells. Infected cells
were selected with 0.5 mg/ml puromycin for 2 weeks to
obtain individual clones. The sequence of shLARP7 used
to deplete LARP7 expression has been described (13).

Generation of a stable cell line expressing F-MePCE

To generate W10, a HeLa-based cell line stably expressing
Flag-tagged MePCE, the MePCE KD cell line H99-18 was
stably transfected with pcDNA3-Flag-MePCE, in which
the nucleotides C, A and G at positions 1941, 1942 and
1943 within the MePCE coding sequence were changed to
T, T and C, respectively, in order to render the corre-
sponding mRNA resistant to shMePCE. After selection
in the presence of G418, clone W10 was chosen because
F-MePCE was expressed at a similar level as endogenous
MePCE expressed in parental HeLa cells.

Affinity purification of MePCE and MePCE-containing
complexes

Nuclear extracts (NEs) were prepared from HeLa cells
transfected with plasmids expressing F-MePCE or
HeLa-based W10 cells stably expressing F-MePCE.
F-MePCE and its associated factors were affinity
purified from NEs by incubating at 4�C for 2 h with
anti-Flag agarose beads (Sigma), followed by extensive
washes with buffer D [20mM HEPES-KOH (pH 7.9),
15% glycerol, 0.2mM EDTA, 0.2% NP-40, 1mM
dithiothreitol and 1mM phenylmethylsulfonyl fluride]
containing 0.3M KCl (D0.3M). The immunoprecipitated
proteins were then eluted with the Flag peptide dissolved
in D0.1M. The eluted materials were analyzed by western
blotting (WB) and northern blotting (NB). For the puri-
fication of F-MePCE proteins (WT and VLD-AAA) that
were free of any associated 7SK snRNP components, NEs
were treated with micrococcal nuclease (MNase) at room
temperature for 30min in the presence of 1mM CaCl2
before incubation with anti-Flag agarose beads. The
immunoprecipitates were washed extensively with buffer
D containing 0.8M KCl (D0.8M) before elution with
the Flag peptide and the purity confirmed by WB and NB.

Chromatin immunoprecipitation assay

The Chromatin immunoprecipitation (ChIP) assay was
performed essentially as described (14) with minor
modifications. Briefly, immunoprecipitation was per-
formed with anti-Flag mAb (Sigma) from chromatin
fragments derived from W10 cells that stably express
F-MePCE. After DNA purification, PCR reactions con-
taining a-[32P]dCTP (800 Ci/mmol) were carried out for 24
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cycles. Input and immunoprecipitated chromatin were
analyzed first in pilot experiments to ensure that PCR
reactions occurred in the linear range of amplification.
The primers used in ChIP assay are 50-GACATCTGTC
ACCCCATTGA-30 and 50-AGACCGGTCCTCCTCTAT
CG-30 for 7SK; 50-CCAAGAAGAAGCGGCATT-30 and
50-GAGGAACTGCGTGGTGTTA-30 for HEXIM1; 50-A
CCTGAACAAACTGGCCGAG-30 and 50-CAGAGAA
AGGCTCCAGGTTG-30 for TGM-2; 50-TACAAAGAG
CAGCCGCTCA-30 and 50-TTACCGTGAATCGAGCT
CCAG-30 for PTHLH; 50-CAGCTTGTACCTGCAGGA
TC-30 and 50-GTCGAGGAGAGCAGAGAATC-30 for
c-MYC.

Gel mobility shift assay

Flag-tagged LARP7 was affinity purified and its purity
confirmed as described earlier (13). His-tagged MePCE
purified from recombinant Escherichia coli was a gift
from the laboratory of Tom Alber at UC Berkeley.
Purity of the proteins was confirmed by silver staining,
and the concentrations were estimated by comparing
with the BSA standards. 32P-labeled wild-type 7SK and
7SK(�4U’s) were synthesized in vitro by T7 RNA
polymerase from PCR-amplified DNA templates. For
the gel mobility shift assay, 0.27 pmols His-MePCE were
incubated with the 7SK probe (7.3 pg; 2000 c.p.m.) in
D0.05M plus 1 mg BSA, 500 ng poly(rG) at 30�C for 1h,
which was followed by the incubation with or without
0.15 pmols F-LARP7 at room temperature for 20min.
The final reaction volume was 20 ul. The RNA–protein
complexes were resolved in a 5% non-denaturing
polyacrylamide (19:1 acrylamide:bisacrylamide) gel in
0.5� Tris–glycine electrophoresis buffer at 4�C for 4 h
at 200V.

In vitro capping assay

In vitro capping assay was performed essentially as
described (9) with minor modifications. Briefly, NEs or
affinity purified F-MePCE were incubated with in vitro
transcribed 7SK in buffer M (20mM Tris–HCl pH 8.0,
0.5mM DTT, 2mM EDTA, 50mM KCl, 5% Glycerol,
24U of RNase inhibitor, 10 mCi of [3H]SAM). After
incubation at 30�C for 1 h, the reaction was terminated
by adding 200 ml of stop solution (0.1M NaOAc pH 5.2,
0.5% SDS, 2mM EDTA). RNAs were isolated from the
reaction by phenol/chloroform extraction and ethanol
precipitation and analyzed in a 6% polyacrylamide–urea
gel. The gel was fixed in 45% methanol + 10% acetic acid
for 30min, treated with the amplifier (NAMP100V, GE
Healthcare) for 30min and then exposed to an X-ray film
at �80�C.

RESULTS AND DISCUSSION

MePCE is the highly predominant, if not the sole, source
of 7SK capping activity in vivo

It has been shown earlier that MePCE is capable of
capping 7SK through methylating the 50-tri-phosphate at
the g-position (9). To determine whether 7SK is capped

exclusively by MePCE or there may exist other unknown
sources of capping activity in the cell, we incubated
recombinant 7SK (r7SK) with NEs prepared from either
normal HeLa cells or HeLa cells stably expressing
a specific shRNA targeting MePCE (shMePCE)
(Figure 1A) The capping reaction also contained the
3H-labeled methyl group donor [3H]SAM (S-adenosyl
methionine). Analysis by WB and serial dilutions indicates
that shMePCE depleted �85–90% of MePCE in HeLa
cells (Figure 1A, bottom panel and data not shown).
Importantly, NE from the MePCE-depleted cells shows
a similar degree of reduction in its ability to cap 7SK
(Figure 1A, upper panels). These data strongly indicate
MePCE as the highly predominant, if not the sole,
source of 7SK capping activity in vivo.

7SK snRNA derived from 7SK snRNP is likely
already capped

The experiment above used the in vitro transcribed,
recombinant 7SK (r7SK) as the MePCE substrate. To
determine whether endogenous 7SK (e7SK) derived
from the 7SK snRNP could also serve as a substrate, we
isolated e7SK by proteinase K digestion followed by
phenol/chloroform extraction from 7SK snRNP that

Figure 1. 7SK RNA in 7SK snRNP is likely already capped by
MePCE, which is the highly predominant, if not the only, source of
7SK capping activity in vivo. (A) NE prepared from either normal
HeLa cells (control) or HeLa cells stably expressing a specific shRNA
targeting MePCE (shMePCE) was incubated with in vitro transcribed
7SK (r7SK) in capping reactions that also contained [3H]SAM. After
the reaction, the RNA products, which were isolated and resolved in a
polyacrylamide–urea gel, were subsequently analyzed by
autoradiography (top panel) and ethidium bromide (EB) staining
(middle panel). The levels of MePCE in NEs of control and MePCE
KD cells were examined by anti-MePCE WB in the bottom panel. (B)
r7SK or e7SK, which was isolated from purified 7SK snRNP, was
incubated in capping reactions with affinity purified F-MePCE and
[3H]SAM. The reaction products were analyzed by EB staining
(bottom) and autoradiography (top) as in A.
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was affinity purified from NE of HH8 cells, a HeLa-based
cell line stably expressing Flag-tagged HEXIM1 (6).
Interestingly, compared with r7SK that was efficiently
capped by Flag-tagged MePCE (F-MePCE), which
was purified from transiently transfected HeLa cells
(see ‘Materials and Methods’ section) and free of any
associated 7SK snRNP components (see Figure 3C),
e7SK was not capped at all despite the fact that about
twice more of the RNA was used in the reaction (Figure
1B). Thus, it appears that 7SK present in the 7SK snRNP
is already capped at the 50-end.

MePCE, LARP7 and 7SK form a stable subcomplex
within 7SK snRNP

In light of the recent data implicating MePCE as a com-
ponent of the 7SK snRNP (9,10,17), it is important to

determine how the sequestration into this complex may
impact MePCE’s capping activity. Toward this goal, we
first performed co-immunoprecipitation experiments to
examine how MePCE interacts with the rest of 7SK
snRNP.
A HeLa-based cell line (W10), in which the expression

of endogenous MePCE was suppressed by a specific
shRNA (shMePCE) and in its place F-MePCE was
stably expressed at about the same level from an
shMePCE-resistant cDNA construct (Figure 2A; also
see ‘Materials and Methods’ section), was established.
Previous studies by others and by us have shown that
treating cells with stress-inducing agents such as UV,
actinomycin D and DRB, all of which can globally
impact cell growth, causes the disruption of 7SK snRNP
and release of P-TEFb for stress-induced gene expression

Figure 2. The 7SK-independent interaction between MePCE and LARP7 nucleates the formation of a stable MePCE–LARP7–7SK subcomplex
within 7SK snRNP. (A) NEs prepared from W10, a HeLa-based cell line stably expressing F-MePCE, and the parental HeLa cells were analyzed by
WB for the indicated proteins. (B) W10 cells were treated with the indicated agents. NEs prepared from the treated cells were analyzed by WB with
the indicated antibodies (right panel) and subjected to anti-Flag immunoprecipitation. Upon elution with the Flag peptide, the compositions of the
immunoprecipitates (aFlag IP) were analyzed by WB and NB as indicated (left panel). (C) Prior to the elution with the Flag peptide, the immobilized
aFlag IP were washed with a buffer containing the indicated KCl concentrations, and their compositions were subsequently analyzed as in B. (D)
NEs of W10 (left panel) and FPS86 cells, a HeLa-based cell line stably expressing F-LARP7 (right panel), were incubated with (+) or without (�)
RNase A prior to anti-Flag immunoprecipitation. aFlag IP were analyzed as in B. (E) NEs of HeLa cells were pretreated with (+) or without (�)
RNase A prior to immunoprecipitations with the indicated antibodies. The immunoprecipitates were analyzed as in B.
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(4–6). Consistent with these observations, when W10 cells
were treated with UV, actinomycin D or DRB, Cdk9,
CycT1 and HEXIM1 were found to dissociate efficiently
from the immunoprecipitated F-MePCE (Figure 2B, left
panel). However, both LARP7 and 7SK remained tightly
bound to F-MePCE under these conditions, indicating
the existence of a stress-resistant subcomplex consisting
of MePCE, LARP7 and 7SK within 7SK snRNP. This
subcomplex may serve as a platform to nucleate the
re-assembly of 7SK snRNP and sequestration/inactivation
of P-TEFb once the stress signals are eliminated as
observed before (20,21).
Notably, the MePCE–LARP7–7SK subcomplex was

also stable when the anti-F-MePCE immune-complex
was subjected to washing with increasing salt concen-
trations (Figure 2C). For example, at 0.6M KCl, most
of Cdk9 and HEXIM1 were already washed off, whereas
LARP7 and 7SK still remained tightly bound to the
immobilized F-MePCE.

7SK-independent interaction between MePCE
and LARP7

To investigate the role of 7SK snRNA in the MePCE–
LARP7–7SK subcomplex, we incubated the NE of W10
cells with RNase A to degrade 7SK prior to the anti-F-
MePCE immunoprecipitation. As shown in Figure 2D,
left panel degradation of 7SK efficiently dissociated
HEXIM1, CycT1 and most of Cdk9 from F-MePCE,
demonstrating their RNA-dependent interactions with
MePCE. In contrast, the F-MePCE–LARP7 interaction
was completely unaffected by the loss of 7SK, revealing
a stable, 7SK-independent interaction between the two.
Notably, the 7SK-independent interaction was also

detected between endogenous MePCE and F-LARP7
that was expressed from a stably transfected cDNA con-
struct (Figure 2D, right panel). Finally, following a
similar procedure that involves RNase treatment prior
to anti-Cdk9 immunoprecipitation, a 7SK-independent
interaction was also detected between Cdk9 and CycT1
(Figure 2E).

LARP7 prevents MePCE from capping 7SK in vivo
and in vitro

Given the existence of a stable, 7SK-independent interac-
tion between MePCE and LARP7 within 7SK snRNP, we
next investigated whether the ability of MePCE to cap
7SK is affected by LARP7. First, NE was prepared from
either control or LARP7-depleted HeLa cells and tested in
capping reactions with recombinant 7SK as the substrate.
Although the stable KD of LARP7 expression by an
shRNA (shLARP7) that specifically targets LARP7 had
little effect on the nuclear level of MePCE (Figure 3A,
right panel), NE derived from the KD cells displayed a
significant increase in 7SK capping activity (left panels),
suggesting an inhibitory effect of LARP7 on MePCE’s
catalytic activity.
To confirm the inhibition caused by LARP7, F-LARP7,

which was highly purified from transiently transfected
HeLa cells under conditions of high salt and micrococcal
nuclease (MCN) treatment (13), and MePCE, which was

purified to homogeneity from recombinant E. coli, were
analyzed by silver staining (Figure 3B, right panel) and
tested in capping reactions either alone or in combination.
Data in Figure 3B, left panels are consistent with the
notion that LARP7 can directly inhibit the capping
activity of MePCE toward 7SK.

A further indication of an LARP7-mediated inhibition
of MePCE capping activity came from a direct compari-
son between free and the LARP7-bound MePCE proteins
in capping reactions. As expected, free F-MePCE, which
was affinity purified from transiently transfected HeLa
cells and treated with both MCN and high salt to strip
away any associated 7SK snRNP components as con-
firmed by WB and NB (Figure 3C, left panel), was fully
active in capping 7SK (Figure 3C, right panel). In
contrast, the LARP7-bound MePCE, which was isolated
through anti-F-LARP7 immunoprecipitation and then
either untreated or treated with MCN to remove the
associated 7SK RNA and HEXIM1, was completely
inactive in the reaction (Figure 3C). Notably, the MCN
treatment has ruled out the association of endogenous
7SK with the LARP7–MePCE complex as the reason
for the failure to cap r7SK by the LARP7-bound
MePCE. Taken together, these data strongly indicate
LARP7 as an inhibitor of MePCE’s capping of 7SK
RNA.

LARP7 may occupy the catalytic center of MePCE
to inhibit the latter’s capping activity

A possible explanation for how the 7SK-independent
interaction between LARP7 and MePCE may lead to
the inhibition of the latter’s capping activity has come
from our subsequent mutagenesis analysis. When Val–
Leu–Asp (aa 447–449), three highly conserved amino
acids located at the catalytic center of the MePCE
methyltransferase domain and likely to be involved in
binding to SAM based on sequence alignment with
other known methyltransferases [e.g. PRMT1, (22,23)],
were changed into Ala–Ala–Ala, the resultant mutant
(VLD-AAA) was completely defective in 7SK capping as
expected (Figure 4A). Interestingly, this mutation also
significantly reduced the interaction of MePCE with
LARP7, but had no obvious effect on the interactions
with Cdk9 and CycT1 (Figure 4B). The observation that
VLD-AAA bound to P-TEFb with full capacity suggests
that the point mutation does not simply destroy the
overall structure of the protein. Given that MePCE and
LARP7 have a direct, 7SK-independent interaction
(Figure 2D), it is possible that the mutation at the
MePCE catalytic center disrupts a critical contact point
between the two proteins. In other words, the MePCE
catalytic center may be occupied by residues of LARP7
when the two form a close complex. This will certainly
explain the inhibition of MePCE’s capping activity by
LARP7. Obviously, this notion must be put to test
through future structural analyses. Finally, since the
VLD-AAA mutation also reduced the interactions of
MePCE with 7SK and HEXIM1 (Figure 4B), it appears
that the interaction of the MePCE mutant with P-TEFb
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could proceed without any assistance from 7SK and
HEXIM1.

MePCE not bound to LARP7 are responsible for all the
7SK capping activity in the nucleus

The data presented so far are consistent with the notion
that 7SK is already capped when sequestered in the 7SK
snRNP, in which MePCE, the likely sole source of cellular
7SK capping activity, is strongly inhibited by LARP7.
These observations raise the following two questions. (i)
When does 7SK become capped prior to its incorporation
into 7SK snRNP? and (ii) does MePCE have additional
role(s) in 7SK snRNP unrelated to its capping of 7SK?

Regarding the first question, in order to explain 7SK
capping that occurs before the assembly of 7SK snRNP,
one has to assume that outside the snRNP there must exist
MePCE proteins that are not inhibited by LARP7. To test

this hypothesis, we first performed immunodepletion with
immobilized anti-LARP7 antibodies and examined the
level of MePCE in the depleted NE. The depletion is
deemed highly efficient and specific judging from the
levels of LARP7 and the internal control protein
a-tubulin in NEs that were depleted with either the anti-
LARP7 antibodies or unrelated control IgG (Figure 5A,
right panel). Notably, the removal of LARP7 also caused
the co-depletion of approximately half of MePCE in NE,
indicating that not all MePCE are associated with LARP7
in the cell. When tested in 7SK capping reactions, the NE
immunodepleted of LARP7 displayed the same level of
capping activity as the NE mock-depleted with control
IgG (Figure 5A, left panel). This result is consistent with
the notion that the LARP7-bound MePCE does not con-
tribute to 7SK capping and that the capping is entirely
mediated by MePCE proteins that exist outside the

Figure 3. LARP7 prevents MePCE from capping 7SK in vivo and in vitro. (A) NE from either normal (control) or HeLa cells stably expressing
shLARP7 was incubated with r7SK and [3H]SAM in capping reactions. The RNA products were isolated, resolved in a polyacrylamide–urea gel, and
analyzed by autoradiography (top left) and EB staining (bottom left). The levels of the indicated proteins in NEs of control and LARP7 KD cells
were examined by WB in the right panel. (B) Left panels: Purified F-LARP7 (1.2 pmols) and/or MePCE (1.3 pmols) proteins were incubated with
r7SK and [3H]SAM in capping reactions. The RNA products were analyzed as in A. (Right panel) F-LAPR7 and MePCE used in the capping assay
were examined on a silver-stained SDS–gel. An asterisk indicates a minor contaminating band in the F-LARP7 preparation. (C) The affinity purified
F-MePCE free of any associated 7SK snRNP components and the F-LARP7-bound MePCE, which was isolated through anti-Flag immunopre-
cipitation and then either untreated (�) or treated (+) with MCN were analyzed by WB and NB for the presence of the indicated factors (left panel).
These MePCE samples were subsequently analyzed in 7SK capping reactions as in A.
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MePCE–LARP7 complex. It is important to note that this
result is different from the observed increase in 7SK
capping activity displayed by the NE of LARP7 KD
cells (Figure 3A), in which MePCE were produced in the
absence of LARP7 and thus more MePCE were present in
the active form to methylate 7SK.

Preferential association of MePCE with the 7SK gene
promoter

For pre-mRNAs transcribed by RNA Pol II, capping is
known to take place co-transcriptionally when nascent
transcripts reach the length of �25–30 nt (24). Given the
above demonstration that the methyl-phosphate cap is
likely added onto 7SK prior to its sequestration into
7SK snRNP, it is reasonable to speculate that like pre-
mRNAs, 7SK is also capped co-transcriptionally. To
test a key aspect of this hypothesis, we performed ChIP
assay to determine whether MePCE can be detected at the
7SK gene promoter. As an important control, the genes
encoding HEXIM1, PTHLH, TGM-2 and c-MYC, all
of which are transcribed by RNA Pol II in a P-TEFb-
dependent manner (13,16,18), are also analyzed. To elim-
inate possible variations caused by potential differences in
the copy number and PCR amplification efficiency among
the five genes to be tested in the ChIP assay, the input
chromatin levels corresponding to these genes were care-
fully titrated and normalized to approximately the same
level (Figure 5B, upper panel). Under such conditions,
the 7SK gene promoter was found to associate with

significantly more MePCE than the other four Pol II
genes (Figure 5B, lower panel), with PTHLH, TGM-2
and c-MYC displaying no signal at all. It is also interest-
ing to note that a high concentration of MePCE was also
found to associate with the promoter region of U6 (data
not shown), which is known to be the only other Pol III-
transcribed snRNA in human cells with the unique
g-monomethyl phosphate cap structure and can be
methylated by MePCE (9,25).

Although the ChIP result in Figure 5B does not repre-
sent a definitive proof of co-transcriptional capping
of 7SK, the preferential occupancy of the 7SK gene
promoter by MePCE is certainly consistent with such
a possibility. Moreover, the detection of no or very little
MePCE at the Pol II gene promoters may also explain the

Figure 5. MePCE not bound to LARP7 are responsible for all the 7SK
capping activity in the nucleus and preferentially associated with the
7SK gene promoter. (A) HeLa NEs were subjected to immunodepletion
with the indicated antibodies and then analyzed by WB for the presence
of the indicated proteins (right panel). The depleted NEs were then
tested in 7SK capping reactions, with the RNA products analyzed by
autoradiography (top left) and EB staining (bottom left). (B) The levels
of input chromatin derived from the HeLa-based W10 cells stably
expressing F-MePCE were carefully adjusted (in 2-fold increments)
and then PCR amplified with primer sets corresponding to the
indicated genes (top panel). Once the input chromatin corresponding
to the five genes were normalized to approximately the same level,
ChIP with anti-Flag mAb was performed. After DNA purification,
PCR reactions containing a-[32P]dCTP were carried out and the
products analyzed by gel electrophoresis and autoradiography
(bottom panel).

Figure 4. LARP7 may occupy the catalytic center of MePCE to inhibit
the latter’s capping activity. (A) Wild-type F-MePCE and the VLD-
AAA mutant were affinity purified with anti-Flag beads from NEs of
transfected HeLa cells under highly stringent conditions (see ‘Materials
and Methods’ section) to remove any associated 7SK snRNP
components. Upon their normalization to approximately the same
level by anti-Flag WB (bottom panel), these two proteins were tested
in 7SK capping reactions. The RNA products were isolated and
analyzed by autoradiography (top panel) and EB staining (middle
panel). (B) Wild-type and VLD-AAA mutant F-MePCE were affinity
purified from NEs of transfected HeLa cells under relatively mild
conditions to retain their associated factors, which were subsequently
detected by WB and NB as indicated.
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fact that pre-mRNAs do not have the methylphosphate
cap structure despite the existence of g-phosphate at their
50-end when freshly generated. It is known that for pre-
mRNAs transcribed by Pol II, co-transcriptional capping
is achieved through the physical association of the capping
enzyme guanylyltransferase with the phosphorylated form
of Pol II CTD (24). Future studies are necessary to deter-
mine whether MePCE may also associate with the Pol III
transcriptional machinery at the 7SK promoter in order to
accomplish co-transcriptional capping of 7SK.

Capping-independent stimulation of the LARP7–7SK
binding by MePCE

Given the above demonstrations that 7SK is capped
by the LARP7-free MePCE and in probably a

co-transcriptional manner and that MePCE displays no
capping activity within 7SK snRNP, where 7SK is likely
already capped, we next investigated whether MePCE may
have another role in 7SK snRNP that is independent of its
capping of 7SK. Toward this goal, we performed a gel
mobility shift assay with 32P-labeled wild-type or a
mutant 7SK (4U’s) lacking the 30-UUUU-OH sequence,
which is recognized by LARP7 and essential for the
LARP7–7SK binding (13). The data in Figure 6A
show that while recombinant MePCE (for its purity, see
Figure 3B) interacted well with wild-type 7SK, F-LARP7
(see Figure 3B) formed only a weak complex with
the RNA when present at a similar concentration
(Figure 6A, lanes 2 and 3). However, the addition of
both MePCE and LARP7 into the reaction resulted in

Figure 6. Capping-independent stimulation of the LARP7–7SK binding by MePCE, which leads to the stabilization of 7SK by the cooperative
actions of MePCE and LARP7. (A) Gel mobility shift assay was performed with 32P-labeled wild-type 7SK or 7SK (�4U’s) and in the presence (+)
or absence (�) of the indicated proteins or SAM. The positions of free 7SK as well as the various 7SK-containing complexes are indicated on the
left. (B) 7SK capping reactions containing the same concentration (1�) as or twice (2�) or thrice (3�) more MePCE than that used in gel shift
reactions in A were performed in the presence of SAM and absence of LARP7. The RNA products were isolated and analyzed by autoradiography
(top panel) and EB staining (bottom panel). (C) HeLa cells were transfected with constructs expressing the indicated shRNAs to KD the expression
of MePCE or/and LARP7. The levels of 7SK and the other indicated proteins in NEs of transfected cells were analyzed by WB and NB.
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the assembly of a robust, slower migrating complex.
Antibody supershift experiments confirm that this
complex contained MePCE, LARP7 and 7SK as
expected (data not shown). Notably, MePCE and
LARP7 were able to form this trimeric complex with
wild-type 7SK but not 4U’s (compare lanes 4 and 12),
indicating that the interaction of LARP7 with the
30-poly(U) sequence of 7SK is essential for the complex
formation. Thus, the binding of MePCE to the cap has
been replaced by the interaction with LARP7 and then
through LARP7 to the 30-poly(U). In other words, the
presence of MePCE has converted an otherwise weak
LARP7–7SK binding into a much stronger one, which
in turn promotes the formation of a stable MePCE–
LARP7–7SK subcomplex.
It is important to point out that this stimulatory effect

of MePCE is unrelated to its capping activity, as the
omission of SAM, the methyl group donor, in the
reactions produced no effect on the MePCE-mediated
MePCE–LARP7–7SK complex formation (Figure 6A,
compare lanes 1–4 with lanes 5–8). The control experiment
in Figure 6B indicates that in the presence of SAM and
absence of F-LARP7, the amount of MePCE used in the
gel shift reactions was able to cause a likely complete
methylation of 7SK as no further methylation was
observed with the addition of 2- or 3-times more
MePCE. Taken together, these data indicate that despite
MePCE’s lack of capping activity in 7SK snRNP, its
ability to stimulate the LARP7–7SK binding and cooper-
ate with LARP7 to promote the MePCE–LARP7–7SK
subcomplex formation well justifies its existence in 7SK
snRNP.

MePCE and LARP7 cooperate to stabilize 7SK snRNA

To examine the functional significance of MePCE’s stim-
ulation of the LARP7–7SK binding and cooperation with
LARP7 to form the MePCE–LARP7–7SK subcomplex,
we tested whether shRNA depletion of MePCE could
affect the ability of LARP7 to maintain the stability of
7SK. Previously, we have shown that the expression of
shLARP7 caused a nearly complete depletion of cellular
LARP7 and co-depletion of >95% of 7SK (13). However,
when shMePCE was expressed in HeLa cells, �85% of
MePCE and only �45% of 7SK were co-depleted
(Figure 6C and data from titration analysis not shown).
Thus, MePCE contributes to the metabolic stability of
7SK in HeLa cells, which is consistent with the previous
observations obtained in both human 293 cells and
zebrafish embryos (9,17). However, compared with
LARP7, MePCE appears to be less efficient in maintaining
the steady-state level of 7SK RNA.
To determine whether MePCE and LARP7 act

cooperatively to maintain 7SK stability, we expressed
either alone or together with shMePCE half the normal
amount of shLARP7, which reduced the LARP7 level by
about half in HeLa cells (Figure 6C). While shLARP7 or
shMePCE alone reduced the nuclear levels of 7SK by �50
and 45%, respectively, the co-expression of the two
together led to >99% depletion of 7SK in cells that still
retained �50 and 15% of their original levels of LARP7

and MePCE, respectively (Figure 6C). We have previously
shown that when there was little LARP7 in the cell caused
by maximal shLARP7 expression, 7SK was efficiently
degraded whether or not MePCE was around (13).
However, when the cellular level of LARP7 was reduced
by half through reduced shLARP7 expression as shown in
Figure 6C, the remaining LARP7 became severely depen-
dent on MePCE to bind to 7SK and protect it from
exonucleolytic cleavage. When MePCE were also
depleted under such conditions, the remaining �50% of
LARP7 were simply unable to keep 7SK stable
(Figure 6C, lane 4). Thus, the stability of 7SK depends
on the cooperation between LARP7 and MePCE.

CONCLUDING REMARKS

The 7SK snRNP represents a major reservoir of activity
from which functional P-TEFb can be recruited to
respond to increased cellular demand for P-TEFb-
dependent gene expression and cell growth (2). Recently,
it has been shown that the integrity of 7SK snRNP and
consequently the amount of P-TEFb sequestered in this
complex are also critical for vertebrate development and
the proper splicing of pre-mRNA transcripts (17). Within
this multi-subunit snRNP, 7SK RNA functions as a
central scaffold that holds all the protein components
together and allows HEXIM1 to suppress Cdk9’s kinase
activity (6,12). Thus, the stability of 7SK is of supreme
importance as it determines the amount of active
P-TEFb in the cell. Whereas the 7mGpppN cap structure
of mRNAs is a well-known protector against
50-exonucleolytic cleavage, it remains to be determined
whether the methylated g-phosphate cap structure of
7SK can provide a similar function. Assuming that the
cap can indeed protect 7SK, the continued presence of
MePCE in 7SK snRNP, which already harbors 7SK in
its methylated state, can only be justified by the demon-
stration that MePCE has a capping-independent function
of significantly stabilizing the LARP7–7SK binding and
that the stability of 7SK depends on the cooperation
between MePCE and LARP7 (Figure 6). In this manner,
MePCE lends a helping hand to LARP7 through releasing
the 50-end of 7SK, and the MePCE–LARP7 complex then
efficiently binds to the 30-poly(U) tail to prevent cleavage
by 30-exonucleases (Figure 6A). Although the significance
of LARP7 inhibition of MePCE’s capping activity
remains to be determined, the data presented here have
nevertheless revealed an important mechanism by which
these two proteins cooperate to maintain the stability of
7SK snRNA and integrity of 7SK snRNP.
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